JP2005209874A - 放熱器 - Google Patents

放熱器 Download PDF

Info

Publication number
JP2005209874A
JP2005209874A JP2004014598A JP2004014598A JP2005209874A JP 2005209874 A JP2005209874 A JP 2005209874A JP 2004014598 A JP2004014598 A JP 2004014598A JP 2004014598 A JP2004014598 A JP 2004014598A JP 2005209874 A JP2005209874 A JP 2005209874A
Authority
JP
Japan
Prior art keywords
heat
heat receiving
receiving body
radiator
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014598A
Other languages
English (en)
Inventor
Naohiro Konosu
直広 鴻巣
Masato Takahashi
正人 高橋
Atsushi Yanase
淳 梁瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004014598A priority Critical patent/JP2005209874A/ja
Publication of JP2005209874A publication Critical patent/JP2005209874A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 放熱器用の冷却水循環装置の大型化やコストアップ並びに放熱器自体の製作コストアップを招かないように、熱交換性能の向上を図ること。
【解決手段】 熱を受け取る板状の受熱体101〜105が複数層積層されて接合され、最上層の受熱体101の上面に熱を発生するLDアレイ17が接合されている。受熱体101に形成された放熱フィン10−1と同じ放熱フィン10−2,10−3を、最上と最下層の間の受熱体102,103に形成する。この際、全放熱フィン10−1〜10−3の隣接流路1a〜3aの合計断面積が、放熱フィンが1層のみに形成される場合に予め設計値として定められる隣接流路の断面積と等しくなるように形成する。給水口5から最上の受熱体101へ導かれる冷却水を、中間の受熱体102,103に追加形成された放熱フィン10−2,10−3の隣接流路2a,3aに分流して導く流路である貫通穴2b,3bを形成する。
【選択図】 図1

