JP2005207719A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005207719A
JP2005207719A JP2004163333A JP2004163333A JP2005207719A JP 2005207719 A JP2005207719 A JP 2005207719A JP 2004163333 A JP2004163333 A JP 2004163333A JP 2004163333 A JP2004163333 A JP 2004163333A JP 2005207719 A JP2005207719 A JP 2005207719A
Authority
JP
Japan
Prior art keywords
heat exchanger
pipe
indoor heat
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004163333A
Other languages
Japanese (ja)
Other versions
JP4012892B2 (en
Inventor
Akira Takushima
多久島 朗
Eiji Wakizaka
脇坂 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004163333A priority Critical patent/JP4012892B2/en
Priority to KR1020040078462A priority patent/KR100592954B1/en
Publication of JP2005207719A publication Critical patent/JP2005207719A/en
Application granted granted Critical
Publication of JP4012892B2 publication Critical patent/JP4012892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of conducting reheat dehumidification and reducing cost. <P>SOLUTION: The air conditioner 1 is equipped with a refrigerating cycle 13 consisting of a compressor 2, an outdoor heat exchanger 4, a first decompression device 8 and an indoor heat exchanger 10 sequentially connected via a piping 12 for distributing refrigerant and the indoor heat exchanger 10 is separated into the first indoor heat exchanger 18 and the second indoor heat exchanger 19. The first indoor heat exchanger 18 and the second indoor heat exchanger 19 are connected in series and a second decompression device 9 is provided at the piping 12 between the first indoor heat exchanger 18 and the second indoor heat exchanger 19. A bypass pipe 24 for connecting a discharge pipe 15 and an intake pipe 14 of the compressor 2 and for returning part of the refrigerant distributed in a discharge pipe 15 is provided and an open/close device 5 is provided at the bypass pipe 24. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、本発明は、再熱除湿を行う空気調和機に関する。   The present invention relates to an air conditioner that performs reheat dehumidification.

通常の空気調和機で除湿を行う場合、室内熱交換器を冷却し、冷却された室内熱交換器により室内の空気を結露させて空気中の水分を除去しているため、室内の温度が低下する。このため、除湿を行う際に除湿した空気を室内に送り込む前にヒーターで加熱して室内の温度を下げずに除湿を行っているが、ヒーターにより温度を保っているため電力消費が増大するという問題がある。近年、かかる問題を鑑みて、室外に捨てていた排熱の一部を再利用する再熱除湿方式が提供されている。   When dehumidifying with a normal air conditioner, the indoor heat exchanger is cooled, and the indoor air is condensed by the cooled indoor heat exchanger to remove moisture in the air. To do. For this reason, before dehumidifying the air, the dehumidified air is heated by the heater before being sent into the room and dehumidified without lowering the room temperature. However, since the temperature is maintained by the heater, power consumption increases. There's a problem. In recent years, in view of such a problem, a reheat dehumidification method for reusing a part of exhaust heat that has been thrown away outside has been provided.

再熱除湿方式による空気調和機は、室内機内に直列に接続された第1の熱交換器と第2の熱交換器とがそれぞれ備えられ、室外機内の熱交換器と第1の熱交換器の間に第1の減圧装置が設けられ、第1の熱交換器と第2の熱交換器との間に第2の減圧装置を設けられている。冷房運転時には、第2の減圧装置が開放されると共に圧縮された冷媒が第1の減圧装置で減圧される。これによって、冷媒の温度は低下し、低温となった冷媒が第1の熱交換器及び第2の熱交換器をそれぞれ通過し、第1の熱交換器及び第2の熱交換器で室内の空気と熱交換を行い、室内の空気の温度を低下させる。一方、除湿運転時には、第1の減圧装置が開放されると共に圧縮された冷媒が第2の減圧装置で減圧される。このとき、室外機内の熱交換器での排熱を減らす。これによって、排熱の一部を持った冷媒が第1の熱交換を通過し、第1の熱交換器で室内の空気と熱交換を行う。また、第2の減圧装置で減圧された冷媒の温度は低下し、低温となった冷媒が第2の熱交換器を通過し、第2の熱交換器で室内の空気と熱交換を行う。第1の熱交換器により暖められた空気と、第2の熱交換器による除湿された空気とを混合して室内に送り、室内の温度を低下させずに除湿を行う。   The reheat dehumidification type air conditioner includes a first heat exchanger and a second heat exchanger connected in series in the indoor unit, respectively, and the heat exchanger and the first heat exchanger in the outdoor unit. A first pressure reducing device is provided between the first heat exchanger and the second heat exchanger, and a second pressure reducing device is provided between the first heat exchanger and the second heat exchanger. During the cooling operation, the second decompressor is opened and the compressed refrigerant is decompressed by the first decompressor. As a result, the temperature of the refrigerant decreases, and the refrigerant having a low temperature passes through the first heat exchanger and the second heat exchanger, respectively. Exchanges heat with air and lowers the temperature of indoor air. On the other hand, during the dehumidifying operation, the first decompressor is opened and the compressed refrigerant is decompressed by the second decompressor. At this time, exhaust heat in the heat exchanger in the outdoor unit is reduced. Thereby, the refrigerant having a part of the exhaust heat passes through the first heat exchange, and performs heat exchange with the indoor air in the first heat exchanger. Moreover, the temperature of the refrigerant decompressed by the second decompression device decreases, and the refrigerant that has become low temperature passes through the second heat exchanger, and performs heat exchange with indoor air using the second heat exchanger. The air heated by the first heat exchanger and the air dehumidified by the second heat exchanger are mixed and sent to the room, and dehumidification is performed without lowering the room temperature.

また、冷房時には第1,第2の熱交換器で吸熱処理していた冷媒を、除湿時には第2の熱交換器のみで吸熱処理することになるため、冷房時と同様の冷媒循環量であると第2の熱交換器のみで処理しきれなくなり、冷凍サイクルのバランスが悪くなる。このため、従来の再熱除湿方式による空気調和機では、インバータにより圧縮機の回転数を制御して、除湿時の冷媒循環量を調整することで、冷凍サイクルのバランスを保っている(例えば、特許文献1参照。)。
特開2003−172557号公報 (第4−8頁、第1図)
Further, since the refrigerant that has been heat-absorbed by the first and second heat exchangers during cooling is subjected to the heat-absorption heat treatment only by the second heat exchanger during dehumidification, the refrigerant circulation amount is the same as that during cooling. And it becomes impossible to process only with the 2nd heat exchanger, and the balance of a refrigerating cycle worsens. For this reason, in the conventional air conditioner using the reheat dehumidification method, the balance of the refrigeration cycle is maintained by controlling the rotational speed of the compressor by an inverter and adjusting the refrigerant circulation amount at the time of dehumidification (for example, (See Patent Document 1).
JP 2003-172557 A (page 4-8, FIG. 1)

しかしながら、上記した従来の空気調和機では、圧縮機の回転数を制御する高価なインバータが搭載されているため、通常の空気調和機と比べてインバータ分だけコストアップするという問題が存在する。したがって、低コスト化を考慮すると、定速圧縮機等を使用することとなり、低価格な空気調和機で再熱除湿を行うことは困難である。   However, since the above-described conventional air conditioner is equipped with an expensive inverter for controlling the rotation speed of the compressor, there is a problem that the cost is increased by an amount of inverter compared to a normal air conditioner. Therefore, considering cost reduction, a constant speed compressor or the like is used, and it is difficult to perform reheat dehumidification with an inexpensive air conditioner.

本発明は、上記した従来の問題が考慮されたものであり、再熱除湿を行うことができると共に、インバータ等の高価な装置を使用せずに冷媒循環量を調整させ、コストダウンを図ることができる空気調和機を提供することを目的としている。   In the present invention, the above-described conventional problems are taken into consideration, and reheat dehumidification can be performed, and the refrigerant circulation amount is adjusted without using an expensive device such as an inverter, thereby reducing the cost. It aims at providing the air conditioner which can do.

請求項1記載の発明は、圧縮機と、室外熱交換器と、第1の減圧装置と、室内熱交換器とが冷媒を流通させる配管を介して順次接続されて成る冷凍サイクルが備えられ、前記室内熱交換器が第1の室内熱交換器と第2の室内熱交換器とに分割され、該第1の室内熱交換器と該第2の室内熱交換器とは直列に接続され、該第1の室内熱交換器と該第2の室内熱交換器との間の前記配管に第2の減圧装置が設けられている空気調和機において、前記圧縮機の吐出管と吸入管とを結び該吐出管内を流通する冷媒の一部を該吸込管に戻すバイパス管が設けられ、該バイパス管には開閉装置が設けられていることを特徴としている。   The invention according to claim 1 is provided with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected through a pipe for circulating a refrigerant, The indoor heat exchanger is divided into a first indoor heat exchanger and a second indoor heat exchanger, the first indoor heat exchanger and the second indoor heat exchanger are connected in series, In an air conditioner in which a second pressure reducing device is provided in the pipe between the first indoor heat exchanger and the second indoor heat exchanger, a discharge pipe and a suction pipe of the compressor are connected to each other. A bypass pipe for returning a part of the refrigerant flowing through the discharge pipe to the suction pipe is provided, and the bypass pipe is provided with an opening / closing device.

請求項2記載の発明は、請求項1記載の空気調和機において、前記バイパス管は複数並列に形成され、該複数のバイパス管には前記開閉装置がそれぞれ設けられていることを特徴としている。   According to a second aspect of the present invention, in the air conditioner according to the first aspect, a plurality of the bypass pipes are formed in parallel, and the plurality of bypass pipes are provided with the opening / closing devices, respectively.

請求項3記載の発明は、請求項1または2記載の空気調和機において、前記バイパス管には、該バイパス管内を流通する冷媒を絞る絞り機構が設けられていることを特徴としている。   According to a third aspect of the present invention, in the air conditioner according to the first or second aspect, the bypass pipe is provided with a throttling mechanism that throttles the refrigerant flowing through the bypass pipe.

請求項4記載の発明は、請求項1から3のいずれか記載の空気調和機において、前記開閉装置には、該開閉装置内を通過する冷媒を絞る絞り部が形成されていることを特徴としている。   According to a fourth aspect of the present invention, in the air conditioner according to any one of the first to third aspects, the opening / closing device is formed with a throttle portion for restricting a refrigerant passing through the opening / closing device. Yes.

請求項5記載の発明は、請求項4記載の空気調和機において、前記開閉装置には、絞り量を調整する絞り量調整手段が備えられていることを特徴としている。   According to a fifth aspect of the present invention, in the air conditioner according to the fourth aspect, the opening / closing device is provided with a throttle amount adjusting means for adjusting a throttle amount.

請求項6記載の発明は、請求項1から5のいずれか記載の空気調和機において、前記第1の熱交換器又は前記第2の熱交換器のうち少なくとも一方には、該第1の熱交換器内又は該第2の熱交換器内の冷媒温度を検知する温度検知手段が付設され、該温度検知手段と前記開閉装置とは、該温度検知手段によって検知された冷媒温度に基いて前記開閉装置を開閉させる制御手段を介して接続されていることを特徴としている。   The invention according to claim 6 is the air conditioner according to any one of claims 1 to 5, wherein at least one of the first heat exchanger and the second heat exchanger has the first heat. Temperature detecting means for detecting the refrigerant temperature in the exchanger or in the second heat exchanger is attached, and the temperature detecting means and the switchgear are based on the refrigerant temperature detected by the temperature detecting means. It is characterized by being connected via a control means for opening and closing the opening / closing device.

請求項7記載の発明は、圧縮機と、室外熱交換器と、第1の減圧装置と、室内熱交換器とが冷媒を流通させる配管を介して順次接続されて成る冷凍サイクルが備えられ、前記室内熱交換器が第1の室内熱交換器と第2の室内熱交換器とに分割され、該第1の室内熱交換器と該第2の室内熱交換器とは直列に接続され、該第1の室内熱交換器と該第2の室内熱交換器との間の前記配管に第2の減圧装置が設けられている空気調和機において、前記配管が、前記室外熱交換器と前記第1の減圧装置とを接続する接続配管を有し、該接続配管と前記吸入管とを結び、前記接続配管内を流通する冷媒の一部を該吸入管に戻すバイパス管が設けられ、該バイパス管には開閉装置が設けられていることを特徴としている。   The invention according to claim 7 is provided with a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected through a pipe for circulating a refrigerant, The indoor heat exchanger is divided into a first indoor heat exchanger and a second indoor heat exchanger, the first indoor heat exchanger and the second indoor heat exchanger are connected in series, In the air conditioner in which the second pressure reducing device is provided in the pipe between the first indoor heat exchanger and the second indoor heat exchanger, the pipe includes the outdoor heat exchanger and the A connecting pipe that connects the first pressure reducing device; a bypass pipe that connects the connecting pipe and the suction pipe and returns a part of the refrigerant flowing through the connection pipe to the suction pipe; The bypass pipe is provided with an opening / closing device.

