JP2005206922A - Molten steel manufacturing method - Google Patents

Molten steel manufacturing method Download PDF

Info

Publication number
JP2005206922A
JP2005206922A JP2004017231A JP2004017231A JP2005206922A JP 2005206922 A JP2005206922 A JP 2005206922A JP 2004017231 A JP2004017231 A JP 2004017231A JP 2004017231 A JP2004017231 A JP 2004017231A JP 2005206922 A JP2005206922 A JP 2005206922A
Authority
JP
Japan
Prior art keywords
slag
treatment
refining
refining process
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004017231A
Other languages
Japanese (ja)
Other versions
JP4421313B2 (en
Inventor
Masanobu Nakamura
正信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004017231A priority Critical patent/JP4421313B2/en
Publication of JP2005206922A publication Critical patent/JP2005206922A/en
Application granted granted Critical
Publication of JP4421313B2 publication Critical patent/JP4421313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molten steel manufacturing method capable of minimizing the slagging-off outside the system, performing flexible correspondence to extensive kinds of steel, and favorably ensuring the entire thermal margin. <P>SOLUTION: In a method for manufacturing molten steel by performing dephosphorization and decarburization of molten iron, a plurality of processes are independently performed in parallel to each other, consisting of a refining process (A) in which dephosphorization is performed by using a converter, intermediate slagging-off is performed, and decarburization is successively performed, and at least a refining process (B) in which dephosphorization is performed by using a refining container exclusive for dephosphorization, and decarburization is performed by using the converter, and/or (C) a refining process in which dephosphorization and decarburization are continuously performed by using the converter without performing intermediate slagging-off. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ダブルスラグ法による溶銑の精錬プロセスを核にして効果的なスラグ排出量の低減を実現する総合的な溶鋼の製造方法に関する。   The present invention relates to a comprehensive method for producing molten steel that realizes effective reduction of slag discharge with a hot metal refining process by a double slag method as a core.

従来より、高炉で製造された溶銑を精錬して溶鋼を製造する方法として、溶銑予備処理と転炉精錬を組み合わせた方法が一般的に採用されている。かかるプロセスは、前段の溶銑予備処理では主に脱Pあるいは脱硫を行い、後段の転炉精錬では主に脱C、昇熱を行うもので、特に溶銑の脱P機能を強化すると共に転炉における精錬負荷を軽減するために実用化されたものであり、機能分割型の精錬方式(いわゆる分割精錬法)を重視するものである。   Conventionally, as a method for producing molten steel by refining hot metal produced in a blast furnace, a method combining hot metal pretreatment and converter refining has been generally employed. Such a process mainly performs de-P or desulfurization in the preceding hot metal pretreatment, and mainly performs de-C and heat-up in the subsequent converter refining. In particular, in the converter, the de-P function of hot metal is strengthened. It has been put to practical use in order to reduce the refining load, and places importance on the functional division type refining method (so-called divided refining method).

しかし、この分割精錬法は独立した予備処理工程を持たなければならないために、その専用設備、要員、資材に要する費用が嵩むこと、また全体の精錬時間が長くなり、熱ロスも大きいため溶鋼の生産性が低いことなど、プロセス全体としてのコスト、生産性に少なからず問題がある。   However, since this split refining method must have an independent pretreatment process, the cost of dedicated equipment, personnel, and materials increases, and the overall refining time becomes longer, and the heat loss is also large, so the molten steel There are not a few problems with the cost and productivity of the entire process, such as low productivity.

このような分割精錬法における問題を解消する有力なプロセスとして前記の溶銑予備処理設備を持たずに転炉による精錬のみで所望の溶鋼を製造するいわゆるダブルスラグ法(あるいは中間排滓法)が開発されている。この精錬プロセスの概要はその名の通り、転炉に溶銑及びスクラップを装入し、これにフラックスの添加と酸素吹き込みにより脱P処理を行って所定のP含有量(P,S含有量)に低減させた後、転炉炉体を排滓側に傾動させ、溶銑を炉内に残したまま生成したスラグを排出、所謂、中間排滓(途中排滓)し、同炉体を正立させた後、引き続き脱C処理を行い、生成したスラグを残したまま出鋼を行い、この同一転炉に次のチャージの溶銑及びスクラップを装入して同様にフラックスの添加と酸素吹き込みにより脱P(あるいは脱硫、脱P)処理を行う方法(特許文献1、特許文献2、特許文献3など)である。   The so-called double slag method (or intermediate slag method) has been developed to produce the desired molten steel only by refining using a converter without the above-mentioned hot metal pretreatment equipment as an effective process to solve such problems in the division refining method. Has been. The outline of this refining process is, as its name suggests, hot metal and scrap are charged into the converter and subjected to de-P treatment by adding flux and blowing oxygen to a predetermined P content (P, S content). After the reduction, the converter furnace body is tilted to the exhaust side, and the generated slag is discharged while the molten iron remains in the furnace, so-called intermediate waste (intermediate waste), to erect the furnace body After that, de-C treatment is performed, and steel is discharged while leaving the generated slag, and the hot metal and scrap of the next charge are charged into the same converter, and the P is removed by adding flux and blowing oxygen in the same manner. (Or desulfurization, de-P) treatment (Patent Document 1, Patent Document 2, Patent Document 3, etc.).

この方法によれば、溶銑予備処理のための設備費、人件費及びフラックスなどの諸資材の費用を削減でき、また精錬時間を短縮でき、さらに熱ロスを少なくできるなどのすぐれた効果が提供される。   According to this method, it is possible to reduce the cost of various materials such as equipment costs, labor costs and flux for the hot metal pretreatment, reduce the refining time, and further reduce the heat loss. The

しかしながら、このダブルスラグ法においても、スラグの排出量及び適用鋼種などの点で問題を有する。   However, this double slag method also has problems in terms of slag discharge and applicable steel types.

すなわち、ダブルスラグ法による脱P処理時の脱P能力は、前述の分割精錬法における脱P処理の場合よりもかなり劣る(後に詳述)ため
脱P処理後に生成するスラグのP濃度が低く、相対的にスラグ排出量が多くなる。また、脱P能力が低いために低P鋼や高炭素鋼の製造が困難となる。
That is, the de-P capability at the time of de-P treatment by the double slag method is considerably inferior to the case of the de-P treatment by the above-described division refining method (details will be described later), so the P concentration of the slag generated after the de-P treatment is low, Relatively large slag emissions. Moreover, since the P removal ability is low, it is difficult to produce low P steel or high carbon steel.

逆に、専用の精錬容器により脱P処理を行う分割精錬では、脱P能力が高いため、脱P後スラグのP濃度が高く、スラグの排出量が少なくできるという利点がある。また、こうしたP濃度の高いスラグは燐酸肥料用などに有効に利用できる可能性がある。しかも、一般鋼のみならず低P鋼や高炭素鋼を対象とした場合も容易に製造が可能であり、鋼種の制限がない。   On the contrary, in the divisional refining in which the de-P treatment is performed using a dedicated refining vessel, since the de-P capability is high, there is an advantage that the P concentration of slag after de-P is high and the amount of slag discharged can be reduced. Further, such slag with a high P concentration may be effectively used for phosphate fertilizers and the like. In addition, not only general steel but also low P steel and high carbon steel can be manufactured easily, and there is no restriction on the steel type.

従って、高炉から出銑される全量をダブルスラグ法により脱P、脱Cして溶鋼を製造することが必ずしも最良の方策ではないと考えられる。   Therefore, it is considered that it is not always the best policy to produce molten steel by removing P and C from the total amount discharged from the blast furnace by the double slag method.

そこで、本発明者等はダブルスラグ法の前記メリットを全面的に享受すべく、この採用を前提として、このプロセスの上記問題点を補う分割精錬法の利点に注目し、さらにこれら両プロセスとも異なる脱P予備処理を行わずに通常の転炉法で脱P、脱Cを実施するプロセスを含め、特に系外へのスラグの排出量を最小限とし、広範な製造鋼種への対応及び熱的余裕の確保などの観点から、トータルプロセスとしてのあり方を抜本的に検討することにした。   Therefore, in order to fully enjoy the merits of the double slag method, the present inventors, on the premise of this adoption, pay attention to the advantages of the division refining method that compensates for the above problems of this process, and are different from these two processes. Including the process of de-P and de-C by the ordinary converter method without de-P pretreatment, especially minimize the amount of slag discharged to the outside of the system, respond to a wide range of production steel types and thermal From the standpoint of securing a margin, etc., we decided to fundamentally examine the ideal way as a total process.

スラグ排出量を最小限とする観点から各精錬プロセスにおけるスラグ中へのP濃縮能力を調査した。ここで、精錬プロセスは基本的には下記(A)(B)(C)の3プロセスであり、さらに(B)は下記(B1)(B2)(B3)の3プロセスに分類され、合計5つのプロセスで構成される。
(A)転炉を用いて、脱P処理を行った後、中間排滓(途中排滓)し、引き続き脱C処理を行う精錬プロセス(以下、単にAプロセスという)。このプロセスからは脱P処理を行った後の脱Pスラグと脱C処理を行った後の脱Cスラグの2種類のスラグが生じる。
(B)脱P専用精錬容器を用いて脱P処理を行った後、転炉を用いて脱C処理を行う精錬プロセス(以下、単にBプロセスという)。このプロセスからもは脱P処理を行った後の脱Pスラグと脱C処理を行った後の脱Cスラグの2種類のスラグが生じる。
From the viewpoint of minimizing slag discharge, the ability of P concentration into slag in each refining process was investigated. Here, the refining process is basically the following three processes (A), (B) and (C), and (B) is further classified into the following three processes (B1), (B2) and (B3). Consists of two processes.
(A) A refining process (hereinafter, simply referred to as “A process”) in which after the de-P treatment is performed using a converter, intermediate waste (middle waste) is performed, followed by de-C treatment. From this process, two types of slag are produced: de-P slag after de-P treatment and de-C slag after de-C treatment.
(B) A refining process (hereinafter simply referred to as B process) in which de-P treatment is performed using a converter and then de-C treatment is performed using a converter. This process also produces two types of slag: de-P slag after de-P treatment and de-C slag after de-C treatment.

(B1)脱P専用精錬容器として転炉を用いるもの(以下、単にB1プロセスという)
(B2)脱P専用精錬容器として鍋を用いるもの(以下、単にB2プロセスという)
(B3)脱P専用精錬容器として混銑車を用いるもの(以下、単にB3プロセスという)
(C)転炉を用いて、中間排滓(途中排滓)を行わずに連続的に脱P及び脱C処理を行う精錬プロセス(以下、単にCプロセスという)。このプロセスからは脱P及び脱C処理を行った後の1種類の脱P脱Cスラグが生じる。
(B1) A converter that uses a converter as a smelting vessel dedicated to P removal (hereinafter simply referred to as B1 process)
(B2) Using a pan as a smelting vessel dedicated to P removal (hereinafter simply referred to as B2 process)
(B3) Those using a chaotic vehicle as a dedicated refining vessel for P removal (hereinafter simply referred to as B3 process)
(C) A refining process (hereinafter, simply referred to as C process) in which a converter is used to continuously perform de-P and de-C treatment without intermediate waste (intermediate waste). This process produces one type of de-P de-C slag after de-P and de-C treatments.

これら精錬プロセスから発生する各スラグのP2O5濃度(%)の範囲を表1に示す。

Figure 2005206922
Table 1 shows the range of P2O5 concentration (%) of each slag generated from these refining processes.
Figure 2005206922

従って、同表のスラグのP2O5濃度から各プロセスの脱P処理、脱C処理あるいは脱P脱C処理における生成スラグ中へのPの濃縮能力についての大小関係は次の通りとなる。
B脱P処理(B1脱P処理>B2脱処理P≧B3脱P処理)

>A脱P処理>C脱P脱C処理>A脱C処理>B脱C処理

さて、スラグの系外への排出量を少なくするためには各精錬プロセス各処理において溶銑Pをスラグ中へP2O5として濃縮する度合いを高めれば良いことになるが、そのことは各精錬プロセス自体の特徴を失わせることになり自ずと限界がある。このため、発明者らは各精錬プロセスを特に変更することなく、スラグの系外への発生量を最小限にすることができないかと考えた。その結果、上記の各精錬プロセスにおける発生スラグのP2O5濃度の大小関係を利用して、P2O5濃度の低いスラグを系外にそのまま排出せずにP2O5濃度の高いスラグを生成する脱P処理の造滓剤として再使用すれば良いとの着想を得た。すなわち、Aプロセス(ダブルスラグ法)やBプロセス(分割精錬法)などの個別の精錬プロセスを最適化して採用するのではなく、Aプロセスを必須としながらもこれとは別個のBプロセスやCプロセス(通常の転炉による連続脱P脱C処理)を並列的に組み合わせて採用し、これら独立した複数の精錬プロセスを一つの製鉄所(又は工場)において実施することにより、適用鋼種や熱的な余裕などについての各プロセスの独自の特徴を生かしつつ、スラグのリサイクルを容易に促進させ、その系外への排出量を最小化せんとするものである。
特開平2−190413号公報 特開平5−33029号公報 特開平7−70626号公報
Therefore, the magnitude relationship between the P2O5 concentration of the slag in the same table and the concentration capability of P into the generated slag in the de-P treatment, de-C treatment or de-P de-C treatment of each process is as follows.
B removal P treatment (B1 removal P treatment> B2 removal treatment P ≧ B3 removal P treatment)

> A removal P treatment> C removal P removal C treatment> A removal C treatment> B removal C treatment

In order to reduce the amount of slag discharged outside the system, it is necessary to increase the degree of concentration of hot metal P as P2O5 in the slag in each process of the refining process. It will naturally lose its features and there is a limit. For this reason, the inventors thought that the generation amount of slag outside the system could be minimized without particularly changing each refining process. As a result, by utilizing the magnitude relationship of the P2O5 concentration of the generated slag in each of the above refining processes, the de-P treatment process for producing slag having a high P2O5 concentration without discharging the slag having a low P2O5 concentration out of the system as it is. The idea of reusing as an agent was obtained. That is, the individual refining processes such as the A process (double slag method) and the B process (divided refining method) are not optimized and adopted, but the A process is essential but separate from the B process and C process. (Continuous de-P de-C de-treatment by ordinary converter) is adopted in parallel, and these independent multiple refining processes are carried out at one steelworks (or factory), so that While taking advantage of the unique characteristics of each process, such as margin, it facilitates the recycling of slag and minimizes the amount of emissions outside the system.
Japanese Patent Laid-Open No. 2-190413 JP-A-5-33029 JP-A-7-70626

本発明はかかる従来の背景、事情に鑑み、また上記独自の特異な着想に基づき、系外へのスラグの排出量を最小限とし、広範な製造鋼種への柔軟な対応ができ、且つ全体の熱的余裕を有利に確保するなどのトータルプロセスとして優れた溶鋼の製造方法を提供することをその課題としてなされたものである。   In view of the conventional background and circumstances, the present invention minimizes the amount of slag discharged outside the system based on the above unique unique idea, can flexibly cope with a wide range of production steel types, and An object of the present invention is to provide a method for producing molten steel that is excellent as a total process, such as advantageously ensuring thermal margin.

請求項1に係る本発明は、溶銑を脱P及び脱C精錬して溶鋼を製造する方法において、下記(A)の精錬プロセスと、少なくとも下記(B)又は/及び(C)の精錬プロセスとからなる複数のプロセスを、それぞれ独立して並列的に遂行することを特徴とする溶鋼の製造方法を、提案するものである。
(A)転炉を用いて、脱P処理を行った後、中間排滓し、引き続き脱C処理を行う精錬プロセス。
(B)脱P専用精錬容器を用いて脱P処理を行った後、転炉を用いて脱C処理を行う精錬プロセス。
(C)転炉を用いて、中間排滓を行わずに連続的に脱P及び脱C処理を行う精錬プロセス。
The present invention according to claim 1 is a method for producing molten steel by de-P and de-C refining of hot metal, and a refining process of the following (A), and a refining process of at least the following (B) and / or (C) The manufacturing method of the molten steel characterized by performing the several process which consists of each independently in parallel is proposed.
(A) A refining process in which a converter is used to perform de-P treatment, and then intermediate waste is performed, followed by de-C treatment.
(B) A refining process in which de-P treatment is performed using a converter after performing de-P treatment using a de-P-dedicated refining vessel.
(C) A refining process that uses a converter to continuously perform de-P and de-C treatment without intermediate waste.

請求項2に係る本発明は、独立して並列的に遂行されるプロセスが、前記(A)の精錬プロセスと前記(B)の精錬プロセスとの二つのプロセスで構成されることを特徴とする請求項1記載の溶鋼の製造法を、提案するものである。   The present invention according to claim 2 is characterized in that the processes performed independently and in parallel are composed of two processes, the refining process (A) and the refining process (B). The manufacturing method of the molten steel of Claim 1 is proposed.

請求項3に係る発明は、 独立して並列的に遂行される前記プロセスが、前記(A)の精錬プロセスと前記(B)の精錬プロセスと前記(C)の精錬プロセスの三つのプロセスで構成されることを特徴とする請求項1記載の溶鋼の製造法を、提案するものである。   According to a third aspect of the present invention, the processes performed independently and in parallel are composed of three processes: the refining process (A), the refining process (B), and the refining process (C). The manufacturing method of the molten steel of Claim 1 characterized by the above-mentioned is proposed.

請求項4に係る本発明は、前記(B)の精錬プロセスに用いられる脱P専用精錬容器が、転炉、鍋及び混銑車のいずれかであることを特徴とする請求項1〜4のいずれかに記載の溶鋼の製造法を、提案するものである。   The present invention according to claim 4 is characterized in that the de-P-dedicated refining vessel used in the refining process of (B) is any one of a converter, a pan, and a kneading car. The manufacturing method of the molten steel as described in this is proposed.

請求項5に係る本発明は、 P≦0.010%の低P鋼又はC≧0.30%の高C鋼については前記(B)の精錬プロセスにて行うことを特徴とする請求項2又は3記載の溶鋼の製造法を、提案するものである。   The present invention according to claim 5 is characterized in that the low P steel of P ≦ 0.010% or the high C steel of C ≧ 0.30% is performed by the refining process of (B). Or the manufacturing method of the molten steel of 3 description is proposed.

請求項6に係る本発明は、前記(A)、(B)又は(C)の精錬プロセスの完了後に生じた脱Cスラグ若しくは脱P・脱Cスラグの1種以上を、(B)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法を、提案するものである。   The present invention according to claim 6 is the refining of (B), wherein at least one of de-C slag or de-P / de-C slag generated after completion of the refining process of (A), (B) or (C) is used. The method for producing molten steel according to any one of claims 1 to 5, wherein the method is reused as a slagging agent for de-P treatment of a process.

請求項7に係る本発明は、前記(A)、(B)又は(C)の精錬プロセスの完了後に生じた脱Cスラグ若しくは脱P・脱Cスラグの1種以上を、(A)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法を、提案するものである。   The present invention according to claim 7 is the refining of (A), wherein at least one of de-C slag or de-P / de-C slag generated after completion of the refining process of (A), (B) or (C) is used. The method for producing molten steel according to any one of claims 1 to 5, wherein the method is reused as a slagging agent for de-P treatment of a process.

請求項8に係る本発明は、前記(A)の精錬プロセスの脱P処理後に生じた脱Pスラグを前記(B)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法を、提案するものである。
請求項9に係る本発明は、前記精錬スラグが溶融状態のまま再使用されることを特徴とする請求項6又は7記載の溶鋼の製造法を、提案するものである。
The present invention according to claim 8 is characterized in that the de-P slag generated after the de-P treatment of the refining process (A) is reused as a slagging agent for the de-P treatment of the refining process (B). The manufacturing method of the molten steel in any one of Claims 1-5 is proposed.
The present invention according to claim 9 proposes a method for producing molten steel according to claim 6 or 7, wherein the refining slag is reused in a molten state.

本発明によれば、ダブルスラグ法を中心としてこれに分割精錬法などの他の脱P及び脱C精錬プロセスを独立して並列的に組み合わせて実施することにより、スラグの効率的なリサイクルが実現されるため系外へのスラグの排出量を最小限とし、且つプロセス全体の熱的余裕を有利に確保でき共に広範な製造鋼種への柔軟な対応ができ、さらに脱P処理用造滓剤の使用削減、加えて排出スラグの高P化に伴う肥料用など系外利用の付加価値向上が図れるなどのトータルプロセスとして優れた溶鋼の製造方法を提供することができる。   In accordance with the present invention, efficient recycling of slag is realized by carrying out the combination of other de-P and de-C refining processes such as the split refining method in parallel and independently in the center of the double slag method. Therefore, the amount of slag discharged to the outside of the system is minimized, the thermal margin of the entire process is advantageously secured, and it is possible to respond flexibly to a wide range of production steel types. It is possible to provide a method for producing molten steel that is excellent as a total process, such as reducing the use and improving the added value of the use outside the system, such as for fertilizers accompanying the increase in P of the discharged slag.