Description

本発明は、高出力LD(レーザーダイオード)アレイ等の高熱を発生する装置に適用される水冷式の放熱器に関する。
この種の従来技術として、例えば図7及び図8に示す高出力LDアレイ用の放熱器がある。ここで、図7は、放熱器4全体の縦断面図、図8の(a)は図7に示すA1−A2から見た上受熱体3の下面図、(b)は図7に示すB1−B2から見た平面図、(c)は図7に示すC1−C2から見た平面図である。
高出力LDアレイ17は、発熱密度が数十〜数百W/cm程度と大きいため、LDアレイ17の温度上昇によりレーザー出力、効率、発信波長、素子寿命に大きな影響を与える。従って、LDアレイ17で発生した熱をいかに除去するかが非常に重要な課題になる。
また、このLDアレイ17の大きさが長さ10mm×幅1〜1.5mm程度と上受熱体3との接触面積が非常に小さく、空冷式では温度上昇が押えきれないため、この種の放熱器4では内部に水路を設け水冷式の放熱を行っている。
この放熱器4の水路は、図8の(a)に示す上面水路、(b)に示す中面水路、(c)に示す下面水路が設けられた3層の構造となっている。
このような構造の放熱器の動作を、図7及び図8を参照して説明する。
受熱体1の給水口5に導かれた冷却水は、受熱体2の円形連通穴6を通り、上受熱体3の給水口7まで到達する。ここで冷却水は、概略扇形の上面水路8によって拡がり、多数の放熱フィン10に到達する。この際、給水側の圧力損失を低減させるために上座グリ部30を設けることによって、続路断面積を拡大させている。上座グリ部30は、放熱フィン10の手前まで形成され、放熱フィン10に冷却水が流入する際、流速を向上させ熱交換効率を高める役割を果たしている。
この放熱フィン10の上面の端部にはLDアレイ17が接合されている。放熱フィン10まで到達した冷却水は、当該放熱フィン10で熱交換され中受熱体2の円形連通穴11を通り下受熱体1に設けられた放熱フィン13の間を通り、下面水路14に到達する。
ここで、冷却水は流路絞り部15により2つに分流し、排水口16で再び合流し、放熱器4外に排出される。この際、排水口の圧力損失を低減させる為、中受熱体2に貫通口31を設けることによって流路断面積を拡大させている。
なお、受熱体1、2、3は熱伝導が良好な金属材料を用いて製作され、各受熱体1〜3は半田等で気密かつ熱伝導良好な状態に接合されている。
この種の従来の放熱器として、例えば特許文献1及び特許文献2に記載のものがある。
WO00/11922号公報 特開平8−139479号公報
ところで、従来の放熱器においては、放熱フィン10の構造を、LDアレイ17で発生した熱を上受熱体3で受熱し、板厚方向に熱伝導させ、LDアレイ17の数倍の長さに設計した放熱フィン10に導かせるようにしている。また、上受熱体3に設けられた放熱フィン10だけでは、放熱量が充分でないため、中受熱体2の隔壁11aに熱伝導させ、更に下受熱体1に設けた放熱フィン13に熱伝導させることによって、放熱量を増加させる構造としている。
この放熱フィン10の構造では、給水口5の円形形状を矩形の平面状に拡大し、LDアレイ17で発生した熱を幅方向前面で熱交換し、熱交換された冷却水が、円形連通穴11を通り下層の水路へ導かれ、排水口16より排出されるので、LDアレイ17の熱を効率良く除去することが可能である。
また、LDアレイ17の更なる出力増加に伴う温度上昇を抑えるためには、冷却水との熱交換効率を更に高める必要がある。製作コストを無視すれば、熱交換効率をより高くすることは可能である。
しかし、実際には低コスト化が要求されるので、現状の構造で熱交換効率を高める必要がある。これには、流速を増加させる方法、放熱フィン部分の表面積を増加させる方法などが有効である。
流速を増加させる方法としては、流量を増加させると共に流速を増加させる方法と、放熱フィン10の高さtを低く、即ち放熱フィン10に隣接する流路の高さ(=t)を低くして流速を上げる方法が考えられる。前者の方法は、放熱器4に接続される図示せぬ冷却水循環装置の大型化並びにコストアップにつながる。後者も流路の断面積が減少するので圧力損失が著しく増大し、冷却水循環装置の大型化並びにコストアップにつながる。
また、放熱フィン部分の面積を増加させるには放熱フィンの実装数を増やす方法があるが、これは、放熱器4の外形寸法の制約で大きくすることができないので、細分化する必要がある。しかし、放熱フィンを形成するには、製造コストが高くならないように考慮すると、プレスかエッチングによる形成方法となるので、より細分化することは不可能であり、従来技術程度の実装数が限界となる。
本発明は、このような課題に鑑みてなされたものであり、放熱器用の冷却水循環装置の大型化やコストアップ並びに放熱器自体の製作コストアップを招かないように、熱交換性能の向上を図ることができる放熱器を提供することを目的としている。
上記目的を達成するために、本発明の請求項1による放熱器は、熱を受け取る板状の受熱体が複数層積層されて接合され、このうち最上層の受熱体の上面に熱を発生する発熱体が接合され、この接合面と対向する同受熱体の下面に前記発熱体の熱を放熱するための放熱フィンが形成されると共にその放熱フィンからの熱を冷却水を流して冷却するための流路が当該放熱フィンに隣接して形成され、その隣接流路が最上層と最下層との1乃至は複数の中間層の受熱体を貫通して、最下層の受熱体の給水口及び排水口に接続されてなる放熱器において、前記中間層の受熱体に、前記最上層の受熱体の放熱フィンと同構造の放熱フィンを形成し、この際、最上層と中間層との放熱フィンの隣接流路の合計断面積が、放熱フィンが1層のみに形成される場合に予め設計値として定められる隣接流路の断面積と等しくなるように形成し、前記給水口から最上層の受熱体へ導かれる冷却水を、前記中間の受熱体に追加形成された放熱フィンの隣接流路に分流して導く流路を形成したことを特徴としている。