本発明に係る空気調和機によれば、圧縮機と、室外熱交換器と、第1の減圧装置と、室内熱交換器とからなる冷凍サイクルが備えられ、室内熱交換器が直列に接続された第1の室内熱交換器と第2の室内熱交換器とに分割され、第1の室内熱交換器と第2の室内熱交換器との間に第2の減圧装置が設けられている空気調和機において、圧縮機の吐出管と吸入管とを結び吐出管内を流通する冷媒の一部を吸込管に戻すバイパス管が設けられ、バイパス管には開閉装置が設けられているため、開閉装置が閉塞されると全ての冷媒が冷凍サイクル内で循環され、開閉装置が開けられると吐出管内を流通する冷媒の一部がバイパス管を介して吸込管内に戻り、冷凍サイクル内を循環する冷媒量は減少する。これによって、冷凍サイクル内の冷媒循環量を調節することができ、高価な装置を使用することなく再熱除湿を行うことができ、コストダウンを図ることができる。   The air conditioner according to the present invention includes a refrigeration cycle including a compressor, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger, and the indoor heat exchangers are connected in series. The first indoor heat exchanger and the second indoor heat exchanger are divided, and a second decompression device is provided between the first indoor heat exchanger and the second indoor heat exchanger. In an air conditioner, there is a bypass pipe that connects the discharge pipe and suction pipe of the compressor and returns a part of the refrigerant flowing through the discharge pipe to the suction pipe, and the bypass pipe is provided with an opening / closing device. When the device is closed, all the refrigerant is circulated in the refrigeration cycle, and when the switchgear is opened, a part of the refrigerant that circulates in the discharge pipe returns to the suction pipe through the bypass pipe and circulates in the refrigeration cycle. The amount decreases. Thereby, the refrigerant circulation amount in the refrigeration cycle can be adjusted, reheat dehumidification can be performed without using an expensive device, and the cost can be reduced.

また、室外熱交換器及び第1の減圧装置を接続する接続配管内を流通する冷媒の一部を吸入管に戻すバイパス管が設けられ、パイパス間には開閉装置が設けることで、上述と同様に冷凍サイクル内の冷媒循環量を調節することができ、高価な装置を使用することなく再熱除湿を行うことができ、コストダウンを図ることができると共に、圧縮機の吐出温度上昇、圧縮機巻線温度上昇を抑制する。   Further, a bypass pipe is provided for returning a part of the refrigerant flowing in the connection pipe connecting the outdoor heat exchanger and the first pressure reducing device to the suction pipe, and an opening / closing device is provided between the bypasses, so that the same as described above. In addition, the amount of refrigerant circulating in the refrigeration cycle can be adjusted, reheat dehumidification can be performed without using an expensive device, the cost can be reduced, the discharge temperature rise of the compressor, the compressor Suppresses winding temperature rise.

以下、本発明に係る空気調和機の第1,第2,第3の実施の形態について、図面に基いて説明する。   Hereinafter, first, second, and third embodiments of an air conditioner according to the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1に示すように、空気調和機1は、圧縮機2,四方弁3,室外熱交換器4,開閉装置5及び絞り装置6が格納された室外機7と、第1,第2の減圧装置8,9及び室内熱交換器10が格納された室内機11とから構成されている。また、室外機7の内部及び室内機11の内部には、室外熱交換器4又は室内熱交換器10と熱交換を行う室内空気又は外気を送る図示せぬ送風機がそれぞれ備えられている。
[First Embodiment]
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an opening / closing device 5 and a throttling device 6, and first and second decompression units. It is comprised from the indoor unit 11 in which the apparatuses 8 and 9 and the indoor heat exchanger 10 were stored. Moreover, the inside of the outdoor unit 7 and the inside of the indoor unit 11 are each provided with a blower (not shown) that sends indoor air or outdoor air that exchanges heat with the outdoor heat exchanger 4 or the indoor heat exchanger 10.

圧縮機2と、室外熱交換器4と、第1の減圧装置8と、室内熱交換器10とが冷媒を流通させる配管12を介して順次接続されており、冷媒が循環される冷凍サイクル13が形成されている。冷凍サイクル13は、圧縮機2の図示せぬ吸入口と四方弁3とが吸入管14を介して接続されており、圧縮機2の図示せぬ吐出口と四方弁3とが吐出管15を介して接続されている。四方弁3と室外熱交換器4とは第1の配管16を介して接続されており、第1の配管16は四方弁3を介して吸入管14又は吐出管15のいずれか一方に接続される。室外熱交換器4と第1の減圧装置8は第2の配管17を介して接続されている。   The compressor 2, the outdoor heat exchanger 4, the first decompressor 8, and the indoor heat exchanger 10 are sequentially connected via a pipe 12 through which the refrigerant flows, and a refrigeration cycle 13 in which the refrigerant is circulated. Is formed. In the refrigeration cycle 13, the suction port (not shown) of the compressor 2 and the four-way valve 3 are connected via a suction pipe 14, and the discharge port (not shown) of the compressor 2 and the four-way valve 3 connect the discharge pipe 15. Connected through. The four-way valve 3 and the outdoor heat exchanger 4 are connected via a first pipe 16, and the first pipe 16 is connected to either the suction pipe 14 or the discharge pipe 15 via the four-way valve 3. The The outdoor heat exchanger 4 and the first pressure reducing device 8 are connected via a second pipe 17.

室内熱交換器10は、第1の室内熱交換器18と第2の室内熱交換器19とに分割されており、第1の減圧装置8と第1の室内熱交換器18とは第3の配管20を介して接続されている。第1の室内熱交換器18と第2の減圧装置9とは第4の配管21を介して接続されており、第2の減圧装置9と第2の室内熱交換器19とは第5の配管22を介して接続されている。第1,第2の減圧装置8,9は、圧縮した冷媒を膨張冷却する膨張弁である。   The indoor heat exchanger 10 is divided into a first indoor heat exchanger 18 and a second indoor heat exchanger 19, and the first decompression device 8 and the first indoor heat exchanger 18 are third. Are connected via a pipe 20. The 1st indoor heat exchanger 18 and the 2nd decompression device 9 are connected via the 4th piping 21, and the 2nd decompression device 9 and the 2nd indoor heat exchanger 19 are the 5th. It is connected via a pipe 22. The first and second decompression devices 8 and 9 are expansion valves that expand and cool the compressed refrigerant.

第1の室内熱交換器18と第2の室内熱交換器19とは、第4の配管21及び第5の配管22によって直列に接続されており、第2の減圧装置9は、第1の室内熱交換器18と第2の室内熱交換器19との間を結ぶ第4,第5の配管21,22の間に設けられている。第2の室内熱交換器19と四方弁3とは第6の配管23を介して接続されており、第6の配管23は四方弁3によって吸入管14又は吐出管15のいずれか一方に接続される。   The 1st indoor heat exchanger 18 and the 2nd indoor heat exchanger 19 are connected in series by the 4th piping 21 and the 5th piping 22, and the 2nd decompression device 9 is the 1st It is provided between the fourth and fifth pipes 21 and 22 connecting the indoor heat exchanger 18 and the second indoor heat exchanger 19. The second indoor heat exchanger 19 and the four-way valve 3 are connected via a sixth pipe 23, and the sixth pipe 23 is connected to either the suction pipe 14 or the discharge pipe 15 by the four-way valve 3. Is done.

一方、開閉装置5及び絞り装置6は、吐出管15と吸入管14とを結ぶバイパス管24にそれぞれ設けられており、開閉装置5は吐出管15側に設けられ、絞り装置6は吸入管14側に設けられている。バイパス管24の一端は吐出管15に接続されており、バイパス管24と吐出管15は連通されている。また、バイパス管24の他端は吸入管14に接続されており、バイパス管24と吸入管14とは連通されている。開閉装置5はオンオフ切り換えを行う二方電磁弁であり、開閉装置5によりバイパス管24は択一的に開閉される。また、絞り装置6は、流通する冷媒の抵抗となる内周面を有するキャピラリーチューブであり、絞り装置6によりバイパス管24内を流通する冷媒は絞られる。   On the other hand, the opening / closing device 5 and the throttling device 6 are respectively provided in a bypass pipe 24 connecting the discharge pipe 15 and the suction pipe 14. On the side. One end of the bypass pipe 24 is connected to the discharge pipe 15, and the bypass pipe 24 and the discharge pipe 15 are communicated with each other. The other end of the bypass pipe 24 is connected to the suction pipe 14, and the bypass pipe 24 and the suction pipe 14 are communicated with each other. The opening / closing device 5 is a two-way electromagnetic valve that switches on and off, and the bypass pipe 24 is alternatively opened / closed by the opening / closing device 5. The expansion device 6 is a capillary tube having an inner peripheral surface that serves as a resistance of the circulating refrigerant. The expansion device 6 throttles the refrigerant that flows through the bypass pipe 24.

また、バイパス管24の他端部には、吸入管14内を流通する冷媒がバイパス管24内に流入することを防止する逆止弁25が設けられている。逆止弁25は、バイパス管24から吸入管14の方向に向かって流れる冷媒のみが通過され、吸入管14内からバイパス管24の方向に向かって流れる冷媒は遮断される。したがって、吐出管15内を流通する冷媒の一部は、バイパス管24によって吸込管14に戻される。   A check valve 25 is provided at the other end of the bypass pipe 24 to prevent the refrigerant flowing through the suction pipe 14 from flowing into the bypass pipe 24. Only the refrigerant that flows from the bypass pipe 24 toward the suction pipe 14 passes through the check valve 25, and the refrigerant that flows from the inside of the suction pipe 14 toward the bypass pipe 24 is blocked. Accordingly, a part of the refrigerant flowing through the discharge pipe 15 is returned to the suction pipe 14 by the bypass pipe 24.

次に、上記した構成からなる空気調和機1の使用方法について説明する。   Next, the usage method of the air conditioner 1 which consists of an above-described structure is demonstrated.

図1に示すように、実線矢印は暖房時の冷媒の流れを示しており、鎖線矢印は冷房時の冷媒の流れを示しており、破線矢印は除湿時の冷媒の流れを示しており、空気調和機1は暖房運転、冷房運転及び除湿運転のそれぞれを行う。   As shown in FIG. 1, the solid line arrows indicate the flow of refrigerant during heating, the chain line arrows indicate the flow of refrigerant during cooling, the broken line arrows indicate the flow of refrigerant during dehumidification, The harmony machine 1 performs each of heating operation, cooling operation, and dehumidifying operation.

まず、暖房運転の場合について説明する。暖房運転する場合、開閉装置5を閉塞状態にするとともに、第1の減圧装置8を絞り状態にし、第2の減圧装置9を開放状態にする。
また、第6の配管23と吐出管15とが連通すると共に第1の配管16と吸入管14とが連通するように、四方弁3を切り換える。そして、配管12内の冷媒を図1に示す実線矢印の方向に流通させ、冷媒を冷凍サイクル13内で循環させる。
First, the case of heating operation will be described. When heating operation is performed, the opening / closing device 5 is closed, the first decompression device 8 is in a throttle state, and the second decompression device 9 is in an open state.
The four-way valve 3 is switched so that the sixth pipe 23 and the discharge pipe 15 communicate with each other and the first pipe 16 and the suction pipe 14 communicate with each other. Then, the refrigerant in the pipe 12 is circulated in the direction of the solid line arrow shown in FIG. 1, and the refrigerant is circulated in the refrigeration cycle 13.

具体的には、ガス冷媒を圧縮機2で圧縮し、圧縮されて高温高圧となったガス冷媒を吐出管15内に送り出す。吐出管15内に送り出されたガス冷媒は、吐出管15内を実線矢印方向に流通して四方弁3を介して第6の配管23内に流入する。第6の配管23内に流入したガス冷媒は、第6の配管23内を実線矢印方向に流通し、第2の室内熱交換器19内に流入する。このとき、第2の室内熱交換器19は凝縮器となり、第2の室内熱交換器19内を流通する高圧高温のガス冷媒と、図示せぬ送風機によって室内機11内に吸引されて第2の室内熱交換器19に吹き付けられた室内の空気との間で熱交換が行われ、ガス冷媒の一部が凝縮されて液冷媒となり、ガス冷媒はガス・液混合の冷媒となる。また、第2の室内熱交換器19に吹き付けられた空気はガス冷媒の熱を受け取って暖まり、図示せぬ送風機によって暖められた空気を室内に送り出す。   Specifically, the gas refrigerant is compressed by the compressor 2, and the gas refrigerant that has been compressed and becomes high temperature and pressure is sent into the discharge pipe 15. The gas refrigerant sent into the discharge pipe 15 flows through the discharge pipe 15 in the direction of the solid arrow and flows into the sixth pipe 23 via the four-way valve 3. The gas refrigerant that has flowed into the sixth pipe 23 flows through the sixth pipe 23 in the direction of the solid arrow, and flows into the second indoor heat exchanger 19. At this time, the second indoor heat exchanger 19 becomes a condenser, and is sucked into the indoor unit 11 by a high-pressure and high-temperature gas refrigerant flowing through the second indoor heat exchanger 19 and a blower (not shown). Heat exchange is performed with the indoor air blown to the indoor heat exchanger 19, a part of the gas refrigerant is condensed to become a liquid refrigerant, and the gas refrigerant becomes a gas / liquid mixed refrigerant. The air blown to the second indoor heat exchanger 19 receives the heat of the gas refrigerant and warms it, and sends the air warmed by a blower (not shown) into the room.

