JP2005207944A - Reactor output control method and its system - Google Patents

Reactor output control method and its system Download PDF

Info

Publication number
JP2005207944A
JP2005207944A JP2004016100A JP2004016100A JP2005207944A JP 2005207944 A JP2005207944 A JP 2005207944A JP 2004016100 A JP2004016100 A JP 2004016100A JP 2004016100 A JP2004016100 A JP 2004016100A JP 2005207944 A JP2005207944 A JP 2005207944A
Authority
JP
Japan
Prior art keywords
value
reactor
water temperature
neutron flux
reactor water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016100A
Other languages
Japanese (ja)
Inventor
Yoshihiko Ishii
佳彦 石井
Atsushi Fushimi
篤 伏見
Hitoshi Ochi
仁 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004016100A priority Critical patent/JP2005207944A/en
Publication of JP2005207944A publication Critical patent/JP2005207944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep a reactor water temperature variation rate within a limit value even if the temperature reactivity coefficient of reactor water is positive. <P>SOLUTION: Neutron flux in a reactor 10 is detected with a neutron flux detector 12 and reactor water temperature is detected with a thermocouple 16. From the detected value of reactor water temperature, the reactor water temperature variation rate is calculated with a temperature variation rate calculator 22. On conditions that the reactor water temperature variation rate is over a set value, the neutron flux is in increase tendency, and a certain time elapsed after operating control rods previously, a control rod insertion signal is output from an automatic control rod controller 34 to a control rod drive controller 8 for insertion operation of control rods 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子炉出力制御方法およびその装置に係り、特に沸騰水型原子炉起動時の昇温昇圧過程において、減速材温度係数が正であっても炉水温度変化率の目標値に従って原子炉を目標圧力まで昇温昇圧するに好適な原子炉出力制御方法およびその装置に関する。   The present invention relates to a reactor power control method and an apparatus therefor, and more particularly, in a temperature rising and boosting process at the time of starting a boiling water reactor, even if the moderator temperature coefficient is positive, the atomic power is controlled according to the target value of the reactor water temperature change rate. The present invention relates to a reactor power control method and apparatus suitable for raising the temperature of a reactor to a target pressure.

原子力発電プラント、例えば、沸騰水型原子炉を用いた原子力発電プラントにおいては、原子炉を起動する場合に際して、起動開始、臨界、定格圧力到達、発電機併入、定格出力到達の手順で炉の出力を高めることが行なわれている。このうち、原子炉臨界から定格圧力到達までの間は昇温昇圧過程とよばれており、この過程では、タービンバイパス弁・加減弁を閉じ、原子炉から蒸気が流出しない状態で炉心に挿入された制御棒を順次引き抜いて原子炉を昇温昇圧することが行なわれている。   In a nuclear power plant, for example, a nuclear power plant using a boiling water reactor, when starting up a nuclear reactor, start up the reactor, perform criticality, reach the rated pressure, enter the generator, and reach the rated output. Increasing output has been done. Of these, the process from the criticality of the reactor to the arrival of the rated pressure is called the temperature rise and pressure boosting process. In this process, the turbine bypass valve / regulator valve is closed and steam is not discharged from the reactor. The control rods are sequentially pulled out to raise the temperature and pressure of the reactor.

昇温昇圧過程では、主に次の二つの運転制限事項が採用されている。一つは、制御棒を引く抜き時に中性子束の急激な上昇によりスクラムなどの原子炉保護機能が作動しないように、原子炉周期(中性子束φが元の値の2.71倍となるまでの時間)を一定値以下に保つことである。この原子炉周期は、炉心内に設置された中性子束検出器の検出値から算出される。もう一つの制限事項は、原子炉を構成する各部材に熱的衝撃を与えぬように、炉水の温度変化率を制限値(例えば55℃/h)以下に保つことである。二つの運転制限事項のうち後者の方が条件としては厳しいので、制限値以下の温度変化率を目標値に設定し、温度変化率が目標値となるように、制御棒を操作することが一般的に行なわれている。   The following two operational restrictions are mainly adopted in the temperature raising and pressure increasing process. First, the reactor cycle (until the neutron flux φ becomes 2.71 times the original value, so that the reactor protection function such as scram does not operate due to the rapid rise of the neutron flux when the control rod is pulled out. Time) below a certain value. This reactor cycle is calculated from the detection value of the neutron flux detector installed in the core. Another limitation is to keep the temperature change rate of the reactor water below a limit value (for example, 55 ° C./h) so as not to give thermal shock to each member constituting the nuclear reactor. Of the two operating restrictions, the latter is more severe as a condition. Therefore, it is common to set the temperature change rate below the limit value as the target value and operate the control rod so that the temperature change rate becomes the target value. Has been done.

なお、ここでいう炉水温度とは、必ずしも炉心内での冷却材の温度を意味しない。すなわち、沸騰水型原子炉では、炉心内での炉水温度を直接測定しないため、原子炉圧力容器から引き出された配管内の冷却材の温度を測定し、この測定した温度を炉水温度としている。このため、炉心反応度と直接関連する炉心部の冷却材温度に対して炉水温度の測定値には時間遅れがあり、炉水温度の変化率が制限値以下の目標値となるように制御棒を操作するに際して、運転員の操作には熟練を要する。   The reactor water temperature here does not necessarily mean the temperature of the coolant in the reactor core. That is, in a boiling water reactor, since the reactor water temperature in the reactor core is not directly measured, the temperature of the coolant in the pipe drawn from the reactor pressure vessel is measured, and this measured temperature is used as the reactor water temperature. Yes. For this reason, there is a time delay in the measured value of the reactor water temperature with respect to the coolant temperature of the core part directly related to the core reactivity, and the rate of change of the reactor water temperature is controlled to a target value below the limit value. When operating the rod, the operation of the operator requires skill.

具体的には、原子炉の起動時には、運転員の操作により、まず、未臨界の原子炉から制御棒を徐々に引き抜いて、原子炉周期が100秒〜200秒程度の超過臨界にもっていく制御が行なわれる。ここまでの過程を臨界過程とよび、その後、原子炉を定格圧力まで昇圧する昇温昇圧過程が始まる。この昇温昇圧過程の初期には、超過臨界により中性子束が増加し、それにともなって発熱量も増加する。発熱量が増加すると燃料温度が上昇し、ドップラー効果により炉心に負の反応度が印加される。炉水温度が上昇を開始し、減速材温度反応度効果により炉心に負の反応度が印加されるまでは、原子炉周期を100秒〜200秒程度に保って中性子束を上昇させる。このとき、運転員は、中性子束の値を監視し、中性子束の値がある程度上昇したところで、中性子束の値と中性子束レベルの目安(過去の運転実績から炉水の温度変化率が目標値付近となるとして得られた値)とを比較し、中性子束の値が目安を超えそうなときには制御棒を挿入し、逆に中性子束の値が目安を大きく下回りそうなときには制御棒を引き抜く操作を行なう。このような操作を行なう過程で、炉水温度が上昇すると水の密度が小さくなり、核***に寄与する中性子束の数が減少し、中性子束の値が上昇から減少に移行する。さらに炉水温度変化率の測定値も時間遅れを経た後同様に上昇から減少に移行する。このとき、温度変化率の測定値が目標値に達しないときには、再度制御棒を引き抜いて温度変化率の上昇を待つことになる。   Specifically, when the nuclear reactor is started up, the control rod is gradually pulled out of the subcritical nuclear reactor by the operator's operation, and the reactor cycle is brought to the supercritical range of about 100 to 200 seconds. Is done. The process up to this point is called the critical process, and then the temperature-increasing process for boosting the reactor to the rated pressure begins. At the initial stage of the temperature raising and pressurization process, the neutron flux increases due to supercriticality, and the heat generation amount increases accordingly. When the calorific value increases, the fuel temperature rises and a negative reactivity is applied to the core due to the Doppler effect. Until the reactor water temperature starts to rise and a negative reactivity is applied to the core due to the moderator temperature reactivity effect, the reactor cycle is kept at about 100 to 200 seconds to raise the neutron flux. At this time, the operator monitors the value of the neutron flux, and when the value of the neutron flux rises to some extent, the neutron flux value and a guideline for the neutron flux level (the temperature change rate of the reactor water is the target value based on past operation results). The control rod is inserted when the neutron flux value is likely to exceed the guideline, and conversely, the control rod is pulled out when the neutron flux value is likely to be significantly below the guideline. To do. In the process of performing such operations, when the reactor water temperature rises, the density of water decreases, the number of neutron fluxes contributing to fission decreases, and the value of neutron flux shifts from rising to decreasing. Furthermore, the measured value of the reactor water temperature change rate also shifts from rising to decreasing after a time delay. At this time, when the measured value of the temperature change rate does not reach the target value, the control rod is pulled out again to wait for the temperature change rate to rise.

このような操作を繰り返し、温度変化率の測定値が目標値に達した後は、温度変化率の目標値より温度変化率の測定値が約10℃/h下回るのを待って、原子炉周期が十分長いことを確認し、制御棒を少量引き抜く。この操作を繰り返して炉水の温度変化率を一定値に保つ。   After repeating such an operation and the measured value of the temperature change rate reaches the target value, it waits for the measured value of the temperature change rate to be about 10 ° C./h lower than the target value of the temperature change rate, and Make sure that is long enough and pull out a small amount of the control rod. This operation is repeated to keep the temperature change rate of the reactor water at a constant value.

このように、原子炉内の実際の炉水温度と測定値との間に時間遅れがあるため、熟練した運転員でも、効率良く昇温昇圧するには操作棒を操作する回数が多くなり、起動に多くの時間を要するとともに運転員の負担が大きくなる。   In this way, because there is a time lag between the actual reactor water temperature in the nuclear reactor and the measured value, even a skilled operator has increased the number of times to operate the operating rod in order to increase the temperature efficiently. It takes a lot of time to start up and increases the burden on the operator.

そこで、炉水温度変化率の測定値を監視し、この測定値と温度変化率の目標値との偏差に基づいて制御棒を操作する方法が提案されている。この方法によれば、制御棒の操作に応答してただちに中性子束の値を変化させることできる。しかし、温度変化率の変化が測定されるまでには、燃料棒から炉心内の冷却材への伝熱時間、炉心から温度測定点までの流動時間、炉水温度を測定する熱電対の熱容量などの計測器による遅れ時間、さらに測定温度から温度変化率を算出するための時間平均操作による遅れ時間などを生じ、これらの遅れ時間は数分のオーダとなる。このため、炉水温度変化率の目標値と測定値との偏差に基づいて制御棒を単に操作しても、制御棒の操作が遅れ、炉水温度変化率を目標値に保つことが困難である。   Therefore, a method has been proposed in which the measured value of the reactor water temperature change rate is monitored and the control rod is operated based on the deviation between this measured value and the target value of the temperature change rate. According to this method, the value of the neutron flux can be changed immediately in response to the operation of the control rod. However, until the change in temperature change rate is measured, the heat transfer time from the fuel rod to the coolant in the core, the flow time from the core to the temperature measurement point, the heat capacity of the thermocouple that measures the reactor water temperature, etc. In addition, a delay time due to the measuring instrument, a delay time due to a time average operation for calculating the temperature change rate from the measured temperature, and the like are generated, and these delay times are on the order of several minutes. For this reason, even if the control rod is simply operated based on the deviation between the target value and the measured value of the reactor water temperature change rate, the operation of the control rod is delayed and it is difficult to maintain the reactor water temperature change rate at the target value. is there.

一方、より応答の速い中性子束に基づいて制御棒を操作する方法として、炉水温度変化率の目標値を与える中性子束を評価し、中性子束の値が評価した値となるように制御棒を操作する方法が提案されている。この方法の原理は、中性子束φと炉心内の炉水温度変化率(測定処理による時間遅れがない炉水温度変化率)dT/dtの間に以下の熱収支式が成立することを利用している。   On the other hand, as a method of operating the control rod based on the faster neutron flux, the neutron flux giving the target value of the reactor water temperature change rate is evaluated, and the control rod is adjusted so that the value of the neutron flux becomes the evaluated value. A method of operation has been proposed. The principle of this method is that the following heat balance equation holds between the neutron flux φ and the reactor water temperature change rate in the core (reactor water temperature change rate without time delay due to the measurement process) dT / dt. ing.

M・Cv・(dT/dt)=α・φ−Qloss…(1)
ただし、M:冷却材の実効的な質量
Cv:冷却材の比熱
α:中性子束φから炉出力への変換係数
Qloss:原子炉外部への熱損失
(1)式によれば、中性子束φから炉出力への換算係数αや、炉心外部への熱損失Qlossを適切に評価すれば、炉水温度変化率の目標値(目標とする炉水温度変化率)を与える中性子束を評価することができる。
M · Cv · (dT / dt) = α · φ−Qloss (1)
Where M: effective mass of coolant
Cv: Specific heat of coolant
α: Conversion coefficient from neutron flux φ to reactor power
Qloss: Heat loss to the outside of the reactor According to the equation (1), if the conversion factor α from the neutron flux φ to the reactor power and the heat loss Qloss to the outside of the core are appropriately evaluated, The neutron flux that gives the target value (target reactor water temperature change rate) can be evaluated.

例えば、α・φを原子炉出力Pと置き、Qloss=0とする代わりに、その補正項Kを導入した次の(2)式を用い、(2)式の補正項Kを過去の運転実績から原子炉圧力や炉水温度の関数として事前に与え、目標出力を算出する方法が提案されている(特許文献1参照)。   For example, instead of setting α · φ as the reactor power P and setting Qloss = 0, the following equation (2) introducing the correction term K is used, and the correction term K of the equation (2) is used as a past operation record. Has been proposed in advance as a function of reactor pressure and reactor water temperature to calculate a target output (see Patent Document 1).

M・Cv・(dT/dt)=K・P…(2)
しかし、(2)式を用いた方法でも、昇温昇圧過程では、原子炉の出力Pを直接測定することはできず、炉心内の数個所に設置された中性子検出器の中性子束レベルφで代用せざるを得ない。しかも、中性子束から炉出力への換算係数αは炉心の出力分布や経年変化する中性子検出器の感度に依存する。すなわち、(1)式のφは炉心内の中性子束の平均値を意味するが、実際に測定できるのは局所的な中性子束の値であり、この値は制御棒の挿入位置や挿入深さによる炉心出力分布に大きく影響される。さらに制御棒の挿入位置や挿入深さは、炉心あるいは同一炉心で装荷している燃料種類、配置によって異なることが普通である。また中性子検出器の感度は中性子の照射により時間的に劣化する。従って、αの値を事前に評価することは困難であり、(2)式で制御棒を操作する方法で目標出力(実際には目標中性子束)を与えることは実用上困難なところがある。
M · Cv · (dT / dt) = K · P (2)
However, even in the method using the equation (2), the reactor power P cannot be directly measured in the temperature raising and boosting process, and the neutron flux levels φ of neutron detectors installed at several locations in the core I have to substitute it. Moreover, the conversion coefficient α from the neutron flux to the reactor power depends on the power distribution of the core and the sensitivity of the neutron detector that changes over time. In other words, φ in equation (1) means the average value of the neutron flux in the core, but what can actually be measured is the value of the local neutron flux, which is the insertion position and insertion depth of the control rod. It is greatly influenced by the core power distribution due to. Further, the insertion position and insertion depth of the control rod are usually different depending on the type and arrangement of the fuel loaded in the core or the same core. The sensitivity of the neutron detector deteriorates with time due to neutron irradiation. Therefore, it is difficult to evaluate the value of α in advance, and it is practically difficult to give the target output (actually the target neutron flux) by the method of operating the control rod according to equation (2).

そこで、中性子束と温度変化率それぞれの検出値を用いて実質的な換算係数αを評価する方法が提案されている(特許文献2参照)。具体的には、臨界過程から昇温昇圧過程に移行する間に発生する原子炉内中性子束の極大値と炉水温度変化率の極大値を検出し、それらの比を使うことによって換算係数αを算出する。   Therefore, a method for evaluating the substantial conversion coefficient α using the detected values of the neutron flux and the temperature change rate has been proposed (see Patent Document 2). Specifically, the conversion factor α is detected by detecting the maximum value of the neutron flux in the reactor and the maximum value of the rate of change in reactor water temperature that occur during the transition from the critical process to the heating and pressure-increasing process. Is calculated.

昇温昇圧過程のうち、特に初期の段階に生じる最初の中性子束極大値φmaxと炉水温度変化率の最初の極大値dTmax/dtとの比は一定の関係を有するため、これらの値を(1)式に代入すると、次の(3)式が得られる。   The ratio between the initial neutron flux maximum value φmax occurring in the initial stage of the temperature raising and pressure-increasing process and the initial maximum value dTmax / dt of the reactor water temperature change rate has a fixed relationship. Substituting into the formula (1) gives the following formula (3).

M・Cv・(dTmax/dt)=α・φmax−Qloss
…(3)
中性子束極大値と温度変化率の極大値の発生する時刻に時間遅れがあっても(3)式は成立する。さらに、昇温昇圧過程の初期ではQlossが比較的小さいという実測データの知見からQlossを0と近似すると、(3)式は、次の(4)式で表される。
M · Cv · (dTmax / dt) = α · φmax−Qloss
... (3)
Even if there is a time lag in the time at which the neutron flux maximum value and the temperature change rate maximum value occur, equation (3) holds. Furthermore, when Qloss is approximated to 0 based on the knowledge of measured data that Qloss is relatively small in the initial stage of the temperature raising and boosting process, equation (3) is expressed by the following equation (4).

M・Cv/α=(中性子束の極大値)/(炉水温度変化率の極大値)…(4)
(4)式において、中性子束の極大値と炉水温度変化率の極大値との比の値は常に一定の値を示すことから、極大値の関係を目標値の関係にみなすことができ、(4)式から(5)式が得られる。
M · Cv / α = (maximum value of neutron flux) / (maximum value of rate of change in reactor water temperature) (4)
In the equation (4), since the value of the ratio between the maximum value of the neutron flux and the maximum value of the reactor water temperature change rate always shows a constant value, the relationship between the maximum values can be regarded as the target value relationship, Equation (5) is obtained from equation (4).


(中性子束目標値)=(中性子束の極大値)/(炉水温度変化率の極大値)
×(炉水温度変化率目標値)…(5)
(5)式で求めた中性子束目標値に従って制御棒の位置を調整することで炉水温度変化率を迅速に目標値に近づけることでき、原子炉を迅速に昇温昇圧することができる。

(Target value of neutron flux) = (maximum value of neutron flux) / (maximum value of reactor water temperature change rate)
× (Reactor water temperature change rate target value) (5)
By adjusting the position of the control rod according to the neutron flux target value obtained by the equation (5), the reactor water temperature change rate can be quickly brought close to the target value, and the temperature of the reactor can be raised and raised quickly.

特開昭52−67487号公報JP 52-67487 A 特開平9−145895号公報JP-A-9-145895

上記特許文献2に記載の従来技術は、炉水の温度反応度係数が負であることを前提とし、臨界超過後の原子炉は、炉水温度が数十℃上昇すると自動的に中性子束の増加が停止し、中性子束および炉水温度変化率が自動的に極大値を持つことを前提としている。   The prior art described in Patent Document 2 is based on the premise that the temperature reactivity coefficient of reactor water is negative, and a reactor after supercriticality automatically generates a neutron flux when the reactor water temperature rises by several tens of degrees Celsius. It is assumed that the increase stops and the neutron flux and reactor water temperature change rate automatically have maximum values.

原子炉起動時の臨界過程での炉水温度は通常80℃以下である。臨界過程から昇温昇圧過程の初期には、超過臨界により中性子束が増加し、それにともなって発熱量も増加する。発熱量が増加すると燃料温度が上昇し、ドップラー効果により炉心に負の反応度が印加される。また、中性子束が増加して発熱量が炉心定格出力の0.1%程度に達すると炉水温度が上昇し始め、炉水温度変化率も増加する。炉水の温度反応度係数が負の場合、炉水温度が上昇すると炉心に負の反応度が印加され、中性子束の上昇が遅くなり、やがて中性子束が減少し始める。運転員が昇温昇圧過程で制御棒の操作を開始するのは、中性子束が減少しはじめた以降である。   The reactor water temperature in the critical process at the time of reactor startup is usually 80 ° C. or lower. From the critical process to the initial stage of the temperature rise and pressurization process, the neutron flux increases due to supercriticality, and the heating value increases accordingly. When the calorific value increases, the fuel temperature rises and a negative reactivity is applied to the core due to the Doppler effect. Further, when the neutron flux increases and the calorific value reaches about 0.1% of the core rated output, the reactor water temperature begins to rise and the reactor water temperature change rate also increases. When the reactor water temperature reactivity coefficient is negative, when the reactor water temperature rises, a negative reactivity is applied to the core, the neutron flux rises slowly, and the neutron flux begins to decrease. It is after the neutron flux begins to decrease that the operator starts operating the control rod in the process of raising the temperature and pressure.

一方、最近の沸騰水型原子炉燃料は、燃料濃縮度を高めて高燃焼度化し、燃料経済性の向上を図っている。燃料を効率よく燃焼させるために高燃焼度化燃料では、燃料体積に対する水領域の体積を増やした設計になってきている。そうした燃料の中には、炉水温度が低い(およそ150℃以下)場合に炉水の温度反応度係数が正になる場合のあることがわかってきた。炉水の温度反応度係数が正の燃料は、中性子束が増加して発熱量が増えて炉水温度が上昇すると、正の反応度が印加され中性子の上昇速度が増加する。その結果として炉水温度変化率も増加する。最終的には高燃焼度化燃料でも約150℃以上では炉水の温度反応度係数が負になり、さらに炉水中に気泡が発生して負のボイド反応度が印加されるため、運転員が放置しても中性子束の増加は自動的に停止するが、それまでの期間は中性子束や炉水温度は増加する。その結果として、制御棒挿入操作を実施しないと、炉水温度変化率が、原子炉材料の熱衝撃を防ぐ観点で設けてある温度変化率制限値を超える可能性があった。炉水の温度反応度係数が正であるか負であるかは起動前の分析である程度は予想できるが、炉水の温度反応度係数が正であっても負であっても同様に起動できることが望ましい。   On the other hand, recent boiling water nuclear reactor fuels have increased fuel enrichment to increase burnup and improve fuel economy. In order to efficiently burn the fuel, the high burn-up fuel has been designed to increase the volume of the water region relative to the fuel volume. It has been found that some such fuels may have a positive reactor water temperature reactivity coefficient when the reactor water temperature is low (approximately 150 ° C. or lower). When the reactor water temperature reactivity coefficient is positive, when the neutron flux increases and the calorific value increases and the reactor water temperature rises, positive reactivity is applied and the rate of neutron rise increases. As a result, the reactor water temperature change rate also increases. Ultimately, even with high burnup fuel, the temperature reactivity coefficient of reactor water becomes negative at about 150 ° C or higher, and bubbles are generated in the reactor water and negative void reactivity is applied. Even if it is left unattended, the increase in neutron flux stops automatically, but the neutron flux and reactor water temperature increase until that time. As a result, if the control rod insertion operation is not performed, the reactor water temperature change rate may exceed the temperature change rate limit value provided from the viewpoint of preventing thermal shock of the reactor material. Whether the temperature reactivity coefficient of reactor water is positive or negative can be predicted to some extent in the analysis before startup, but it can be started in the same way regardless of whether the reactor water temperature reactivity coefficient is positive or negative. Is desirable.

本発明の課題は、炉水の温度反応度係数が正であっても炉水温度変化率を制限値以内に収めることにある。   An object of the present invention is to keep the reactor water temperature change rate within the limit value even if the reactor water temperature reactivity coefficient is positive.

前記課題を解決するために、本発明は、原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、炉水温度変化率が設定値以上であり、中性子束が増加傾向にあることを条件に、制御棒の挿入操作を行なうようにしたものである。また、原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、中性子束の検出値から原子炉周期を算出し、炉水温度変化率が設定値以上であり、原子炉周期が正値でかつ設定値以下であることを条件に、制御棒の挿入操作を行なうこともできる。   In order to solve the above problems, the present invention detects a neutron flux and a reactor water temperature in a nuclear reactor, calculates a reactor water temperature change rate from a detected value of the reactor water temperature, and the reactor water temperature change rate is a set value. As described above, the control rod is inserted under the condition that the neutron flux tends to increase. Also, the neutron flux and reactor water temperature in the reactor are detected, the reactor water temperature change rate is calculated from the detected reactor water temperature value, the reactor cycle is calculated from the detected neutron flux value, and the reactor water temperature change rate is calculated. Can be inserted on the condition that is equal to or greater than the set value and the reactor cycle is a positive value and less than or equal to the set value.

上記のような制御を実行することで、炉水の温度反応度係数が正の場合にも、中性子束が減少に転じるまで制御棒が炉心に挿入され、その結果、炉水温度変化率を制限値以内に収めることができる   By executing the control as described above, even if the reactor water temperature reactivity coefficient is positive, the control rod is inserted into the core until the neutron flux starts to decrease, and as a result, the rate of change in reactor water temperature is limited. Can be within the value

本発明によれば、炉水の温度反応度係数が正である特性を持つ炉心に対しても、炉水温度変化率を制限値以内に収めることができ、炉水温度変化率の変動の少ない安定した制御が可能となる。   According to the present invention, the reactor water temperature change rate can be kept within the limit value even for the core having the characteristic that the temperature reactivity coefficient of the reactor water is positive, and the fluctuation of the reactor water temperature change rate is small. Stable control is possible.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態を示す原子炉出力制御装置のブロック構成図である。図1において、原子力プラントに用いられる原子炉10には中性子束検出器12、圧力検出器14、熱電対16が設けられており、中性子束検出器12、圧力検出器14、熱電対16の出力信号がそれぞれ原子炉出力制御器18に入力されている。原子炉出力制御器18は、温度検出器20、温度変化率算出器22、中性子束モニタ26、入力部30、制御棒自動制御器34、CRT36を備えて構成されている。   FIG. 1 is a block diagram of a reactor power control apparatus showing an embodiment of the present invention. In FIG. 1, a nuclear reactor 10 used in a nuclear power plant is provided with a neutron flux detector 12, a pressure detector 14, and a thermocouple 16, and outputs of the neutron flux detector 12, the pressure detector 14, and the thermocouple 16. Each signal is input to the reactor power controller 18. The reactor power controller 18 includes a temperature detector 20, a temperature change rate calculator 22, a neutron flux monitor 26, an input unit 30, a control rod automatic controller 34, and a CRT 36.

熱電対16は原子炉10に接続された配管内に設置されており、配管内の炉水の温度に検出し、検出温度に対応した信号を温度検出器20へ出力する。温度検出器20は熱電対16からの信号に応じた温度を算出し制御棒自動制御器34と温度変化率算出器22へ出力する。すなわち熱電対16と温度検出器20は原子炉10内の炉水の温度を検出する炉水温度検出手段として構成されている。温度変化率算出器22は温度検出器20の検出信号を順次記憶し、炉水温度の時間的変化(時間の経過)から炉水温度の変化率を算出する炉水温度変化率算出手段として構成されており、算出された炉水温度変化率は制御棒自動制御器34へ出力される。   The thermocouple 16 is installed in a pipe connected to the nuclear reactor 10, detects the temperature of the reactor water in the pipe, and outputs a signal corresponding to the detected temperature to the temperature detector 20. The temperature detector 20 calculates the temperature according to the signal from the thermocouple 16 and outputs it to the control rod automatic controller 34 and the temperature change rate calculator 22. That is, the thermocouple 16 and the temperature detector 20 are configured as reactor water temperature detection means for detecting the reactor water temperature in the nuclear reactor 10. The temperature change rate calculator 22 is configured as a reactor water temperature change rate calculating means for sequentially storing the detection signals of the temperature detector 20 and calculating the change rate of the reactor water temperature from the temporal change (elapsed time) of the reactor water temperature. The calculated reactor water temperature change rate is output to the control rod automatic controller 34.

中性子束検出器12は原子炉10の炉心2内に設置されており、この中性子束検出器12は単位時間あたりに検出する中性子束の数を計数し、この計数値を中性子束検出信号として中性子束モニタ26へ出力する中性子束検出手段として構成されている。中性子束モニタ26は中性子束検出器12の出力信号を中性子束レベル(中性子束の検出値と炉心の定格出力との割合を示すレベル=%定格)に変換するとともに、中性子束の時間変化率を表す指標である原子炉周期を算出する原子炉周期算出手段として構成されており、中性子束レベル及び原子炉周期は、制御棒自動制御器34へ出力される。   The neutron flux detector 12 is installed in the core 2 of the nuclear reactor 10, and the neutron flux detector 12 counts the number of neutron flux detected per unit time, and uses the counted value as a neutron flux detection signal to neutrons. A neutron flux detecting means for outputting to the bundle monitor 26 is constructed. The neutron flux monitor 26 converts the output signal of the neutron flux detector 12 to a neutron flux level (level indicating the ratio between the detected value of the neutron flux and the rated output of the core =% rating), and the time rate of change of the neutron flux is changed. It is configured as a reactor cycle calculation means for calculating a reactor cycle that is an index to be expressed, and the neutron flux level and the reactor cycle are output to the control rod automatic controller 34.

入力部30は、例えば,制御操作盤上のコンソールなどで構成され、運転員の操作により、炉水温度変化率目標値(目標炉水温度変化率)として、例えば,20℃/h(時間)に関する信号を制御棒自動制御器34へ出力する炉水温度変化率目標値入力手段として構成されている。   The input unit 30 is configured by, for example, a console on a control operation panel, and as a reactor water temperature change rate target value (target reactor water temperature change rate) by an operation of an operator, for example, 20 ° C./h (hour) This is configured as a reactor water temperature change rate target value input means for outputting a signal relating to the control rod automatic controller 34.

制御棒自動制御器34は、温度検出器20で検出した炉水温度と温度変化率算出器22が出力する炉水温度変化率、中性子束モニタ26の出力する中性子束レベルと原子炉周期、入力部30から取り込んだ炉水温度変化率目標値を入力し、自動制御時には制御棒駆動制御器8に適切なタイミングで制御棒駆動信号を出力する。手動制御時には、CRTに運転員に対して制御棒挿入操作を実施するように表示する。   The control rod automatic controller 34 includes the reactor water temperature detected by the temperature detector 20, the reactor water temperature change rate output by the temperature change rate calculator 22, the neutron flux level and reactor cycle output by the neutron flux monitor 26, and the input. The reactor water temperature change rate target value taken in from the unit 30 is input, and a control rod drive signal is output to the control rod drive controller 8 at an appropriate timing during automatic control. At the time of manual control, a display is made on the CRT so as to perform the control rod insertion operation for the operator.

制御棒駆動制御器8は炉心2に挿入および引き抜き可能な制御棒4を駆動する制御棒駆動装置6を制御する装置である。あらかじめ、複数の制御棒をどの順番で操作するかを定めたリストと、複数ある駆動モードに対して一回の制御棒駆動信号でどれだけの量を操作するかを定めたリストを保有しており、制御棒自動制御器34から出力された制御棒駆動信号(挿入開始または引き抜き開始信号および駆動モード情報)に基づいて制御棒駆動装置6に制御棒駆動信号を出力する。また、制御棒自動制御器34に対しては、制御棒の状態(制御棒挿入中、制御棒引き抜き中、制御棒操作完了、制御棒の現在位置)信号を出力する。   The control rod drive controller 8 is a device that controls the control rod drive device 6 that drives the control rod 4 that can be inserted into and removed from the core 2. We have in advance a list that defines the order in which multiple control rods are to be operated, and a list that defines how much to operate with a single control rod drive signal for multiple drive modes. The control rod drive signal is output to the control rod drive device 6 based on the control rod drive signal (insertion start or extraction start signal and drive mode information) output from the control rod automatic controller 34. Further, a control rod state (control rod insertion, control rod pulling out, control rod operation complete, current position of control rod) signal is output to the control rod automatic controller 34.

制御棒駆動装置6は水圧駆動またはステップモータによる電動駆動装置であり、制御棒駆動制御器8からの信号により制御棒4を炉心2に挿入あるいは炉心2から引き抜く動作をする。すなわち、制御棒駆動制御器8は、制御棒駆動装置6とともに、制御棒4の位置を調整する制御棒駆動手段として構成されている。   The control rod drive device 6 is a hydraulic drive or electric drive device using a step motor, and operates to insert the control rod 4 into the core 2 or withdraw it from the core 2 in response to a signal from the control rod drive controller 8. That is, the control rod drive controller 8 is configured as control rod drive means for adjusting the position of the control rod 4 together with the control rod drive device 6.

CRTで代表される表示装置36には、温度変化率目標値と実際の温度変化率を並べて表示したり、目標とする炉水温度の時間変化や実際の炉水温度の時間変化をトレンドとしてグラフ表示したりすることができる。また、中性子束レベルや原子炉周期、あるいは原子炉周期の逆数もトレンドとしてグラフ表示することができる。さらに、制御棒の現在位置を表示することもできる。制御棒4の操作を運転員がおこなう手動操作時には、制御棒4を挿入操作すべきタイミングには、運転員に対して制御棒挿入操作を実施するようなガイダンスを表示する。運転員は、そのガイダンスに従い、入力部30を介して制御棒操作指令を入力し、制御棒駆動制御器8によって制御棒4が操作される。   On the display device 36 represented by CRT, the temperature change rate target value and the actual temperature change rate are displayed side by side, or the target time change of the reactor water temperature and the time change of the actual reactor water temperature are graphed as a trend. Can be displayed. Also, the neutron flux level, the reactor cycle, or the reciprocal of the reactor cycle can be displayed as a trend. In addition, the current position of the control rod can be displayed. At the time of manual operation in which the operator operates the control rod 4, guidance for performing the control rod insertion operation is displayed to the operator at the timing when the control rod 4 should be inserted. The operator inputs a control rod operation command via the input unit 30 in accordance with the guidance, and the control rod drive controller 8 operates the control rod 4.

図2は、本実施形態において制御棒自動制御器34に組み込まれている制御ロジックの一例である。この制御ロジックは以下の3条件をすべて満足したときに制御棒駆動制御器8に制御棒挿入指令を出力する。   FIG. 2 is an example of the control logic incorporated in the control rod automatic controller 34 in the present embodiment. This control logic outputs a control rod insertion command to the control rod drive controller 8 when all of the following three conditions are satisfied.

第1の条件は、温度変化率算出器22が出力した炉水温度変化率が炉水温度変化率目標値以上となることである。炉水温度変化率目標値は、炉水温度変化率が制限値の55℃/hを超えない範囲であらかじめ設定され、例えば、20℃/hが、入力部30から炉水温度変化率目標値として入力される。   The first condition is that the reactor water temperature change rate output by the temperature change rate calculator 22 is equal to or greater than the reactor water temperature change rate target value. The reactor water temperature change rate target value is set in advance in a range where the reactor water temperature change rate does not exceed the limit value of 55 ° C./h. For example, 20 ° C./h is input from the input unit 30 to the reactor water temperature change rate target value. Is entered as

第2の条件は、中性子束モニタ26から出力された原子炉周期があらかじめ設定した原子炉周期設定値(例えば600秒)以下となることである。原子炉周期が小さいということは、原子炉出力増加率が大きいことをあらわしているが、ただし原子炉周期が負になると原子炉出力が減少することを意味するので、原子炉周期は正値の場合に限る。この2回の判定の手間を省くために、上記第2の条件と等価な条件として、原子炉周期の逆数が原子炉周期逆数の設定値(例えば、1/600秒)以上の時と置き換えることもできる。原子炉周期設定値あるいは原子炉周期逆数の設定値はあらかじめ設定しておく。   The second condition is that the reactor cycle output from the neutron flux monitor 26 is equal to or less than a preset reactor cycle set value (for example, 600 seconds). A small reactor cycle means that the reactor power increase rate is large, but it means that when the reactor cycle becomes negative, the reactor power decreases, so the reactor cycle is a positive value. Limited to cases. In order to save the time and effort of the two determinations, as a condition equivalent to the second condition, a case where the reciprocal number of the reactor cycle is equal to or greater than the set value of the reciprocal number of the reactor cycle (for example, 1/600 second) is replaced. You can also. The reactor cycle set value or the set value of the inverse of the reactor cycle is set in advance.

第3の条件は、制御棒4操作後の経過時間が、経過時間設定値(例えば、60秒)以上(一定時間以上)となることである。制御棒4操作後の経過時間は、制御棒自動制御器34に内蔵されたタイマー(計測手段)で計測され、経過時間設定値はあらかじめ設定されている。   The third condition is that the elapsed time after the operation of the control rod 4 is equal to or longer than an elapsed time set value (for example, 60 seconds) (a certain time or longer). The elapsed time after the operation of the control rod 4 is measured by a timer (measurement means) built in the control rod automatic controller 34, and the elapsed time set value is set in advance.

上記3条件をすべて満足したときに、制御棒自動制御器34は制御棒駆動制御器8に制御棒挿入信号を出力する。すなわち、炉水温度変化率が設定値(目標値)以上であり、原子炉周期が正値でかつ設定値以下であり、前回制御棒4を操作してから一定時間以上経過したことを条件に、制御棒自動制御器34は、制御棒4の挿入操作を行なうために、制御棒駆動制御器8に制御棒挿入信号を出力する。この場合、制御棒自動制御器34は、上記3条件が成立するか否かを判定する判定手段を構成することになる。なお、制御棒挿入量は、通常は最小制御棒挿入単位(1ステップあるいは1ノッチ)で十分である。また、第1の条件と第2の条件が成立したことを条件に、制御棒挿入信号を一定時間間隔で出力する構成を採用することも可能である。   When all the above three conditions are satisfied, the control rod automatic controller 34 outputs a control rod insertion signal to the control rod drive controller 8. That is, on the condition that the reactor water temperature change rate is equal to or greater than the set value (target value), the reactor cycle is positive and equal to or less than the set value, and a certain time has passed since the last operation of the control rod 4. The control rod automatic controller 34 outputs a control rod insertion signal to the control rod drive controller 8 in order to perform the operation of inserting the control rod 4. In this case, the control rod automatic controller 34 constitutes determination means for determining whether or not the above three conditions are satisfied. Note that the control rod insertion amount is usually a minimum control rod insertion unit (one step or one notch). It is also possible to employ a configuration in which control rod insertion signals are output at regular time intervals on condition that the first condition and the second condition are satisfied.

ここで、中性子束モニタ26内での原子炉周期の算出方法の一例を以下に説明する。計測した中性子束信号にはノイズが含まれているのでフィルタ処理する。フィルタ時定数をTc(秒)とすると原子炉周期τ(秒)は次式で算出できる。   Here, an example of a method for calculating the reactor cycle in the neutron flux monitor 26 will be described below. Since the measured neutron flux signal contains noise, it is filtered. If the filter time constant is Tc (seconds), the reactor cycle τ (seconds) can be calculated by the following equation.

τ=Tc/{φ(t)/ψ(t)−1} …(6)
ψ(t)は中性子束φ(t)を時刻0からt秒まで積分したもので、次式で定義する。
τ = Tc / {φ (t) / ψ (t) −1} (6)
ψ (t) is obtained by integrating the neutron flux φ (t) from time 0 to t seconds, and is defined by the following equation.

ψ(t)=∫〔{φ(t)−ψ(t)}/Tc〕dt + ψ(0)…(7)
ただし、ψ(0)=φ(0)
(7)式はサンプリング間隔をΔtとすると、台形公式を使ってφ(t)、φ(t−Δt)、ψ(t−Δt)の値から算出できる。フィルタ時定数をTcとしては、例えば40秒を使用すればよい。
ψ (t) = ∫ [{φ (t) −ψ (t)} / Tc] dt + ψ (0) (7)
However, ψ (0) = φ (0)
Equation (7) can be calculated from the values of φ (t), φ (t−Δt), and ψ (t−Δt) using the trapezoidal formula where the sampling interval is Δt. For example, 40 seconds may be used as the filter time constant Tc.

上記実施例では、第2の条件として原子炉周期信号を利用したが、代わりに中性子束を使用し、中性子束が時間的に増加傾向にあることを条件とすることができる。その場合は、制御棒自動制御器34に内蔵されたタイマーとメモリを使って、一定間隔(例えば30秒)の中性子束を3点以上記録し、時間が進むほど中性子束が増加していく場合に、第2の条件が満たされたと判定することができる。   In the above-described embodiment, the reactor periodic signal is used as the second condition. However, a neutron flux can be used instead and the neutron flux tends to increase with time. In that case, using the timer and memory built in the control rod automatic controller 34, record three or more neutron flux at regular intervals (for example, 30 seconds), and the neutron flux increases as time progresses In addition, it can be determined that the second condition is satisfied.

以上の制御ロジックは昇温昇圧過程を主なターゲットとしているが、未臨界状態から臨界に至る臨界過程や、臨界過程から昇温昇圧過程を開始する間の区間においても採用することができる。この制御ロジックは炉水の温度変化率を監視しているので、上述したいかなる過程においても炉水温度変化率が55℃/hの制限値を超えないように監視することができる。   The above control logic mainly targets the temperature rising / pressurizing process, but it can also be used in the critical process from the subcritical state to the criticality, or in the interval between the start of the temperature rising / pressurizing process from the critical process. Since this control logic monitors the temperature change rate of the reactor water, it can be monitored so that the reactor water temperature change rate does not exceed the limit value of 55 ° C./h in any process described above.

本実施例によれば、減速材温度反応度係数が正であっても、適切に起動時の昇温制御棒操作が実施できる。すなわち、炉水の温度反応度係数が正である特性を持つ炉心に対しても、炉水温度変化率の上限値を満足する必要最小限の制御棒挿入操作を実現することによって、原子炉10を迅速、適切に昇温できるとともに制御棒4の操作を自動化および簡素化することができる。さらに手動操作の場合でも、制御棒操作タイミングをガイダンスとして表示装置34の画面上に表示することで、炉水温度変化率の変動の少ない安定した制御が可能となり、運転員の負担を軽減することできる。   According to the present embodiment, even when the moderator temperature reactivity coefficient is positive, the temperature increase control rod operation at the start can be appropriately performed. That is, even for a reactor core having a characteristic that the temperature reactivity coefficient of reactor water is positive, by realizing the minimum control rod insertion operation that satisfies the upper limit value of the reactor water temperature change rate, the reactor 10 Can be quickly and appropriately raised, and the operation of the control rod 4 can be automated and simplified. Furthermore, even in the case of manual operation, the control rod operation timing is displayed on the screen of the display device 34 as guidance, thereby enabling stable control with little fluctuation in the reactor water temperature change rate and reducing the burden on the operator. it can.

図3は本発明の他の実施形態を示す原子炉出力制御装置のブロック構成図である。図3の原子炉出力制御器38は、図1の実施例と同様、温度検出器20、温度変化率算出器22、中性子束モニタ26、入力部30、制御棒自動制御器34、CRT36を備えており、さらに温度変化率極大値検出器24、中性子束極大値検出器28、中性子束目標値算出器32を備えている。   FIG. 3 is a block diagram of a reactor power control apparatus showing another embodiment of the present invention. The reactor power controller 38 of FIG. 3 includes a temperature detector 20, a temperature change rate calculator 22, a neutron flux monitor 26, an input unit 30, a control rod automatic controller 34, and a CRT 36, as in the embodiment of FIG. Furthermore, a temperature change rate maximum value detector 24, a neutron flux maximum value detector 28, and a neutron flux target value calculator 32 are further provided.

図1と同じ構成部分の説明は省略し、ここでは本実施例に特有の部分について説明する。温度変化率算出器22は温度検出器20の検出信号を順次記憶し、炉水温度の時間的変化(時間の経過)から炉水温度の変化率を算出する炉水温度変化率算出手段として構成されており、算出された炉水温度変化率は制御棒自動制御器34と温度変化率極大値検出器24へ出力する。温度変化率極大値検出器24は温度変化率算出器22の算出値を順次記憶し、温度変化率算出値の値が増加から減少に変化したときの値を極大値として順次記憶し、記憶した極大値に関する信号を中性子束目標値算出器32へ出力する温度変化率極大値検出手段として構成されている。中性子束モニタ26で算出した中性子束レベル(中性子束の検出値と炉心の定格出力との割合を示すレベル=%定格)は、制御棒自動制御器34と中性子束極大値検出器28へ出力される。中性子束極大値検出器28は、中性子束モニタ26の中性子束レベル出力を順次記憶し、中性子束レベルが増加から減少に変化したときの値を中性子束の極大値として記憶するとともに極大値の検出に関する極大値検出信号を中性子束目標値算出器32へ出力する中性子束極大値検出手段として構成されている。また入力部30から運転員によって入力された炉水温度変化率目標値信号は、制御棒自動制御器34を介して中性子束目標値算出器32へ出力される。   The description of the same components as those in FIG. 1 is omitted, and only the parts specific to this embodiment will be described here. The temperature change rate calculator 22 is configured as a reactor water temperature change rate calculating means for sequentially storing the detection signals of the temperature detector 20 and calculating the change rate of the reactor water temperature from the temporal change (elapsed time) of the reactor water temperature. The calculated reactor water temperature change rate is output to the control rod automatic controller 34 and the temperature change rate maximum value detector 24. The temperature change rate maximum value detector 24 sequentially stores the calculated value of the temperature change rate calculator 22, and sequentially stores and stores the value when the temperature change rate calculated value changes from increasing to decreasing as the maximum value. The temperature change rate maximum value detecting means for outputting a signal related to the maximum value to the neutron flux target value calculator 32 is configured. The neutron flux level calculated by the neutron flux monitor 26 (level indicating the ratio between the detected value of the neutron flux and the rated output of the core =% rating) is output to the control rod automatic controller 34 and the neutron flux maximum value detector 28. The The neutron flux maximum value detector 28 sequentially stores the neutron flux level output of the neutron flux monitor 26, stores the value when the neutron flux level changes from increase to decrease as the maximum value of the neutron flux, and detects the maximum value. It is configured as a neutron flux maximum value detecting means for outputting a local maximum value detection signal to the neutron flux target value calculator 32. The reactor water temperature change rate target value signal input by the operator from the input unit 30 is output to the neutron flux target value calculator 32 via the control rod automatic controller 34.

中性子束目標値算出器32は、温度変化率極大値検出器24で検出した炉水温度変化率極大値と中性子束極大値検出器28で検出した中性子束極大値、および入力部30から入力した温度変化率目標値に基づいて中性子束目標値を算出する中性子束目標値算出手段として構成されている。そして本実施形態においては、中性子束目標値算出器32は、炉水温度変化率が目標値となるような中性子束目標値を求めるために、次の(8)式で示すように、前述した(5)式に安全係数α(α=0.5〜1.0)を掛けたものが中性子束目標値として設定されている。   The neutron flux target value calculator 32 receives the reactor water temperature change rate maximum value detected by the temperature change rate maximum value detector 24, the neutron flux maximum value detected by the neutron flux maximum value detector 28, and the input from the input unit 30. The neutron flux target value calculation means is configured to calculate the neutron flux target value based on the temperature change rate target value. In the present embodiment, the neutron flux target value calculator 32 calculates the neutron flux target value so that the reactor water temperature change rate becomes the target value, as described in the following equation (8). A value obtained by multiplying the equation (5) by the safety factor α (α = 0.5 to 1.0) is set as the neutron flux target value.

(中性子束目標値)=(中性子束の極大値)/(炉水温度変化率の極大値)
×(炉水温度変化率目標値)×α …(8)
ここで、炉水の温度反応度係数が正で、図2に示した制御棒挿入ロジックがない場合には、温度反応度係数が負となる炉水温度以上にならないと中性子束と炉水温度変化率が極大値を取らないため、(5)式や(8)式では中性子束目標値が設定できない。
(Target value of neutron flux) = (maximum value of neutron flux) / (maximum value of reactor water temperature change rate)
× (Target value of reactor water temperature change rate) × α (8)
Here, when the temperature reactivity coefficient of reactor water is positive and there is no control rod insertion logic shown in FIG. 2, the neutron flux and reactor water temperature must be equal to or higher than the reactor water temperature at which the temperature reactivity coefficient is negative. Since the rate of change does not take a maximal value, the neutron flux target value cannot be set using equations (5) and (8).

一方、本発明による図2に示した制御棒挿入ロジックを有する場合には、炉水の温度反応度係数が正の場合には制御棒を挿入して強制的に負の反応度を投入して中性子束と温度変化率が極大値をとるようにするので、炉水の温度反応度係数の正負にかかわらず、(5)式や(8)式によって、目標とする炉水温度変化率を与える中性子束目標値を設定することができる。   On the other hand, in the case of having the control rod insertion logic shown in FIG. 2 according to the present invention, when the temperature reactivity coefficient of the reactor water is positive, the control rod is inserted to force negative reactivity. Since the neutron flux and temperature change rate are maximized, the target reactor water temperature change rate is given by equation (5) or (8) regardless of whether the reactor water temperature reactivity coefficient is positive or negative. A neutron flux target value can be set.

制御棒自動制御器34には、図2に示した制御棒挿入制御回路とともに、中性子束目標値算出器32が目標中性子束を設定した後の制御棒制御回路も組み込まれており、その一例を図4に示す。   In addition to the control rod insertion control circuit shown in FIG. 2, the control rod automatic controller 34 incorporates a control rod control circuit after the neutron flux target value calculator 32 has set the target neutron flux. As shown in FIG.

図4は、本発明の他の実施形態における制御棒自動制御器34に組み込まれた炉水温度変化率を目標値に制御する制御棒制御回路を説明した図である。この制御回路は、中性子束目標値算出器32によって目標中性子束59が入力されると、スイッチ61がA側回路に接続され、スイッチ62がオンになって制御を開始する。このA側回路は、(5)式や(8)式で算出した目標中性子束に実際の中性子束が一致するように制御棒操作を制御する回路である。中性子束モニタ26から入力した中性子束57と目標中性子束59は、それぞれ対数変換器58、60により対数化され、その差から偏差信号63が生成される。対数化する理由は、中性子束57が昇温昇圧制御過程において100倍程度変化するため、幅の広い変化を制御しやすいような値に変換するためである。偏差信号63は制御棒動作判定器54に入力される。   FIG. 4 is a diagram illustrating a control rod control circuit that controls the reactor water temperature change rate incorporated in the control rod automatic controller 34 according to another embodiment of the present invention to a target value. In this control circuit, when the target neutron flux 59 is input by the neutron flux target value calculator 32, the switch 61 is connected to the A side circuit, and the switch 62 is turned on to start control. This A-side circuit is a circuit that controls the control rod operation so that the actual neutron flux matches the target neutron flux calculated by the equations (5) and (8). The neutron flux 57 and the target neutron flux 59 input from the neutron flux monitor 26 are logarithmized by logarithmic converters 58 and 60, respectively, and a deviation signal 63 is generated from the difference. The reason for the logarithmization is that the neutron flux 57 changes about 100 times in the temperature increase / decrease control process, so that a wide change is converted to a value that is easy to control. The deviation signal 63 is input to the control rod motion determiner 54.

制御棒動作判定器54は、偏差判別器52a、AND回路52b、設定値52c、タイマー52dを備えて構成されており、制御棒動作判定器54では、その偏差が事前に設定した正の定数以上の時には制御棒引き抜き信号を出力し、その偏差が事前に設定した負の定数以下の時には制御棒挿入信号を出力し、中間の時には制御棒操作信号を出力しない。ただし、制御棒動作判定器54は、タイマー52dで制御棒操作後の経過時間も計測しており、経過時間が設定値(例えば10秒)を超えた場合に限り、AND回路52bの論理が成立したとして、制御棒引き抜きまたは制御棒挿入の信号64を制御棒駆動制御器8に出力する。   The control rod motion determiner 54 includes a deviation discriminator 52a, an AND circuit 52b, a set value 52c, and a timer 52d. In the control rod motion determiner 54, the deviation is equal to or more than a preset positive constant. In this case, a control rod pull-out signal is output, a control rod insertion signal is output when the deviation is equal to or less than a preset negative constant, and a control rod operation signal is not output in the middle. However, the control rod motion determination unit 54 also measures the elapsed time after the control rod operation by the timer 52d, and the logic of the AND circuit 52b is established only when the elapsed time exceeds a set value (for example, 10 seconds). As a result, the control rod pull-out or control rod insertion signal 64 is output to the control rod drive controller 8.

制御棒駆動制御器8には、作動させる制御棒の順序や1回の制御棒操作あたりの制御棒移動量が、あらかじめデータとして入力されている。制御棒駆動制御器8は、そのデータと制御棒自動制御器34の制御棒操作信号64に基づいて制御棒駆動装置6に操作信号を送り、制御棒駆動装置6が制御棒4を炉心2に挿入あるいは引き抜き操作する。制御棒の動作が完了すると、制御棒駆動制御器8は制御棒操作完了信号65を制御棒自動制御器34に送信する。制御棒自動制御器34内のタイマー52は、この信号を受信して制御棒操作後の時間を計測する。このようにして、制御棒操作を、炉心の中性子束57が目標中性子束59と許容範囲内で一致するまで続ける。   In the control rod drive controller 8, the order of control rods to be operated and the amount of control rod movement per control rod operation are input as data in advance. The control rod drive controller 8 sends an operation signal to the control rod drive device 6 based on the data and the control rod operation signal 64 of the control rod automatic controller 34, and the control rod drive device 6 sends the control rod 4 to the core 2. Insert or pull out. When the operation of the control rod is completed, the control rod drive controller 8 transmits a control rod operation completion signal 65 to the control rod automatic controller 34. The timer 52 in the control rod automatic controller 34 receives this signal and measures the time after the control rod operation. In this way, control rod operation continues until the core neutron flux 57 matches the target neutron flux 59 within an acceptable range.

炉心の中性子束57が目標中性子束59と許容範囲内で一致すると、スイッチ61がB側に切り替わり、目標中性子束59を対数変換器60で対数化した値が比例積分器53の出力信号になるように比例積分器53の初期状態を設定する。このB側回路は、温度変化率を測定して、目標中性子束を修正しながら制御棒操作を制御する回路である。   When the core neutron flux 57 matches the target neutron flux 59 within the allowable range, the switch 61 is switched to the B side, and the value obtained by logarithmizing the target neutron flux 59 with the logarithmic converter 60 becomes the output signal of the proportional integrator 53. Thus, the initial state of the proportional integrator 53 is set. This B-side circuit is a circuit that controls the control rod operation while measuring the temperature change rate and correcting the target neutron flux.

温度変化率演算器22によって算出された炉水温度変化率55は、炉水温度の進み補償機能56によって現在より時間が進んだ時点の温度変化率予測値に変換される。進み補償機能56にて炉水温度を予測する理由は、熱電対16自体に検出器時定数があることや、制御棒4の引き抜きによって炉内の温度が上昇し、その温度上昇した炉水が熱電対16の位置に到達して温度が検出されるまでに時間遅れがあるためである。入力部30を介して入力した目標炉水温度変化率51(例えば20℃/h)と炉水温度変化率予測値の偏差信号は比例積分器53に入力される。目標炉水温度変化率51が温度変化率予測値より大きいときには、比例積分器の出力は徐々に大きくなり、すなわち目標中性子束が大きくなる。逆に目標炉水温度変化率51が温度変化率予測値より小さいときには、比例積分器の出力は徐々に小さくなり、目標中性子束が小さくなる。対数化した中性子束と目標中性子束信号の偏差信号63は制御棒動作判定器54に入力される。その後の構成と動作は、A側回路で説明したものと同じである。   The reactor water temperature change rate 55 calculated by the temperature change rate calculator 22 is converted by the reactor water temperature advance compensation function 56 into a predicted temperature change rate value when the time has advanced from the present time. The reason for predicting the reactor water temperature by the advance compensation function 56 is that there is a detector time constant in the thermocouple 16 itself, or the temperature inside the reactor rises due to the withdrawal of the control rod 4, and the reactor water whose temperature has risen This is because there is a time delay until the temperature is detected after reaching the position of the thermocouple 16. The deviation signal between the target reactor water temperature change rate 51 (for example, 20 ° C./h) and the predicted value of the reactor water temperature change rate input via the input unit 30 is input to the proportional integrator 53. When the target reactor water temperature change rate 51 is larger than the temperature change rate predicted value, the output of the proportional integrator gradually increases, that is, the target neutron flux increases. Conversely, when the target reactor water temperature change rate 51 is smaller than the predicted temperature change rate, the output of the proportional integrator gradually decreases and the target neutron flux decreases. The deviation signal 63 between the logarithmized neutron flux and the target neutron flux signal is input to the control rod operation determination unit 54. The subsequent configuration and operation are the same as those described for the A-side circuit.

図2に示した本発明による制御棒挿入回路と、上記のA側回路を有する制御棒自動制御器により、減速材温度反応度係数の正負にかかわらず、中性子束が目標とする炉水温度変化率を与える中性子束目標値に一致するように制御棒を操作することができ、またB側回路によって炉水温度変化率の実測値を参照して中性子束目標値を修正しながら制御棒操作を実施することができ、昇温昇圧過程の制御棒操作を自動化して運転員の負担を減らすとともに、昇温操作に要する時間を短縮することができる。   The control rod insertion circuit according to the present invention shown in FIG. 2 and the control rod automatic controller having the above-mentioned A-side circuit allow the neutron flux to change in the reactor water temperature regardless of whether the moderator temperature reactivity coefficient is positive or negative. The control rod can be operated to match the neutron flux target value giving the rate, and the control rod operation can be performed while correcting the neutron flux target value by referring to the measured value of the reactor water temperature change rate by the B side circuit. The control rod operation in the process of raising the temperature and pressure can be automated to reduce the burden on the operator, and the time required for the temperature raising operation can be shortened.

図5は、本実施例の効果をあらわす炉水温度変化率の評価結果であり、沸騰水型原子炉の臨界過程直後から昇温昇圧過程にいたる挙動を評価したものである。ここで、初期の炉水温度は70℃、臨界過程終了直後の原子炉周期を約170秒、炉心の減速材温度反応度係数は150℃以下では正、それ以上では負としている。その場合に仮に制御棒操作を実施しなかったときの炉水温度変化率の時間変化を曲線Aに示す。なお、ここに示した炉水温度変化率は10分間の温度変化から算出している。炉水温度変化率は25分の時点から増加を開始し、約20分後には55℃/hを超えている。こうなる前に通常運転員は制御棒を挿入するが、たとえ放置しても55℃/hを超えると警報が発生するので、運転員は制御棒を挿入する。なお、原子炉構造材に対する熱応力を防ぐ観点から1時間の温度変化から算出した炉水温度変化率が55℃/hを超えないという運転規定があるが、10分間の温度変化から算出した炉水温度変化率が55℃/hを超えた時点で制御棒挿入操作を実施して炉水温度変化率を低下させれば、1時間の温度変化から算出した炉水温度変化率は制限値を超えないので問題は無い。しかし、炉水温度変化率が大きく変化する制御は好ましくなく、炉水温度変化率を低下させると以後の起動操作が遅れる恐れがある。   FIG. 5 shows the evaluation result of the reactor water temperature change rate that represents the effect of the present embodiment, and evaluates the behavior from immediately after the critical process of the boiling water reactor to the temperature raising and pressurization process. Here, the initial reactor water temperature is 70 ° C., the reactor cycle immediately after completion of the critical process is about 170 seconds, and the moderator temperature reactivity coefficient of the core is positive when the temperature is 150 ° C. or lower, and negative when it is higher. In this case, curve A shows the time change of the reactor water temperature change rate when the control rod operation is not performed. In addition, the reactor water temperature change rate shown here is calculated from the temperature change for 10 minutes. The reactor water temperature change rate starts to increase from the point of 25 minutes and exceeds 55 ° C./h after about 20 minutes. Before this happens, the operator usually inserts a control rod, but even if it is left unattended, an alarm is generated if the temperature exceeds 55 ° C./h, so the operator inserts the control rod. Although there is an operating rule that the reactor water temperature change rate calculated from the temperature change for 1 hour does not exceed 55 ° C / h from the viewpoint of preventing thermal stress on the nuclear reactor structural material, the furnace calculated from the temperature change for 10 minutes If the control rod insertion operation is performed when the water temperature change rate exceeds 55 ° C./h to reduce the reactor water temperature change rate, the reactor water temperature change rate calculated from the temperature change for one hour will be the limit value. There is no problem because it does not exceed. However, control in which the reactor water temperature change rate changes greatly is not preferable, and if the reactor water temperature change rate is reduced, the subsequent startup operation may be delayed.

一方、図3と図4に示した実施例の構成において、図2に示した炉水温度設定値を20℃/h、原子炉周期設定値を600秒、経過時間設定値を60秒、図4に示した目標炉水温度変化率を20℃/hとした実施例における炉水温度変化率の時間変化を曲線Bに示す。炉水温度変化率が20℃/hを越えた時点で図2の制御棒挿入回路により制御棒を数回挿入操作するので、炉水温度変化率は約30℃/hで極大値を持ち、低下し始める。その結果、目標炉水温度変化率20℃/hに対応した目標中性子束が中性子束目標値算出器32で設定され、図4のA側制御が開始される。実際の温度変化率が目標温度変化率より高いので、目標中性子束も実際の中性子束より低くなり、制御棒を引き続き挿入する。   3 and FIG. 4, the reactor water temperature set value shown in FIG. 2 is 20 ° C./h, the reactor cycle set value is 600 seconds, the elapsed time set value is 60 seconds, Curve B shows the change over time in the reactor water temperature change rate in the example in which the target reactor water temperature change rate shown in FIG. When the reactor water temperature change rate exceeds 20 ° C./h, the control rod is inserted several times by the control rod insertion circuit of FIG. 2, so the reactor water temperature change rate has a maximum value of about 30 ° C./h, It begins to decline. As a result, the target neutron flux corresponding to the target reactor water temperature change rate of 20 ° C./h is set by the neutron flux target value calculator 32, and the A-side control in FIG. 4 is started. Since the actual temperature change rate is higher than the target temperature change rate, the target neutron flux is also lower than the actual neutron flux, and the control rod is continuously inserted.

目標中性子束と実際の中性子束がほぼ一致すると、図4のB側制御に移行し、制御棒の挿入が停止する。このとき炉水温度変化率は依然として正のため、炉水温度が上昇して正の反応度が入り、中性子束は次第に増加する。中性子束の増加に従い、60分の時点で再び炉水温度変化率も上昇し始める。炉水温度変化率が上昇すると比例積分制御により目標中性子束が低下するので、再び制御棒が挿入され、それにより炉水温度変化率も低下する。   When the target neutron flux substantially matches the actual neutron flux, the control shifts to the B-side control in FIG. 4, and the insertion of the control rod is stopped. At this time, since the reactor water temperature change rate is still positive, the reactor water temperature rises to enter a positive reactivity, and the neutron flux gradually increases. As the neutron flux increases, the reactor water temperature change rate also starts increasing again at 60 minutes. When the reactor water temperature change rate rises, the target neutron flux is lowered by proportional integral control, so that the control rod is inserted again, thereby reducing the reactor water temperature change rate.

この操作を繰り返し、炉水温度が上昇していくと減速材温度係数の絶対値が小さくなり、炉水温度変化によって炉心に投入される反応度も小さくなるので、100分以降は安定した制御が実現できている。150℃以上では減速材温度反応度係数が負になるので、制御棒の引き抜き操作によって、沸騰水型原子炉の定格圧力での飽和温度である287℃まで炉心の水温を上昇させることができる。   When this operation is repeated and the reactor water temperature rises, the absolute value of the moderator temperature coefficient decreases, and the reactivity introduced into the reactor core also decreases due to the reactor water temperature change. It has been realized. Since the moderator temperature reactivity coefficient becomes negative at 150 ° C. or higher, the core water temperature can be increased to 287 ° C., which is the saturation temperature at the rated pressure of the boiling water reactor, by pulling out the control rod.

本実施例によれば、前記実施例と同様の効果を奏することができるとともに、炉水温度変化率の極大値が検出された後、中性子束目標値が中性子束検出値に一致するまでは、3つの条件が成立する毎に制御棒4の挿入操作を行なうようにしたので、原子炉10をより迅速、適切に昇温することができる。   According to the present embodiment, the same effect as the above embodiment can be obtained, and after the maximum value of the reactor water temperature change rate is detected, until the neutron flux target value matches the detected neutron flux value, Since the control rod 4 is inserted every time the three conditions are satisfied, the temperature of the nuclear reactor 10 can be raised more quickly and appropriately.

本発明の一実施形態を示す原子炉出力制御装置のブロック構成図である。It is a block block diagram of the reactor power control apparatus which shows one Embodiment of this invention. 本発明の一実施形態における制御棒自動制御器の制御ロジックを説明するための図である。It is a figure for demonstrating the control logic of the control-rod automatic controller in one Embodiment of this invention. 本発明の他の実施形態を示すブロック構成図である。It is a block block diagram which shows other embodiment of this invention. 本発明の他の実施形態における制御棒自動制御器に組み込まれた制御ロジックを説明するための図である。It is a figure for demonstrating the control logic integrated in the control-rod automatic controller in other embodiment of this invention. 本発明の効果をあらわす炉水温度変化率の評価結果を説明するための図である。It is a figure for demonstrating the evaluation result of the reactor water temperature change rate showing the effect of this invention.

符号の説明Explanation of symbols

2 炉心
4 制御棒
6 制御棒駆動装置
8 制御棒駆動制御器
10 原子炉
12 中性子束検出器
14 圧力検出器
16 熱電対
20 温度検出器
22 温度変化率算出器
24 温度変化率極大値検出器
26 中性子束モニタ
28 中性子束極大値検出器
30 入力部
32 中性子目標値算出器
34 制御棒自動制御器
36 表示装置(CRT)
2 Core 4 Control rod 6 Control rod drive 8 Control rod drive controller 10 Reactor 12 Neutron flux detector 14 Pressure detector 16 Thermocouple 20 Temperature detector 22 Temperature change rate calculator 24 Temperature change rate maximum value detector 26 Neutron flux monitor 28 Neutron flux maximum detector 30 Input unit 32 Neutron target value calculator 34 Control rod automatic controller 36 Display device (CRT)

Claims (11)

原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、炉水温度変化率が設定値以上であり、かつ前記検出した中性子束が増加傾向にあることを条件に、制御棒の挿入操作を行なう原子炉出力制御方法。 The neutron flux and the reactor water temperature in the reactor are detected, the reactor water temperature change rate is calculated from the detected reactor water temperature value, the reactor water temperature change rate is greater than the set value, and the detected neutron flux increases. Reactor power control method that inserts control rods on condition that it is in a trend. 原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、中性子束の検出値から原子炉周期を算出し、炉水温度変化率が設定値以上であり、原子炉周期が正値でかつ設定値以下であることを条件に、制御棒の挿入操作を行なう原子炉出力制御方法。 Detects the neutron flux and reactor water temperature in the reactor, calculates the reactor water temperature change rate from the detected reactor water temperature value, calculates the reactor cycle from the detected neutron flux value, and sets the reactor water temperature change rate A reactor power control method for inserting a control rod on condition that the value is equal to or greater than the value and the reactor cycle is a positive value and not greater than a set value. 請求項1または2に記載の原子炉出力制御方法において、前回制御棒を操作してから一定時間以上経過したことを条件に、前記制御棒の挿入操作を行なうことを特徴とする原子炉出力制御方法。 3. The reactor power control method according to claim 1 or 2, wherein the control rod insertion operation is performed on the condition that a predetermined time or more has elapsed since the previous operation of the control rod. Method. 原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、炉水温度変化率が設定値以上であり、中性子束が増加傾向にあり、かつ前回制御棒を操作してから一定時間以上経過したことを条件に制御棒の挿入操作を行ない、中性子束の検出値から中性子束の極大値を検出し、炉水温度の検出値から炉水温度変化率の極大値を検出し、検出した中性子束の極大値と検出した炉水温度変化率の極大値および炉水温度変化率の目標値に従って中性子束目標値を算出し、算出した中性子束目標値と中性子束検出値との差に基づいて前記制御棒の位置を調整する原子炉出力制御方法。 Detect the neutron flux in the reactor and the reactor water temperature, calculate the reactor water temperature change rate from the detected value of the reactor water temperature, the reactor water temperature change rate is higher than the set value, and the neutron flux tends to increase, The control rod is inserted on the condition that a certain time has passed since the previous operation of the control rod, the maximum value of the neutron flux is detected from the detected value of the neutron flux, and the reactor water temperature is detected from the detected value of the reactor water temperature. The maximum value of the temperature change rate is detected, and the neutron flux target value is calculated according to the detected maximum value of the neutron flux, the detected maximum value of the reactor water temperature change rate, and the target value of the reactor water temperature change rate, and the calculated neutron flux A reactor power control method for adjusting a position of the control rod based on a difference between a target value and a detected neutron flux value. 原子炉内の中性子束と炉水温度を検出し、炉水温度の検出値から炉水温度変化率を算出し、中性子束の検出値から原子炉周期を算出し、炉水温度変化率が設定値以上であり、原子炉周期が正値でかつ設定値以下であり、前回制御棒を操作してから一定時間以上経過したことを条件に、制御棒の挿入操作を行ない、中性子束の検出値から中性子束の極大値を検出し、炉水温度の検出値から炉水温度変化率の極大値を検出し、検出した中性子束の極大値と検出した炉水温度変化率の極大値および炉水温度変化率の目標値に従って中性子束目標値を算出し、算出した中性子束目標値と中性子束検出値との差に基づいて前記制御棒の位置を調整する原子炉出力制御方法。 Detects the neutron flux and reactor water temperature in the reactor, calculates the reactor water temperature change rate from the detected reactor water temperature value, calculates the reactor cycle from the detected neutron flux value, and sets the reactor water temperature change rate The control rod is inserted and the detected value of the neutron flux on condition that the reactor cycle is positive and less than the set value, and a certain time has passed since the previous operation of the control rod. The maximum value of the neutron flux is detected from the detected value, the maximum value of the reactor water temperature change rate is detected from the detected value of the reactor water temperature, the detected maximum value of the neutron flux, the detected maximum value of the reactor water temperature change rate and the reactor water A reactor power control method for calculating a neutron flux target value according to a target value of a temperature change rate, and adjusting a position of the control rod based on a difference between the calculated neutron flux target value and a detected neutron flux value. 請求項4または5に記載の原子炉出力制御方法において、前記算出した中性子束目標値が中性子束検出値に一致するまでは前記条件が成立する毎に前記制御棒の挿入操作を行なうことを特徴とする原子炉出力制御方法。 6. The reactor power control method according to claim 4 or 5, wherein the control rod is inserted every time the condition is satisfied until the calculated neutron flux target value matches a detected neutron flux value. Reactor power control method. 原子炉内の中性子束を検出する中性子束検出手段と、前記原子炉内の炉水の温度を検出する炉水温度検出手段と、前記炉水温度検出手段の検出値から炉水温度変化率を算出する炉水温度変化率算出手段と、前記炉水温度変化率算出手段の算出値が設定値以上であり、かつ前記中性子束検出手段の検出値が増加傾向にあるか否かを判定する判定手段と、前記判定手段から肯定の判定結果が出力されたときに前記原子炉内の制御棒に対して挿入操作を行なう制御棒駆動手段とを備えてなる原子炉出力制御装置。 A neutron flux detecting means for detecting the neutron flux in the reactor, a reactor water temperature detecting means for detecting the temperature of the reactor water in the reactor, and a reactor water temperature change rate from the detection value of the reactor water temperature detecting means. Determination of whether or not the calculated value of the reactor water temperature change rate to be calculated and whether the calculated value of the reactor water temperature change rate calculator is equal to or greater than a set value and the detection value of the neutron flux detector tends to increase And a control rod driving means for performing an insertion operation on the control rod in the reactor when a positive determination result is output from the determination means. 原子炉内の中性子束を検出する中性子束検出手段と、前記原子炉内の炉水の温度を検出する炉水温度検出手段と、前記炉水温度検出手段の検出値から炉水温度変化率を算出する炉水温度変化率算出手段と、前記中性子束検出手段の検出値から原子炉周期を算出する原子炉周期算出手段と、前記炉水温度変化率算出手段の算出値が設定値以上であり、前記原子炉周期算出手段の算出値が正値で、かつ設定値以下であるか否かを判定する判定手段と、前記判定手段から肯定の判定結果が出力されたときに前記原子炉内の制御棒に対して挿入操作を行なう制御棒駆動手段とを備えてなる原子炉出力制御装置。 A neutron flux detecting means for detecting the neutron flux in the reactor, a reactor water temperature detecting means for detecting the temperature of the reactor water in the reactor, and a reactor water temperature change rate from the detection value of the reactor water temperature detecting means. The reactor water temperature change rate calculating means to calculate, the reactor cycle calculating means for calculating the reactor cycle from the detection value of the neutron flux detecting means, and the calculated values of the reactor water temperature change rate calculating means are not less than a set value. , A determination means for determining whether the calculated value of the reactor cycle calculation means is a positive value and not more than a set value, and when a positive determination result is output from the determination means, A reactor power control device comprising control rod driving means for performing an insertion operation on the control rod. 請求項7または8に記載の原子炉出力制御装置において、前記制御棒が前回操作されてからの経過時間を計測する計測手段を備え、前記判定手段は、前記計測手段の計測値が一定時間以上の値を示すことを前記肯定の判定結果を出力するための条件としてなることを特徴とする原子炉出力制御装置。 The reactor power control apparatus according to claim 7 or 8, further comprising a measuring unit that measures an elapsed time since the control rod was operated last time, wherein the determination unit has a measured value of the measuring unit equal to or longer than a predetermined time. The reactor power control apparatus according to claim 1, wherein the value of the value is a condition for outputting the positive determination result. 原子炉内の中性子束を検出する中性子束検出手段と、前記原子炉内の炉水の温度を検出する炉水温度検出手段と、前記炉水温度検出手段の検出値から炉水温度変化率を算出する炉水温度変化率算出手段と、制御棒が前回操作されてからの経過時間を計測する計測手段と、前記炉水温度変化率算出手段の算出値が設定値以上であり、かつ前記中性子束検出手段の検出値が増加傾向にあり、さらに前記計測手段の計測値が一定時間以上の値を示すか否かを判定する判定手段と、前記判定手段から肯定の判定結果が出力されたときに前記原子炉内の制御棒に対して挿入操作を行なう制御棒駆動手段と、前記中性子束検出手段の検出値から中性子束の極大値を検出する中性子束極大値検出手段と、前記炉水温度変化率算出手段の算出値から炉水温度変化率の極大値を検出する炉水温度変化率極大値検出手段と、前記中性子束極大値検出手段の検出値と前記炉水温度変化率極大値検出手段の検出値および炉水温度変化率の目標値に従って中性子束目標値を算出する中性子束目標値算出手段とを備え、前記制御棒駆動手段は、前記中性子束目標値算出手段の算出による中性子束目標値が前記中性子束検出手段の検出値に一致するまでは前記条件が成立する毎に前記制御棒の挿入操作を実行してなる原子炉出力制御装置。 A neutron flux detecting means for detecting the neutron flux in the reactor, a reactor water temperature detecting means for detecting the temperature of the reactor water in the reactor, and a reactor water temperature change rate from the detection value of the reactor water temperature detecting means. The calculation value of the reactor water temperature change rate calculating means, the measuring means for measuring the elapsed time since the control rod was operated last time, and the calculated value of the reactor water temperature change rate calculating means is a set value or more, and the neutron When the detection value of the bundle detection means tends to increase, the determination means determines whether or not the measurement value of the measurement means indicates a value equal to or longer than a predetermined time, and a positive determination result is output from the determination means A control rod driving means for performing an insertion operation on the control rod in the nuclear reactor, a neutron flux maximum value detecting means for detecting a maximum value of the neutron flux from a detection value of the neutron flux detection means, and the reactor water temperature Change in reactor water temperature from the calculated value of the rate of change calculation means Reactor water temperature change rate maximum value detecting means for detecting the maximum value of the rate, the detected value of the neutron flux maximum value detecting means, the detected value of the reactor water temperature change rate maximum value detecting means, and the target of the reactor water temperature change rate Neutron flux target value calculating means for calculating a neutron flux target value according to the value, and the control rod driving means converts the neutron flux target value calculated by the neutron flux target value calculating means to a detection value of the neutron flux detecting means. A reactor power control apparatus that performs an insertion operation of the control rod every time the condition is satisfied until they are matched. 原子炉内の中性子束を検出する中性子束検出手段と、前記原子炉内の炉水の温度を検出する炉水温度検出手段と、前記炉水温度検出手段の検出値から炉水温度変化率を算出する炉水温度変化率算出手段と、前記中性子束検出手段の検出値から原子炉周期を算出する原子炉周期算出手段と、制御棒が前回操作されてからの経過時間を計測する計測手段と、前記炉水温度変化率算出手段の算出値が設定値以上であり、前記原子炉周期算出手段の算出値が正値で、かつ設定値以下であり、さらに前記計測手段の計測値が一定時間以上の値を示すか否かを判定する判定手段と、前記判定手段から肯定の判定結果が出力されたときに前記原子炉内の制御棒に対して挿入操作を行なう制御棒駆動手段と、前記中性子束検出手段の検出値から中性子束の極大値を検出する中性子束極大値検出手段と、前記炉水温度変化率算出手段の算出値から炉水温度変化率の極大値を検出する炉水温度変化率極大値検出手段と、前記中性子束極大値検出手段の検出値と前記炉水温度変化率極大値検出手段の検出値および炉水温度変化率の目標値に従って中性子束目標値を算出する中性子束目標値算出手段とを備え、前記制御棒駆動手段は、前記中性子束目標値算出手段の算出による中性子束目標値が前記中性子束検出手段の検出値に一致するまでは前記条件が成立する毎に前記制御棒の挿入操作を実行してなる原子炉出力制御装置。 A neutron flux detecting means for detecting the neutron flux in the reactor, a reactor water temperature detecting means for detecting the temperature of the reactor water in the reactor, and a reactor water temperature change rate from the detection value of the reactor water temperature detecting means. A reactor water temperature change rate calculating means for calculating, a reactor cycle calculating means for calculating a reactor cycle from a detection value of the neutron flux detecting means, and a measuring means for measuring an elapsed time since the control rod was operated last time. The calculated value of the reactor water temperature change rate calculating means is greater than or equal to a set value, the calculated value of the reactor cycle calculating means is positive and less than or equal to the set value, and the measured value of the measuring means is constant time Determination means for determining whether or not the above value is indicated, control rod drive means for performing an insertion operation on the control rod in the nuclear reactor when a positive determination result is output from the determination means, and Neutron flux maximum from detection value of neutron flux detection means A neutron flux maximum value detecting means for detecting a reactor water temperature change rate maximum value detecting means for detecting a maximum value of the reactor water temperature change rate from a calculated value of the reactor water temperature change rate calculating means, and the neutron flux maximum value Neutron flux target value calculation means for calculating a neutron flux target value according to a detection value of the detection means, a detection value of the reactor water temperature change rate maximum value detection means and a target value of the reactor water temperature change rate, and the control rod drive The means is configured to execute an operation of inserting the control rod every time the condition is satisfied until the neutron flux target value calculated by the neutron flux target value calculation means matches the detection value of the neutron flux detection means. Furnace output control device.
JP2004016100A 2004-01-23 2004-01-23 Reactor output control method and its system Pending JP2005207944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016100A JP2005207944A (en) 2004-01-23 2004-01-23 Reactor output control method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016100A JP2005207944A (en) 2004-01-23 2004-01-23 Reactor output control method and its system

Publications (1)

Publication Number Publication Date
JP2005207944A true JP2005207944A (en) 2005-08-04

Family

ID=34901358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016100A Pending JP2005207944A (en) 2004-01-23 2004-01-23 Reactor output control method and its system

Country Status (1)

Country Link
JP (1) JP2005207944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064946A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Method and device for determining positive/negative of moderator temperature coefficient
JP2007232504A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
CN102054539A (en) * 2010-10-21 2011-05-11 中广核工程有限公司 Detection method and device for nuclear power station temperature signal abrupt change

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064946A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Method and device for determining positive/negative of moderator temperature coefficient
JP4607713B2 (en) * 2005-09-02 2011-01-05 日立Geニュークリア・エナジー株式会社 Moderator temperature coefficient positive / negative judgment method and positive / negative judgment device
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
JP2007232504A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP4590361B2 (en) * 2006-02-28 2010-12-01 株式会社日立製作所 Nuclear reactor system
CN102054539A (en) * 2010-10-21 2011-05-11 中广核工程有限公司 Detection method and device for nuclear power station temperature signal abrupt change
CN102054539B (en) * 2010-10-21 2013-04-10 中广核工程有限公司 Detection method and device for nuclear power station temperature signal abrupt change

Similar Documents

Publication Publication Date Title
JP2008216242A (en) Nuclear reactor start-up monitoring system
US9576689B2 (en) Critical heat flux prediction device, critical heat flux prediction method and safety evaluation system
JP2009031186A (en) Method of measuring doppler reactivity coefficient
JP2015148524A (en) Method, program, recording medium, and system for determining control rod worth of nuclear reactor
JP2005207944A (en) Reactor output control method and its system
JP2008122094A (en) Nuclear reactor output control device, nuclear reactor system, and nuclear reactor output control method
US20210098139A1 (en) Method for monitoring a nuclear core comprising a relaxation of a threshold, and associated programme, support and nuclear reactor
JP4084371B2 (en) Reactor power control method and apparatus
JP4398278B2 (en) Reactor power control method and apparatus
JP4369772B2 (en) Reactor power control method and apparatus
JP3875838B2 (en) Method and apparatus for monitoring power increase during reactor start-up
JP3172653B2 (en) Control rod operating method and control rod operating device
JP3357975B2 (en) Reactor power control device
JP4607713B2 (en) Moderator temperature coefficient positive / negative judgment method and positive / negative judgment device
JP4707826B2 (en) Boiling water reactor monitoring and control system
JP3275163B2 (en) Control rod control device and control rod operation method
JP5802406B2 (en) Reactor power control device and program
JP2010133873A (en) Nuclear reactor criticality determination data collector
JP2549134B2 (en) Control rod operation monitoring method and apparatus thereof
JPH11142588A (en) Reactor automatic start device
JPH0697269B2 (en) How to operate a nuclear reactor
JPH02110399A (en) Automatic atomic reactor starting apparatus
JPS6396595A (en) Starter for nuclear reactor
JPH06167595A (en) Reactor period measuring device
JPS6225290A (en) Method of lowering output from nuclear reactor