この構成によれば、放熱フィンが1つの場合の隣接流路の断面積と等しくなるように、放熱フィンを追加することによって隣接流路も追加されるので、流路を流れる冷却水の圧力を変えることなく隣接流路の表面積を増やすことができる。これによって、熱交換量が増加するので、発熱量が多い発熱体を最上層の受熱体に搭載しても、過剰な冷却水循環装置を用いて流量を増加させることなく温度上昇を低減させることができる。
以上説明したように本発明の放熱器によれば、放熱器用の冷却水循環装置の大型化やコストアップ並びに放熱器自体の製作コストアップを招かないように、熱交換性能の向上を図ることができるという効果がある。
以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
(実施の形態)
図1は、本発明の実施の形態に係る放熱器100の全体の縦断面図である。
図2は、図1に示す放熱器100をD1−D2線で切断した際の断面図である。
図3は、図1に示す放熱器100の第1の受熱体101の構造を示し、(a)は第1の受熱体101の平面図、(b)は第1の受熱体101を(a)のE1−E2線で切断した際の断面図、(c)は第1の受熱体101の下面図である。
図4は、図1に示す放熱器100の第2の受熱体102(又は第3の受熱体103)の構造を示し、(a)は第2の受熱体102(又は第3の受熱体103)の平面図、(b)は第2の受熱体102(又は第3の受熱体103)を(a)のF1−F2線で切断した際の断面図、(c)は第2の受熱体102(又は第3の受熱体103)の下面図である。
図5は、図1に示す放熱器100の第4の受熱体104の構造を示し、(a)は第4の受熱体104の平面図、(b)は第4の受熱体104を(a)のG1−G2線で切断した際の断面図、(c)は第4の受熱体104の下面図である。
図6は、図1に示す放熱器100の第5の受熱体105の構造を示し、(a)は第5の受熱体105の平面図、(b)は第5の受熱体105を(a)のH1−H2線で切断した際の断面図、(c)は第5の受熱体105の下面図である。
本実施の形態の放熱器100は、次のような特徴を有する。まず、図1及び図2に示すようにLDアレイ17の熱を受けて放熱するための受熱体を、第1〜第5の受熱体101〜105による5層構造とした。但し、5層でなくとも4層以上であればよい。また、放熱器100の製造時には、最下層の第5の受熱体105から上方向に第4、第3と順次積層されて熱的に接合される。
更に、図3及び図4にも示すように、第1の受熱体101の下面に形成される放熱フィン10−1と同一の寸法及び数量の櫛歯状の放熱フィン10−2,10−3を、第2及び第3の受熱体102,103の下面にも互いに位置が上下で一致するように形成する。そして、給水口5から第1の受熱体101の放熱フィン10−1へ流れる冷却水が分流されて、第2及び第3の受熱体102,103の放熱フィン10−2,10−3にも流れるようにした。
また、図2に示すように、各放熱フィン10−1,10−2,10−3の高さt1,t2,t3の合計が、従来技術の放熱フィン10の高さtと同一となるようにする。即ち、1つの高さ(例えばt1)が、t×(1/放熱フィン数)となるようにした。必然的に、各放熱フィン10−1〜10−3に隣接する流路1a,2a,3aの高さも放熱フィン10−1〜10−3の高さt1〜t3と同じとなる。
このように複数の放熱フィン10−1〜10−3を設けることによって、各放熱フィン10−1〜10−3の流路1a〜3a内の合計面積が、従来の放熱フィン10の流路内の面積の約3倍(以降、3倍と表現する)となる。何故なら、図2に示すように、流路1aの上面Sa及び下面Sbが、従来の3倍に増加するからである。
このように従来の3倍の流路面積が得られると、放熱フィン10−1〜10−3と冷却水との接触面積が増え熱交換量が増大する。熱交換量は、通常下式(1)により定義されているので、流路の表面積が3倍になれば、放熱量と熱伝達率を同じとすれば温度上昇は1/3となる。従って、LDアレイ17の発熱量に応じて、新たに放熱フィンを形成する受熱体をn個増加すれば、LDアレイ17の温度上昇を抑えることが可能となる。
Q=h×ΔT×S
ΔT=Q/(h×S) …(1)
但し、Q:放熱量(W)、h:熱伝達率(W/mK)、ΔT:温度上昇(K)、S:表面積(m)とする。
また、第4の受熱体104は、仕切り板の役割で積層され、当該第4の受熱体104の下面には、図5に示すように、給水側の圧力損失の低減を防止するために、第5の受熱体105の上面に形成された下面水路108と同形状の座グリ部109が設けられている。この座グリ部109によって下面水路108の部分の放熱フィン13と対向して接合する放熱フィン13−1が形成されている。
また、第2〜第4の受熱体102〜104には、第5の受熱体105の給水口5から給水された冷却水を第1の受熱体101の流路1aへ導くと共に、第2及び第3の受熱体102,103の流路2a,3aに導くための連通穴4b,3b,2bが各流路1a〜3aに接続されて形成されている。つまり、第2及び第3の受熱体102,103に設けられた連通穴3b,2bは、冷却水を自層の上層へ導くと共に、自層の流路2a,3aにも導く分流構造となっている。
次に、このような構造の放熱器100による放熱動作を説明する。
図示せぬ冷却水循環装置から第5の受熱体105の給水口5に導かれた冷却水は、概略扇形の下面水路108により拡がって放熱フィン13まで到達する。この際、第4の受熱体104に設けられた座グリ部109によって給水側の圧力損失が低減される。
放熱フィン13まで導かれた冷却水は、第4の受熱体104の連通穴4bを通り、第3の受熱体103の連通穴3bに導かれると、この上の第2の受熱体102の連通穴2bと自受熱体103の放熱フィン10−3の流路3aとに分流される。流路3aに導かれた冷却水は、放熱フィン10−3を冷却しながら流れ、第3の受熱体103のランド115−3で分かれる水路114−3を通って連通穴116−3に導かれ、第4の受熱体104の連通穴116−4を通って、第5の受熱体105の座グリ部120を経て排水口16より冷却水循環装置へ排出される。但し、水路114−3は、この下の第4の受熱体104に設けられた座グリ部112−4によって断面積が拡げられているので給水側の圧力損失が低減される。
第2の受熱体102の連通穴2bに導かれた冷却水は、この上の第1の受熱体101の放熱フィン10−1の流路1aと自受熱体102の放熱フィン10−2の流路2aとに分流される。流路2aに導かれた冷却水は、放熱フィン10−2を冷却しながら流れ、第2の受熱体102のランド115−2で分かれる水路114−2を通って連通穴116−2に導かれ、更に第3の受熱体103の連通穴116−3及び第4の受熱体104の連通穴116−4を通って、第5の受熱体105の座グリ部120を経て排水口16より冷却水循環装置へ排出される。但し、水路114−2は、この下の第3の受熱体103に設けられた座グリ部112−3によって断面積が拡げられているので給水側の圧力損失が低減される。
第1の受熱体101の流路1aに導かれた冷却水は、放熱フィン10−1を冷却しながら流れ、ランド115−1で分かれる水路114−1を通って第2の受熱体102の連通穴116−2に導かれ、更に第3の受熱体103の連通穴116−3及び第4の受熱体104の連通穴116−4を通って、第5の受熱体105の座グリ部120を経て排水口16より冷却水循環装置へ排出される。但し、水路114−1は、この下の第2の受熱体102に設けられた座グリ部112−2によって断面積が拡げられているので給水側の圧力損失が低減される。
このように流れる冷却水によって、次のような熱交換が行われる。
図2に矢印Y1で示すようにLDアレイ17で発生した熱は、第1の受熱体101の内部に熱伝導良く拡散していく。この伝導した熱は、放熱フィン10−1の先端から第2の受熱体102に伝導し、放熱フィン10−2の先端から第3の受熱体103に伝導し、同様に放熱フィン10−3から第4の受熱体104を経て放熱フィン13−1から第5の受熱体105の放熱フィン13まで熱伝導し、放熱器100の内部全体に熱が拡散していく。
このように複数の放熱フィン10−1〜10−3によって放熱器100全体に熱が拡散するが、各放熱フィン10−1〜10−3及び13−1,13に隣接して流路1a〜3a及び下面水路108を形成して放熱面積が増大させてあるので、各流路1a〜3a及び下面水路108を冷却水が流れることで熱交換量が増大することになる。
この際、特に各放熱フィン10−1〜10−3の流路1a〜3a内の合計面積が、従来の放熱フィン10の流路内の面積の3倍とされているので、放熱フィン10−1〜10−3と冷却水との接触面積が増え熱交換量が増大する。そして、流路1a〜3aの表面積が3倍になれば、温度上昇が1/3となる。従って、LDアレイ17の温度上昇を抑えることができる。
以上説明したように本実施の形態の放熱器100によれば、LDアレイ17で発生した熱を受ける第1の受熱体101に形成された放熱フィン10−1と同構造の放熱フィン10−2,10−3を、第1の受熱体101の下層に接合される第2及び第3の受熱体102,103に形成する。これによって、各放熱フィン10−1〜10−3に隣接する流路1a〜3aの表面積を約3倍に増加させることができるので、高出力のLDアレイ17を搭載しても、流量を増加させることなく温度上昇を低減させることができる。
また、新たに追加する第2及び第3の受熱体102,103は、同じ形状のものを積層すればよいので、2以上追加しても製造コストもあまり高くなることはない。つまり、追加分の積層数はLDアレイ17の放熱量に応じて増減させればよい。
また、各流路1a〜3aの総断面積は、従来技術の放熱フィン10の流路断面積と同じとなるようにしているので、圧力損失が上昇することが無く、これによって冷却水循環装置を大型させることもない。
本発明の実施の形態に係る放熱器の全体の縦断面図である。 上記実施の形態に係る放熱器をD1−D2線で切断した際の断面図である。 上記実施の形態に係る放熱器の第1の受熱体の構造を示し、(a)は第1の受熱体の平面図、(b)は第1の受熱体を(a)のE1−E2線で切断した際の断面図、(c)は第1の受熱体の下面図である。 上記実施の形態に係る放熱器の第2の受熱体(又は第3の受熱体)の構造を示し、(a)は第2の受熱体(又は第3の受熱体)の平面図、(b)は第2の受熱体(又は第3の受熱体)を(a)のF1−F2線で切断した際の断面図、(c)は第2の受熱体(又は第3の受熱体)の下面図である。 上記実施の形態に係る放熱器の第4の受熱体の構造を示し、(a)は第4の受熱体の平面図、(b)は第4の受熱体を(a)のG1−G2線で切断した際の断面図、(c)は第4の受熱体の下面図である。 上記実施の形態に係る放熱器の第5の受熱体の構造を示し、(a)は第5の受熱体の平面図、(b)は第5の受熱体を(a)のH1−H2線で切断した際の断面図、(c)は第5の受熱体の下面図である。 従来の放熱器の全体の縦断面図である。 従来の放熱器の構造を示し、(a)は図7に示すA1−A2から見た上受熱体の下面図、(b)は図7に示すB1−B2から見た平面図、(c)は図7に示すC1−C2から見た平面図である。
符号の説明
1 下受熱体
1a,2a,3a 放熱フィンの隣接流路
2 中受熱体
3 上受熱体
4,100 放熱器
5 給水口
6 円形連通穴
8 上面水路
10,10−1,10−2,10−3,13,13−1 放熱フィン
11,2b,3b,4b 円形連通穴
11a 隔壁
14 下面水路
16 排水口
17 LDアレイ
30 上座グリ部
31 貫通口
101 第1の受熱体
102 第2の受熱体
103 第3の受熱体
104 第4の受熱体
105 第5の受熱体
108 下面水路
109,120,112−2,112−3,112−4 座グリ部
115−1,115−2,115−3 ランド
116−2,116−3,116−4 連通穴
114−1,114−2,114−3 水路
t,t1,t2,t3 放熱フィンの高さ及び放熱フィンの隣接流路の高さ

Claims (1)

  1. 熱を受け取る板状の受熱体が複数層積層されて接合され、このうち最上層の受熱体の上面に熱を発生する発熱体が接合され、この接合面と対向する同受熱体の下面に前記発熱体の熱を放熱するための放熱フィンが形成されると共にその放熱フィンからの熱を冷却水を流して冷却するための流路が当該放熱フィンに隣接して形成され、その隣接流路が最上層と最下層との1乃至は複数の中間層の受熱体を貫通して、最下層の受熱体の給水口及び排水口に接続されてなる放熱器において、
    前記中間層の受熱体に、前記最上層の受熱体の放熱フィンと同構造の放熱フィンを形成し、この際、最上層と中間層との放熱フィンの隣接流路の合計断面積が、放熱フィンが1層のみに形成される場合に予め設計値として定められる隣接流路の断面積と等しくなるように形成し、
    前記給水口から最上層の受熱体へ導かれる冷却水を、前記中間の受熱体に追加形成された放熱フィンの隣接流路に分流して導く流路を形成した
    ことを特徴とする放熱器。
JP2004014598A 2004-01-22 2004-01-22 放熱器 Pending JP2005209874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014598A JP2005209874A (ja) 2004-01-22 2004-01-22 放熱器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014598A JP2005209874A (ja) 2004-01-22 2004-01-22 放熱器

Publications (1)

Publication Number Publication Date
JP2005209874A true JP2005209874A (ja) 2005-08-04

Family

ID=34900341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014598A Pending JP2005209874A (ja) 2004-01-22 2004-01-22 放熱器

Country Status (1)

Country Link
JP (1) JP2005209874A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109079A (ja) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd 発熱体冷却装置
WO2021176978A1 (ja) * 2020-03-04 2021-09-10 パナソニックIpマネジメント株式会社 レーザモジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109079A (ja) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd 発熱体冷却装置
WO2021176978A1 (ja) * 2020-03-04 2021-09-10 パナソニックIpマネジメント株式会社 レーザモジュール

Similar Documents

Publication Publication Date Title
EP3446058B1 (en) Microchannel evaporators with reduced pressure drop
US7278474B2 (en) Heat exchanger
US6895026B2 (en) Heat sink and semiconductor laser apparatus and semiconductor laser stack apparatus using the same
JP6636996B2 (ja) Ldモジュール冷却装置及びレーザ装置
CN110957632B (zh) 一种改善半导体激光阵列光谱半宽的微通道热沉
JP2003008273A (ja) 冷却装置及び光源装置
US11732978B2 (en) Laminated microchannel heat exchangers
JP5332115B2 (ja) パワー素子搭載用ユニット
KR20190016489A (ko) 라미네이트 마이크로채널 열 교환기
JP4544187B2 (ja) 冷却器
JP2005209874A (ja) 放熱器
JP6239997B2 (ja) 冷却器
TW202015297A (zh) 二極體雷射器配置以及製造二極體雷射器配置之方法
JP2005203560A (ja) 放熱器
CN111386011B (zh) 一种侧流冲击微通道冷板及电子设备
CN113937615A (zh) 用于激光器的冷却组件及冷却方法
JP2005166789A (ja) 放熱器
JP2005340532A (ja) 放熱器
JP2007273755A (ja) ヒートシンク並びにパワーモジュール用部材およびパワーモジュール
JP2005217033A (ja) 放熱器
JP2005294769A (ja) 放熱器
JP2005340533A (ja) 放熱器
JP2006332233A (ja) 放熱器
JP2007115940A (ja) 熱分散プレート
JP2007123736A (ja) 放熱器