第2の室内熱交換器19内を通過したガス・液混合の冷媒は、完全に放熱せず高温の状態のまま、第2の室内熱交換器19から第5の配管22内に流入する。そして、開放状態の第2の減圧装置9を通過して第4の配管21内に流入し、第1の室内熱交換器18内に流入する。このとき、第1の室内熱交換器18は凝縮器となり、第1の室内熱交換器18内を流通する高圧高温のガス・液混合の冷媒と、図示せぬ送風機によって室内機11内に吸引されて第1の室内熱交換器18に吹き付けられた室内の空気との間で熱交換が行われ、ガス・液混合の冷媒は凝縮されて液冷媒となる。また、第1の室内熱交換器18に吹き付けられた空気はガス・液混合の冷媒の熱を受け取って暖まり、図示せぬ送風機によって暖められた空気を室内に送り出す。   The gas / liquid mixed refrigerant that has passed through the second indoor heat exchanger 19 does not completely dissipate heat and flows into the fifth pipe 22 from the second indoor heat exchanger 19 in a high temperature state. Then, it passes through the second decompression device 9 in the open state, flows into the fourth pipe 21, and flows into the first indoor heat exchanger 18. At this time, the first indoor heat exchanger 18 becomes a condenser, and is sucked into the indoor unit 11 by a high-pressure and high-temperature gas / liquid mixed refrigerant circulating in the first indoor heat exchanger 18 and a blower (not shown). Then, heat is exchanged with the indoor air blown to the first indoor heat exchanger 18, and the gas / liquid mixed refrigerant is condensed into a liquid refrigerant. In addition, the air blown to the first indoor heat exchanger 18 receives the heat of the gas / liquid mixed refrigerant and warms it, and sends out the air heated by a blower (not shown) into the room.

第1の室内熱交換器18内を通過した液冷媒は、第1の室内熱交換器18内から第3の配管20内に流入し、第1の減圧装置8に至る。第1の減圧装置8を通過する際、高圧状態の液冷媒は第1の減圧装置8によって減圧され、冷媒は膨張冷却されて低温低圧の液冷媒となる。低温低圧となった液冷媒は、第2の配管17に流入して実線矢印方向に流通し、室外熱交換器4内に流入する。このとき、室外熱交換器4は蒸発器となり、室外熱交換器4内を流通する液冷媒と、図示せぬ送風機によって室外熱交換器4に吹き付けられた外気との間で熱交換が行われ、液冷媒は蒸発されてガス冷媒となる。また、液冷媒と熱交換された空気を、図示せぬ送風機によって外に送り出す。   The liquid refrigerant that has passed through the first indoor heat exchanger 18 flows into the third pipe 20 from the first indoor heat exchanger 18 and reaches the first decompression device 8. When passing through the first decompression device 8, the high-pressure liquid refrigerant is decompressed by the first decompression device 8, and the refrigerant is expanded and cooled to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant flows into the second pipe 17, flows in the direction of the solid arrow, and flows into the outdoor heat exchanger 4. At this time, the outdoor heat exchanger 4 becomes an evaporator, and heat exchange is performed between the liquid refrigerant flowing through the outdoor heat exchanger 4 and the outside air blown to the outdoor heat exchanger 4 by a blower (not shown). The liquid refrigerant is evaporated to become a gas refrigerant. Moreover, the air heat-exchanged with the liquid refrigerant is sent out by a blower (not shown).

室外熱交換器4内を通過したガス冷媒は、室外熱交換器4内から第1の配管16内に流入して実線矢印方向に流通し、四方弁3を介して吸入管14内に流入する。吸入管14内に流入したガス冷媒は、吸入管14内を実線矢印方向に流通し、圧縮器2に流入する。このとき、吸入管14内を流通するガス冷媒は逆止弁25によってバイパス管24内に流入することが防止されている。   The gas refrigerant that has passed through the outdoor heat exchanger 4 flows from the outdoor heat exchanger 4 into the first pipe 16, flows in the direction of the solid arrow, and flows into the suction pipe 14 through the four-way valve 3. . The gas refrigerant that has flowed into the suction pipe 14 flows in the direction of the solid arrow in the suction pipe 14 and flows into the compressor 2. At this time, the gas refrigerant flowing through the suction pipe 14 is prevented from flowing into the bypass pipe 24 by the check valve 25.

次に、冷房運転の場合について説明する。冷房運転する場合、開閉装置5を閉塞状態にするとともに、第1の減圧装置8を絞り状態にし、第2の減圧装置9を開放状態にする。
また、第6の配管23と吸入管14とが連通すると共に第1の配管16と吐出管15とが連通するように、四方弁3を切り換える。そして、配管12内の冷媒を図1に示す鎖線矢印の方向に流通させ、冷媒を冷凍サイクル13内で循環させる。
Next, the case of the cooling operation will be described. When performing the cooling operation, the opening / closing device 5 is closed, the first decompression device 8 is in the throttle state, and the second decompression device 9 is in the open state.
The four-way valve 3 is switched so that the sixth pipe 23 and the suction pipe 14 communicate with each other and the first pipe 16 and the discharge pipe 15 communicate with each other. Then, the refrigerant in the pipe 12 is circulated in the direction of the chain arrow shown in FIG. 1, and the refrigerant is circulated in the refrigeration cycle 13.

具体的には、ガス冷媒を圧縮機2で圧縮し、圧縮されて高温高圧となったガス冷媒を吐出管15内に送り出す。吐出管15内に送り出されたガス冷媒は、吐出管15内を鎖線矢印方向に流通して四方弁3を介して第1の配管16内に流入する。第1の配管16内に流入したガス冷媒は、第1の配管16内を鎖線矢印方向に流通し、室外熱交換器4内に流入する。このとき、室外熱交換器4は凝縮器となり、室外熱交換器4内を流通する高圧高温のガス冷媒と、図示せぬ送風機によって室外熱交換器4に吹き付けられた外気との間で熱交換が行われ、ガス冷媒は凝縮されて液冷媒となる。また、室外熱交換器4に吹き付けられた外気はガス冷媒の熱を受け取って暖かくなり、暖かくなった外気を図示せぬ送風機によって外に排出して排熱を行う。   Specifically, the gas refrigerant is compressed by the compressor 2, and the gas refrigerant that has been compressed and becomes high temperature and pressure is sent into the discharge pipe 15. The gas refrigerant sent into the discharge pipe 15 flows through the discharge pipe 15 in the direction of the chain arrow and flows into the first pipe 16 through the four-way valve 3. The gas refrigerant that has flowed into the first pipe 16 flows through the first pipe 16 in the direction of the chain line arrow and flows into the outdoor heat exchanger 4. At this time, the outdoor heat exchanger 4 becomes a condenser, and heat exchange is performed between the high-pressure and high-temperature gas refrigerant flowing through the outdoor heat exchanger 4 and the outside air blown to the outdoor heat exchanger 4 by a blower (not shown). The gas refrigerant is condensed into a liquid refrigerant. The outside air blown to the outdoor heat exchanger 4 receives the heat of the gas refrigerant and becomes warm, and the outside air that has become warm is discharged outside by a blower (not shown) to exhaust heat.

室外熱交換器4内を通過した液冷媒は、室外熱交換器4内から第2の配管17内に流入して鎖線矢印方向に流通し、第1の減圧装置8に至る。第1の減圧装置8を通過する際、高圧状態の液冷媒は第1の減圧装置8によって減圧され、冷媒は膨張冷却されて低温低圧の液冷媒となる。低温低圧となった液冷媒は、第3の配管20内に流入して鎖線矢印方向に流通し、第1の室内熱交換器18内に流入する。このとき、第1の室内熱交換器18は蒸発器となり、第1の室内熱交換器18内を流通する液冷媒と、図示せぬ送風機によって室内機11内に吸引されて第1の室内熱交換器18に吹き付けられた室内の空気との間で熱交換が行われ、液冷媒の一部が蒸発されてガス冷媒となり、液冷媒はガス・液混合の冷媒となる。また、第1の室内熱交換器18に吹き付けられた空気の熱をガス冷媒に吸熱させることで当該空気を冷却し、図示せぬ送風機によって冷却された空気を室内に送り出す。   The liquid refrigerant that has passed through the outdoor heat exchanger 4 flows into the second pipe 17 from the outdoor heat exchanger 4, flows in the direction of the chain line arrow, and reaches the first pressure reducing device 8. When passing through the first decompression device 8, the high-pressure liquid refrigerant is decompressed by the first decompression device 8, and the refrigerant is expanded and cooled to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant flows into the third pipe 20, flows in the direction of the chain line arrow, and flows into the first indoor heat exchanger 18. At this time, the first indoor heat exchanger 18 serves as an evaporator, and is sucked into the indoor unit 11 by the liquid refrigerant flowing through the first indoor heat exchanger 18 and a blower (not shown), thereby causing the first indoor heat. Heat exchange is performed with the indoor air blown to the exchanger 18, and a part of the liquid refrigerant is evaporated to become a gas refrigerant, and the liquid refrigerant becomes a gas / liquid mixed refrigerant. In addition, the heat of the air blown to the first indoor heat exchanger 18 is absorbed by the gas refrigerant to cool the air, and the air cooled by a blower (not shown) is sent out indoors.

第1の室内熱交換器18内を通過したガス・液混合の冷媒は、完全に吸熱せず低温の状態のまま、第1の室内熱交換器18から第4の配管21内に流入する。そして、開放状態の第2の減圧装置9を通過して第5の配管22内に流入し、第2の室内熱交換器19内に流入する。このとき、第2の室内熱交換器19は蒸発器となり、第2の室内熱交換器19内を流通する低温低圧のガス・液混合の冷媒と、図示せぬ送風機によって室内機11内に吸引されて第2の室内熱交換器19に吹き付けられた室内の空気との間で熱交換が行われ、ガス・液混合の冷媒は蒸発されてガス冷媒となる。また、第2の室内熱交換器19に吹き付けられた空気の熱をガス・液混合の冷媒に吸熱させることで当該空気を冷却し、図示せぬ送風機によって冷却された空気を室内に送り出す。   The gas / liquid mixed refrigerant that has passed through the first indoor heat exchanger 18 does not completely absorb heat and flows into the fourth pipe 21 from the first indoor heat exchanger 18 in a low temperature state. Then, it passes through the second decompression device 9 in the open state, flows into the fifth pipe 22, and flows into the second indoor heat exchanger 19. At this time, the second indoor heat exchanger 19 becomes an evaporator, and is sucked into the indoor unit 11 by a low-temperature low-pressure gas / liquid mixed refrigerant circulating in the second indoor heat exchanger 19 and a blower (not shown). Then, heat is exchanged with the indoor air blown to the second indoor heat exchanger 19, and the gas / liquid mixed refrigerant is evaporated to become a gas refrigerant. Further, the heat of the air blown to the second indoor heat exchanger 19 is absorbed by the gas / liquid mixed refrigerant to cool the air, and the air cooled by a blower (not shown) is sent out indoors.

第2の室内熱交換器19内を通過したガス冷媒は、第2の室内熱交換器19内から第6の配管23内に流入して鎖線矢印方向に流通し、四方弁3を介して吸入管14内に流入する。吸入管14内に流入したガス冷媒は、吸入管14内を鎖線矢印方向に流通し、圧縮器2に流入する。このとき、吸入管14内を流通するガス冷媒は逆止弁25によってバイパス管24内に流入することが防止されている。   The gas refrigerant that has passed through the second indoor heat exchanger 19 flows into the sixth pipe 23 from the second indoor heat exchanger 19, flows in the direction of the chain line arrow, and is sucked through the four-way valve 3. It flows into the tube 14. The gas refrigerant flowing into the suction pipe 14 flows through the suction pipe 14 in the direction of the chain line arrow and flows into the compressor 2. At this time, the gas refrigerant flowing through the suction pipe 14 is prevented from flowing into the bypass pipe 24 by the check valve 25.

次に、除湿運転の場合について説明する。除湿運転する場合、開閉装置5を開放状態にするともに、第1の減圧装置8を開放状態にし、第2の減圧装置9を絞り状態にする。また、また、第6の配管23と吸入管14とが連通すると共に第1の配管16と吐出管15とが連通するように、四方弁3を切り換える。そして、配管12内の冷媒を図1に示す破線矢印の方向に流通させ、冷媒を冷凍サイクル13内で循環させる。   Next, the case of dehumidifying operation will be described. When performing the dehumidifying operation, the opening / closing device 5 is opened, the first decompression device 8 is opened, and the second decompression device 9 is throttled. Further, the four-way valve 3 is switched so that the sixth pipe 23 and the suction pipe 14 communicate with each other and the first pipe 16 and the discharge pipe 15 communicate with each other. And the refrigerant | coolant in the piping 12 is distribute | circulated in the direction of the broken-line arrow shown in FIG.

具体的には、ガス冷媒を圧縮機2で圧縮し、圧縮されて高温高圧となったガス冷媒を吐出管15内に送り出す。圧縮機2から吐出管15内に送り出されたガス冷媒の一部は、バイパス管24内に流入して破線矢印方向に流通し、開閉装置5を経由して絞り装置6内に至る。ガス冷媒が絞り装置6内を通過する際、絞り装置6によって減圧冷却されるとともに絞り装置6内の抵抗によってガス冷媒の流量は制限される。絞り装置6を通過したガス冷媒は、バイパス管24内を破線矢印方向に流通し、逆止弁25を経由して吸入管14内に流入し、吸入管14内を破線矢印方向に流通して圧縮機2内に戻る。   Specifically, the gas refrigerant is compressed by the compressor 2, and the gas refrigerant that has been compressed and becomes high temperature and pressure is sent into the discharge pipe 15. A part of the gas refrigerant sent out from the compressor 2 into the discharge pipe 15 flows into the bypass pipe 24 and circulates in the direction of the broken line arrow, and reaches the inside of the expansion device 6 via the opening / closing device 5. When the gas refrigerant passes through the expansion device 6, it is cooled under reduced pressure by the expansion device 6 and the flow rate of the gas refrigerant is limited by the resistance in the expansion device 6. The gas refrigerant that has passed through the expansion device 6 flows through the bypass pipe 24 in the direction of the broken line arrow, flows into the suction pipe 14 via the check valve 25, and flows through the suction pipe 14 in the direction of the broken line arrow. Return to the compressor 2.

また、吐出管15内に送り出された残りのガス冷媒は、吐出管15内を破線矢印方向に流通して四方弁3を介して第1の配管16内に流入する。第1の配管16内に流入したガス冷媒は、第1の配管16内を破線矢印方向に流通し、室外熱交換器4内に流入する。このとき、室外熱交換器4は凝縮器となり、室外熱交換器4内を流通する高圧高温のガス冷媒と、図示せぬ送風機によって室外熱交換器4に吹き付けられた外気の一部との間で熱交換が行われ、ガス冷媒の一部が凝縮されて液冷媒となり、ガス冷媒はガス・液混合の冷媒となる。また、室外熱交換器4に吹き付けられた外気はガス冷媒の一部の熱を受け取って暖かくなり、暖かくなった外気を図示せぬ送風機によって外に排出して排熱を行う。この排熱は、図示せぬ送風機の送風量を低減し、熱交換率を低下させることで、不完全的に行う。   Further, the remaining gas refrigerant sent out into the discharge pipe 15 flows through the discharge pipe 15 in the direction of the broken line arrow and flows into the first pipe 16 through the four-way valve 3. The gas refrigerant that has flowed into the first pipe 16 circulates in the first pipe 16 in the direction of the broken line arrow and flows into the outdoor heat exchanger 4. At this time, the outdoor heat exchanger 4 serves as a condenser, and the space between the high-pressure and high-temperature gas refrigerant flowing through the outdoor heat exchanger 4 and a part of the outside air blown to the outdoor heat exchanger 4 by a blower (not shown). In this case, heat exchange is performed, and a part of the gas refrigerant is condensed to become a liquid refrigerant, and the gas refrigerant becomes a gas / liquid mixed refrigerant. Further, the outside air blown to the outdoor heat exchanger 4 is warmed by receiving a part of heat of the gas refrigerant, and the warmed outside air is discharged outside by a blower (not shown) to exhaust heat. This exhaust heat is performed incompletely by reducing the amount of air blown from a blower (not shown) and lowering the heat exchange rate.

室外熱交換器4内を通過したガス・液混合の冷媒は、完全に放熱せず高温の状態のまま、室外熱交換器4内から第2の配管17内に流入して破線矢印方向に流通し、開放状態の第1の減圧装置8を通過して第3の配管20内に流入する。第3の配管20内に流入したガス・液混合の冷媒は、第3の配管20内を破線矢印方向に流通し、第1の室内熱交換器18内に流入する。このとき、第1の室内熱交換器18は凝縮器となり、第1の室内熱交換器18内を流通する高圧高温のガス・液混合の冷媒と、図示せぬ送風機によって室内機11内に吸引されて第1の室内熱交換器18に吹き付けられた室内の空気との間で熱交換が行われ、ガス・液混合の冷媒は凝縮されて液冷媒となる。また、第1の室内熱交換器18に吹き付けられた空気は、ガス・液混合の冷媒の熱を受け取って暖まる。   The gas / liquid mixed refrigerant that has passed through the outdoor heat exchanger 4 does not completely dissipate heat, but flows into the second pipe 17 from the outdoor heat exchanger 4 in the direction of the broken line while maintaining a high temperature state. Then, it passes through the first decompression device 8 in the open state and flows into the third pipe 20. The gas / liquid mixed refrigerant that has flowed into the third pipe 20 flows in the third pipe 20 in the direction of the broken line arrow and flows into the first indoor heat exchanger 18. At this time, the first indoor heat exchanger 18 becomes a condenser, and is sucked into the indoor unit 11 by a high-pressure and high-temperature gas / liquid mixed refrigerant circulating in the first indoor heat exchanger 18 and a blower (not shown). Then, heat is exchanged with the indoor air blown to the first indoor heat exchanger 18, and the gas / liquid mixed refrigerant is condensed into a liquid refrigerant. Further, the air blown to the first indoor heat exchanger 18 receives the heat of the gas / liquid mixed refrigerant and warms up.

第1の室内熱交換器18内を通過した液冷媒は、第4の配管21内に流入して破線矢印方向に流通し、第2の減圧装置9に至る。第2の減圧装置9を通過する際、高圧状態の液冷媒は第2の減圧装置9によって減圧され、冷媒は膨張冷却されて低温低圧の液冷媒となる。低温低圧となった液冷媒は、第5の配管22内に流入して破線矢印方向に流通し、第2の室内熱交換器19内に流入する。このとき、第2の室内熱交換器19は蒸発器となり、第2の室内熱交換器19内を流通する液冷媒と、図示せぬ送風機によって室内機11内に吸引されて第2の室内熱交換器19に吹き付けられた室内の空気との間で熱交換が行われ、液冷媒が蒸発されてガス冷媒となる。また、第2の室内熱交換器19に吹き付けられた空気の熱を液冷媒に吸熱させることで当該空気を冷却し、第2の室内熱交換器19を結露させて空気中に含有される水分を空気から抽出する。そして、冷却されるとともに水分が除去された空気を、上記した第1の室内熱交換器18で暖められた空気と混合して図示せぬ送風機によって室内に送り出す。また、結露されて除去された水分を図示せぬ排水管を通して室外に流出させる。   The liquid refrigerant that has passed through the first indoor heat exchanger 18 flows into the fourth pipe 21, circulates in the direction of the broken arrow, and reaches the second decompression device 9. When passing through the second decompression device 9, the high-pressure liquid refrigerant is decompressed by the second decompression device 9, and the refrigerant is expanded and cooled to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant flows into the fifth pipe 22, circulates in the direction of the broken line arrow, and flows into the second indoor heat exchanger 19. At this time, the second indoor heat exchanger 19 serves as an evaporator, and is sucked into the indoor unit 11 by the liquid refrigerant flowing through the second indoor heat exchanger 19 and a blower (not shown), thereby generating the second indoor heat. Heat exchange is performed with the indoor air blown to the exchanger 19, and the liquid refrigerant is evaporated to become a gas refrigerant. In addition, the air that is blown to the second indoor heat exchanger 19 is absorbed by the liquid refrigerant to cool the air, and the second indoor heat exchanger 19 is condensed to contain moisture in the air. Extract from the air. Then, the air that has been cooled and from which moisture has been removed is mixed with the air warmed by the first indoor heat exchanger 18 and sent out indoors by a blower (not shown). In addition, moisture removed by condensation is allowed to flow out of the room through a drain pipe (not shown).

第2の室内熱交換器19内を通過したガス冷媒は、第2の室内熱交換器19内から第6の配管23内に流入して破線矢印方向に流通し、四方弁3を介して吸入管14内に流入する。吸入管14内に流入したガス冷媒は、吸入管14内を鎖線矢印方向に流通し、圧縮器2に流入する。このとき、吸入管14内を流通するガス冷媒は逆止弁25によってバイパス管24内に流入することが防止されている。   The gas refrigerant that has passed through the second indoor heat exchanger 19 flows into the sixth pipe 23 from the second indoor heat exchanger 19 and circulates in the direction of the broken arrow, and is sucked through the four-way valve 3. It flows into the tube 14. The gas refrigerant flowing into the suction pipe 14 flows through the suction pipe 14 in the direction of the chain line arrow and flows into the compressor 2. At this time, the gas refrigerant flowing through the suction pipe 14 is prevented from flowing into the bypass pipe 24 by the check valve 25.

上記した構成からなる空気調和機1によれば、吐出管15と吸入管14とを結び吐出管15内を流通するガス冷媒の一部を吸込管14に戻すバイパス管24が設けられ、バイパス管24には開閉装置5が設けられているため、開閉装置5が閉塞されると全てのガス冷媒が冷凍サイクル13内で循環され、開閉装置5が開けられると吐出管15内を流通するガス冷媒の一部がバイパス管24を介して吸込管14内に戻り、冷凍サイクル13内を循環する冷媒量は減少する。これによって、冷凍サイクル13内の冷媒循環量を調節することができ、インバータ等を使用せずに再熱除湿を行うことができ、コストダウンを図ることができる。   According to the air conditioner 1 having the above-described configuration, the bypass pipe 24 that connects the discharge pipe 15 and the suction pipe 14 and returns part of the gas refrigerant flowing through the discharge pipe 15 to the suction pipe 14 is provided. Since the opening / closing device 5 is provided at 24, all the gas refrigerant is circulated in the refrigeration cycle 13 when the opening / closing device 5 is closed, and the gas refrigerant flows through the discharge pipe 15 when the opening / closing device 5 is opened. Part of the refrigerant returns to the suction pipe 14 through the bypass pipe 24, and the amount of refrigerant circulating in the refrigeration cycle 13 decreases. Thereby, the refrigerant circulation amount in the refrigeration cycle 13 can be adjusted, reheat dehumidification can be performed without using an inverter or the like, and the cost can be reduced.

また、バイパス管24には、バイパス管24内を流通するガス冷媒を絞る絞り機構6が設けられているため、圧縮機2から送り出されるガス冷媒の大部分がバイパス管内に流れ込み冷凍サイクル13内を流通する冷媒の量が著しく低下することは防止される。これによって、除湿に合った適当な量の冷媒を循環させることができる。   Further, since the bypass pipe 24 is provided with a throttle mechanism 6 that throttles the gas refrigerant flowing through the bypass pipe 24, most of the gas refrigerant sent out from the compressor 2 flows into the bypass pipe and flows through the refrigeration cycle 13. It is possible to prevent the amount of the circulating refrigerant from being significantly reduced. Thus, an appropriate amount of refrigerant suitable for dehumidification can be circulated.

[第2の実施の形態]
図2に示すように、空気調和機100は、圧縮機101,四方弁102,室外熱交換器103,複数の開閉装置104a,104b,104c及び複数の絞り装置105a,105b,105cが格納された室外機106と、第1,第2の減圧装置107,108及び第1,第2の室内熱交換器109,110が格納された室内機111とから構成されている。圧縮機101と、室外熱交換器103と、第1の減圧装置107と、第1の室内熱交換器109と、第2の減圧装置108と、第2の室内熱交換器110が配管112を介して順次接続されており、冷媒が循環される冷凍サイクル113が形成されている。
[Second Embodiment]
As shown in FIG. 2, the air conditioner 100 stores a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, a plurality of switching devices 104a, 104b, 104c, and a plurality of expansion devices 105a, 105b, 105c. The outdoor unit 106 includes an indoor unit 111 in which first and second decompression devices 107 and 108 and first and second indoor heat exchangers 109 and 110 are stored. The compressor 101, the outdoor heat exchanger 103, the first pressure reducing device 107, the first indoor heat exchanger 109, the second pressure reducing device 108, and the second indoor heat exchanger 110 are connected to the pipe 112. The refrigerating cycle 113 in which the refrigerant is circulated is formed.

複数の開閉装置104a,104b,104c及び複数の絞り装置105a,105b,105cは、吐出管115と吸入管114とを結ぶ複数のバイパス管116a,116b,116cにそれぞれ設けられており、複数のバイパス管116a,116b,116cは並列に形成されている。複数のバイパス管116a,116b,116cの一端は吐出管115に接続された1本の入口管117にそれぞれ接続されており、他端は吸入管114に接続された1本の出口管118にそれぞれ接続されている。出口管118には、吸入管114内を流通する冷媒が出口管118内に流入することを防止する逆止弁119が設けられている。   The plurality of opening / closing devices 104a, 104b, 104c and the plurality of throttle devices 105a, 105b, 105c are provided on a plurality of bypass pipes 116a, 116b, 116c connecting the discharge pipe 115 and the suction pipe 114, respectively. The tubes 116a, 116b, and 116c are formed in parallel. One end of each of the plurality of bypass pipes 116a, 116b, and 116c is connected to one inlet pipe 117 connected to the discharge pipe 115, and the other end is connected to one outlet pipe 118 connected to the suction pipe 114. It is connected. The outlet pipe 118 is provided with a check valve 119 that prevents refrigerant flowing through the suction pipe 114 from flowing into the outlet pipe 118.

上記した空気調和機100によれば、バイパス管116a,116b,116cは複数並列に形成され、複数のバイパス管116a,116b,116cには開閉装置104a,104b,104c及び絞り装置105a,105b,105cがそれぞれ設けられているため、除湿時に、開放する開閉装置104a,104b,104cを適宜選択することで、バイパス管116a,116b,116cを介して吐出管115から吸入管114に戻される冷媒量は調節される。これによって、除湿時に必要な冷媒循環量に応じて、吐出管115から吸入管114に戻される冷媒量を調節することができ、冷凍サイクル113内を循環する冷媒量を微調整することができる。   According to the air conditioner 100 described above, a plurality of bypass pipes 116a, 116b, and 116c are formed in parallel, and the plurality of bypass pipes 116a, 116b, and 116c include opening / closing devices 104a, 104b, and 104c and expansion devices 105a, 105b, and 105c. Therefore, the amount of refrigerant returned from the discharge pipe 115 to the suction pipe 114 via the bypass pipes 116a, 116b, and 116c by appropriately selecting the opening / closing devices 104a, 104b, and 104c to be opened at the time of dehumidification is Adjusted. Thus, the amount of refrigerant returned from the discharge pipe 115 to the suction pipe 114 can be adjusted according to the refrigerant circulation amount required at the time of dehumidification, and the amount of refrigerant circulating in the refrigeration cycle 113 can be finely adjusted.

[第3の実施の形態]
図3に示すように、空気調和機200は、圧縮機201,四方弁202,室外熱交換器203及び絞り機能付きの開閉装置204が格納された室外機205と、第1,第2の減圧装置206,207及び第1,第2の室内熱交換器208,209が格納された室内機210とから構成されている。圧縮機201と、室外熱交換器203と、第1の減圧装置206と、第1の室内熱交換器208と、第2の減圧装置207と、第2の室内熱交換器209が配管211を介して順次接続されており、冷媒が循環される冷凍サイクル212が形成されている。開閉装置204は、吐出管214と吸入管213とを結ぶバイパス管215に設けられている。
[Third Embodiment]
As shown in FIG. 3, the air conditioner 200 includes a compressor 201, a four-way valve 202, an outdoor heat exchanger 203 and an opening / closing device 204 with a throttle function, and first and second decompression units. The apparatus 206,207 and the indoor unit 210 in which the 1st, 2nd indoor heat exchangers 208,209 were stored are comprised. The compressor 201, the outdoor heat exchanger 203, the first pressure reducing device 206, the first indoor heat exchanger 208, the second pressure reducing device 207, and the second indoor heat exchanger 209 are connected to the pipe 211. The refrigeration cycle 212 in which the refrigerant is circulated is formed. The opening / closing device 204 is provided in a bypass pipe 215 that connects the discharge pipe 214 and the suction pipe 213.

図4は、開閉装置204の断面図である。図4に示すように、開閉装置204は、冷媒が内部を通過する室部216と、室部216の側面に形成されて室部216に連通されている入口部217と、室部216の底面に形成されて室部216に連通されている出口部218と、室部216内を通過する冷媒を絞る絞り部219と、出口部218を開閉すると共に絞り部219による絞り量を調整する絞り量調整手段220とから構成されている。   FIG. 4 is a cross-sectional view of the opening / closing device 204. As shown in FIG. 4, the opening / closing device 204 includes a chamber portion 216 through which the refrigerant passes, an inlet portion 217 formed on a side surface of the chamber portion 216 and communicated with the chamber portion 216, and a bottom surface of the chamber portion 216. An outlet portion 218 formed in communication with the chamber portion 216, a throttle portion 219 that throttles the refrigerant passing through the chamber portion 216, and a throttle amount that opens and closes the outlet portion 218 and adjusts the throttle amount by the throttle portion 219 It is comprised from the adjustment means 220. FIG.

入口部217は、吐出管214に接続された一方のバイパス管215aに接続されており、出口部218は、吸入管213に接続された他方のバイパス管215bに接続されている。絞り部219は室部216内部の底面に設けられており、出口部218に連通されて冷媒が流通する貫通孔219aが形成されている。貫通孔219aの上端部は下方に向かって窄まるテーパー状に形成されている。   The inlet 217 is connected to one bypass pipe 215 a connected to the discharge pipe 214, and the outlet 218 is connected to the other bypass pipe 215 b connected to the suction pipe 213. The throttle portion 219 is provided on the bottom surface inside the chamber portion 216, and is formed with a through hole 219a that communicates with the outlet portion 218 and through which the refrigerant flows. The upper end portion of the through hole 219a is formed in a tapered shape that narrows downward.

絞り量調整手段220は、室部216の上方に設けられた電磁コイル部221と、電磁コイル部221によって上下に往復移動するロッド状の弁部222とから構成されている。弁部222は室部216の上端面に貫通されており、下端部には絞り部219の貫通孔219a内に嵌挿される尖り部222aが形成されている。また、弁部222は電磁コイル部221によって軸回転するとともに上下動し、尖り部222aと貫通孔219aとの隙間は微調整される。つまり、弁部222が最下にある場合、貫通孔219aは尖り部222aに塞がれ、弁部222が軸回転しながら少し上昇した場合、貫通孔219aと尖り部222aとの隙間は微少に形成され、さらに弁部222が軸回転しながら上昇した場合、尖り部222aは貫通孔219aから完全に抜き取られて貫通孔219aは開放される。   The throttle amount adjusting means 220 includes an electromagnetic coil part 221 provided above the chamber part 216 and a rod-shaped valve part 222 that reciprocates up and down by the electromagnetic coil part 221. The valve part 222 is penetrated by the upper end surface of the chamber part 216, and the pointed part 222a inserted in the through-hole 219a of the throttle part 219 is formed in the lower end part. In addition, the valve portion 222 rotates and moves up and down by the electromagnetic coil portion 221, and the gap between the sharp portion 222a and the through hole 219a is finely adjusted. That is, when the valve portion 222 is at the lowest position, the through hole 219a is blocked by the sharp portion 222a, and when the valve portion 222 is lifted up slightly while rotating, the gap between the through hole 219a and the sharp portion 222a is very small. When the valve portion 222 is lifted while rotating, the pointed portion 222a is completely extracted from the through hole 219a and the through hole 219a is opened.

一方、図3に示すように、第1,第2の室内熱交換器208,209には、第1,第2の熱交換器208,209内の冷媒温度を検知する第1,第2の温度検知手段223,224がそれぞれ付設されている。第1,第2の温度検知手段223,224は、冷媒が流れる第1,第2の熱交換器208,209のパイプ自体の温度を測定して該温度から冷媒温度を推定する方法により冷媒温度を検知する手段である。   On the other hand, as shown in FIG. 3, the first and second indoor heat exchangers 208 and 209 include first and second indoor temperature exchangers 208 and 209 that detect refrigerant temperatures in the first and second heat exchangers 208 and 209, respectively. Temperature detecting means 223 and 224 are respectively attached. The first and second temperature detecting means 223 and 224 measure the temperature of the refrigerant by measuring the temperature of the pipes of the first and second heat exchangers 208 and 209 through which the refrigerant flows and estimating the refrigerant temperature from the measured temperatures. It is a means to detect.

第1,第2の温度検知手段223,224は、室内機210の内部に格納された制御手段225を介して開閉装置204の電磁コイル部221に電気的に接続されている。制御手段225は、第1,第2の温度検知手段223,224で検知された冷媒温度の情報が送信され、冷媒温度を基に、冷凍サイクル212内を循環させるのに適した冷媒量を算出し、全冷媒量から該冷媒量を差し引いてバイパス管215内を循環させる冷媒量を算出し、この冷媒量から絞り量を決定して電磁コイル部221に信号を送り、開閉装置204を開閉させる手段である。   The first and second temperature detection means 223 and 224 are electrically connected to the electromagnetic coil part 221 of the opening / closing device 204 via the control means 225 stored in the indoor unit 210. The control unit 225 receives information on the refrigerant temperature detected by the first and second temperature detection units 223 and 224, and calculates a refrigerant amount suitable for circulating in the refrigeration cycle 212 based on the refrigerant temperature. Then, the refrigerant amount to be circulated in the bypass pipe 215 is calculated by subtracting the refrigerant amount from the total refrigerant amount, the throttle amount is determined from the refrigerant amount, and a signal is sent to the electromagnetic coil unit 221 to open and close the opening / closing device 204 Means.

上記した空気調和機200によれば、開閉装置204には開閉装置204内を通過する冷媒を絞る絞り部219が形成されているため、絞り装置がなくても圧縮機201から送り出される冷媒の大部分がバイパス管215内に流れ込み冷凍サイクル212内を流通する冷媒の量が著しく低下することは防止される。これによって、除湿に合った適当な量の冷媒を循環させることができる。   According to the air conditioner 200 described above, since the opening / closing device 204 is formed with the throttle portion 219 that throttles the refrigerant passing through the opening / closing device 204, a large amount of refrigerant is sent out from the compressor 201 without the throttle device. It is prevented that the portion flows into the bypass pipe 215 and the amount of refrigerant flowing through the refrigeration cycle 212 is significantly reduced. Thus, an appropriate amount of refrigerant suitable for dehumidification can be circulated.

また、開閉装置204には絞り量を調整する絞り量調整手段220が備えられているため、バイパス管215内を流通する冷媒量が調整される。これによって、冷凍サイクル212内を流通する冷媒量を調整することができ、除湿運転に適した量の冷媒量を循環させることができ、除湿運転の効率を向上させることができる。   Further, since the opening / closing device 204 is provided with the throttle amount adjusting means 220 for adjusting the throttle amount, the amount of refrigerant flowing through the bypass pipe 215 is adjusted. As a result, the amount of refrigerant flowing through the refrigeration cycle 212 can be adjusted, the amount of refrigerant suitable for the dehumidifying operation can be circulated, and the efficiency of the dehumidifying operation can be improved.

第1の熱交換器208及び第2の熱交換器209には、第1の熱交換器208内及び第2の熱交換器209内の冷媒温度を検知する第1,第2の温度検知手段223,224がそれぞれ付設され、第1,第2の温度検知手段223,224と開閉装置204とは制御手段225を介して接続されているため、実際の冷媒温度に基いて冷凍サイクル212内を循環させるのに適した冷媒量が算出されて開閉装置204が開閉される。これによって、空気の温度等によって変化する除湿運転に適した冷媒量を可変的に算出することができ、除湿運転の効率を向上させることができる。   The first heat exchanger 208 and the second heat exchanger 209 include first and second temperature detection means for detecting refrigerant temperatures in the first heat exchanger 208 and the second heat exchanger 209, respectively. 223 and 224 are attached, and the first and second temperature detecting means 223 and 224 are connected to the opening / closing device 204 via the control means 225. Therefore, the inside of the refrigeration cycle 212 is based on the actual refrigerant temperature. The amount of refrigerant suitable for circulation is calculated, and the opening / closing device 204 is opened / closed. As a result, it is possible to variably calculate the amount of refrigerant suitable for the dehumidifying operation that varies depending on the temperature of the air, and the efficiency of the dehumidifying operation can be improved.

[第4の実施の形態]
図5に示すように、空気調和機400は、圧縮機401、四方弁402、室外熱交換器403、開閉装置404及び第1の減圧装置405が格納された室外機406と、第2の減圧装置407及び室内熱交換器408が格納された室内機409とから構成されている。また、室外機406の内部及び室内機409の内部には、室外熱交換器403又は室内熱交換器408と熱交換を行う室内空気又は外気を送る図示せぬ送風機がそれぞれ備えられている。
[Fourth Embodiment]
As shown in FIG. 5, the air conditioner 400 includes a compressor 401, a four-way valve 402, an outdoor heat exchanger 403, an opening / closing device 404 and a first pressure reducing device 405, and a second pressure reducing device. It is comprised from the indoor unit 409 in which the apparatus 407 and the indoor heat exchanger 408 were stored. Further, inside the outdoor unit 406 and the inside of the indoor unit 409 are provided with blowers (not shown) that send indoor air or outdoor air that exchanges heat with the outdoor heat exchanger 403 or the indoor heat exchanger 408, respectively.

圧縮機401と、室外熱交換器403と、第1の減圧装置405と、室内熱交換器408とが配管410を介して順次接続されており、冷媒が循環される冷凍サイクル411が形成されている。冷凍サイクル411は、圧縮機401の図示せぬ吸入口と四方弁402とが吸入管412を介して接続されており、圧縮機の図示せぬ吐出口と四方弁402とが吐出管413を介して接続されている。四方弁402と室外熱交換器403とは第1の配管414を介して接続されており、第1の配管414は四方弁402を介して吸入管412または吐出管413のいずれか一方に接続される。室外熱交換器403と第1の減圧装置405とは第2の配管(接続配管)415を介して接続されている。   A compressor 401, an outdoor heat exchanger 403, a first pressure reducing device 405, and an indoor heat exchanger 408 are sequentially connected via a pipe 410 to form a refrigeration cycle 411 in which refrigerant is circulated. Yes. In the refrigeration cycle 411, a suction port (not shown) of the compressor 401 and a four-way valve 402 are connected via a suction pipe 412, and a discharge port (not shown) of the compressor and the four-way valve 402 are connected via a discharge pipe 413. Connected. The four-way valve 402 and the outdoor heat exchanger 403 are connected via a first pipe 414, and the first pipe 414 is connected to either the suction pipe 412 or the discharge pipe 413 via the four-way valve 402. The The outdoor heat exchanger 403 and the first pressure reducing device 405 are connected via a second pipe (connection pipe) 415.

室内熱交換器408は、第1の室内熱交換器416と第2の室内熱交換器417とに分割されており、第1の減圧装置405と第1の室内熱交換器416とは第3の配管419を介して接続されている。第1の室内熱交換器416と第2の減圧装置407とは第4の配管420を介して接続されており、第2の減圧装置407と第2の室内熱交換器417とは第5の配管421を介して接続されている。第2の室内熱交換器417と四方弁402とは第6の配管422を介して接続されており、第6の配管422は四方弁402によって吸入管412または吐出管413のいずれか一方に接続される。   The indoor heat exchanger 408 is divided into a first indoor heat exchanger 416 and a second indoor heat exchanger 417, and the first decompressor 405 and the first indoor heat exchanger 416 are the third. Are connected via a pipe 419. The first indoor heat exchanger 416 and the second decompression device 407 are connected via the fourth pipe 420, and the second decompression device 407 and the second indoor heat exchanger 417 are the fifth It is connected via a pipe 421. The second indoor heat exchanger 417 and the four-way valve 402 are connected via a sixth pipe 422, and the sixth pipe 422 is connected to either the suction pipe 412 or the discharge pipe 413 by the four-way valve 402. Is done.

一方、開閉装置404は、第2の配管415と吸入管412とを結ぶバイパス管426に設けられている。バイパス管426の一端は第2の配管415に接続されており、バイパス管426と第2の配管とは連通されている。また、バイパス管426の他端は吸入管412に接続されており、バイパス管426と吸入管412とは連通されている。   On the other hand, the opening / closing device 404 is provided in a bypass pipe 426 that connects the second pipe 415 and the suction pipe 412. One end of the bypass pipe 426 is connected to the second pipe 415, and the bypass pipe 426 and the second pipe communicate with each other. The other end of the bypass pipe 426 is connected to the suction pipe 412, and the bypass pipe 426 and the suction pipe 412 are communicated with each other.

次に、上記した構成からなる空気調和機400の使用方法について説明する。   Next, the usage method of the air conditioner 400 which consists of an above-described structure is demonstrated.

まず、冷房運転の場合について説明する。冷房運転する場合、上述と同様に、開閉装置404を閉塞状態にすると共に、第1の減圧装置405を絞り状態にし、第2の減圧装置407を開放状態にする。また、第6の配管422と吸入管412とが連通すると共に第1の配管414と吐出管413とが連通するように、四方弁402を切り替える。そして、配管410内の冷媒を図5に示す鎖線矢印の方向に流通させ、冷媒を冷凍サイクル411内で循環させる。   First, the case of the cooling operation will be described. When performing the cooling operation, similarly to the above, the opening / closing device 404 is closed, the first decompression device 405 is throttled, and the second decompression device 407 is opened. Further, the four-way valve 402 is switched so that the sixth pipe 422 and the suction pipe 412 communicate with each other and the first pipe 414 and the discharge pipe 413 communicate with each other. And the refrigerant | coolant in the piping 410 is distribute | circulated in the direction of the chain line arrow shown in FIG.

具体的には、ガス冷媒を圧縮機401で圧縮し、圧縮されて高温高圧となったガス冷媒を吐出管413内に送り出す。吐出管413内に送り出されたガス冷媒は、吐出管413内を鎖線矢印方向に流通して吐出管402を介して第1の配管414内に流入する。第1の配管414内に流入したガス冷媒は、第1の配管414内を鎖線矢印方向に流通し、室外熱交換器403内に流入する。このとき、室外熱交換器403は凝縮器となり、室外熱交換器403内を流通する高圧高温のガス冷媒と、図示せぬ送風機によって室外熱交換器403に吹き付けられた外気との間で熱交換が行われ、ガス冷媒は凝縮されて液冷媒となる。また、室外熱交換器403に吹き付けられた外気はガス冷媒の熱を受け取って暖かくなり、暖かくなった外気を図示せぬ送風機によって外に排出して排熱を行う。   Specifically, the gas refrigerant is compressed by the compressor 401, and the gas refrigerant that has been compressed to a high temperature and high pressure is sent into the discharge pipe 413. The gas refrigerant sent into the discharge pipe 413 flows in the discharge pipe 413 in the direction of the chain line arrow and flows into the first pipe 414 through the discharge pipe 402. The gas refrigerant that has flowed into the first pipe 414 flows through the first pipe 414 in the direction of the chain line arrow and flows into the outdoor heat exchanger 403. At this time, the outdoor heat exchanger 403 becomes a condenser, and performs heat exchange between the high-pressure and high-temperature gas refrigerant flowing through the outdoor heat exchanger 403 and the outside air blown to the outdoor heat exchanger 403 by a blower (not shown). The gas refrigerant is condensed into a liquid refrigerant. In addition, the outside air blown to the outdoor heat exchanger 403 receives the heat of the gas refrigerant and becomes warm, and the outside air that has become warm is discharged outside by a blower (not shown) to exhaust heat.

室外熱交換器403内を通過した液冷媒は、室外熱交換器403内から第2の配管415内に流入して鎖線矢印方向に流通し、第1の減圧装置405に至る。第1の減圧装置405を通過する際、高圧状態の液冷媒は第1の減圧装置405によって減圧され、冷媒は膨張冷却されて低温低圧のガス・液混合の二相冷媒となる。低温低圧となった二相冷媒は、第3の配管419内に流入して鎖線矢印方向に流通し、第1の室内熱交換器408内に流入する。このとき、第1の室内熱交換器408は蒸発器となり、第1の室内熱交換器408内を流通する液冷媒と、図示せぬ送風機によって室内機409内に吸引されて第1の室内熱交換器408に吹き付けられた室内の空気との間で熱交換が行われ、液冷媒が蒸発してガス冷媒となる。また、第1の室内熱交換器408に吹き付けられた空気の熱をガス冷媒に吸熱させることで当該空気を冷却し、図示せぬ送風機によって冷却された空気を室内に送り出す。   The liquid refrigerant that has passed through the outdoor heat exchanger 403 flows from the outdoor heat exchanger 403 into the second pipe 415, flows in the direction of the chain line arrow, and reaches the first decompressor 405. When passing through the first decompression device 405, the high-pressure liquid refrigerant is decompressed by the first decompression device 405, and the refrigerant is expanded and cooled to become a low-temperature and low-pressure gas-liquid mixed two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flows into the third pipe 419, flows in the direction of the chain line arrow, and flows into the first indoor heat exchanger 408. At this time, the first indoor heat exchanger 408 becomes an evaporator, and is sucked into the indoor unit 409 by the liquid refrigerant flowing through the first indoor heat exchanger 408 and a blower (not shown), and the first indoor heat exchanger 408 is drawn. Heat exchange is performed with the indoor air blown to the exchanger 408, and the liquid refrigerant evaporates to become a gas refrigerant. Further, the heat of the air blown to the first indoor heat exchanger 408 is absorbed by the gas refrigerant to cool the air, and the air cooled by a blower (not shown) is sent out indoors.

第1の室内熱交換器408内を通過したガス・液混合の冷媒は、完全に吸熱せず低温の状態のまま、第1の室内熱交換器408から第4の配管420内に流入する。そして、開放状態の第2の減圧装置407を通過して第5の配管421内に流入し、第2の室内熱交換器408内に流入する。このとき、第2の室内熱交換器408は蒸発器となり、第2の室内熱交換器408内を流通する低温低圧のガス・液混合の冷媒と、図示せぬ送風機によって室内機409内に吸引されて第2の室内熱交換器408に吹き付けられた室内の空気との間で熱交換が行われ、ガス・液混合の冷媒は蒸発されてガス冷媒となる。また、第2の室内熱交換器408に吹き付けられた空気の熱をガス・液混合の冷媒に吸熱させることで当該空気を冷却し、図示せぬ送風機によって冷却された空気を室内に送り出す。   The gas / liquid mixed refrigerant that has passed through the first indoor heat exchanger 408 does not completely absorb heat and flows into the fourth pipe 420 from the first indoor heat exchanger 408 in a low temperature state. Then, it passes through the second decompression device 407 in the open state, flows into the fifth pipe 421, and flows into the second indoor heat exchanger 408. At this time, the second indoor heat exchanger 408 becomes an evaporator, and is sucked into the indoor unit 409 by a low-temperature and low-pressure gas / liquid mixed refrigerant circulating in the second indoor heat exchanger 408 and a blower (not shown). Then, heat is exchanged with the indoor air blown to the second indoor heat exchanger 408, and the gas / liquid mixed refrigerant is evaporated to become a gas refrigerant. Further, the heat of the air blown to the second indoor heat exchanger 408 is absorbed by the gas / liquid mixed refrigerant to cool the air, and the air cooled by a blower (not shown) is sent out indoors.

第2の室内熱交換器408内を通過したガス冷媒は、第2の室内熱交換器408内から第6の配管422内に流入して鎖線矢印方向に流通し、吐出管402を介して吸入管412内に流入する。吸入管412内に流入したガス冷媒は、吸入管412内を鎖線矢印方向に流通し、圧縮器401に流入する。   The gas refrigerant that has passed through the second indoor heat exchanger 408 flows into the sixth pipe 422 from the second indoor heat exchanger 408, flows in the direction of the chain line arrow, and is sucked through the discharge pipe 402. It flows into the tube 412. The gas refrigerant that has flowed into the suction pipe 412 flows through the suction pipe 412 in the direction of the chain line arrow and flows into the compressor 401.

次に、除湿運転の場合について説明する。除湿運転する場合、第1の減圧装置405を開放状態にし、第2の減圧装置407を絞り状態にする。ここで、開閉装置404は、制御手段425によって第1及び第2の室内熱交換器416、417が適切な温度状態となるように開閉度が調整されている。また、第6の配管422と吸入管412とが連通すると共に第1の配管414と吐出管413とが連通するように、四方弁402を切り換える。そして、配管410内の冷媒を図5に示す破線矢印の方向に流通させ、冷媒を冷凍サイクル411内で循環させる。   Next, the case of dehumidifying operation will be described. When the dehumidifying operation is performed, the first pressure reducing device 405 is opened, and the second pressure reducing device 407 is set in a throttled state. Here, the degree of opening and closing of the opening / closing device 404 is adjusted by the control means 425 so that the first and second indoor heat exchangers 416 and 417 are in an appropriate temperature state. Further, the four-way valve 402 is switched so that the sixth pipe 422 and the suction pipe 412 communicate with each other and the first pipe 414 and the discharge pipe 413 communicate with each other. And the refrigerant | coolant in the piping 410 is distribute | circulated in the direction of the broken-line arrow shown in FIG.

具体的には、ガス冷媒を圧縮機401で圧縮し、圧縮されて高温高圧となったガス冷媒を吐出管413内に送り出す。吐出管413内に送り出されたガス冷媒は、吐出管413内を破線矢印方向に流通して四方弁402を介して第1の配管414内に流入し、室外熱交換器403に至る。このとき、室外熱交換器403は凝縮器となり、室外熱交換器403内を流通する高温高圧のガス冷媒と図示せぬ送風機とによって室外熱交換器403に吹き付けられた外気の一部との間で熱交換が行われ、ガス冷媒の一部が凝縮されて液冷媒となり、ガス冷媒はガス・液混合の冷媒となる。そして、第2の配管415内に送り出される。   Specifically, the gas refrigerant is compressed by the compressor 401, and the gas refrigerant that has been compressed to a high temperature and high pressure is sent into the discharge pipe 413. The gas refrigerant sent into the discharge pipe 413 flows in the discharge pipe 413 in the direction of the broken line arrow, flows into the first pipe 414 through the four-way valve 402, and reaches the outdoor heat exchanger 403. At this time, the outdoor heat exchanger 403 becomes a condenser, and a portion between the high-temperature and high-pressure gas refrigerant circulating in the outdoor heat exchanger 403 and a part of the outside air blown to the outdoor heat exchanger 403 by a blower (not shown). In this case, heat exchange is performed, and a part of the gas refrigerant is condensed to become a liquid refrigerant, and the gas refrigerant becomes a gas / liquid mixed refrigerant. Then, it is sent out into the second pipe 415.

第2の配管415内に送り出されたガス冷媒の一部は、バイパス管426内に流入して破線矢印方向に流通し、開閉装置404を経由して吸入管412内に流入し、吸入管412うちを破線矢印方向に流通して圧縮機401内に戻る。   A part of the gas refrigerant sent into the second pipe 415 flows into the bypass pipe 426 and flows in the direction of the broken line arrow, flows into the suction pipe 412 via the opening / closing device 404, and sucks the pipe 412. It flows in the direction of the broken line arrow and returns to the compressor 401.

また、第2の配管415内に送り出された残りのガス・液混合の冷媒は、第2の配管415内を破線矢印方向に流通して第1の室内熱交換器416内に流入する。このとき、第1の室内熱交換器416は、凝縮器となり、第1の室内熱交換器416内を流通する高温高圧のガス・液混合の冷媒と図示せぬ送風機とによって室内機409内に吸引されて第1の室内熱交換器416に吹き付けられた室内の空気との間で熱交換が行われ、ガス・液混合の冷媒は凝縮されて液冷媒となる。   The remaining gas / liquid mixed refrigerant sent into the second pipe 415 flows in the second pipe 415 in the direction of the broken line arrow and flows into the first indoor heat exchanger 416. At this time, the first indoor heat exchanger 416 becomes a condenser, and is placed in the indoor unit 409 by a high-temperature / high-pressure gas / liquid mixed refrigerant circulating in the first indoor heat exchanger 416 and a blower (not shown). Heat exchange is performed with the indoor air sucked and blown to the first indoor heat exchanger 416, and the gas / liquid mixed refrigerant is condensed into a liquid refrigerant.

第1の室内熱交換器416内を通過した液冷媒は、第4の配管420内に流入して破線矢印方向に流通し、第2の減圧装置407に至る。第2の減圧装置407を通過する際、高圧状態の液冷媒は第2の減圧装置407によって減圧され、冷媒は膨張冷却されて低温低圧の液冷媒となる。低温低圧となった液冷媒は、第5の配管421内に流入して破線矢印方向に流通し、第2の室内熱交換器417内に流入する。このとき、第2の室内熱交換器417は蒸発器となり、第2の室内熱交換器417うちを流通する液冷媒と図示せぬ送風機とによって室内機409内に吸引されて第2の室内熱交換器417に吹き付けられた室内の空気との間で熱交換が行われ、液冷媒が蒸発されてガス冷媒となる。   The liquid refrigerant that has passed through the first indoor heat exchanger 416 flows into the fourth pipe 420, flows in the direction of the broken line arrow, and reaches the second decompression device 407. When passing through the second decompression device 407, the high-pressure liquid refrigerant is decompressed by the second decompression device 407, and the refrigerant is expanded and cooled to become a low-temperature and low-pressure liquid refrigerant. The low-temperature and low-pressure liquid refrigerant flows into the fifth pipe 421, flows in the direction of the broken line arrow, and flows into the second indoor heat exchanger 417. At this time, the second indoor heat exchanger 417 serves as an evaporator, and is sucked into the indoor unit 409 by the liquid refrigerant flowing through the second indoor heat exchanger 417 and a blower (not shown), so that the second indoor heat Heat exchange is performed with the indoor air blown to the exchanger 417, and the liquid refrigerant is evaporated to become a gas refrigerant.

第2の室内熱交換器417内を通過したガス冷媒は、第2の室内熱交換器417内から第6の配管422内に流入して破線矢印方向に流通し、四方弁402を介して吸入管412内に流入する。吸入管412内を流入したガス冷媒は、吸入管412内を破線矢印方向に流通し、圧縮機401に流入する。
また、開閉装置404は、第1及び第2の室内熱交換器416、417が適切な温度状態となるように制御手段425によって開度が調整されている。
The gas refrigerant that has passed through the second indoor heat exchanger 417 flows into the sixth pipe 422 from the second indoor heat exchanger 417, flows in the direction of the broken line arrow, and is sucked through the four-way valve 402. It flows into the tube 412. The gas refrigerant that has flowed into the suction pipe 412 flows in the suction pipe 412 in the direction of the broken arrow and flows into the compressor 401.
The opening / closing device 404 is adjusted by the control means 425 so that the first and second indoor heat exchangers 416 and 417 are in an appropriate temperature state.

上記した構成からなる空気調和機400によれば、除湿運転時において室外熱交換器403を通過して温度が低くなったガス・液混合の冷媒の一部をバイパス管426及び吸入管412を介して圧縮機401に戻しているので、吐出管413からのガス冷媒の一部を吸入管412を介して圧縮機401に戻す場合と比較して、圧縮機401の吐出温度上昇、圧縮機巻線温度上昇を抑制する。   According to the air conditioner 400 having the above-described configuration, part of the gas / liquid mixed refrigerant that has passed through the outdoor heat exchanger 403 and has decreased in temperature during the dehumidifying operation is passed through the bypass pipe 426 and the suction pipe 412. Therefore, compared with the case where a part of the gas refrigerant from the discharge pipe 413 is returned to the compressor 401 via the suction pipe 412, the discharge temperature rise of the compressor 401 and the compressor winding are reduced. Reduces temperature rise.

[第5の実施の形態]
図6に示すように、空気調和機500は、圧縮機501、四方弁502、室外熱交換器503、開閉装置504及び第1の減圧装置505が格納された室外機506と、第1及び第2の室内熱交換器507、508及び第2の減圧装置509を備える室内熱交換器510が格納された室内機511とから構成されている。また、室外機506の内部及び室内機511の内部には、室外熱交換器503又は室内熱交換器510と熱交換を行う室内空気又は外気を送る図示せぬ送風機がそれぞれ備えられている。
圧縮機501と、室外熱交換器503と、第1の減圧装置505と、室内熱交換器510とが配管512を介して順次接続されており、冷媒が循環される冷凍サイクル513が形成されている。
[Fifth Embodiment]
As shown in FIG. 6, the air conditioner 500 includes a compressor 501, a four-way valve 502, an outdoor heat exchanger 503, an opening / closing device 504, and a first decompression device 505, and first and first 2 indoor heat exchangers 507 and 508 and an indoor unit 511 in which an indoor heat exchanger 510 including a second decompression device 509 is stored. Further, inside the outdoor unit 506 and the inside of the indoor unit 511 are respectively provided with blowers (not shown) that send indoor air or outdoor air that exchanges heat with the outdoor heat exchanger 503 or the indoor heat exchanger 510.
A compressor 501, an outdoor heat exchanger 503, a first pressure reducing device 505, and an indoor heat exchanger 510 are sequentially connected via a pipe 512 to form a refrigeration cycle 513 in which refrigerant is circulated. Yes.

開閉装置504は、第2の配管(接続配管)514と吸入管515とを結ぶバイパス管516に設けられており、直列に接続された電磁開閉弁517及びキャピラリーチューブ518によって構成されている。
第1の減圧装置505は、開閉装置504と同様に、並列に接続された電磁開閉弁520及びキャピラリーチューブ521によって構成されている。
第2の減圧装置509は、第1の減圧装置505と同様に、並列に接続された電磁開閉弁522及びキャピラリーチューブ523によって構成されている。
The opening / closing device 504 is provided in a bypass pipe 516 connecting the second pipe (connection pipe) 514 and the suction pipe 515, and is configured by an electromagnetic on-off valve 517 and a capillary tube 518 connected in series.
Similar to the opening / closing device 504, the first decompression device 505 includes an electromagnetic opening / closing valve 520 and a capillary tube 521 connected in parallel.
Similar to the first decompression device 505, the second decompression device 509 is configured by an electromagnetic on-off valve 522 and a capillary tube 523 connected in parallel.

上記した構成からなる空気調和機500によれば、除湿運転時に圧縮機501からの吸入及び吐出圧力差が一致するように第1の室内熱交換器507に向かう冷媒量が調整される。したがって、室内への吹き出し空気の温度を室外熱交換器503に設けられた送風機の回転数によって調整することが可能となる。   According to the air conditioner 500 having the above-described configuration, the refrigerant amount toward the first indoor heat exchanger 507 is adjusted so that the suction and discharge pressure differences from the compressor 501 coincide during the dehumidifying operation. Therefore, the temperature of the air blown into the room can be adjusted by the rotational speed of the blower provided in the outdoor heat exchanger 503.

[第6の実施の形態]
図7に示すように、空気調和機600は、圧縮機601、四方弁602、室外熱交換器603、開閉装置604及び第1の減圧装置605が格納された室外機606と、第1及び第2の室内熱交換器607、608及び第2の減圧装置609を備える室内熱交換器610が格納された室内機611とから構成されている。また、室外機606の内部及び室内機611の内部には、室外熱交換器603又は室内熱交換器610と熱交換を行う室内空気又は外気を送る図示せぬ送風機がそれぞれ備えられている。
圧縮機601と、室外熱交換器603と、第1の減圧装置605と、室内熱交換器610とが配管612を介して順次接続されており、冷媒が循環される冷凍サイクル613が形成されている。
[Sixth Embodiment]
As shown in FIG. 7, the air conditioner 600 includes a compressor 601, a four-way valve 602, an outdoor heat exchanger 603, an opening / closing device 604 and a first decompression device 605, and first and first units. It is comprised from the indoor unit 611 in which the indoor heat exchanger 610 provided with the 2 indoor heat exchangers 607 and 608 and the 2nd decompression device 609 was stored. Further, inside the outdoor unit 606 and the inside of the indoor unit 611 are respectively provided with blowers (not shown) that send indoor air or outside air that exchanges heat with the outdoor heat exchanger 603 or the indoor heat exchanger 610.
A compressor 601, an outdoor heat exchanger 603, a first pressure reducing device 605, and an indoor heat exchanger 610 are sequentially connected via a pipe 612 to form a refrigeration cycle 613 in which refrigerant is circulated. Yes.

開閉装置604は、第2の配管(接続配管)614と吸入管615とを結ぶバイパス管616に設けられており、直列に接続された電子膨張弁617及びバイパスバルブ618によって構成されている。
第1の減圧装置605は、開閉装置604と同様に、並列に接続された電子膨張弁620及びバイパスバルブ621によって構成されている。
第2の減圧装置609は、第1の減圧装置605と同様に、並列に接続された電子膨張弁622及びバイパスバルブ623によって構成されている。
The opening / closing device 604 is provided in a bypass pipe 616 connecting the second pipe (connection pipe) 614 and the suction pipe 615, and includes an electronic expansion valve 617 and a bypass valve 618 connected in series.
The first pressure reducing device 605 is configured by an electronic expansion valve 620 and a bypass valve 621 connected in parallel, similarly to the opening / closing device 604.
Similar to the first decompression device 605, the second decompression device 609 is configured by an electronic expansion valve 622 and a bypass valve 623 connected in parallel.

バイパスバルブ623の開度は、第2の室内熱交換器608の蒸発温度が一定となるように制御されており、この制御では第2の室内熱交換器608の加熱度を第2の室内熱交換器608の入り口温度と出口温度との差が用いられている。ここで、出口温度は、四方弁602の直前の温度を検出しており、精度のよい検出が可能となっている。   The opening degree of the bypass valve 623 is controlled so that the evaporation temperature of the second indoor heat exchanger 608 is constant. In this control, the degree of heating of the second indoor heat exchanger 608 is set to the second indoor heat. The difference between the inlet temperature and the outlet temperature of the exchanger 608 is used. Here, the outlet temperature detects the temperature immediately before the four-way valve 602, and can be accurately detected.

上記した構成からなる空気調和機600によれば、除湿運転時に室内吹き出し風速の指示があると第2の室内熱交換器608に備えられている送風機の回転数が設定される。そして、バイパスバルブ623の開度は第2の室内熱交換器608の蒸発温度が一定になるように制御される。このとき、第2の室内熱交換器608の加熱度には、第2の室内熱交換器608の入口温度と出口温度との差を用いて制御を行っている。   According to the air conditioner 600 having the above-described configuration, the rotation speed of the blower provided in the second indoor heat exchanger 608 is set when there is an instruction of the indoor blowing air speed during the dehumidifying operation. The opening degree of the bypass valve 623 is controlled so that the evaporation temperature of the second indoor heat exchanger 608 is constant. At this time, the degree of heating of the second indoor heat exchanger 608 is controlled using the difference between the inlet temperature and the outlet temperature of the second indoor heat exchanger 608.

以上、本発明に係る空気調和機の第1から第6の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した第1の実施の形態では、開閉装置5として二方向電磁弁が使用されているが、本発明は開閉装置として電動弁を使用してもよい。また、絞り装置6としてキャピラリーチューブが使用されているが、本発明は絞り装置としてフィルターやオリフィス,膨張弁等を使用してもよい。   The first to sixth embodiments of the air conditioner according to the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope of the present invention. It is. For example, in the above-described first embodiment, a two-way electromagnetic valve is used as the opening / closing device 5, but the present invention may use an electric valve as the opening / closing device. In addition, although a capillary tube is used as the expansion device 6, a filter, an orifice, an expansion valve, or the like may be used as the expansion device in the present invention.

また、上記した第2の実施の形態では、複数のバイパス管116a,116b,116cの一端は吐出管115に接続された1本の入口管117にそれぞれ接続されており、他端は吸入管114に接続された1本の出口管118にそれぞれ接続されているが、本発明は、複数のバイパス管116a,116b,116cの一端を吐出管115にそれぞれ直接に接続させてもよく、複数のバイパス管116a,116b,116cの他端を吸入管114にそれぞれ直接に接続させてもよい。   In the second embodiment described above, one end of each of the plurality of bypass pipes 116a, 116b, 116c is connected to one inlet pipe 117 connected to the discharge pipe 115, and the other end is connected to the suction pipe 114. However, in the present invention, one end of each of the plurality of bypass pipes 116a, 116b, and 116c may be directly connected to the discharge pipe 115, and a plurality of bypass pipes may be connected. The other ends of the tubes 116a, 116b, 116c may be directly connected to the suction tube 114, respectively.

また、上記した第2の実施の形態では、複数のバイパス管116a,116b,116cには、複数の開閉装置104a,104b,104c及び複数の絞り装置105a,105b,105cがそれぞれ設けられているが、本発明は、複数のバイパス管116a,116b,116cに複数の開閉装置104a,104b,104cだけが設けられていてもよい。また、第3の実施の形態で説明した絞り機能付きの開閉装置204のような開閉装置が設けられていてもよい。これによって、循環冷媒量の調整幅を広げることができる。   In the second embodiment described above, the plurality of bypass pipes 116a, 116b, 116c are provided with a plurality of opening / closing devices 104a, 104b, 104c and a plurality of aperture devices 105a, 105b, 105c, respectively. In the present invention, the plurality of bypass pipes 116a, 116b, and 116c may be provided with only the plurality of switching devices 104a, 104b, and 104c. In addition, an opening / closing device such as the opening / closing device 204 with a diaphragm function described in the third embodiment may be provided. Thereby, the adjustment range of the circulating refrigerant amount can be widened.

本発明に係る空気調和機の第1の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 1st Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第2の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 2nd Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第3の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 3rd Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第3の実施の形態における開閉装置を表す断面図である。It is sectional drawing showing the switchgear in 3rd Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第4の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 4th Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第5の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 5th Embodiment of the air conditioner which concerns on this invention. 本発明に係る空気調和機の第6の実施の形態を表す冷媒回路図である。It is a refrigerant circuit figure showing 6th Embodiment of the air conditioner which concerns on this invention.

符号の説明Explanation of symbols

1,100,200,400,500,600 空気調和機
2,101,201,401,501,601 圧縮機
4,103,203,403,503,603 室外熱交換器
5,104a,104b,104c,204,404,504,604 開閉装置
6,105a,105b,105c,518,618 絞り機構
8,107,206,405,505,605 第1の減圧装置
9,108,207,407,509,609 第2の減圧装置
10,408,510,610 室内熱交換器
12,112,211,410,512,612 配管
13,113,212,411,513,613 冷凍サイクル
14,114,213,412,515,615 吸入管
15,115,214,413 吐出管
18,109,208,416,507,607 第1の室内熱交換器
19,110,209,417,508,608 第2の室内熱交換器
24,116a,116b,116c,215,426,516,616 バイパス管
219 絞り部
220 絞り量調整手段
223 第1の温度検知手段(温度検知手段)
224 第2の温度検知手段(温度検知手段)
225 制御手段
1, 100, 200, 400, 500, 600 Air conditioner 2, 101, 201, 401, 501, 601 Compressor 4, 103, 203, 403, 503, 603 Outdoor heat exchanger 5, 104a, 104b, 104c, 204, 404, 504, 604 Opening / closing device 6, 105a, 105b, 105c, 518, 618 Aperture mechanism 8, 107, 206, 405, 505, 605 First decompression device 9, 108, 207, 407, 509, 609 No. 2 decompression device 10, 408, 510, 610 Indoor heat exchanger 12, 112, 211, 410, 512, 612 Piping 13, 113, 212, 411, 513, 613 Refrigeration cycle 14, 114, 213, 412, 515 615 Suction pipe 15, 115, 214, 413 Discharge pipe 18, 109, 208, 416, 507 607 First indoor heat exchanger 19, 110, 209, 417, 508, 608 Second indoor heat exchanger 24, 116a, 116b, 116c, 215, 426, 516, 616 Bypass pipe 219 Restriction section 220 Restriction adjustment Means 223 First temperature detection means (temperature detection means)
224 Second temperature detection means (temperature detection means)
225 Control means

Claims (7)

圧縮機と、室外熱交換器と、第1の減圧装置と、室内熱交換器とが冷媒を流通させる配管を介して順次接続されて成る冷凍サイクルが備えられ、前記室内熱交換器が第1の室内熱交換器と第2の室内熱交換器とに分割され、該第1の室内熱交換器と該第2の室内熱交換器とは直列に接続され、該第1の室内熱交換器と該第2の室内熱交換器との間の前記配管に第2の減圧装置が設けられている空気調和機において、
前記圧縮機の吐出管と吸入管とを結び該吐出管内を流通する冷媒の一部を該吸込管に戻すバイパス管が設けられ、該バイパス管には開閉装置が設けられていることを特徴とする空気調和機。
There is provided a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected through a pipe for circulating a refrigerant, the indoor heat exchanger being a first The first indoor heat exchanger is divided into a second indoor heat exchanger, the first indoor heat exchanger and the second indoor heat exchanger are connected in series, and the first indoor heat exchanger And an air conditioner in which a second decompression device is provided in the pipe between the second indoor heat exchanger and
A bypass pipe connecting the discharge pipe and the suction pipe of the compressor and returning a part of the refrigerant flowing through the discharge pipe to the suction pipe is provided, and the bypass pipe is provided with an opening / closing device. Air conditioner to do.
請求項1記載の空気調和機において、
前記バイパス管は複数並列に形成され、該複数のバイパス管には前記開閉装置がそれぞれ設けられていることを特徴とする空気調和機。
The air conditioner according to claim 1,
A plurality of the bypass pipes are formed in parallel, and the plurality of bypass pipes are provided with the opening / closing devices, respectively.
請求項1または2記載の空気調和機において、
前記バイパス管には、該バイパス管内を流通する冷媒を絞る絞り機構が設けられていることを特徴とする空気調和機。
The air conditioner according to claim 1 or 2,
An air conditioner, wherein the bypass pipe is provided with a throttle mechanism that throttles the refrigerant flowing through the bypass pipe.
請求項1から3のいずれか記載の空気調和機において、
前記開閉装置には、該開閉装置内を通過する冷媒を絞る絞り部が形成されていることを特徴とする空気調和機。
The air conditioner according to any one of claims 1 to 3,
The air conditioner characterized in that the opening / closing device is formed with a throttle portion for restricting the refrigerant passing through the opening / closing device.
請求項4記載の空気調和機において、
前記開閉装置には、絞り量を調整する絞り量調整手段が備えられていることを特徴とする空気調和機。
The air conditioner according to claim 4,
The air conditioner characterized in that the opening / closing device is provided with a throttle amount adjusting means for adjusting a throttle amount.
請求項1から5のいずれか記載の空気調和機において、
前記第1の熱交換器又は前記第2の熱交換器のうち少なくとも一方には、該第1の熱交換器内又は該第2の熱交換器内の冷媒温度を検知する温度検知手段が付設され、該温度検知手段と前記開閉装置とは、該温度検知手段によって検知された冷媒温度に基いて前記開閉装置を開閉させる制御手段を介して接続されていることを特徴とする空気調和機。
The air conditioner according to any one of claims 1 to 5,
At least one of the first heat exchanger and the second heat exchanger is provided with a temperature detecting means for detecting a refrigerant temperature in the first heat exchanger or the second heat exchanger. The air conditioner is characterized in that the temperature detection means and the opening / closing device are connected via a control means for opening / closing the opening / closing device based on the refrigerant temperature detected by the temperature detection means.
圧縮機と、室外熱交換器と、第1の減圧装置と、室内熱交換器とが冷媒を流通させる配管を介して順次接続されて成る冷凍サイクルが備えられ、前記室内熱交換器が第1の室内熱交換器と第2の室内熱交換器とに分割され、該第1の室内熱交換器と該第2の室内熱交換器とは直列に接続され、該第1の室内熱交換器と該第2の室内熱交換器との間の前記配管に第2の減圧装置が設けられている空気調和機において、
前記配管が、前記室外熱交換器と前記第1の減圧装置とを接続する接続配管を有し、
該接続配管と前記吸入管とを結び、前記接続配管内を流通する冷媒の一部を該吸入管に戻すバイパス管が設けられ、該バイパス管には開閉装置が設けられていることを特徴とする空気調和機。
There is provided a refrigeration cycle in which a compressor, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected through a pipe for circulating a refrigerant, the indoor heat exchanger being a first The first indoor heat exchanger is divided into a second indoor heat exchanger, the first indoor heat exchanger and the second indoor heat exchanger are connected in series, and the first indoor heat exchanger And an air conditioner in which a second decompression device is provided in the pipe between the second indoor heat exchanger and
The pipe has a connecting pipe for connecting the outdoor heat exchanger and the first pressure reducing device;
A bypass pipe connecting the connection pipe and the suction pipe and returning a part of the refrigerant flowing through the connection pipe to the suction pipe is provided, and the bypass pipe is provided with an opening / closing device. Air conditioner to do.
JP2004163333A 2003-12-24 2004-06-01 Air conditioner Expired - Fee Related JP4012892B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004163333A JP4012892B2 (en) 2003-12-24 2004-06-01 Air conditioner
KR1020040078462A KR100592954B1 (en) 2004-06-01 2004-10-01 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003427024 2003-12-24
JP2004163333A JP4012892B2 (en) 2003-12-24 2004-06-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005207719A true JP2005207719A (en) 2005-08-04
JP4012892B2 JP4012892B2 (en) 2007-11-21

Family

ID=34913997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163333A Expired - Fee Related JP4012892B2 (en) 2003-12-24 2004-06-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP4012892B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091176A (en) * 2016-06-16 2016-11-09 珠海格力电器股份有限公司 Dehumidification air conditioning system and air conditioning control method
JP2017141987A (en) * 2016-02-08 2017-08-17 三菱重工業株式会社 Refrigeration cycle device
CN110657489A (en) * 2019-10-25 2020-01-07 南京天加环境科技有限公司 Improved dehumidification reheating system and control method thereof
CN112797660A (en) * 2019-10-28 2021-05-14 广东美的制冷设备有限公司 Air conditioner and control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141987A (en) * 2016-02-08 2017-08-17 三菱重工業株式会社 Refrigeration cycle device
WO2017138243A1 (en) * 2016-02-08 2017-08-17 三菱重工サーマルシステムズ株式会社 Refrigeration cycle device
EP3370014A4 (en) * 2016-02-08 2018-12-05 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigeration cycle device
CN106091176A (en) * 2016-06-16 2016-11-09 珠海格力电器股份有限公司 Dehumidification air conditioning system and air conditioning control method
CN110657489A (en) * 2019-10-25 2020-01-07 南京天加环境科技有限公司 Improved dehumidification reheating system and control method thereof
CN110657489B (en) * 2019-10-25 2021-04-13 南京天加环境科技有限公司 Improved dehumidification reheating system and control method thereof
CN112797660A (en) * 2019-10-28 2021-05-14 广东美的制冷设备有限公司 Air conditioner and control method thereof

Also Published As

Publication number Publication date
JP4012892B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP5472391B2 (en) Container refrigeration equipment
KR20170090290A (en) Air conditioner
KR101737365B1 (en) Air conditioner
WO2014122922A1 (en) Heating system
EP2881685B1 (en) Container refrigeration device and control method thereof
CN112377986A (en) Air conditioner and control method thereof
JP2007232265A (en) Refrigeration unit
JP6267952B2 (en) Refrigeration cycle equipment
WO2015115546A1 (en) Refrigeration device
JP2010175204A (en) Refrigeration air conditioner
JP6577264B2 (en) Air conditioner
KR20120122704A (en) An air conditioner and a control method the same
JP4012892B2 (en) Air conditioner
JP2008075998A (en) Air conditioner
JP2021055876A (en) Heat source unit and refrigerating device
CN114719353B (en) Constant temperature and humidity air conditioner and control method thereof
KR101321545B1 (en) Air conditioner
KR100592954B1 (en) Air conditioner
KR20220083495A (en) Heat recovery type complex chiller system and operation method thereof
JP6581822B2 (en) Air conditioner
JP3976561B2 (en) Air conditioner
JP4572470B2 (en) Operation control method of air conditioner
KR101404105B1 (en) Air conditioner
JP2007192436A (en) Air conditioner
KR100710057B1 (en) Cooling system for air-conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees