JP2005209852A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2005209852A
JP2005209852A JP2004014224A JP2004014224A JP2005209852A JP 2005209852 A JP2005209852 A JP 2005209852A JP 2004014224 A JP2004014224 A JP 2004014224A JP 2004014224 A JP2004014224 A JP 2004014224A JP 2005209852 A JP2005209852 A JP 2005209852A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
phosphor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014224A
Other languages
Japanese (ja)
Other versions
JP2005209852A5 (en
JP4622253B2 (en
Inventor
Masahiko Sano
雅彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2004014224A priority Critical patent/JP4622253B2/en
Publication of JP2005209852A publication Critical patent/JP2005209852A/en
Publication of JP2005209852A5 publication Critical patent/JP2005209852A5/ja
Application granted granted Critical
Publication of JP4622253B2 publication Critical patent/JP4622253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which comprises a semiconductor light emitting element and a phosphor covering the semiconductor light emitting element, for emitting a mixed light of these lights wherein color shading is small. <P>SOLUTION: The light emitting device comprises the semiconductor light emitting element obtained by stacking semiconductor layers on one main face of a transparent substrate, and the phosphor which covers a face excluding the mounting face of the semiconductor light emitting element, and absorbs a part of a first light emitted by the semiconductor light emitting element to emit the second light of a wavelength different from the first light. The light emitting device emits a mixed light mixing the first light excluding a part absorbed by the phosphor with the second light, and a shade film is formed on a side of the semiconductor light emitting element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光素子とその半導体発光素子を覆う蛍光体とを備え、それらの光の混色光を出射する発光デバイスに関する。   The present invention relates to a light emitting device that includes a semiconductor light emitting element and a phosphor that covers the semiconductor light emitting element, and emits mixed color light of these lights.

近年、半導体発光素子と蛍光体とを組み合わせた発光デバイスが開発され、主として白色光を必要とする用途に使用されている。この半導体発光素子と蛍光体とを組み合わせた発光デバイスは、例えば、特許文献1に示されているように、透光性のサファイア基板の上に窒化物半導体からなる半導体層が積層された半導体発光素子と、それを覆うように形成された蛍光体とによって構成され、半導体発光素子の光と蛍光体の光の混色により白色が実現されている。
特開2002−317178号公報
In recent years, light emitting devices in which a semiconductor light emitting element and a phosphor are combined have been developed and used mainly for applications requiring white light. A light-emitting device combining this semiconductor light-emitting element and a phosphor is, for example, a semiconductor light-emitting device in which a semiconductor layer made of a nitride semiconductor is stacked on a light-transmitting sapphire substrate as disclosed in Patent Document 1. The device is composed of an element and a phosphor formed so as to cover the element, and white is realized by mixing the light of the semiconductor light emitting element and the light of the phosphor.
JP 2002-317178 A

しかしながら、従来の半導体発光素子と蛍光体とを組み合わせた発光デバイスは、混色光における半導体発光素子の光と蛍光体の光の強度比の変動に起因する色むらが生じるという問題があった。例えば、半導体発光素子を覆っている蛍光体層の厚さが均一でないと、蛍光体層が厚い部分では、蛍光体の発光強度が相対的に高くなって蛍光体の発光色に近い色となり、蛍光体層の薄い部分では蛍光体の発光強度が相対的に低くなって半導体発光素子の発光色に近い発光色になり、その結果、発光色にむらが生じる。   However, a conventional light emitting device in which a semiconductor light emitting element and a phosphor are combined has a problem in that color unevenness is caused by a variation in the intensity ratio between the light of the semiconductor light emitting element and the light of the phosphor in mixed color light. For example, if the thickness of the phosphor layer covering the semiconductor light emitting device is not uniform, the phosphor layer has a relatively high emission intensity in a thick portion of the phosphor layer, resulting in a color close to the emission color of the phosphor, In the thin part of the phosphor layer, the emission intensity of the phosphor becomes relatively low, and the emission color is close to the emission color of the semiconductor light emitting element. As a result, the emission color is uneven.

そこで、本発明は、色むらの小さい発光デバイスを提供することを目的とする。   Accordingly, an object of the present invention is to provide a light emitting device with small color unevenness.

以上の目的を達成するために、本発明に係る発光デバイスは、透光性基板の一方の主面上に半導体層が積層されてなる半導体発光素子と、前記半導体発光素子の実装面を除く面を覆い前記半導体発光素子が発光する第1の光の一部を吸収してその第1の光とは異なる波長の第2の光を発光する蛍光体を含む蛍光体層とを備え、前記蛍光体に吸収された一部を除く第1の光と、前記第2の光とが混合された混色光を出射する発光デバイスにおいて、前記半導体発光素子の側面が遮光膜によって覆われたことを特徴とする。   In order to achieve the above object, a light-emitting device according to the present invention includes a semiconductor light-emitting element in which a semiconductor layer is laminated on one main surface of a light-transmitting substrate, and a surface excluding a mounting surface of the semiconductor light-emitting element. A phosphor layer including a phosphor that absorbs a part of the first light emitted from the semiconductor light emitting element and emits a second light having a wavelength different from that of the first light. In a light emitting device that emits mixed color light in which first light excluding a part absorbed by a body and the second light is mixed, a side surface of the semiconductor light emitting element is covered with a light shielding film. And

本発明に係る発光デバイスのように、透光性基板上に半導体層を積層した半導体発光素子を覆うように蛍光体を形成して構成した発光デバイスでは、半導体発光素子の主面を覆う蛍光体の量及び層の厚さ管理は比較的容易であるのに対して、半導体発光素子の側面を覆う蛍光体の量及び層の厚さを一定に管理することは困難である。
しかしながら、本発明に係る発光デバイスでは、半導体発光素子の側面が遮光膜によって覆われているので、半導体発光素子の側面に配置された蛍光体が半導体発光素子により励起されることはほとんどなく、半導体発光素子の一方又は他方の主面上に配置された蛍光体のみが励起されて発光に寄与する。
従って、本発明に係る発光デバイスでは、比較的管理が容易な半導体発光素子の光出射面となる一方又は他方の主面上に配置された蛍光体の量及び層の厚さのみを管理することにより、色むらの発生を防止できる。
In a light-emitting device formed by forming a phosphor so as to cover a semiconductor light-emitting element in which a semiconductor layer is stacked on a light-transmitting substrate like the light-emitting device according to the present invention, the phosphor covering the main surface of the semiconductor light-emitting element While the amount and the thickness of the layer are relatively easy to manage, it is difficult to keep the amount of the phosphor covering the side surface of the semiconductor light emitting element and the thickness of the layer constant.
However, in the light emitting device according to the present invention, since the side surface of the semiconductor light emitting element is covered with the light shielding film, the phosphor disposed on the side surface of the semiconductor light emitting element is hardly excited by the semiconductor light emitting element. Only the phosphor arranged on one or the other main surface of the light emitting element is excited and contributes to light emission.
Therefore, in the light emitting device according to the present invention, only the amount of phosphor and the thickness of the layer disposed on one or the other main surface, which is the light emitting surface of the semiconductor light emitting element that is relatively easy to manage, are managed. Therefore, it is possible to prevent color unevenness.

以下、図面を参照しながら、本発明に係る実施の形態について説明する。
実施の形態1.
本発明に係る実施の形態1の発光デバイスは、パッケージ10の凹部の底部にサブマウント32を介して実装された半導体発光素子3を、蛍光体層6で覆い、透光性樹脂15で封止することによって構成されている。
Embodiments according to the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
In the light emitting device according to the first embodiment of the present invention, the semiconductor light emitting element 3 mounted on the bottom of the recess of the package 10 via the submount 32 is covered with the phosphor layer 6 and sealed with the translucent resin 15. It is configured by

具体的に説明すると、本実施の形態1において、半導体発光素子3は、例えばサファイアからなる透光性基板1の一方の主面上に半導体層2(例えば、n型半導体層2a、活性層及びp型半導体層2b)が積層され、その上に正負の電極3a,3bが形成されてなり、透光性基板1を介して発光した光を出力する。   More specifically, in the first embodiment, the semiconductor light emitting element 3 includes a semiconductor layer 2 (for example, an n-type semiconductor layer 2a, an active layer, and an active layer) on one main surface of a translucent substrate 1 made of, for example, sapphire. A p-type semiconductor layer 2b) is laminated, and positive and negative electrodes 3a and 3b are formed thereon, and light emitted through the translucent substrate 1 is output.

本実施の形態1において、半導体発光素子3は、正電極3aと負電極3bがサブマウント32の配線電極に対向するようにフリップチップ実装され、そのサブマウント32がパッケージ10の凹部底面に接着剤37で接着されている。このようにして、半導体発光素子3は、サブマウント32を介してパッケージ10の凹部(素子収納部)の底面に実装されている。そてて、正電極3aが接続された配線電極31と負電極3bが接続された配線電極31はそれぞれ、パッケージ10のリードフレーム13a,13bに導電性ワイヤー44を用いてワイヤーボンディングされる。   In the first embodiment, the semiconductor light emitting element 3 is flip-chip mounted so that the positive electrode 3 a and the negative electrode 3 b face the wiring electrode of the submount 32, and the submount 32 is attached to the bottom surface of the recess of the package 10. Glued at 37. In this way, the semiconductor light emitting element 3 is mounted on the bottom surface of the recess (element housing part) of the package 10 via the submount 32. Then, the wiring electrode 31 to which the positive electrode 3a is connected and the wiring electrode 31 to which the negative electrode 3b is connected are respectively wire-bonded to the lead frames 13a and 13b of the package 10 using the conductive wires 44.

ここで、フリップチップ実装とは、半導体発光素子の電極を、バンプと呼ばれる導電部材と介してサブマウントのような支持基板の導電パターンに対向させ接合することにより機械的および電気的接続を行う実装方法をいい、具体的なステップについては、実施の形態2において説明する。   Here, flip-chip mounting is a mounting that performs mechanical and electrical connection by facing and bonding the electrodes of a semiconductor light emitting element to a conductive pattern of a support substrate such as a submount via a conductive member called a bump. A method is described, and specific steps will be described in the second embodiment.

所定の配線が施された半導体発光素子3は、半導体発光素子3が発光する光を吸収してその吸収した光とは異なる波長の光を発光する蛍光体F6が分散された蛍光体層6により覆われており、さらに透光性樹脂15によって封止される。
ここで、蛍光体層6は、例えば、バインダー樹脂に蛍光体F6が分散された樹脂をポッティング等により塗布して硬化させることにより形成する。
The semiconductor light emitting element 3 provided with the predetermined wiring is composed of a phosphor layer 6 in which a phosphor F6 that absorbs light emitted from the semiconductor light emitting element 3 and emits light having a wavelength different from the absorbed light is dispersed. It is covered and further sealed with a translucent resin 15.
Here, the phosphor layer 6 is formed, for example, by applying and curing a resin in which the phosphor F6 is dispersed in a binder resin by potting or the like.

以上のように構成された実施の形態1の発光デバイスにおいて、半導体発光素子3が発光する光(第1の光)の一部は蛍光体層6に含まれる蛍光体F6によって吸収され、残りは透光性樹脂15を通過して外部に出射される。また、半導体発光素子3が発光する第1の光を吸収した蛍光体F6は、その第1の光とは異なる波長の光(第2の光)を発光して、その第2の光は透光性樹脂15を通過して外部に出射される。透光性樹脂15を通過して外部に出射された第1の光と第2の光は互いに混ざり合ってそれらの中間的な発光色の混色光となり、発光デバイスの光として観測される。   In the light emitting device according to the first embodiment configured as described above, part of the light (first light) emitted from the semiconductor light emitting element 3 is absorbed by the phosphor F6 included in the phosphor layer 6, and the rest The light passes through the translucent resin 15 and is emitted to the outside. The phosphor F6 that has absorbed the first light emitted from the semiconductor light emitting element 3 emits light (second light) having a wavelength different from that of the first light, and the second light is transmitted. The light passes through the photosensitive resin 15 and is emitted to the outside. The first light and the second light emitted to the outside after passing through the translucent resin 15 are mixed with each other to be a mixed color light of an intermediate light emission color, and are observed as light of the light emitting device.

ここで、特に本実施の形態1の発光デバイスでは、半導体発光素子3の側面が遮光膜5によって覆われていることを特徴とし、この遮光膜5を形成することによって発光色における色むらが抑制されている。   Here, in particular, the light emitting device of the first embodiment is characterized in that the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5, and by forming this light shielding film 5, color unevenness in the emission color is suppressed. Has been.

すなわち、本実施の形態1の発光デバイスのように、例えば、ポッティング方法を用いて半導体発光素子3を覆うように蛍光体層6を形成した場合、半導体発光素子3の実装面を除く他の面がすべて蛍光体層6によって覆われることになるが、半導体発光素子の主面(透光性基板1の半導体層2が形成されている面とは反対側の主面、すなわち光出射面)を覆う蛍光体層6aの厚さと半導体発光素子3の側面を覆う蛍光体層6bの厚さは異なる。
また。蛍光体層6を形成する際、水平となる半導体発光素子の主面を覆う蛍光体層の厚さの管理及びその蛍光体層6aに含まれる蛍光体の量の管理(蛍光体層6a内における蛍光体の面内分布を均一に保つこと)することは比較的容易であるのに対して、半導体発光素子の側面を覆う蛍光体層6bの厚さ及びその蛍光体層6bに含まれる蛍光体の量の一定に管理することは樹脂の硬化前における変形及び蛍光体の沈降等により困難である。
That is, when the phosphor layer 6 is formed so as to cover the semiconductor light emitting element 3 by using, for example, a potting method as in the light emitting device of the first embodiment, other surfaces excluding the mounting surface of the semiconductor light emitting element 3 Are covered with the phosphor layer 6, but the main surface of the semiconductor light emitting element (the main surface opposite to the surface on which the semiconductor layer 2 of the translucent substrate 1 is formed, that is, the light emitting surface) is covered. The thickness of the phosphor layer 6a to cover and the thickness of the phosphor layer 6b to cover the side surface of the semiconductor light emitting element 3 are different.
Also. When forming the phosphor layer 6, management of the thickness of the phosphor layer covering the main surface of the horizontal semiconductor light emitting element and management of the amount of phosphor contained in the phosphor layer 6a (in the phosphor layer 6a) It is relatively easy to keep the in-plane distribution of the phosphors uniform), whereas the thickness of the phosphor layer 6b covering the side surface of the semiconductor light emitting element and the phosphors included in the phosphor layer 6b It is difficult to keep the amount of the resin constant because of deformation before the resin is cured and sedimentation of the phosphor.

このように、蛍光体層6の厚さ又は蛍光体の分布に不均一が生じると、従来技術の欄でも説明したように、蛍光体層が厚い部分では、蛍光体の発光強度が相対的に高くなって蛍光体の発光色に近い色となり、蛍光体層の薄い部分では蛍光体の発光強度が相対的に低くなって半導体発光素子の発光色に近い発光色になり、その結果、発光色にむらが生じる。   As described above, when nonuniformity occurs in the thickness of the phosphor layer 6 or the distribution of the phosphor, as described in the section of the prior art, the emission intensity of the phosphor is relatively high in the portion where the phosphor layer is thick. It becomes higher and becomes a color close to the emission color of the phosphor, and in the thin part of the phosphor layer, the emission intensity of the phosphor becomes relatively low and becomes an emission color close to the emission color of the semiconductor light emitting element. Unevenness occurs.

また、発光デバイスを見る角度によって発光色が異なって観測されることもある。例えば、図1に模式的に示すように光出射面の上より半導体発光素子の側面のほうが蛍光体層が厚く形成されたとすると、発光デバイスを斜めから見た場合には半導体発光素子の側面から出射された光はより厚い側面の蛍光体層を通過するので、蛍光体の発光強度が相対的に高くなって蛍光体の発光色に近い色となり、発光デバイスを正面(図面上の真上)から発光デバイスを見た場合には、半導体発光素子の光はより薄い光出射面上の蛍光体層を通過するので、蛍光体の発光強度が相対的に低くなって半導体発光素子の発光色に近い発光色として観測される。   Also, the emission color may be observed differently depending on the viewing angle of the light emitting device. For example, when the phosphor layer is formed thicker on the side surface of the semiconductor light emitting element than on the light emitting surface as schematically shown in FIG. 1, when the light emitting device is viewed obliquely, the side surface of the semiconductor light emitting element is Since the emitted light passes through the phosphor layer on the thicker side surface, the emission intensity of the phosphor becomes relatively high and becomes a color close to the emission color of the phosphor. When the light emitting device is viewed from above, the light of the semiconductor light emitting element passes through the phosphor layer on the thinner light emitting surface, so that the emission intensity of the phosphor becomes relatively low and the emission color of the semiconductor light emitting element is changed. Observed as near emission color.

しかしながら、本実施の形態1の発光デバイスでは、半導体発光素子3の側面が遮光膜5によって覆われているので、半導体発光素子3の側面に形成された蛍光体層6bに含まれる蛍光体が半導体発光素子3により励起されることはほとんどなく、半導体発光素子3の主面上に形成された蛍光体層6aに含まれる蛍光体のみが励起されて発光に寄与する。
従って、本実施の形態1に係る発光デバイスでは、比較的管理が容易な半導体発光素子3の主面上に形成される蛍光体層6aの厚さとそこに含まれる蛍光体の面内分布のみを管理することにより、色むらの発生を防止できる。
However, in the light emitting device of the first embodiment, since the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5, the phosphor contained in the phosphor layer 6b formed on the side surface of the semiconductor light emitting element 3 is a semiconductor. It is hardly excited by the light emitting element 3, and only the phosphor contained in the phosphor layer 6a formed on the main surface of the semiconductor light emitting element 3 is excited and contributes to light emission.
Therefore, in the light-emitting device according to the first embodiment, only the thickness of the phosphor layer 6a formed on the main surface of the semiconductor light-emitting element 3 that is relatively easy to manage and the in-plane distribution of the phosphor contained therein are obtained. By managing the color unevenness can be prevented.