先ず、本発明では、高炉から出銑される溶銑を脱P及び脱C精錬処理して溶鋼を製造するに当たって、転炉を用いて、脱P処理を行った後、中間排滓し、引き続き脱C処理を行うAプロセスと、脱P専用精錬容器を用いて脱P処理を行った後、転炉を用いて脱C処理を行うBプロセス、又は/及び転炉を用いて、中間排滓を行わずに連続的に脱P及び脱C処理を行うCプロセスとからなる複数のプロセスを同じ製鉄所(又は工場)内で並存させ、これらのプロセスをそれぞれ有機的に組み合わせた形態においてそれぞれ独立して並列的に遂行、実施するトータルプロセスを採用する。本発明でAプロセスを必須としているのは、前述のように各種の顕著な利点があり、単一の精錬プロセスとしては総合的に優れており、このプロセスの特徴を優先的に発揮させることを意図しているためである。   First, in the present invention, when producing molten steel by removing P and C from the blast furnace to produce molten steel, the converter is used to carry out the de-P treatment, and then the intermediate waste is removed. A process for performing C treatment and B process for carrying out de-C treatment using a converter after performing de-P treatment using a de-P-dedicated refining vessel, and / or intermediate waste using a converter A plurality of processes consisting of C processes that continuously perform de-P and de-C treatment without being carried out coexist in the same ironworks (or factory), and these processes are each independently combined in an organically combined form. Adopt a total process that is executed and implemented in parallel. The reason why the A process is essential in the present invention is that there are various remarkable advantages as described above, and it is excellent as a single refining process, and the characteristics of this process are preferentially exhibited. This is because it is intended.

本発明に係るトータルプロセスとしては、AプロセスとBプロセスの2つ並列的な組み合わせ、AプロセスとCプロセスの2つの並列的な組み合わせ、及びAプロセスとBプロセスとCプロセスの3つの並列的な組み合わせが代表的なものとなる。もちろん、これらのプロセスと異なる脱C及び脱Pプロセスをさらに並列的に組み合わせて実施する形態であっても良いものである。   The total process according to the present invention includes two parallel combinations of A process and B process, two parallel combinations of A process and C process, and three parallel combinations of A process, B process, and C process. The combination will be representative. Of course, it is also possible to adopt a mode in which the de-C and de-P processes different from these processes are combined in parallel.

そして、各プロセスを並列実施するに際して、各プロセスの各処理固有のP濃縮能力によって生成するスラグを、できる限り各プロセス及び各処理のための造滓剤としてリサイクルして再使用する。   When the processes are performed in parallel, the slag generated by the P-concentration capability specific to each process in each process is recycled and reused as a slagging agent for each process and each process as much as possible.

すなわち、発生スラグのP2O5濃度を示した前記表1及びその大小関係から、P2O5濃度値が低いスラグをリサイクル元として、P2O5濃度値がこれより高いスラグを発生させる処理をリサイクル先として、このリサイクル元のスラグをリサイクル先の脱P用造滓剤として再使用する。このように、低濃度のP2O5含有スラグを高濃度のP2O5含有スラグに濃縮、転換すれば、低濃度のスラグを直接系外に排出する必要がなくなり、全体のスラグ排出量は減少することになる。リサイクル元とリサイクル先の組み合わせはスラグのP2O5濃度の大小関係で決まり多数の組み合わせが可能であるが、その濃度差が小さい場合は濃縮効果も低くなり、スラグ排出量の低減効果が小さいため、できるだけその濃度差が大きい組み合わせのサイクルが良い。好ましいスラグのリサイクルとしてはリサイクル元とリサイクル先のP2O5濃度の差が1%以上の組み合わせを選択すべきである。但し、本発明の実施がこれに限定されるものではない。   That is, from Table 1 showing the P2O5 concentration of the generated slag and its magnitude relationship, a process for generating a slag having a low P2O5 concentration value as a recycling source and a slag having a higher P2O5 concentration value as a recycling destination. This slag is reused as a scraping agent for removing P at the recycling destination. In this way, if the low-concentration P2O5-containing slag is concentrated and converted to the high-concentration P2O5-containing slag, there is no need to discharge the low-concentration slag directly outside the system, and the overall slag discharge amount is reduced. . The combination of the recycling source and the recycling destination is determined by the magnitude relationship of the P2O5 concentration of slag, and many combinations are possible. However, if the concentration difference is small, the concentration effect is low and the reduction effect of slag emissions is small. A combination cycle having a large density difference is preferable. As a preferable slag recycling, a combination in which the difference in P2O5 concentration between the recycling source and the recycling destination is 1% or more should be selected. However, the implementation of the present invention is not limited to this.

このリサイクル元の発生スラグの造滓剤としての再使用は全量でも一部でも良いし、そのリサイクル先が一箇所でも複数箇所に分割しても良い。また、複数箇所のリサイクル元から一箇所のリサイクル先に集めて再使用することも自由である。   The reuse of the generated slag from the recycling source as a slag-forming agent may be all or a part, and the recycling destination may be divided into one place or a plurality of places. It is also free to collect and reuse from multiple recycling sources to one recycling destination.

このスラグのリサイクルの望ましい実施形態について、図1〜図3に示す溶銑の精錬フロー図に基づき具体的に説明する。ここで、各図の右向きの細い矢印は溶銑の流れを、また左向きの太い矢印はリサイクルされるスラグの流れをそれぞれ表したものである。   A preferred embodiment of this slag recycling will be specifically described based on the hot metal refining flowchart shown in FIGS. Here, the thin arrow pointing to the right in each figure represents the flow of hot metal, and the thick arrow pointing to the left represents the flow of slag to be recycled.

図1はAプロセスの脱P処理をリサイクル先として、Aプロセスの脱C処理、Bプロセスの脱C処理及びCプロセスの脱P脱C処理をリサイクル元とする組み合わせの例である。すなわち、Aプロセスの脱C処理で生じた脱Cスラグ(P2O5濃度:1.6〜2.2%)、Bプロセスの脱C処理で生じた脱Cスラグ(P2O5濃度:1.0〜1.7%)及びCプロセスの脱P脱C処理生じた脱Cスラグ(P2O5濃度:2.0〜2.7%)をそれぞれAプロセスの脱P処理用の造滓剤として再使用する場合である。リサイクル先であるAプロセスの脱P処理により生じるP2O5濃度は2.5〜5%であるから、リサイクル元がAプロセスの脱C処理の時のP2O5の平均濃度差が1.9%、Bプロセスの脱C処理の時の同平均濃度差が2.4%及びCプロセスの脱P脱C処理のときは同平均濃度差が1.4%となる。   FIG. 1 shows an example of a combination in which the de-P process of the A process is the recycling destination, and the de-C process of the A process, the de-C process of the B process, and the de-P de-C process of the C process are recycled sources. That is, de-C slag (P2O5 concentration: 1.6 to 2.2%) generated by the de-C treatment of the A process, and de-C slag (P2O5 concentration: 1.0 to 1.0%) generated by the de-C treatment of the B process. 7%) and C-process de-P de-C treatment generated C-slag (P2O5 concentration: 2.0 to 2.7%) is reused as the anti-P treatment agent for process A, respectively. . Since the P2O5 concentration generated by the de-P treatment of the A process that is the recycling destination is 2.5 to 5%, the average concentration difference of P2O5 when the recycle source is the de-C treatment of the A process is 1.9%, and the B process The same average concentration difference in the de-C treatment of 2.4% is 2.4%, and in the de-P de-C treatment of the C process, the same average concentration difference is 1.4%.