また、半導体発光素子3において、その主面である光出射面から出射される光の強度と側面から出射される光の強度は異なっていることから、半導体発光素子3の側面に形成された蛍光体層6bに含まれる蛍光体を半導体発光素子3の側面から出射された光により励起されるようにすると、発光デバイスを視認する角度によって発光色が異なることになり、色むらの原因となる。   Further, in the semiconductor light emitting element 3, the intensity of light emitted from the light emitting surface which is the main surface is different from the intensity of light emitted from the side surface, and thus the fluorescence formed on the side surface of the semiconductor light emitting element 3. When the phosphor contained in the body layer 6b is excited by the light emitted from the side surface of the semiconductor light emitting element 3, the emission color varies depending on the angle at which the light emitting device is viewed, causing color unevenness.

しかしながら、本実施の形態1の発光デバイスでは、半導体発光素子3の側面が遮光膜5によって覆われているので、半導体発光素子3の側面に配置された蛍光体が半導体発光素子により励起されることはほとんどなく、色むらを抑えることができる。   However, in the light emitting device of the first embodiment, since the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5, the phosphor disposed on the side surface of the semiconductor light emitting element 3 is excited by the semiconductor light emitting element. There is almost no color unevenness.

さらに、透光性基板1を用いて構成され、半導体層2と反対側から光を出射する半導体発光素子3において、光出射面における発光強度の面内における均一性を確保することは比較的容易であるが、主面である光出射面から出射される光の強度と側面から出射される光の強度を同程度にすることは困難である。従って、半導体発光素子3の側面に遮光膜5を形成する本願の構成によれば、半導体発光素子3における光出射面の発光強度と側面の発光強度の差に起因する色むらの発生を抑えることができる。   Further, in the semiconductor light emitting device 3 configured using the translucent substrate 1 and emitting light from the side opposite to the semiconductor layer 2, it is relatively easy to ensure in-plane uniformity of the emission intensity on the light emitting surface. However, it is difficult to make the intensity of the light emitted from the light emitting surface that is the main surface the same as the intensity of the light emitted from the side surface. Therefore, according to the configuration of the present application in which the light-shielding film 5 is formed on the side surface of the semiconductor light emitting element 3, the occurrence of color unevenness due to the difference between the light emission intensity of the light emitting surface and the light emission intensity of the side surface of the semiconductor light emitting element 3 is suppressed. Can do.

また、半導体発光素子の側面を覆う蛍光体の量及び層の厚さを一定に管理することは困難であること、及び半導体発光素子の主面と側面との間に発光強度差があることは、大量生産時における発光デバイス間の色調バラツキの原因となっていた。
しかしながら、本実施の形態1の発光デバイスでは、半導体発光素子3の側面が遮光膜5によって覆われているので、半導体発光素子の側面に配置された蛍光体が半導体発光素子により励起されることはほとんどなく、大量生産時における発光デバイス間の色調バラツキを低減することもできる。
In addition, it is difficult to uniformly control the amount of the phosphor covering the side surface of the semiconductor light emitting element and the thickness of the layer, and there is a difference in emission intensity between the main surface and the side surface of the semiconductor light emitting element. This was a cause of color variation among light emitting devices during mass production.
However, in the light emitting device of the first embodiment, since the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5, the phosphor disposed on the side surface of the semiconductor light emitting element is excited by the semiconductor light emitting element. There is almost no color variation between light emitting devices during mass production.

次に、本実施の形態1において、半導体発光素子3の側面のみに遮光膜5を形成する方法について説明する。
本方法では、まず、通常の方法で半導体発光素子を作製した後、図2Aに示すように、粘着シート7の上に半導体発光素子3を並べて配置する。
Next, a method of forming the light shielding film 5 only on the side surface of the semiconductor light emitting element 3 in the first embodiment will be described.
In this method, first, a semiconductor light emitting element is manufactured by a normal method, and then the semiconductor light emitting element 3 is arranged side by side on the adhesive sheet 7 as shown in FIG. 2A.

次に、スパッタリング法により、図2Bに示すように、それぞれの半導体発光素子3の粘着シートに対向した半導体側の実装面を除く、光出射面及び側面にAlからなる遮光膜材料層5aを形成する。この遮光膜材料層5aの膜厚は、半導体発光素子3の側面部分の膜厚が1000Å〜10000Åの膜厚になるようにする。好ましくは、1000Å〜3000Åの膜厚になるようにする。この範囲の膜厚であれば、半導体発光素子の側面部分からの透過光を実質的に無くすことができ、又遮光膜の剥がれも抑制することができる。
遮光膜材料層5aを形成した後、半導体発光素子3の光出射面に形成された遮光膜材料層5aを研磨により除去した後(図2C)、半導体発光素子3を粘着シート7から分離する。
以上の方法で、側面に遮光膜5が形成された半導体発光素子3が作製される。
Next, as shown in FIG. 2B, a light shielding film material layer 5a made of Al is formed on the light emitting surface and the side surface by sputtering, except for the mounting surface on the semiconductor side facing the adhesive sheet of each semiconductor light emitting element 3. To do. The thickness of the light shielding film material layer 5a is set so that the thickness of the side surface portion of the semiconductor light emitting element 3 is 1000 to 10,000 mm. Preferably, the film thickness is 1000 to 3000 mm. If it is the film thickness of this range, the transmitted light from the side part of a semiconductor light-emitting element can be substantially eliminated, and peeling of a light shielding film can also be suppressed.
After the light shielding film material layer 5a is formed, the light shielding film material layer 5a formed on the light emitting surface of the semiconductor light emitting element 3 is removed by polishing (FIG. 2C), and then the semiconductor light emitting element 3 is separated from the adhesive sheet 7.
With the above method, the semiconductor light emitting element 3 having the light shielding film 5 formed on the side surface is manufactured.

以上のように構成された実施の形態1の発光デバイスは、上述した色むらが抑制できるという効果の他に以下のような効果を有する。
すなわち、半導体発光素子3をフリップチップ実装して、半導体層が形成された面とは反対側の主面を光出射面とし、かつ遮光膜5をAlで形成しているので、遮光膜5が反射膜としても機能し、側面で反射した光が光出射面から出射されるので、光の取り出し効率を高くできる。
また、半導体発光素子3をフリップチップ実装しているので、発光素子の発光面から出た光を遮ったり、乱反射させたりするワイヤーが発光面の前方には存在しない。これにより、ワイヤーに起因した色むらの発生をなくせるので、より色むらの少ない発光素子とでき、さらにワイヤーに起因した取り出し効率の劣化もないので、取り出し効率も高くできる。
The light emitting device of the first embodiment configured as described above has the following effects in addition to the effect that the above-described color unevenness can be suppressed.
That is, since the semiconductor light emitting element 3 is flip-chip mounted, the main surface opposite to the surface on which the semiconductor layer is formed is the light emitting surface, and the light shielding film 5 is formed of Al. Since it also functions as a reflective film and the light reflected from the side surface is emitted from the light emitting surface, the light extraction efficiency can be increased.
Further, since the semiconductor light emitting element 3 is flip-chip mounted, there is no wire in front of the light emitting surface that blocks or diffusely reflects light emitted from the light emitting surface of the light emitting element. As a result, the occurrence of uneven color due to the wire can be eliminated, so that a light-emitting element with less uneven color can be obtained, and further, there is no deterioration of the extraction efficiency due to the wire, so that the extraction efficiency can be increased.

以下、本実施の形態1における各構成要素について説明する。
<半導体発光素子>
本発明において、半導体発光素子は、種々の窒化物半導体を用いて構成することができる。具体的には、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)などにより基板上に成長されたInAlGa1−x−yN(0≦x,0≦y,x+y≦1)で表わされる複数の層により構成されたものが好適に用いられる。
Hereafter, each component in this Embodiment 1 is demonstrated.
<Semiconductor light emitting device>
In the present invention, the semiconductor light emitting device can be configured using various nitride semiconductors. Specifically, In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y) grown on a substrate by metal organic chemical vapor deposition (MOCVD), hydride vapor deposition (HVPE), or the like. , X + y ≦ 1) is preferably used.

また、その層構成としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。また、各層を超格子構造としたり、活性層を量子効果の生じる薄膜で構成した単一量子井戸構造や多重量子井戸構造とすることができる。
より具体的な例として、単一または多重量子井戸構造のInGaNを発光層を有する青色LED、AlInGaN、GaNまたはAlGaNを発光層とする公知の単一または多重量子井戸構造の近紫外LEDを挙げることができる。
The layer structure includes a homo structure, a hetero structure or a double hetero structure having a MIS junction, a PIN junction or a PN junction. In addition, each layer may have a superlattice structure, or the active layer may have a single quantum well structure or a multiple quantum well structure formed of a thin film that produces a quantum effect.
More specific examples include a blue LED having a light emitting layer of InGaN having a single or multiple quantum well structure, and a near UV LED having a known single or multiple quantum well structure having a light emitting layer of AlInGaN, GaN or AlGaN. Can do.

尚、基板はサファイアに限られず、例えば、スピネル、SiC、GaN、GaAs等、公知の部材を用いることができる。また、SiC、GaN、GaAs等の導電性基板を用いることによりp電極及びn電極を対向して配置させることもできる。   In addition, a board | substrate is not restricted to sapphire, For example, well-known members, such as a spinel, SiC, GaN, GaAs, can be used. Further, by using a conductive substrate such as SiC, GaN, or GaAs, the p electrode and the n electrode can be arranged to face each other.

本実施の形態の半導体発光素子は、例えば、サファイア基板上にGaNバッファ層、ノンドープGaN層、n型コンタクト層となるSiドープGaN層、n型クラッド層となるSiドープGaN層、活性層となるInGaN層、p型クラッド層となるMgドープAlGaN層、p型コンタクト層となるMgドープGaN層、が順次積層された層構造を有する。さらに、MgドープGaN層、MgドープAlGaN層、InGaN層、SiドープGaN層、SiドープGaN層が部分的に除去され、SiドープGaN層の露出面に負電極が形成され、MgドープGaN層の上面の略全面に正電極が設けられている。   The semiconductor light emitting device of the present embodiment is, for example, a GaN buffer layer, a non-doped GaN layer, a Si-doped GaN layer serving as an n-type contact layer, a Si-doped GaN layer serving as an n-type cladding layer, and an active layer on a sapphire substrate. It has a layered structure in which an InGaN layer, an Mg-doped AlGaN layer serving as a p-type cladding layer, and an Mg-doped GaN layer serving as a p-type contact layer are sequentially stacked. Furthermore, the Mg-doped GaN layer, the Mg-doped AlGaN layer, the InGaN layer, the Si-doped GaN layer, and the Si-doped GaN layer are partially removed, and a negative electrode is formed on the exposed surface of the Si-doped GaN layer. A positive electrode is provided on substantially the entire upper surface.

<半導体発光素子の電極>
本発明において半導体発光素子3は、正電極3aを有するp型半導体層2bと、n電極3bを有するn型半導体層2bとを有する半導体発光素子である。正電極3aは少なくとも反射機能を備えた層からなることが好ましい。
<Electrode of semiconductor light emitting device>
In the present invention, the semiconductor light emitting device 3 is a semiconductor light emitting device having a p-type semiconductor layer 2b having a positive electrode 3a and an n-type semiconductor layer 2b having an n-electrode 3b. The positive electrode 3a is preferably composed of a layer having at least a reflection function.

正電極3aは、反射機能を備えた単一層であってもよいが、半導体発光素子のp型半導体層とのオーミック接触する第一の層と、その第一の層の上に形成された反射機能を有する第二の層とを含む多層構成とすることもできる。   The positive electrode 3a may be a single layer having a reflection function, but a first layer in ohmic contact with the p-type semiconductor layer of the semiconductor light emitting device, and a reflection formed on the first layer. A multilayer structure including a second layer having a function may be employed.

正電極3aの材料は、アルミニウム(Al)、チタン(Ti)、白金(Pt)、ロジウム(Rh)、銀(Ag)、パラジウム(Pd)、イリジウム(Ir)、インジウム(In)、スズ(Sn)からなる群から選択された少なくとも一種の元素を含む金属、合金あるいは酸化物からなることが好ましい。この正電極の膜厚は、好ましくは200Å〜10000Åとする。   The material of the positive electrode 3a is aluminum (Al), titanium (Ti), platinum (Pt), rhodium (Rh), silver (Ag), palladium (Pd), iridium (Ir), indium (In), tin (Sn). And at least one element selected from the group consisting of metals, alloys or oxides. The thickness of the positive electrode is preferably 200 to 10000 mm.

また、正電極3aを多層構成とする場合には、第一の層は、亜鉛(Zn)、インジウム(In)、スズ(Sn)、マグネシウム(Mg)からなる群から選択された少なくとも一種の元素を含む酸化物とすることが好ましい。第一の層の好適な具体例として、ZnO、In、SnO、ITO(InとSnの複合酸化物)、MgO等で表わされるZn、In、Sn、Mg等の酸化物を含む抵抗の低い透明導電膜が挙げられる。
また、第二の層は、アルミニウム(Al)、チタン(Ti)、白金(Pt)、ロジウム(Rh)、銀(Ag)、パラジウム(Pd)、イリジウム(Ir)からなる群から選択された少なくとも一種の元素を含む金属、合金あるいは酸化物からなることが好ましい。
この多層構造とする場合、第一の層の膜厚は、100Å〜10000Åであることが好ましく、第二の層の膜厚は、200Å〜10000Åであることが好ましい。
When the positive electrode 3a has a multilayer structure, the first layer is at least one element selected from the group consisting of zinc (Zn), indium (In), tin (Sn), and magnesium (Mg). It is preferable to use an oxide containing. Preferred specific examples of the first layer include ZnO, In 2 O 3 , SnO 2 , ITO (a composite oxide of In and Sn), MgO, and other oxides such as Zn, In, Sn, and Mg. A transparent conductive film having a low resistance may be mentioned.
The second layer is at least selected from the group consisting of aluminum (Al), titanium (Ti), platinum (Pt), rhodium (Rh), silver (Ag), palladium (Pd), and iridium (Ir). It is preferably made of a metal, alloy or oxide containing one kind of element.
When it is set as this multilayer structure, it is preferable that the film thickness of a 1st layer is 100 to 10,000 mm, and it is preferable that the film thickness of a 2nd layer is 200 to 10,000 mm.

正電極及び負電極の形成は、p型半導体層及びn型半導体層に対し、電極を構成する材料の蒸着、スパッタリング等、通常の成膜手段を用いて行うことができる。あるいは、蒸着法、スパッタリング法等、異なる成膜方法を使い分けて形成することができる。また、正電極は、反射機能を有する層と、その層とは別に設けられて最終的に外部リード電極と接続するために導電性部材が接続されるパッド部からなっていてもよい。   The positive electrode and the negative electrode can be formed on the p-type semiconductor layer and the n-type semiconductor layer by using a normal film forming means such as vapor deposition or sputtering of the material constituting the electrode. Alternatively, different film formation methods such as vapor deposition and sputtering can be used. Further, the positive electrode may be composed of a layer having a reflection function and a pad portion that is provided separately from the layer and to which a conductive member is connected in order to finally connect to the external lead electrode.

本実施の形態において、負電極は、n型コンタクト層側から順に、少なくとも2層構成とすることが好ましい。この場合、負電極の第一の層を構成する材料は、特に限定されるものではないが、Ti、V、Cr、Mn、Co、Zn、Nb、Mo、Ru、Ta、Rc、W、Ni、Mg、Zr、In、Sn、ITOの少なくとも1種を好適に用いることができる。その中でも特に、n型コンタクト層との接着性、接触抵抗、光透過性を総合的に考慮すると、Ti、Nb、ITOがより好ましい。   In the present embodiment, it is preferable that the negative electrode has at least two layers in order from the n-type contact layer side. In this case, the material constituting the first layer of the negative electrode is not particularly limited, but Ti, V, Cr, Mn, Co, Zn, Nb, Mo, Ru, Ta, Rc, W, Ni At least one of Mg, Zr, In, Sn, and ITO can be suitably used. Among these, Ti, Nb, and ITO are more preferable in consideration of adhesiveness with the n-type contact layer, contact resistance, and light transmittance.

また、第二の層を構成する材料は、特に限定されるものではないが、Ag、Rh、Al、Ti、Pt、Pd、Irからなる群から選択された少なくとも一種の元素を含む金属、合金、あるいは酸化物を好適に用いることができる。
負電極の膜厚は、材料によっても異なるが、好ましくは100Å以上、より好ましくは150Å、以上とする。また、膜厚の上限は、製造効率を考慮すると10000Å以下であることが好ましい。
The material constituting the second layer is not particularly limited, but is a metal or alloy containing at least one element selected from the group consisting of Ag, Rh, Al, Ti, Pt, Pd, and Ir. Alternatively, an oxide can be preferably used.
The film thickness of the negative electrode varies depending on the material, but is preferably 100 mm or more, more preferably 150 mm or more. In addition, the upper limit of the film thickness is preferably 10,000 mm or less in consideration of production efficiency.

また、本実施の形態の半導体発光素子では、負電極とpパッド電極を同様の構成とすることにより、負電極とpパッド電極を同時に形成することができるので、製造工程を簡略化することができる。
さらに、本発明において、半導体発光素子は、上述したような反射率の高い正電極及び/または上述したような負電極を用いることにより、発光素子の光取り出し効率を向上させることができる。
Further, in the semiconductor light emitting device of the present embodiment, the negative electrode and the p pad electrode can be formed at the same time by using the same structure for the negative electrode and the p pad electrode, so that the manufacturing process can be simplified. it can.
Furthermore, in the present invention, the semiconductor light-emitting element can improve the light extraction efficiency of the light-emitting element by using the positive electrode having a high reflectance as described above and / or the negative electrode as described above.

<蛍光体>
本発明においては、半導体発光素子3によって励起され、その励起光とは異なる波長の光を発光する種々の蛍光体を用いることができる。
本発明に用いる蛍光体は、平均粒径が3μm以上であり、かつ粒度分布測定で2μm以下の粒径の粒子が体積分布で10%以下である蛍光体粒子から構成されることが好ましい。より好ましくは平均粒径が5μm以上15μm以下、さらに好ましくは平均粒径が10μm以上12μm以下である。蛍光体層を形成する際の形成ばらつきを抑えることが可能となり、配向ばらつきの少ない高輝度を得ることができる。
<Phosphor>
In the present invention, various phosphors that are excited by the semiconductor light emitting element 3 and emit light having a wavelength different from that of the excitation light can be used.
The phosphor used in the present invention is preferably composed of phosphor particles having an average particle diameter of 3 μm or more, and particles having a particle diameter of 2 μm or less as measured by particle size distribution and having a volume distribution of 10% or less. More preferably, the average particle size is 5 μm or more and 15 μm or less, and further preferably the average particle size is 10 μm or more and 12 μm or less. It is possible to suppress formation variation when forming the phosphor layer, and high luminance with little alignment variation can be obtained.

例えば、紫外線照射により青色発光が可能なものとして、BaMgAl1017:Euで表されるユウロピウム賦活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)(POCl:Euで表されるユウロピウム賦活ハロリン酸カルシウム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行う(Ca、Sr、Ba)Cl:Euで表されるユウロピウム賦活アルカリ土類クロロボレート系蛍光体、
破断面を有する破断粒子から構成され、青緑色領域の発光を行う(Sr、Ca、Ba)Al:Euまたは(Sr、Ca、Ba)Al1425:Euで表されるユウロピウム賦活アルカリ土類アルミネート系蛍光体が挙げられる。
紫外線照射により緑色発光が可能なものとして、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行う(Ba、Ca、Sr)SiO:Euで表されるユウロピウム賦活アルカリ土類マグネシウムシリケート系蛍光体が挙げられる。
For example, it is composed of a europium activated barium magnesium aluminate-based phosphor represented by BaMgAl 10 O 17 : Eu, and grown particles having a substantially spherical shape as a regular crystal growth shape, as those capable of emitting blue light by ultraviolet irradiation. A europium-activated calcium halophosphate phosphor represented by (Ca, Sr, Ba) 5 (PO 4 ) 3 Cl: Eu, which emits light in a blue region, from a growing particle having a substantially cubic shape as a regular crystal growth shape A europium-activated alkaline earth chloroborate phosphor represented by (Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu that is configured and emits light in a blue region;
Europium composed of fractured particles having a fracture surface and emitting in the blue-green region (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu Examples include activated alkaline earth aluminate phosphors.
Europium activation represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu composed of fractured particles having a fracture surface and capable of emitting green light by ultraviolet irradiation. Europium-activated alkaline earth magnesium silicate composed of alkaline earth silicon oxynitride phosphor, broken particles having a fracture surface, and emitting green light (Ba, Ca, Sr) 2 SiO 4 : Eu System phosphors.

紫外線照射により赤色発光が可能な蛍光体として、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行う(Mg、Ca、Sr、Ba)Si:Euで表されるユウロピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行う(Y、La、Gd、Lu)S:Euで表されるユウロピウム賦活希土類オキシカルユゲナイト系蛍光体等が挙げられる。 Europium represented by (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu composed of broken particles having a red fracture surface as a phosphor capable of emitting red light by ultraviolet irradiation. The activated alkaline earth silicon nitride phosphor is composed of growing particles having a substantially spherical shape as a regular crystal growth shape, and emits light in the red region (Y, La, Gd, Lu) 2 O 2 S: Eu And europium-activated rare earth oxycalyugenite-based phosphors.

また、他の例として、アルミニウム・ガーネット系蛍光体がある。
アルミニウム・ガーネット系蛍光体とは、Alを含み、かつY、Lu、Sc、La、Gd、Tb、Eu及びSmから選択された少なくとも一つの元素と、Ga及びInから選択された一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された蛍光体であり、半導体発光素子から発光された可視光や紫外線で励起されて発光する蛍光体である。例えば、上述したYAG系蛍光体の他、Tb2.95Ce0.05Al12、Y2.90Ce0.05Tb0.05Al12、Y2.94Ce0.05Pr0.01Al12、Y2.90Ce0.05Pr0.05Al12等が挙げられる。
Another example is an aluminum garnet phosphor.
The aluminum garnet phosphor includes Al and contains at least one element selected from Y, Lu, Sc, La, Gd, Tb, Eu and Sm, and one element selected from Ga and In. The phosphor is activated by at least one element selected from rare earth elements, and is a phosphor that emits light when excited by visible light or ultraviolet light emitted from a semiconductor light emitting element. For example, in addition to the YAG phosphor described above, Tb 2.95 Ce 0.05 Al 5 O 12 , Y 2.90 Ce 0.05 Tb 0.05 Al 5 O 12 , Y 2.94 Ce 0.05 Pr 0.01 Al 5 O 12, Y 2.90 Ce 0.05 Pr 0.05 Al 5 O 12 and the like.

さらに、他の例として、Nを含み、かつBe、Mg、Ca、Sr、Ba、及びZnから選択された少なくとも一つの元素と、C、Si、Ge、Sn、Ti、Zr、及びHfから選択された少なくとも一つの元素とを含み、希土類元素から選択された少なくとも一つの元素で付活された窒化物系蛍光体を挙げることができる。   Further, as another example, at least one element containing N and selected from Be, Mg, Ca, Sr, Ba, and Zn, and selected from C, Si, Ge, Sn, Ti, Zr, and Hf And a nitride-based phosphor activated with at least one element selected from rare earth elements.

またさらに、他の例として、アルカリ土類金属塩蛍光体を用いることができる。例えば、ユウロピウムで付活されたアルカリ土類金属珪酸塩である。
アルカリ土類金属塩蛍光体として、上述したアルカリ土類金属珪酸塩の他、ユウロピウムおよび/またはマンガンで付活されたアルカリ土類金属アルミン酸塩やY(V,P,Si)O:Eu、または式Me(3−x−y)MgSi:xEu,yMn(式中、0.005<x<0.5、0.005<y<0.5、Meは、Baおよび/またはSrおよび/またはCaを示す。)で示されるアルカリ土類金属−マグネシウム−二珪酸塩を用いることもできる。
Furthermore, as another example, an alkaline earth metal salt phosphor can be used. For example, alkaline earth metal silicates activated with europium.
As the alkaline earth metal salt phosphor, in addition to the above-mentioned alkaline earth metal silicate, alkaline earth metal aluminate activated with europium and / or manganese, or Y (V, P, Si) O 4 : Eu Or the formula Me (3-xy) MgSi 2 O 3 : xEu, yMn (wherein 0.005 <x <0.5, 0.005 <y <0.5, Me is Ba and / or Alkaline earth metal-magnesium-disilicate represented by Sr and / or Ca) can also be used.

尚、本発明では、2種類以上の蛍光体を混合して用いてもよい。この場合、半導体発光素子3の発光波長に合わせて色度点の異なる2以上の蛍光体の配合比を調整することで種々の色度を実現できる。例えば、発光層に窒化物系化合物半導体を用いて構成した半導体発光素子3から発光した青色系の光と、青色光を吸収してボディーカラーが黄色である蛍光体から発光する緑色系の光と、赤色系の光を発光する蛍光体の光との混色により電球色など所望の白色系発光色を実現できる。   In the present invention, two or more kinds of phosphors may be mixed and used. In this case, various chromaticities can be realized by adjusting the blending ratio of two or more phosphors having different chromaticity points according to the emission wavelength of the semiconductor light emitting element 3. For example, blue light emitted from a semiconductor light emitting device 3 configured using a nitride compound semiconductor in a light emitting layer, and green light emitted from a phosphor that absorbs blue light and has a yellow body color. In addition, a desired white light-emitting color such as a light bulb color can be realized by color mixing with the light of a phosphor that emits red light.

<バインダー樹脂>
本発明において、蛍光体層を形成するためのバインダー樹脂は、例えば、シリコーン樹脂を用いることができる。
<Binder resin>
In the present invention, for example, a silicone resin can be used as the binder resin for forming the phosphor layer.

<透光性樹脂(モールド部材)>
本発明において、透光性樹脂は、外部環境からの外力や水分などから蛍光体層やLEDチップを保護すると共に発光素子からの光を効率よく外部に放出させるための部材である。具体的材料としては、エポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐候性に優れた透明樹脂が挙げられる。また、本発明では、金属アルコキシドなどを出発原料としゾルゲル法により生成される透光性無機部材、ガラスなどを用いることもできる。熱衝撃による導電性ワイヤーの断線などを考慮しエポキシ樹脂、シリコーン樹脂やそれらの組み合わせたものなどを使用することがより好ましい。
<Translucent resin (mold member)>
In the present invention, the translucent resin is a member for protecting the phosphor layer and the LED chip from external force or moisture from the external environment and efficiently emitting light from the light emitting element to the outside. Specific examples of the material include transparent resins having excellent weather resistance such as epoxy resins, urea resins, and silicone resins. Further, in the present invention, a translucent inorganic member, glass or the like produced by a sol-gel method using a metal alkoxide or the like as a starting material can also be used. It is more preferable to use an epoxy resin, a silicone resin, or a combination thereof in consideration of disconnection of the conductive wire due to thermal shock.

実施の形態2.
本発明に係る実施の形態2の発光デバイスは、蛍光体層6に代えて半導体発光素子3の光出射面のみを覆う蛍光体層36を形成した以外は、実施の形態1の発光デバイスと同様に構成される。
Embodiment 2. FIG.
The light emitting device according to the second embodiment of the present invention is the same as the light emitting device according to the first embodiment, except that the phosphor layer 36 that covers only the light emitting surface of the semiconductor light emitting element 3 is formed instead of the phosphor layer 6. Configured.

実施の形態2の蛍光体層36は、半導体発光素子3が発光する光を吸収して吸収した光とは異なる波長の発光する蛍光体を含み、後述するようにスクリーン印刷によって形成されており、均一の膜厚でかつ蛍光体が均一に分散されている。
このように形成された蛍光体層36を備えた実施の形態2の発光デバイスは、実施の形態1の発光デバイスに比較してよりいっそう効果的に色むらを抑制できる。
The phosphor layer 36 of the second embodiment includes a phosphor that emits light having a wavelength different from that of the light absorbed and absorbed by the semiconductor light emitting element 3, and is formed by screen printing as described later. The phosphor is uniformly dispersed with a uniform film thickness.
The light emitting device of the second embodiment provided with the phosphor layer 36 formed in this way can suppress the color unevenness more effectively than the light emitting device of the first embodiment.

図3に示されるように、本実施の形態2の発光デバイスでは、サブマウント32にフリップチップ実装された半導体発光素子3の光出射面(透光性基板1の半導体層が形成された面の反対側の主面)を覆っている。   As shown in FIG. 3, in the light emitting device of the second embodiment, the light emitting surface of the semiconductor light emitting element 3 flip-chip mounted on the submount 32 (the surface on which the semiconductor layer of the translucent substrate 1 is formed). It covers the main surface on the opposite side.

図4Aから図4Dは、実施の形態2の発光デバイスにおける蛍光体層36の形成工程を示す模式的な断面図である。以下、図面を参照しながら蛍光体層36の形成方法の一例について説明する。   4A to 4D are schematic cross-sectional views illustrating the formation process of the phosphor layer 36 in the light emitting device of the second embodiment. Hereinafter, an example of a method for forming the phosphor layer 36 will be described with reference to the drawings.

本方法では、まず、複数のサブマウントが一体化されたサブマウント用マザー基板32aを準備する。このサブマウント用マザー基板32aの一方の主面には、各サブマウントにそれぞれ対応する部分で分離された配線電極31が形成されている。この配線電極を形成するための導電性部材は、反射率の高いアルミニウム、銀や金およびそれらの合金を使用することが好ましい。サブマウント用基板の基板材料は、半導体発光素子3の材料と熱膨張係数がほぼ等しいもの、例えば、窒化物系半導体発光素子に対しては窒化アルミニウムが好ましく、これにより接続部における熱膨張差に起因した歪を小さくでき、発光デバイスの信頼性を向上させることができる。
また、シリコン基板を用いてサブマウント用マザー基板32aを構成することもでき、その場合には、サブマウントに一体化された保護素子(ツェナーダイオード)を形成することも可能になる。
In this method, first, a submount mother board 32a in which a plurality of submounts are integrated is prepared. On one main surface of the submount mother substrate 32a, wiring electrodes 31 separated by portions corresponding to the respective submounts are formed. As the conductive member for forming the wiring electrode, it is preferable to use aluminum, silver, gold, or an alloy thereof having high reflectivity. The substrate material of the submount substrate is preferably the same as that of the semiconductor light-emitting element 3, for example, aluminum nitride is preferable for nitride-based semiconductor light-emitting elements. The resulting distortion can be reduced, and the reliability of the light emitting device can be improved.
In addition, the submount mother substrate 32a can be configured using a silicon substrate, and in that case, a protection element (zener diode) integrated with the submount can be formed.

本方法では、上述のように構成したサブマウント用マザー基板32aの上に、図4Aに示すように、半導体発光素子3を並べて実装する。各半導体発光素子3の正負両電極はそれぞれ、対応する配線電極にバンプ33により電気的に導通するように固定される。具体的には、配線電極31上の各半導体発光素子3の正負両電極3a,3bと対向する部分にそれぞれ、Auからなるバンプ33を形成する。次に、半導体発光素子3の正負の電極3a,3bとサブマウント32の配線電極31とをそれぞれバンプ33を介して対向させ、荷重、熱および超音波をかけることによりバンプ33を溶着し、半導体発光素子3の正負の電極3a,3bと配線電極31とを接合する。なお、バンプ33の材料として、Auの他、共晶ハンダ(Au−Sn)、Pb−Sn、鉛フリーハンダ等を用いることもできる。   In this method, as shown in FIG. 4A, the semiconductor light emitting elements 3 are mounted side by side on the submount mother substrate 32a configured as described above. Both positive and negative electrodes of each semiconductor light emitting element 3 are fixed to the corresponding wiring electrodes by the bumps 33 so as to be electrically conducted. Specifically, bumps 33 made of Au are formed on portions of the semiconductor light emitting element 3 facing the positive and negative electrodes 3a and 3b on the wiring electrode 31, respectively. Next, the positive and negative electrodes 3a and 3b of the semiconductor light emitting element 3 and the wiring electrode 31 of the submount 32 are opposed to each other through the bumps 33, and the bumps 33 are welded by applying a load, heat and ultrasonic waves. The positive and negative electrodes 3 a and 3 b of the light emitting element 3 and the wiring electrode 31 are joined. In addition to Au, eutectic solder (Au—Sn), Pb—Sn, lead-free solder or the like can be used as the material of the bump 33.

この際、正負の電極間の絶縁性を向上させて信頼性を向上させるために、半導体発光素子3の正負両電極3a,3b間及びサブマウント側の配線電極31の分離部分とに絶縁体からなるアンダフィルを充填することが好ましい。このアンダフィルの材料としては、例えばエポキシ樹脂等の熱硬化性樹脂がある。   At this time, in order to improve the insulation between the positive and negative electrodes and improve the reliability, an insulator is used between the positive and negative electrodes 3a and 3b of the semiconductor light emitting element 3 and the separated part of the wiring electrode 31 on the submount side. It is preferable to fill the underfill. An example of the underfill material is a thermosetting resin such as an epoxy resin.

次に、図4Bに示すように、半導体発光素子3の透光性基板1側からサブマウント用マザー基板32aに対向させてスクリーン版34aを配置する。スクリーン版34aは、半導体発光素子の光出射面のみを開口し、それ以外はマスクするような構成としてある。   Next, as shown in FIG. 4B, the screen plate 34 a is disposed so as to face the submount mother substrate 32 a from the light-transmitting substrate 1 side of the semiconductor light emitting element 3. The screen plate 34a is configured such that only the light emitting surface of the semiconductor light emitting element is opened and the rest are masked.

そして、蛍光体F6が樹脂(例えば、シリコーン樹脂)に分散されてなりスクリーン印刷用に調整された蛍光体ペースト36aを、図4Cに示すように、スキージ35を使ってスクリーン印刷する。以上の工程により、図4Dに示されるように、半導体発光素子3の光出射面に蛍光体ペースト36aが形成される。   Then, the phosphor paste 36a prepared by dispersing phosphor F6 in a resin (for example, silicone resin) and adjusted for screen printing is screen-printed using a squeegee 35 as shown in FIG. 4C. Through the above steps, as shown in FIG. 4D, the phosphor paste 36a is formed on the light emitting surface of the semiconductor light emitting element 3.

以上のようにして形成された光出射面の蛍光体ペースト36aを硬化させると、蛍光体層36が形成される。
最後に、パーティングラインに沿って各半導体発光素子がそれぞれサブマウント32に載置されるようにサブマウント用マザー基板32aをカットする。
以上の工程を経て、サブマウント32上にフリップチップボンディングされた状態の、蛍光体層36が半導体発光素子3の光出射面のみに形成された半導体発光素子3が得られる。
When the phosphor paste 36a on the light emission surface formed as described above is cured, the phosphor layer 36 is formed.
Finally, the submount mother substrate 32a is cut so that each semiconductor light emitting element is placed on the submount 32 along the parting line.
Through the above steps, the semiconductor light emitting element 3 in which the phosphor layer 36 is formed only on the light emitting surface of the semiconductor light emitting element 3 in a state of being flip-chip bonded onto the submount 32 is obtained.

以上のように構成された実施の形態2の発光デバイスにおいて、蛍光体層36は蛍光体が均一分散された蛍光体ペースト36aを使用して膜厚が精度よく管理できるスクリーン印刷法により形成されているので、実施の形態1で説明したポッティング方法を用いた場合に比較してよりいっそう色むらが抑制できる。
尚、本実施の形態2の発光デバイスは、実施の形態1と同様、半導体発光素子3の側面が遮光膜5によって覆われているので、実施の形態1で説明した効果は全て得られる。
In the light emitting device of the second embodiment configured as described above, the phosphor layer 36 is formed by a screen printing method in which the film thickness can be accurately controlled using the phosphor paste 36a in which the phosphor is uniformly dispersed. Therefore, color unevenness can be further suppressed as compared with the case where the potting method described in the first embodiment is used.
In the light emitting device according to the second embodiment, since the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5 as in the first embodiment, all the effects described in the first embodiment can be obtained.

また、本実施の形態2では、半導体発光素子3の光出射面のみが蛍光体層36によって覆われている形態について説明したが、本発明はこれに限られるものではなく、スクリーン印刷時に半導体発光素子3の側面に蛍光体層が形成されていてもよく、この場合でも半導体発光素子3の側面が遮光膜5によって覆われているので、実施の形態2と同様の作用効果が得られる。   In the second embodiment, the mode in which only the light emitting surface of the semiconductor light emitting element 3 is covered with the phosphor layer 36 has been described. However, the present invention is not limited to this, and the semiconductor light emission is performed during screen printing. A phosphor layer may be formed on the side surface of the element 3, and even in this case, since the side surface of the semiconductor light emitting element 3 is covered with the light shielding film 5, the same effect as that of the second embodiment can be obtained.

本発明に係る実施の形態1の発光デバイスの断面図である。It is sectional drawing of the light-emitting device of Embodiment 1 which concerns on this invention. 実施の形態1の遮光膜の形成方法を示す断面図(1)である。6 is a cross-sectional view (1) illustrating the method for forming the light-shielding film according to Embodiment 1. FIG. 実施の形態1の遮光膜の形成方法を示す断面図(2)である。FIG. 6 is a cross-sectional view (2) illustrating the method for forming the light shielding film of the first embodiment. 実施の形態1の遮光膜の形成方法を示す断面図(3)である。FIG. 6 is a cross-sectional view (3) illustrating the method for forming the light shielding film of the first embodiment. 本発明に係る実施の形態2の発光デバイスの断面図である。It is sectional drawing of the light-emitting device of Embodiment 2 which concerns on this invention. 実施の形態2の蛍光体層の形成方法を示す断面図(1)である。It is sectional drawing (1) which shows the formation method of the fluorescent substance layer of Embodiment 2. 実施の形態2の蛍光体層の形成方法を示す断面図(2)である。It is sectional drawing (2) which shows the formation method of the fluorescent substance layer of Embodiment 2. 実施の形態2の蛍光体層の形成方法を示す断面図(3)である。It is sectional drawing (3) which shows the formation method of the fluorescent substance layer of Embodiment 2. 実施の形態2の蛍光体層の形成方法を示す断面図(4)である。It is sectional drawing (4) which shows the formation method of the fluorescent substance layer of Embodiment 2.

符号の説明Explanation of symbols

1 透光性基板
2 半導体層
3 発光素子
5 遮光膜
5a 遮光膜材料層
6,6a,6b,36 蛍光体層
7 粘着シート
10 パッケージ
13a、13b リードフレーム
15 透光性樹脂
31 配線電極
32 サブマウント
32a サブマウント用マザー基板
33 バンプ
34a スクリーン版
35 スキージ
36a 蛍光体ペースト
37 接着剤
44 導電性ワイヤ
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Semiconductor layer 3 Light emitting element 5 Light shielding film 5a Light shielding film material layer 6,6a, 6b, 36 Phosphor layer 7 Adhesive sheet 10 Package 13a, 13b Lead frame 15 Translucent resin 31 Wiring electrode 32 Submount 32a Mother board for submount 33 Bump 34a Screen plate 35 Squeegee 36a Phosphor paste 37 Adhesive 44 Conductive wire

Claims (5)

透光性基板の一方の主面上に半導体層が積層されてなる半導体発光素子と、前記半導体発光素子の実装面を除く面を覆い前記半導体発光素子が発光する第1の光の一部を吸収してその第1の光とは異なる波長の第2の光を発光する蛍光体を含む蛍光体層とを備え、前記蛍光体に吸収された一部を除く第1の光と、前記第2の光とが混合された混色光を出射する発光デバイスにおいて、
前記半導体発光素子の側面が遮光膜によって覆われたことを特徴とする発光デバイス。
A semiconductor light emitting device in which a semiconductor layer is laminated on one main surface of a light-transmitting substrate, and a part of first light emitted from the semiconductor light emitting device covering a surface excluding a mounting surface of the semiconductor light emitting device A phosphor layer including a phosphor that absorbs and emits second light having a wavelength different from that of the first light, the first light excluding a part absorbed by the phosphor, In a light-emitting device that emits mixed-color light in which two lights are mixed,
A light-emitting device, wherein a side surface of the semiconductor light-emitting element is covered with a light-shielding film.
前記遮光膜は、半導体発光素子で発光した光を反射させる反射膜である請求項1記載の発光デバイス。   The light-emitting device according to claim 1, wherein the light-shielding film is a reflective film that reflects light emitted from the semiconductor light-emitting element. 前記透光性基板の他方の主面を、前記半導体発光素子の光出射面とした請求項1又は2記載の発光デバイス。   The light emitting device according to claim 1, wherein the other main surface of the translucent substrate is a light emitting surface of the semiconductor light emitting element. 前記透光性基板の前記半導体層側を前記半導体発光素子の光出射面とした請求項1又は2記載の発光デバイス。   The light emitting device according to claim 1, wherein the semiconductor layer side of the translucent substrate is a light emitting surface of the semiconductor light emitting element. 前記遮光膜は、Al又はAgからなる金属膜である請求項1〜4のうちのいずれか1つに記載の発光デバイス。
The light-emitting device according to claim 1, wherein the light shielding film is a metal film made of Al or Ag.
JP2004014224A 2004-01-22 2004-01-22 Light emitting device and manufacturing method thereof Expired - Lifetime JP4622253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014224A JP4622253B2 (en) 2004-01-22 2004-01-22 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014224A JP4622253B2 (en) 2004-01-22 2004-01-22 Light emitting device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2005209852A true JP2005209852A (en) 2005-08-04
JP2005209852A5 JP2005209852A5 (en) 2007-02-22
JP4622253B2 JP4622253B2 (en) 2011-02-02

Family

ID=34900077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014224A Expired - Lifetime JP4622253B2 (en) 2004-01-22 2004-01-22 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4622253B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
WO2007034575A1 (en) * 2005-09-20 2007-03-29 Matsushita Electric Works, Ltd. Light emitting device
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
JP2007134415A (en) * 2005-11-08 2007-05-31 Rohm Co Ltd Nitride semiconductor light-emitting element and its manufacturing method
JP2007305773A (en) * 2006-05-11 2007-11-22 Nichia Chem Ind Ltd Light-emitting device, and its manufacturing method
JP2008218460A (en) * 2007-02-28 2008-09-18 Stanley Electric Co Ltd Semiconductor light-emitting apparatus
JP2009043836A (en) * 2007-08-07 2009-02-26 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2009130237A (en) * 2007-11-27 2009-06-11 Panasonic Corp Light emitting device
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
KR20100080937A (en) * 2007-10-25 2010-07-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Polarized light emitting device
JP2010157638A (en) * 2008-12-27 2010-07-15 Nichia Corp Light emitting device, and method of manufacturing the same
JP2010541295A (en) * 2007-10-08 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light emitting diode with semiconductor wavelength converter
JP2011258675A (en) * 2010-06-07 2011-12-22 Toshiba Corp Optical semiconductor device
KR20120012645A (en) * 2010-08-02 2012-02-10 엘지이노텍 주식회사 Light-emitting element and Light-emitting element package
WO2012026206A1 (en) 2010-08-26 2012-03-01 日本電気硝子株式会社 Wavelength conversion element, light source, and backlight unit for liquid crystals
WO2012057276A1 (en) * 2010-10-29 2012-05-03 東芝ライテック株式会社 Light-emitting module, and lighting equipment
JP2012514071A (en) * 2008-12-30 2012-06-21 ナノシス・インク. Method for encapsulating nanocrystals and the resulting composition
JP2013016868A (en) * 2007-12-14 2013-01-24 Cree Inc Textured encapsulant surface in led packages
JP2013207230A (en) * 2012-03-29 2013-10-07 Stanley Electric Co Ltd Light-emitting diode light emission device manufacturing method
CN103775866A (en) * 2013-06-20 2014-05-07 苏州恒荣节能科技安装工程有限公司 LED lamp bead
WO2014087938A1 (en) * 2012-12-03 2014-06-12 シチズンホールディングス株式会社 Led module
JP2014157989A (en) * 2013-02-18 2014-08-28 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2014160870A (en) * 2014-05-14 2014-09-04 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2015079917A (en) * 2013-10-18 2015-04-23 スタンレー電気株式会社 Semiconductor light emitting device
US9099621B2 (en) 2009-09-25 2015-08-04 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method for manufacturing same
US9139767B2 (en) 2008-12-30 2015-09-22 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US9199842B2 (en) 2008-12-30 2015-12-01 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10326061B2 (en) 2016-08-11 2019-06-18 Samsung Electronics Co., Ltd. Method of fabricating light emitting device package
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2517009A1 (en) 2003-02-26 2004-09-10 Cree, Inc. White light source using emitting diode and phosphor and method of fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246648A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP2002305328A (en) * 2001-04-09 2002-10-18 Nichia Chem Ind Ltd Light emitting element
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246648A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP2002305328A (en) * 2001-04-09 2002-10-18 Nichia Chem Ind Ltd Light emitting element
JP2003101074A (en) * 2001-09-26 2003-04-04 Stanley Electric Co Ltd Light-emitting device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
JP4667803B2 (en) * 2004-09-14 2011-04-13 日亜化学工業株式会社 Light emitting device
JP2006086191A (en) * 2004-09-14 2006-03-30 Nichia Chem Ind Ltd Light-emitting device
WO2007034575A1 (en) * 2005-09-20 2007-03-29 Matsushita Electric Works, Ltd. Light emitting device
US7956372B2 (en) 2005-09-20 2011-06-07 Panasonic Electric Works Co., Ltd. Light emitting device
JP2007116138A (en) * 2005-09-22 2007-05-10 Lexedis Lighting Gmbh Light emitting device
JP2007134415A (en) * 2005-11-08 2007-05-31 Rohm Co Ltd Nitride semiconductor light-emitting element and its manufacturing method
US8267561B2 (en) 2006-03-31 2012-09-18 Osram Opto Semiconductors Gmbh Optoelectronic headlight, method for production of an optoelectronic headlight and a luminescence diode chip
KR101314367B1 (en) 2006-03-31 2013-10-04 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic headlight, method for production of an optoelectronic headlight, and a luminescence diode chip
US8814406B2 (en) 2006-03-31 2014-08-26 Osram Opto Semiconductors Gmbh Optoelectronic headlight, method for production of an optoelectronic headlight and a luminescence diode chip
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
JP2007305773A (en) * 2006-05-11 2007-11-22 Nichia Chem Ind Ltd Light-emitting device, and its manufacturing method
JP2008218460A (en) * 2007-02-28 2008-09-18 Stanley Electric Co Ltd Semiconductor light-emitting apparatus
EP1965445A3 (en) * 2007-02-28 2013-04-03 Stanley Electric Co., Ltd. Semiconductor light emitting apparatus
JP2009043836A (en) * 2007-08-07 2009-02-26 Stanley Electric Co Ltd Semiconductor light-emitting device
JP2010541295A (en) * 2007-10-08 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light emitting diode with semiconductor wavelength converter
JP2011501460A (en) * 2007-10-25 2011-01-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Polarized light emitting device
KR20100080937A (en) * 2007-10-25 2010-07-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Polarized light emitting device
KR101585239B1 (en) 2007-10-25 2016-01-22 코닌클리케 필립스 엔.브이. Polarized light emitting device
JP2009130237A (en) * 2007-11-27 2009-06-11 Panasonic Corp Light emitting device
JP2013016868A (en) * 2007-12-14 2013-01-24 Cree Inc Textured encapsulant surface in led packages
JP2010157638A (en) * 2008-12-27 2010-07-15 Nichia Corp Light emitting device, and method of manufacturing the same
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9139767B2 (en) 2008-12-30 2015-09-22 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10302845B2 (en) 2008-12-30 2019-05-28 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11420412B2 (en) 2008-12-30 2022-08-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11396158B2 (en) 2008-12-30 2022-07-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US9199842B2 (en) 2008-12-30 2015-12-01 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10899105B2 (en) 2008-12-30 2021-01-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
JP2012514071A (en) * 2008-12-30 2012-06-21 ナノシス・インク. Method for encapsulating nanocrystals and the resulting composition
US10444423B2 (en) 2008-12-30 2019-10-15 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US9240520B2 (en) 2009-09-25 2016-01-19 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method for manufacturing same
US9099621B2 (en) 2009-09-25 2015-08-04 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method for manufacturing same
US8981412B2 (en) 2010-06-07 2015-03-17 Kabushiki Kaisha Toshiba Optical semiconductor device and method for manufacturing same
US8754429B2 (en) 2010-06-07 2014-06-17 Kabushiki Kaisha Toshiba Optical semiconductor device and method for manufacturing same
JP2011258675A (en) * 2010-06-07 2011-12-22 Toshiba Corp Optical semiconductor device
KR101722623B1 (en) 2010-08-02 2017-04-03 엘지이노텍 주식회사 Light-emitting element and Light-emitting element package
KR20120012645A (en) * 2010-08-02 2012-02-10 엘지이노텍 주식회사 Light-emitting element and Light-emitting element package
WO2012026206A1 (en) 2010-08-26 2012-03-01 日本電気硝子株式会社 Wavelength conversion element, light source, and backlight unit for liquid crystals
WO2012057276A1 (en) * 2010-10-29 2012-05-03 東芝ライテック株式会社 Light-emitting module, and lighting equipment
JP2013207230A (en) * 2012-03-29 2013-10-07 Stanley Electric Co Ltd Light-emitting diode light emission device manufacturing method
JP5634647B1 (en) * 2012-12-03 2014-12-03 シチズンホールディングス株式会社 LED module
US9810381B2 (en) 2012-12-03 2017-11-07 Citizen Watch Co., Ltd. LED module
WO2014087938A1 (en) * 2012-12-03 2014-06-12 シチズンホールディングス株式会社 Led module
US9178118B2 (en) 2013-02-18 2015-11-03 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2014157989A (en) * 2013-02-18 2014-08-28 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
CN103775866A (en) * 2013-06-20 2014-05-07 苏州恒荣节能科技安装工程有限公司 LED lamp bead
US10014453B2 (en) 2013-10-18 2018-07-03 Stanley Electric Co., Ltd. Semiconductor light-emitting device emitting light mixtures with substantially white tone
JP2015079917A (en) * 2013-10-18 2015-04-23 スタンレー電気株式会社 Semiconductor light emitting device
JP2014160870A (en) * 2014-05-14 2014-09-04 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US10326061B2 (en) 2016-08-11 2019-06-18 Samsung Electronics Co., Ltd. Method of fabricating light emitting device package
US10991857B2 (en) 2016-08-11 2021-04-27 Samsung Electronics Co., Ltd. Method of fabricating light emitting device package

Also Published As

Publication number Publication date
JP4622253B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4622253B2 (en) Light emitting device and manufacturing method thereof
US11393803B2 (en) Light emitting device
CN104300068B (en) Light-emitting device and its manufacture method
JP4667803B2 (en) Light emitting device
JP4447806B2 (en) Light emitting device
JP5634003B2 (en) Light emitting device
JP5558665B2 (en) Light emitting device
JP4645071B2 (en) Package molded body and semiconductor device using the same
JP4254266B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5008263B2 (en) Semiconductor light emitting device
JP4438492B2 (en) Semiconductor device and manufacturing method thereof
JP5008262B2 (en) Semiconductor light emitting device
JP4773755B2 (en) Chip-type semiconductor light emitting device
KR20080025687A (en) White semiconductor light emitting element and manufacturing method thereof
JP2007242856A (en) Chip-type semiconductor light emitting device
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
JP2004127988A (en) White light emitting device
JP2006245230A (en) Semiconductor light emitting device
JP4059293B2 (en) Light emitting device
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP2007189097A (en) Semiconductor light emitting element
JP4544361B2 (en) Light emitting device
JP2018191015A (en) Method for manufacturing light-emitting device
JP2006352038A (en) White semiconductor light emitting element and its manufacturing method
JP2008166487A (en) Semiconductor light-emitting device and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250