図2はBプロセスの脱P処理をリサイクル先としたもので、これにBプロセスの脱C処理、Aプロセスの脱C処理及びCプロセスの脱P脱C処理をリサイクル元とする組み合わせの例である。つまり、Bプロセスの脱C処理で生じた脱Cスラグ(P2O5濃度:1.0〜1.7%)、Aプロセスの脱C処理で生じた脱Cスラグ(P2O5濃度:1.6〜2.2%)、及びCプロセスの脱P脱C処理で生じた脱Cスラグ(P2O5濃度:2.0〜2.7%)をそれぞれBプロセスの脱P処理用の造滓剤として再使用する場合である。リサイクル先であるBプロセスの脱P処理により生じるP2O5濃度は3〜15%であるから、リサイクル元がBプロセスの脱C処理の時のP2O5の平均濃度差が7.7%、Bプロセスの脱C処理の時の同平均濃度差が7.1%及びCプロセスの脱P脱C処理のときは同平均濃度差が6.7%となる。   FIG. 2 shows an example of a combination in which the B process de-P process is the recycling destination, and the B process de-C process, the A process de-C process, and the C process de-P de-C process are recycle sources. is there. That is, de-C slag (P2O5 concentration: 1.0 to 1.7%) generated by de-C treatment of the B process, and de-C slag (P2O5 concentration: 1.6 to 2.2) generated by the de-C treatment of the A process. 2%), and de-C slag (P2O5 concentration: 2.0 to 2.7%) generated by de-P de-C treatment of C process, respectively, as reuse agent for de-P treatment of B process It is. Since the P2O5 concentration generated by the de-P treatment of the B process as the recycling destination is 3 to 15%, the average concentration difference of P2O5 when the recycle source is the de-C treatment of the B process is 7.7%. The same average concentration difference at the time of C treatment is 7.1%, and the same average concentration difference is 6.7% at the time of de-P de-C treatment of the C process.

図3はBプロセスの脱P処理をリサイクル先としたものであるが、リサイクル元としてAプロセスの脱P処理を組み合わせた例である。すなわち、Aプロセスの脱P処理で生じた脱Pスラグ(P2O5濃度:2.5〜5%)をBプロセスの脱P処理用の造滓剤として再使用する場合を示したものである。この場合におけるP2O5濃度の平均濃度差は5.3%となる。   FIG. 3 shows an example in which the P removal process of the B process is used as the recycling destination, and the A process removal P process is combined as the recycling source. That is, the case where the de-P slag (P2O5 concentration: 2.5 to 5%) generated in the de-P process of the A process is reused as a slagging agent for the de-P process of the B process is shown. In this case, the average concentration difference of the P2O5 concentration is 5.3%.

ところで、Bプロセスの脱P処理をリサイクル先とする場合、すなわちBプロセスの脱P処理用造滓剤として上記したような各プロセスの脱Cスラグ又は脱C脱Pスラグを再使用する場合は、Bプロセスの具体的な形態としてスラグの排出量をより低減させる意味では、B1、B2及びB3のうち、特にスラグ中へのP濃縮能力の高い(P2O5濃度:5〜15%)B1プロセスすなわち転炉を脱P専用精錬容器を用いたプロセスが好ましい。しかし、B1プロセスは設備コストが多大となるため、遊休転炉が存在する場合は良いが、新設には負荷が大きくなるため、設備コストの低い鍋(取鍋)を精錬容器とするB2プロセスの採用も有効である。また、B3プロセスはP濃縮能力が低く(P2O5濃度:3〜7%)、混銑車という特異形状の精錬容器を用いることからリサイクル先としてのスラグの使用量が制限される不利があるが製鉄所のレイアウトや線路輸送という目的から既設されているところも多いため、本発明のBプロセスとして採用することも当然ながら有用といえる。   By the way, when the de-P treatment of the B process is used as a recycling destination, that is, when the de-C slag or the de-C de-P slag of each process as described above is reused as a binder for the de-P treatment of the B process, As a specific form of the B process, in the sense of further reducing the amount of slag discharged, among B1, B2 and B3, the B1 process, that is, the P concentration capacity (P2O5 concentration: 5 to 15%) having a particularly high P concentration capacity in the slag. A process using a refining vessel dedicated to removing P from the furnace is preferred. However, the B1 process has a large equipment cost, so it is good if there is an idle converter. However, since the load is large in the new installation, the B2 process uses a ladle with a low equipment cost as a smelting vessel. Adoption is also effective. Also, the B3 process has a low P concentration capacity (P2O5 concentration: 3-7%) and uses a smelting container with a unique shape called a kneading car, which has the disadvantage of limiting the amount of slag used as a recycling destination. Since there are many places that have already been established for the purpose of layout and line transportation, it can be said that it is of course useful to employ it as the B process of the present invention.

次に、本発明にかかる各プロセスとその適用鋼種について述べる。本発明では、AプロセスをP規格上限>0.010%の且つC規格上限<0.30%の一般鋼を主体に適用し、BプロセスをP規格上限≦0.010%の低P鋼又はC規格上限≧0.30%の高C鋼などの特殊な鋼種を主体に適用することが好ましい。また、CプロセスはP規格上限≧0.035%のP添加鋼を主体に適用することが好ましい。Aプロセスは熱的に余裕があり、昇熱材を低減できるため量の多い一般鋼の製造に適しており、一方Bプロセスは脱P処理時の脱P能力が高いため、P≦0.010%の低P鋼又はC≧0.30%の高C鋼などのAプロセスでは製造が困難な少量の特殊な鋼種の製造に有効である。CプロセスはP規格上限≧0.035%のP添加鋼の製造に適している。   Next, each process according to the present invention and applicable steel types will be described. In the present invention, the A process is mainly applied to general steel having a P standard upper limit> 0.010% and the C standard upper limit <0.30%, and the B process is a low P steel having a P standard upper limit ≦ 0.010% or It is preferable to apply mainly a special steel type such as high C steel with an upper limit of C standard ≧ 0.30%. In addition, it is preferable that the C process is mainly applied to P-added steel with an upper limit of P specification ≧ 0.035%. The A process has a thermal margin and is suitable for the production of a large amount of general steel because it can reduce the heat-up material. On the other hand, the B process has a high de-P capacity during de-P treatment, so P ≦ 0.010. % Low P steel or C ≧ 0.30% high C steel, which is effective for the production of a small amount of special steel types that are difficult to produce. The C process is suitable for the production of P-added steel with an upper limit of P specification ≧ 0.035%.

また、これらの実施比率に関しては製造鋼種の構成にも依存するが、Aプロセスの比率を全体の20〜80%に維持するように実施することが望ましい。これは、Aプロセスが20%未満では熱的余裕が十分に確保できなくなり、一方、80%を越える場合は系外へのスラグ排出量が多くなり、また高P鋼、高C鋼の溶製に支障をきたすことにもなるからである。   Moreover, although it depends also on the structure of the production steel type regarding these implementation ratios, it is desirable to implement so that the ratio of A process may be maintained to 20 to 80% of the whole. This is because if the A process is less than 20%, a sufficient thermal margin cannot be secured. On the other hand, if it exceeds 80%, the amount of slag discharged outside the system increases, and high P steel and high C steel are melted. It will also interfere with the situation.

次に、これらスラグのリサイクル時における形態については溶融状態(溶融スラグ)でも固体状態(冷間スラグ)でも良い。溶融状態でのリサイクルは熱的余裕を確保する観点で有利である。特に、各プロセスの設備レイアウトによりリサイクル元とリサイクル先が近接し、あるいは各プロセスの処理用精錬容器を一部共通させた場合などは、短かい搬送距離で、あるいはスラグを移し替えることも無くリサイクルを行うこともでき、溶融スラグの熱ロスが少なくて済むので熱的余裕を確保する効果が大きくより好ましいと言える。例えば、図1の3つのケースでは、もっぱら溶融状態のままリサイクルすることが可能である。すなわち、同一転炉にて(A)(B)(C)の3種類のプロセスを混合(すなわち、立ち代り、入れ代わりして)して行い、(A)プロセスの前プロセスのスラグを炉内に残すのである。
一方、図2や図3のケースではこの溶融状態のままスラグをリサイクルすることは困難であり、スラグを一旦、精錬容器の外に排出し、冷却・固化させた上でつまり冷間スラグとしてリサイクルした方がむしろ有利である。これらの場合は、リサイクル元は何れも同じ転炉精錬建屋ということになるが、リサイクル先は通常転炉精錬建屋から離れた異なった予備処理建屋になるためクレーン等を使って短時間に搬送ができず、機関車輸送しても放熱が大きく固化してしまうのでその手間が掛かるだけで意味を成さないからである。また、リサイクル先が転炉型脱P処理の場合は、同一建屋内になることがあるが、溶融スラグのハンドリングによる溶銑クレーン物流の疎外があるため困難である。固化状態でリサイクルする場合は、冷却後にリサイクル先の脱P処理の方式に合わせた適正粒度範囲に破砕、調整される。例えば、鍋や混銑車で脱P処理を行うときはインジェクションを用いて脱P用造滓剤を溶銑中に供給するため、その粒度は3mm以下にすることが望ましく、また、転炉で行うときは溶銑の湯面上より同造滓剤を投入する方法を採るのでその粒度は10〜30mmに調整することが望ましい。
Next, the form at the time of recycling of these slags may be a molten state (molten slag) or a solid state (cold slag). Recycling in the molten state is advantageous from the viewpoint of securing a thermal margin. In particular, when the recycling source and recycling destination are close to each other depending on the equipment layout of each process, or when a part of the processing smelting container is shared, recycling is performed with a short transport distance or without changing the slag. Since the heat loss of the molten slag can be reduced, it can be said that the effect of securing the thermal margin is large and more preferable. For example, in the three cases of FIG. 1, it is possible to recycle exclusively in a molten state. That is, three types of processes (A), (B), and (C) are mixed (that is, replaced and replaced) in the same converter, and (A) the slag of the previous process is left in the furnace. It is.
On the other hand, in the cases of FIGS. 2 and 3, it is difficult to recycle the slag in this molten state. The slag is once discharged out of the refining vessel, cooled and solidified, that is, recycled as cold slag. It is rather advantageous. In these cases, the recycling source is the same converter refining building, but the recycling destination is usually a different pretreatment building away from the converter refining building. This is because the heat radiation is greatly solidified even if the locomotive is transported, so it only takes time and does not make sense. In addition, when the recycling destination is converter-type de-P treatment, it may be in the same building, but it is difficult because there is alienation of hot metal crane logistics by handling molten slag. In the case of recycling in a solidified state, after cooling, it is crushed and adjusted to an appropriate particle size range in accordance with the method of de-P treatment at the recycling destination. For example, when de-P treatment is performed in a pan or a kneading car, the de-P forming agent is supplied into the hot metal using injection, so the particle size is preferably 3 mm or less. Adopts a method in which the same glaze is introduced from the surface of the hot metal, so it is desirable to adjust the particle size to 10 to 30 mm.

これまで図1〜3で述べたリサイクル元のスラグ(Aプロセスの脱C処理、Bプロセスの脱C処理、Cプロセスの脱P脱C処理及びBプロセスの脱P処理など各処理により生じるスラグ)を溶銑の脱P処理などに
再使用するに加えて、さらに高炉原料となる焼結やペレットなどの焼成鉱の造滓剤として再使用することもできる。このようにすれば、P2O5濃度の低いスラグが高炉を経由して例えばBプロセスの脱P処理によってP2O5濃度の高いスラグに濃縮されることにより系外へのスラグ発生量の抑制に貢献できる。具体的には、スラグを高炉原料とヤードにて積み合せて混合し、これを焼結後に高炉に装入使用する。但し、多量に使用すると焼結工場あるいはペレット工場の生産性の低下を招き、また出銑[P]が上昇することになるのでその混合量には制約がある。
[実施例]
前述の各精錬プロセスを並列的に実施し、それらのプロセスの各処理によって生じるスラグを造滓剤としてリサイクルすることを想定して、表2に示す試験を行った。

Figure 2005206922
Recycle source slag described in FIGS. 1 to 3 (slag generated by each process such as A process de-C process, B process de-C process, C process de-P de-C process, and B process de-P process) Can be reused as a slagging agent for calcination ores such as sintering and pellets, which are raw materials for blast furnaces. If it does in this way, it can contribute to suppression of the amount of slag generation | occurrence | production outside a system by concentrating slag with low P2O5 density | concentration to slag with high P2O5 density | concentration by de-P process of B process via a blast furnace. Specifically, slag is stacked with blast furnace raw material in a yard and mixed, and this is charged into a blast furnace after sintering. However, if it is used in a large amount, the productivity of the sintering plant or pellet plant will be lowered, and the output [P] will rise, so that the amount of mixing is limited.
[Example]
The tests shown in Table 2 were performed on the assumption that the above-described refining processes were performed in parallel and the slag generated by each process of these processes was recycled as a slagging agent.
Figure 2005206922

対象となる溶銑は、500kg高周波炉にて銑鉄を溶解して調整し、溶銑鍋に装入した。なお、その一部は溶銑鍋の溶銑に試薬を追加投入して成分調整した。溶銑の成分範囲を表3に示す。

Figure 2005206922
The target hot metal was prepared by dissolving pig iron in a 500 kg high-frequency furnace and charged in a hot metal pan. In addition, a part of the components was adjusted by adding a reagent to the hot metal in the hot metal pan. Table 3 shows the component range of the hot metal.
Figure 2005206922

各プロセスの処理(脱P処理、脱C処理及び脱P脱C処理)の概要は以下の通りであり、その具体的条件を表4〜表9に示す。

Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
1)Aプロセスの場合
脱P処理に際しては、前チャージの吹錬(脱C処理)終了後、炉内のスラグ(A、B又はCプロセスの脱Cスラグを溶融状態で)を残留させた(一部チャージは一部排滓した)転炉内に、スクラップを入れ置きした後、溶銑鍋より溶銑を装入した。その後、脱P材(生石灰、鉄鉱石)および転炉スラグ(A,B又はCプロセスの脱Cスラグ)を炉上ホッパーより投入しながら、上吹き酸素ランスより酸素を吹き付けて脱P処理を行った。 The outline of each process (de-P treatment, de-C treatment and de-P de-C treatment) is as follows, and specific conditions are shown in Tables 4 to 9.
Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
Figure 2005206922
1) In the case of the A process In the de-P process, the slag in the furnace (the de-C slag of the A, B, or C process in the molten state) was left after the completion of the pre-charge blowing (de-C process) ( After some scrap was placed in the converter, the hot metal was charged from the hot metal pan. After that, de-P treatment was performed by blowing oxygen from the top blowing oxygen lance while introducing de-P material (quick lime, iron ore) and converter slag (de-C slag of A, B or C process) from the furnace hopper. It was.

脱P処理後、溶銑を出湯することなく、転炉を炉前側へ傾動して脱Pスラグを排滓した。   After the de-P treatment, the converter was tilted to the front side of the furnace without discharging the hot metal to remove the de-P slag.

その後、転炉を正立させて、造滓材(生石灰、軽ドロ、生ドロ、珪石)、鉄鉱石を炉上ホッパーより投入しながら、気体酸素を上吹きして脱C吹錬を行った。
2)B1プロセスの場合
溶銑鍋から溶銑を、予めスクラップを装入しておいた転炉へ装入し、脱P材(生石灰、鉄鉱石)および転炉スラグを炉上ホッパーより投入しながら、上吹き酸素ランスより酸素を吹き付けて脱P処理を行った。
脱P処理後の溶銑は、転炉から一旦、溶銑鍋へ出湯し、炉内の脱Pスラグは全量排滓した。出湯した溶銑を再度、転炉へ装入し、その後、造滓材(生石灰、軽ドロ、生ドロ、珪石)、鉄鉱石を炉上ホッハ゜ーより投入しながら、気体酸素を上吹きして脱C吹錬を行った。
3)B2プロセスの場合
溶銑が装入された溶銑鍋へインジェクションランスを浸漬して脱P材および転炉スラグを溶銑中へ吹き込むとともに、上吹き酸素ランスより酸素を吹き付けて脱P処理を行った。
After that, the converter was set upright, and deoxygenation blowing was performed by blowing up gaseous oxygen while introducing the ironmaking material (quick lime, light mushroom, mushroom, silica) and iron ore from the furnace hopper. .
2) In the case of the B1 process Hot metal from the hot metal ladle is charged into a converter in which scrap has been charged in advance, and de-P material (quick lime, iron ore) and converter slag are charged from the furnace hopper, De-P treatment was performed by blowing oxygen from the top blowing oxygen lance.
The hot metal after the de-P treatment was once discharged from the converter into the hot metal ladle, and the de-P slag in the furnace was entirely discharged. The hot metal discharged from the hot water is charged again into the converter, and then degassed by blowing up gaseous oxygen while charging the ironmaking ore (quick lime, light mushroom, raw mushroom, quartzite) and iron ore from the furnace hopper. Blowing was performed.
3) In the case of the B2 process, the injection lance was immersed in the hot metal ladle charged with hot metal, the P material and the converter slag were blown into the hot metal, and oxygen was blown from the top blowing oxygen lance to perform the P removal treatment. .

脱P処理後の溶銑は、予めスクラップを装入しておいた転炉へ装入し、その後、造滓材(生石灰、軽ドロ、生ドロ、珪石)、鉄鉱石を炉上ホッパーより投入しながら、気体酸素を上吹きして脱C吹錬を行った。
4)Cプロセスの場合
溶銑鍋から溶銑を、予めスクラップを装入しておいた転炉へ装入し、その後、造滓材(生石灰、軽ドロ、生ドロ、珪石)、鉄鉱石を炉上ホッパーより投入しながら、気体酸素を上吹きして脱C吹錬を行った。
The molten iron after de-P treatment is charged into the converter in which scrap has been charged in advance, and then ironmaking material (quick lime, light mushroom, mushroom, silica) and iron ore are charged from the furnace hopper. However, de-C blowing was performed by blowing up gaseous oxygen.
4) In the case of the C process Hot metal from the hot metal ladle is charged into a converter in which scrap has been charged in advance, and then ironmaking material (quick lime, light mud, raw mud, quartzite) and iron ore are put on the furnace. While introducing from the hopper, deoxygenation blowing was performed by blowing up gaseous oxygen.

これらの4つのプロセスを各処理に生じるスラグのリサイクルが円滑に効率よく行なわれるように所定の構成比で組み合わせて10チャージ連続で実施した。冷間スラグの場合は必要に応じて貯蔵し、後のチャージで使用した。また、本発明と従来法との技術的差異を明確にするため、各プロセスを単独で遂行し、その同一プロセス内のスラグリサイクルする場合についてもそれぞれ同様に10チャージ実施し、これを比較例とした。   These four processes were combined at a predetermined composition ratio and carried out for 10 consecutive charges so that the slag generated in each treatment could be recycled smoothly and efficiently. In the case of cold slag, it was stored as needed and used for later charging. In addition, in order to clarify the technical difference between the present invention and the conventional method, each process is performed alone, and slag recycling within the same process is performed in the same 10 charges, and this is compared with the comparative example. did.

この場合の製造鋼種は表10に示すような低P鋼、高炭素鋼とその他の一般鋼の3種類に設定し、各プロセス毎にその適性を考慮して両鋼種の割合を選定した。各プロセスにおけるこの鋼種割合を表11に示す。

Figure 2005206922
Figure 2005206922
The production steel types in this case were set to three types of low P steel, high carbon steel and other general steels as shown in Table 10, and the ratio of both steel types was selected in consideration of the suitability for each process. Table 11 shows the steel grade ratio in each process.
Figure 2005206922
Figure 2005206922

表12はこのようにして実施した各プロセス間、プロセス内及び高炉を含めたスラグリサイクルの形態とリサイクル量(リサイクル元の量を基準)の割合の関係を示している。

Figure 2005206922
Table 12 shows the relationship between the slag recycling mode including each process performed in this way, the slag recycling including the blast furnace, and the ratio of the recycling amount (based on the amount of the recycling source).
Figure 2005206922

そして、これら本発明の実施例(本発明例1〜7)と比較例(1〜5)によるスラグ排出量を調査した結果を図4に、またプロセスの熱的余裕を調査した結果を図5に、さらに製造した鋼のP濃度の分析に基づく規格外れ率を図6にそれぞれ示す。   And the result of investigating the slag discharge | emission amount by these Example (invention example 1-7) and these comparative examples (1-5) of this invention is shown in FIG. 4, The result of investigating the thermal margin of a process is shown in FIG. Further, the off-standard ratios based on the analysis of the P concentration of the manufactured steel are shown in FIG.

図4〜図6によって明かなように、本発明はスラグ排出量が少なく且つ熱的余裕のレベルが高く、また鋼中のPの規格外れもないトータルプロセスとして極めて優れたものであることが分る。   As is apparent from FIGS. 4 to 6, it is found that the present invention is extremely excellent as a total process with a small amount of slag discharge, a high level of thermal margin, and no deregulation of P in steel. The

本発明の一実施形態を示す溶銑及びリサイクルスラグの精錬フロー図である。It is a refining flow figure of hot metal and recycling slag which shows one embodiment of the present invention. 本発明の他の実施形態を示す溶銑及びリサイクルスラグの精錬フロー図である。It is a refining flow figure of hot metal and recycling slag which shows other embodiments of the present invention. 本発明のさらに他の実施形態を示す溶銑及びリサイクルスラグの精錬フロー図である。It is a refining flow figure of hot metal and recycle slag which shows other embodiments of the present invention. 本発明の実施例及び比較例におけるスラグ排出量の調査結果を図示したグラフである。It is the graph which illustrated the investigation result of the slag discharge | emission amount in the Example and comparative example of this invention. 本発明の実施例及び比較例におけるプロセスの比較例1を基準して算出した熱的余裕を調査した結果を図示したグラフである。It is the graph which illustrated the result of having investigated the thermal margin computed on the basis of the comparative example 1 of the process in the Example and comparative example of this invention. 本発明の実施例及び比較例における鋼のP濃度を分析した結果に基づくP規格外れ率を図示したグラフである。It is the graph which illustrated P out-of-standard rate based on the result of having analyzed P concentration of steel in the example and comparative example of the present invention.

Claims (9)

溶銑を脱P及び脱C精錬して溶鋼を製造する方法において、下記(A)の精錬プロセスと、少なくとも下記(B)又は/及び(C)の精錬プロセスとからなる複数のプロセスを、それぞれ独立して並列的に遂行することを特徴とする溶鋼の製造方法。
(A)転炉を用いて、脱P処理を行った後、中間排滓し、引き続き脱C処理を行う精錬プロセス。
(B)脱P専用精錬容器を用いて脱P処理を行った後、転炉を用いて脱C処理を行う精錬プロセス。
(C)転炉を用いて、中間排滓を行わずに連続的に脱P及び脱C処理を行う精錬プロセス。
In the method for producing molten steel by demetallizing P and de-C from hot metal, a plurality of processes consisting of the following refining process (A) and at least the refining process (B) or / and (C) below are independent of each other. And a method for producing molten steel, which is performed in parallel.
(A) A refining process in which a converter is used to perform de-P treatment, and then intermediate waste is performed, followed by de-C treatment.
(B) A refining process in which de-P treatment is performed using a converter after performing de-P treatment using a de-P-dedicated refining vessel.
(C) A refining process that uses a converter to continuously perform de-P and de-C treatment without intermediate waste.
独立して並列的に遂行されるプロセスが、前記(A)の精錬プロセスと前記(B)の精錬プロセスとの二つのプロセスで構成されることを特徴とする請求項1記載の溶鋼の製造法。   2. The method for producing molten steel according to claim 1, wherein the processes independently performed in parallel are composed of two processes, the refining process (A) and the refining process (B). . 独立して並列的に遂行される前記プロセスが、前記(A)の精錬プロセスと前記(B)の精錬プロセスと前記(C)の精錬プロセスの三つのプロセスで構成されることを特徴とする請求項1記載の溶鋼の製造法。   The process performed independently and in parallel is composed of three processes of the refining process (A), the refining process (B), and the refining process (C). Item 2. A method for producing molten steel according to Item 1. 前記(B)の精錬プロセスに用いられる脱P専用精錬容器が、転炉、鍋及び混銑車のいずれかであることを特徴とする請求項1〜4のいずれかに記載の溶鋼の製造法。   The method for producing molten steel according to any one of claims 1 to 4, wherein the de-P-dedicated refining vessel used in the refining process (B) is one of a converter, a pan, and a kneading car. P≦0.010%の低P鋼又はC≧0.30%の高C鋼については前記(B)の精錬プロセスにて行うことを特徴とする請求項2又は3記載の溶鋼の製造法。   4. The method for producing molten steel according to claim 2, wherein the low P steel of P ≦ 0.010% or the high C steel of C ≧ 0.30% is performed by the refining process of (B). 前記(A)、(B)又は(C)の精錬プロセスの完了後に生じた脱Cスラグ若しくは脱P・脱Cスラグの1種以上を、(B)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法。   One or more types of de-C slag or de-P / de-C slag generated after completion of the refining process of (A), (B) or (C) above, or slag for de-P treatment of the refining process of (B) It reuses as an agent, The manufacturing method of the molten steel in any one of Claims 1-5 characterized by the above-mentioned. 前記(A)、(B)又は(C)の精錬プロセスの完了後に生じた脱Cスラグ若しくは脱P・脱Cスラグの1種以上を、(A)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法。   One or more types of de-C slag or de-P / de-C slag generated after completion of the refining process of (A), (B) or (C) is used for de-P treatment of the refining process of (A) It reuses as an agent, The manufacturing method of the molten steel in any one of Claims 1-5 characterized by the above-mentioned. 前記(A)の精錬プロセスの脱P処理後に生じた脱Pスラグを前記(B)の精錬プロセスの脱P処理用の造滓剤として再使用することを特徴とする請求項1〜5のいずれかに記載の溶鋼の製造法。   The de-P slag produced after the de-P treatment of the refining process of (A) is reused as a slag-forming agent for the de-P treatment of the refining process of (B). The manufacturing method of the molten steel of crab. 前記精錬スラグが溶融状態のまま再使用されることを特徴とする請求項6又は7記載の溶鋼の製造法。

The method for producing molten steel according to claim 6 or 7, wherein the refining slag is reused in a molten state.

JP2004017231A 2004-01-26 2004-01-26 Manufacturing method of molten steel Expired - Fee Related JP4421313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017231A JP4421313B2 (en) 2004-01-26 2004-01-26 Manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017231A JP4421313B2 (en) 2004-01-26 2004-01-26 Manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2005206922A true JP2005206922A (en) 2005-08-04
JP4421313B2 JP4421313B2 (en) 2010-02-24

Family

ID=34902137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017231A Expired - Fee Related JP4421313B2 (en) 2004-01-26 2004-01-26 Manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP4421313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113029A (en) * 2005-10-18 2007-05-10 Nippon Steel Corp Converter refining method and converter refining equipment
JP2012172249A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Refining method and method for producing molten steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6432403B2 (en) * 2015-03-17 2018-12-05 新日鐵住金株式会社 Converter operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113029A (en) * 2005-10-18 2007-05-10 Nippon Steel Corp Converter refining method and converter refining equipment
JP4555764B2 (en) * 2005-10-18 2010-10-06 新日本製鐵株式会社 Converter refining method
JP2012172249A (en) * 2011-02-24 2012-09-10 Jfe Steel Corp Refining method and method for producing molten steel

Also Published As

Publication number Publication date
JP4421313B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP5560947B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
CN101717843B (en) Method for utilizing sulfur-containing refining waste residue for refining slag
JP5569174B2 (en) Method for recovering iron and phosphorus from steelmaking slag, blast furnace slag fine powder or blast furnace slag cement, and phosphoric acid resource raw material
CN105506226A (en) Method for carrying out pre-desiliconization, pre-decarburization and pre-dephosphorization on molten iron in molten iron tank
JP5087905B2 (en) Hot metal dephosphorization method
JP2018178260A (en) Converter steelmaking process
JP2008223095A (en) Method for producing high phosphorus slag
JP4977874B2 (en) Hot metal dephosphorization method
JP4977870B2 (en) Steel making method
JP4421313B2 (en) Manufacturing method of molten steel
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
CN101831525B (en) Dephosphorization method for molten iron
JP5471151B2 (en) Converter steelmaking method
JP2020180322A (en) Production method of molten steel using converter
JP2018188730A (en) Converter steelmaking process
JP5272378B2 (en) Hot metal dephosphorization method
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JPH11264011A (en) Method for effective use of slag
JP4882171B2 (en) Hot phosphorus dephosphorization method
CN220202006U (en) Equipment for smelting reduction of copper-containing sludge based on oxygen-enriched top-blowing process
JP5979017B2 (en) Hot metal refining method
JP3738741B2 (en) Pretreatment dephosphorization of hot metal
JP2010242165A (en) Method for reusing converter slag
JP3339982B2 (en) Converter steelmaking method
JP4598220B2 (en) Hot metal processing method using decarburized iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees