JP2005206114A - Steering control device for vehicle - Google Patents

Steering control device for vehicle Download PDF

Info

Publication number
JP2005206114A
JP2005206114A JP2004017180A JP2004017180A JP2005206114A JP 2005206114 A JP2005206114 A JP 2005206114A JP 2004017180 A JP2004017180 A JP 2004017180A JP 2004017180 A JP2004017180 A JP 2004017180A JP 2005206114 A JP2005206114 A JP 2005206114A
Authority
JP
Japan
Prior art keywords
driving force
target
rear wheel
yaw moment
force distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004017180A
Other languages
Japanese (ja)
Inventor
Ryota Shirato
良太 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004017180A priority Critical patent/JP2005206114A/en
Publication of JP2005206114A publication Critical patent/JP2005206114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize control meeting a response characteristic of a tire relative to a steering angle and exhibiting excellence in control response of yaw moment by distribution of driving force. <P>SOLUTION: ECU 103 has a rear wheel steering angle and yaw moment calculation part 103a for calculating a target rear wheel steering angle, i.e., a primary delay response of the steering angle and calculating the target yaw moment, i.e., response of sum of the response obtained by applying high-pass filter to the steering angle and the response obtained by further differentiating the output; a rear wheel steering angle driving part 103d for driving a second steering mechanism based on the calculated target rear wheel steering angle; a driving force distribution calculation part 103c for calculating distribution of the target driving force based on the calculated target yaw moment; and a right motor driving part 103e and a left motor driving part 103f for driving a right electric motor 104R and a left electric motor 104L based on the distribution of the calculated target driving force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、後輪を転舵させる後輪転舵機構と、駆動輪の左右駆動力配分を変化させる左右駆動力配分手段とを備えた車両用転舵制御装置の技術分野に属する。   The present invention belongs to the technical field of a vehicle steering control device that includes a rear wheel steering mechanism that steers rear wheels and a left and right driving force distribution means that changes the left and right driving force distribution of the driving wheels.

従来の車両用転舵制御装置としては、車速の上昇に応じて左右駆動力配分制御の比率よりも後輪転舵制御の制御比率を高くし、駆動トルクの大きさに応じて後輪転舵制御よりも左右駆動力配分制御の制御比率を高くすることで、旋回時において全走行領域に亘ってヨーモーメントの発生を促進し、車両挙動の安定化を図っている(例えば、特許文献1参照)。
特開平6−263049号公報
As a conventional vehicle steering control device, the control ratio of the rear wheel steering control is made higher than the ratio of the left and right driving force distribution control according to the increase in the vehicle speed, and the rear wheel steering control is made according to the magnitude of the driving torque. Also, by increasing the control ratio of the left / right driving force distribution control, the generation of the yaw moment is promoted over the entire traveling region during turning, and the vehicle behavior is stabilized (for example, see Patent Document 1).
JP-A-6-263049

しかしながら、上記従来技術にあっては、後輪転舵制御と左右駆動力配分制御の制御比率を、車速あるいは駆動トルクに応じて決定しているため、各々の制御特性、すなわち後輪転舵でのタイヤの横力応答性と、左右駆動力配分制御でのタイヤの前後力応答性を考慮した制御を実現できないという問題があった。   However, in the above prior art, since the control ratio of the rear wheel steering control and the left and right driving force distribution control is determined according to the vehicle speed or the driving torque, each control characteristic, that is, the tire at the rear wheel steering is determined. There is a problem that it is not possible to realize control in consideration of the lateral force response of the tire and the longitudinal force response of the tire in the left / right driving force distribution control.

本発明は、上記問題に着目してなされたもので、その目的とするところは、ステアリング操舵角に対するタイヤの応答特性に適応し、駆動力配分によるヨーモーメントの制御応答性の良さを生かした制御を実現できる車両用転舵制御装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to adapt the tire response characteristics to the steering angle and take advantage of the good control response of the yaw moment by driving force distribution. It is providing the vehicle steering control apparatus which can implement | achieve.

上記目的を達成するため、本発明にあっては、後輪の転舵角を変化させる後輪転舵機構と、駆動輪の左右駆動力配分を変化させる駆動力配分手段と、車両状態に応じて前記後輪転舵機構および駆動力配分手段を制御する制御手段と、を備えた車両用転舵制御装置において、前記制御手段は、ステアリング操舵角の一次遅れ応答となる目標後輪転舵角を算出する目標後輪転舵角算出部と、算出された目標後輪転舵角に基づいて前記後輪転舵機構を駆動する後輪転舵角駆動部と、ステアリング操舵角にハイパスフィルタをかけた応答と、さらにその出力を微分した応答との和の応答となる目標ヨーモーメントを算出する目標ヨーモーメント算出部と、算出された目標ヨーモーメントに基づいて目標駆動力配分を算出する駆動力配分算出部と、算出された目標駆動力配分に基づいて前記駆動力配分手段を駆動する駆動輪駆動部と、を有することを特徴とする。   In order to achieve the above object, according to the present invention, a rear wheel steering mechanism that changes the steering angle of the rear wheels, a driving force distribution means that changes the left and right driving force distribution of the driving wheels, and a vehicle state In the vehicle steering control device, comprising: a control unit that controls the rear wheel steering mechanism and the driving force distribution unit. The control unit calculates a target rear wheel steering angle that is a first-order lag response of a steering steering angle. A target rear wheel turning angle calculation unit, a rear wheel turning angle driving unit that drives the rear wheel turning mechanism based on the calculated target rear wheel turning angle, a response obtained by applying a high-pass filter to the steering steering angle, and A target yaw moment calculation unit that calculates a target yaw moment that is a response that is a sum of responses obtained by differentiating outputs; a driving force distribution calculation unit that calculates a target driving force distribution based on the calculated target yaw moment; And having a driving wheel driving unit for driving the driving force distribution means based on the target driving force distribution.

本発明にあっては、後輪転舵はステアリング操舵角の一次遅れ応答となり、駆動輪の左右駆動力配分は、ステアリング操舵角にハイパスフィルタをかけた応答と、さらにその出力を微分した応答との和の応答となる。すなわち、後輪転舵および駆動力配分の応答性を、ステアリング操舵角に対するタイヤの応答特性に適応させることができ、駆動力配分によるヨーモーメントの制御応答性の良さを生かした制御を実現できる。   In the present invention, the rear wheel steering is a first-order lag response of the steering steering angle, and the left and right driving force distribution of the driving wheel is a response obtained by applying a high-pass filter to the steering angle and a response obtained by differentiating the output. It becomes a sum response. That is, the responsiveness of the rear wheel steering and the driving force distribution can be adapted to the tire response characteristics with respect to the steering angle, and the control utilizing the good control responsiveness of the yaw moment by the driving force distribution can be realized.

以下、本発明を実施するための最良の形態を、実施例1に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described based on the first embodiment.

まず、構成を説明する。
図1は、本発明の車両用転舵制御装置を適用した電気自動車のシステム構成図である。
First, the configuration will be described.
FIG. 1 is a system configuration diagram of an electric vehicle to which a vehicle steering control device of the present invention is applied.

実施例1の左右輪独立駆動車101は、左右前輪102FR,102FLを各々駆動する左右電動モータ(駆動力配分手段)104R,104Lと、左右前輪102FR,102FLを転舵させる第1転舵機構106と、左右後輪102RR,102RLを転舵させる第2転舵機構(後輪転舵機構)111とを備えている。   The left and right wheel independent drive vehicle 101 of the first embodiment includes left and right electric motors (driving force distribution means) 104R and 104L that respectively drive the left and right front wheels 102FR and 102FL, and a first steering mechanism 106 that steers the left and right front wheels 102FR and 102FL. And a second turning mechanism (rear wheel turning mechanism) 111 for turning the left and right rear wheels 102RR, 102RL.

ECU(制御手段)103は、車両状態により目標後輪転舵角と目標ヨーモーメントを算出し、第2転舵機構111および左右電動モータ104R,104Lへの指令値を算出し、指令値に基づいて第2転舵機構111と左右電動モータ104R,104Lを駆動する。   The ECU (control means) 103 calculates a target rear wheel turning angle and a target yaw moment according to the vehicle state, calculates command values for the second steering mechanism 111 and the left and right electric motors 104R, 104L, and based on the command values. The second steering mechanism 111 and the left and right electric motors 104R and 104L are driven.

ECU103に入力される車両状態としては、例えば、車速センサ105(左右車輪速センサ105R,105L)の出力と、操舵角センサ108の出力と、ブレーキペダルセンサ109の出力と、アクセルペダルセンサ110の出力が入力される。ブレーキペダルセンサ109とアクセルペダルセンサ110とで、運転者による加減速指令を検出する加減速指令検出手段が構成されている。   Examples of the vehicle state input to the ECU 103 include an output of the vehicle speed sensor 105 (left and right wheel speed sensors 105R and 105L), an output of the steering angle sensor 108, an output of the brake pedal sensor 109, and an output of the accelerator pedal sensor 110. Is entered. The brake pedal sensor 109 and the accelerator pedal sensor 110 constitute acceleration / deceleration command detection means for detecting an acceleration / deceleration command by the driver.

車速センサ105は、車両の車速を検出する。操舵角センサ108は、第1操舵機構106に対する、運転者によるステアリングホイール107の入力角である操舵角を検出する。ブレーキペダルセンサ109は、運転者のブレーキペダル踏み込み量を検出する。アクセルペダルセンサ110は、運転者のアクセルペダル踏み込み量を検出する。   The vehicle speed sensor 105 detects the vehicle speed of the vehicle. The steering angle sensor 108 detects a steering angle that is an input angle of the steering wheel 107 by the driver with respect to the first steering mechanism 106. The brake pedal sensor 109 detects the brake pedal depression amount of the driver. The accelerator pedal sensor 110 detects the amount of depression of the driver's accelerator pedal.

図2は、ECU103の制御ブロック図である。
ECU103は、後輪転舵角およびヨーモーメント算出部(目標後輪転舵角算出部および目標ヨーモーメント算出部)103aと、目標制駆動力算出部103bと、駆動力配分算出部103cと、後輪転舵角駆動部103dと、左右モータ駆動部(駆動輪駆動部)103e,103fとを備えている。
FIG. 2 is a control block diagram of the ECU 103.
The ECU 103 includes a rear wheel turning angle and yaw moment calculation unit (target rear wheel turning angle calculation unit and target yaw moment calculation unit) 103a, a target braking / driving force calculation unit 103b, a driving force distribution calculation unit 103c, and a rear wheel steering. An angular drive unit 103d and left and right motor drive units (drive wheel drive units) 103e and 103f are provided.

後輪転舵角およびヨーモーメント算出部103aは、車速センサ105と操舵角センサ108の各出力から、車両運動の横すべり角がゼロとなるような目標制駆動力指令値を算出し、駆動力配分算出部103cと後輪転舵角駆動部103dに出力する。なお、目標制駆動力の算出方法については後述する。   The rear wheel turning angle and yaw moment calculation unit 103a calculates a target braking / driving force command value such that the side slip angle of the vehicle motion becomes zero from the outputs of the vehicle speed sensor 105 and the steering angle sensor 108, and calculates the driving force distribution. To the unit 103c and the rear wheel turning angle driving unit 103d. A method for calculating the target braking / driving force will be described later.

目標制駆動力算出部103bは、アクセルペダルセンサ110とブレーキペダルセンサ109の各出力から、車両全体としての制駆動力を算出し、駆動力配分算出部103cに出力する。
ここでは、例えば、目標ヨーモーメントをM、目標制駆動力をF、左右前輪の目標駆動力をそれぞれFl,Frとすると、
M=llFf
F=Fl+Fr …(11)
を満たす左右輪の目標駆動力を算出すればよい。ここでllは車体中心から左前輪までのトレッド長lrは車体中心から右前輪までのトレッド長である。
The target braking / driving force calculation unit 103b calculates the braking / driving force of the entire vehicle from the outputs of the accelerator pedal sensor 110 and the brake pedal sensor 109, and outputs the braking / driving force to the driving force distribution calculation unit 103c.
Here, for example, if the target yaw moment is M, the target braking / driving force is F, and the target driving forces of the left and right front wheels are F l and F r , respectively,
M = l l F f
F = F l + F r (11)
What is necessary is just to calculate the target driving force of the left and right wheels that satisfy Here, l l is the tread length from the vehicle center to the left front wheel , and l r is the tread length from the vehicle center to the right front wheel.

駆動力配分算出部103cは、後輪転舵角およびヨーモーメント算出部103aと目標制駆動力算出部103bの各出力に基づき、各駆動輪の駆動力を算出し、右モータ駆動部103eと左モータ駆動部103fに出力する。   The driving force distribution calculating unit 103c calculates the driving force of each driving wheel based on the outputs of the rear wheel turning angle and yaw moment calculating unit 103a and the target braking / driving force calculating unit 103b, and the right motor driving unit 103e and the left motor It outputs to the drive part 103f.

後輪転舵角駆動部103dでは、後輪転舵角およびヨーモーメント算出部103aで算出された後輪転舵角に基づいて、第2転舵機構111を駆動する。右モータ駆動部103eと左モータ駆動部103fは、駆動力配分算出部103cにより算出された各駆動輪の駆動力に基づいて、駆動輪を駆動する。   The rear wheel turning angle drive unit 103d drives the second turning mechanism 111 based on the rear wheel turning angle and the rear wheel turning angle calculated by the yaw moment calculation unit 103a. The right motor driving unit 103e and the left motor driving unit 103f drive the driving wheels based on the driving force of each driving wheel calculated by the driving force distribution calculating unit 103c.

次に、作用を説明する。
[目標後輪転舵角および目標ヨーモーメント算出制御処理]
図3は、ECU103で実行される目標後輪転舵角および目標ヨーモーメント算出制御処理の流れを示すフローチャートであり、以下、各ステップについて説明する。
Next, the operation will be described.
[Target rear wheel turning angle and target yaw moment calculation control process]
FIG. 3 is a flowchart showing the flow of the target rear wheel turning angle and target yaw moment calculation control process executed by the ECU 103, and each step will be described below.

ステップS300では、車両のイグニッションキースイッチのONなどにより、本システムが起動され、ステップS301へ移行する。   In step S300, the present system is activated, for example, by turning on the ignition key switch of the vehicle, and the process proceeds to step S301.

ステップS301では、車速センサ105と操舵角センサ108より、車速と操舵角とを入力し、ステップS302へ移行する。実施例1では、駆動輪でない後輪102RR,102RLに取り付けた車速センサ105(車輪速センサ105L,105R)の平均を車速として算出している。   In step S301, the vehicle speed and the steering angle are input from the vehicle speed sensor 105 and the steering angle sensor 108, and the process proceeds to step S302. In the first embodiment, the average of the vehicle speed sensors 105 (wheel speed sensors 105L and 105R) attached to the rear wheels 102RR and 102RL that are not drive wheels is calculated as the vehicle speed.

ステップS302では、操舵角と車速に基づいて、車両運動の横すべり角がゼロになるような後輪の目標後輪転舵角および駆動力配分による目標ヨーモーメントを算出し、ステップS303へ移行する。   In step S302, based on the steering angle and the vehicle speed, the target rear wheel turning angle of the rear wheel and the target yaw moment based on the driving force distribution are calculated such that the side slip angle of the vehicle motion becomes zero, and the process proceeds to step S303.

ステップS303では、ブレーキペダルセンサ109およびアクセルペダルセンサ110より、運転者のアクセルペダル操作量とブレーキペダル操作量を入力し、ステップS304へ移行する。   In step S303, the driver's accelerator pedal operation amount and brake pedal operation amount are input from the brake pedal sensor 109 and the accelerator pedal sensor 110, and the process proceeds to step S304.

ステップS304では、アクセルペダルおよびブレーキペダルの操作量に基づいて、車両挙動としての目標制駆動力Fを算出し、ステップS305へ移行する。   In step S304, the target braking / driving force F as the vehicle behavior is calculated based on the operation amounts of the accelerator pedal and the brake pedal, and the process proceeds to step S305.

ステップS305では、目標制駆動力Fおよび目標ヨーモーメントMに基づいて、駆動輪毎の目標制駆動力F,Fを算出し、ステップS306へ移行する。 In step S305, based on the target braking / driving force F and the target yaw moment M, target braking / driving forces F 1 and F r for each drive wheel are calculated, and the process proceeds to step S306.

ステップS306では、第2転舵機構111に後輪転舵角の指令値を算出するとともに、駆動輪毎の指令値を算出して右電動モータ104Rと左電動モータ104Lに出力し、ステップS301へ移行する。   In step S306, the command value of the rear wheel turning angle is calculated for the second steering mechanism 111, the command value for each drive wheel is calculated and output to the right electric motor 104R and the left electric motor 104L, and the process proceeds to step S301. To do.

[車両運動の横すべり角がゼロとなる指令値の算出]
ここで、車両運動の横すべり角がゼロとなる目標後輪転舵角と目標ヨーモーメントの算出方法について説明する。
[Calculation of command value for zero side slip angle of vehicle motion]
Here, a method for calculating the target rear wheel turning angle and the target yaw moment at which the side slip angle of the vehicle motion becomes zero will be described.

車両の運動方程式は、
mV(γ+β')=Cff-(lf/V)γ-β}+Crr+(lr/V)γ-β} …(1)
Iγ'=lfCff-(lf/V)γ-β}-lrCrr+(lr/V)γ-β}+M …(2)
で表される。ここで、m:車両質量、V:車速、γ:ヨーレート、β:横すべり角、C:前輪のコーナリングパワー、C:後輪のコーナリングパワー、δ:前輪操舵角、δ:後輪転舵角、l:車両重心点から前輪までのホイールベース、l:車両重心点から後輪までのホイールベース、I:車両のヨー慣性モーメント、M:駆動力配分によるヨーモーメント、である。
The equation of motion of the vehicle is
mV (γ + β ') = C ff- (l f / V) γ-β} + C rr + (l r / V) γ-β}… (1)
Iγ '= l f C ff- (l f / V) γ-β} -l r C rr + (l r / V) γ-β} + M (2)
It is represented by Where m: vehicle mass, V: vehicle speed, γ: yaw rate, β: side slip angle, C f : front wheel cornering power, C r : rear wheel cornering power, δ f : front wheel steering angle, δ r : rear wheel rotation Steering angle, l f : wheel base from the vehicle center of gravity to the front wheels, l r : wheel base from the vehicle center of gravity to the rear wheels, I: vehicle yaw moment of inertia, M: yaw moment by driving force distribution.

式(1),(2)よりγを消去して整理すると、
{A(Cf+Cr+mVs)-B(Cflf-Crlr)}β=(A-Blf)Cfδf+(A+Blr)Crδr-BM …(3)
となる。ここで、
s:ラプラス演算子、
A=Cflf 2+Crlr 2+IVs、B=Cflf-Crlr+mV2
である。
Eliminating γ from equations (1) and (2),
{A (C f + C r + mVs) -B (C f l f -C r l r )} β = (A-Bl f ) C f δ f + (A + Bl r ) C r δ r -BM … (3)
It becomes. here,
s: Laplace operator,
A = C f l f 2 + C r l r 2 + IVs, B = C f l f -C r l r + mV 2
It is.

今ここで、δr=k(s)δf、M=0として、前輪操舵角がいかなる値でも、車両の横すべり角がゼロとなるためには、
{(A-Blf)Cf+(A+Blr)Crk(s)}δf=0 …(4)
となればよいので、前輪操舵角に応じて決まる後輪転舵角の伝達関数は、
k(s)=-(A-Blf)/(A+Blr)・(Cf/Cr) …(5)
となる。A,Bに前出の式を代入して整理すると、
k(s)=k0/(1+τs)-τs/(1+τs)・(Cf/Cr) …(6)
ただし、
k0=[{CfCrlr(lf+lr)}-CflfmV2/{CfCrlf(lf+lr)+CrlrmV2}]
τ=IV/{Cflf(lf+lr)+lrmV2}
である。
Now, if δ r = k (s) δ f , M = 0, no matter what the front wheel steering angle is, the side slip angle of the vehicle will be zero,
{(A-Bl f ) C f + (A + Bl r ) Crk (s)} δ f = 0… (4)
Therefore, the transfer function of the rear wheel turning angle determined according to the front wheel steering angle is
k (s) =-(A-Bl f ) / (A + Bl r ) ・ (C f / C r )… (5)
It becomes. Substituting the above formula for A and B,
k (s) = k 0 / (1 + τs) -τs / (1 + τs) ・ (C f / C r )… (6)
However,
k 0 = [{C f C r l r (l f + l r )}-C f l f mV 2 / {C f C r l f (l f + l r ) + C r l r mV 2 }]
τ = IV / {C f l f (l f + l r ) + l r mV 2 }
It is.

したがって、式(6)より、前輪操舵角に対する後輪転舵角の応答は、前輪操舵角とは逆相のハイパスフィルターをかけたような応答と、前輪操舵角と同相のローパスフィルターをかけたような応答の和として出力される。   Therefore, from Equation (6), the response of the rear wheel turning angle to the front wheel steering angle seems to have been a response that is a high-pass filter that is opposite in phase to the front wheel steering angle and a low-pass filter that is in phase with the front wheel steering angle. Is output as the sum of correct responses.

ここで、後輪転舵角の応答は、式(6)の右辺第1項までとして、第2項の応答分を駆動力配分によるヨーモーメントで付加することを考える。式(3)の右辺第2項および第3項と式(6)より、
M=k'(s)δfとすると、
(A+Blr)Crk(s)=(A+Blr)Cr{k0/(1+τs)}-Bk'(s) …(7)
となり、A,Bに前出の式を代入して整理すると、
k'(s)=(k'0+Crlr){τs/(1+τs)}+{ττ's2/(1+τs)} …(8)
ただし、
k'0=(Cflf 2+Crlr 2)/(Cflf-Crlr+mV2)、τ'=IV/(Cflf-Crlr+mV2)
となる。
Here, it is assumed that the response of the rear wheel turning angle is up to the first term on the right side of Equation (6), and the response of the second term is added by the yaw moment by the driving force distribution. From the second and third terms on the right side of equation (3) and equation (6),
If M = k '(s) δ f ,
(A + Bl r ) C r k (s) = (A + Bl r ) C r {k 0 / (1 + τs)}-Bk '(s)… (7)
And substituting the above formula for A and B,
k '(s) = (k' 0 + C r l r ) {τs / (1 + τs)} + {ττ's 2 / (1 + τs)}… (8)
However,
k ' 0 = (C f l f 2 + C r l r 2 ) / (C f l f -C r l r + mV 2 ), τ' = IV / (C f l f -C r l r + mV 2 )
It becomes.

前輪操舵角に対する駆動力配分によるヨーモーメントの応答は、前輪操舵角にハイパスフィルターをかけたような応答と、さらにこの応答を1階微分した応答の和として出力される。   The response of the yaw moment by the distribution of the driving force with respect to the front wheel steering angle is output as the sum of a response obtained by applying a high-pass filter to the front wheel steering angle and a response obtained by first-ordering this response.

したがって、前輪操舵角δf応じた目標後輪転舵角δr*および目標ヨーモーメントM*は、下記の式(9),(10)で算出される。
δr*=k0/(1+τs)δf …(9)
M*=[(k0'+Crlr){τs/(1+τs)}+ττ's2/(1+τs)]δf …(10)
Accordingly, the target rear wheel turning angle δ r * and the target yaw moment M * corresponding to the front wheel steering angle δ f are calculated by the following equations (9) and (10).
δ r * = k 0 / (1 + τs) δ f (9)
M * = [(k 0 '+ C r l r ) {τs / (1 + τs)} + ττ's 2 / (1 + τs)] δ f … (10)

以上の方法により、後輪転舵にはゆっくりとした応答、駆動力配分では速い応答を分担することができる。これは、図4に示すように、タイヤの横力・前後力の操舵角入力に対する応答性は、前後力はほとんど遅れなく立ち上がるのに対し、横力は前後力よりも遅れて立ち上がる特性に適応することになる。   By the above method, it is possible to share a slow response for rear wheel steering and a fast response for driving force distribution. As shown in Fig. 4, the response to the steering angle input of the lateral force and longitudinal force of the tire is adapted to the characteristic that the lateral force rises with little delay, while the lateral force rises later than the longitudinal force. Will do.

すなわち、後輪転舵に対する車両挙動の応答性はタイヤが発生する横力に依存し、駆動力配分によるヨーモーメントはタイヤが発生する前後力に依存するので、後輪転舵にはゆっくりした応答、駆動力配分では速い応答を分担することはタイヤ特性に合ったものということができる。ただし、式(8)において、特に第2項が不安定な出力になりやすいため、ヨーモーメントの目標値の算出時は上限および下限値を設定する必要がある。   That is, the response of the vehicle behavior to the rear wheel steering depends on the lateral force generated by the tire, and the yaw moment due to the driving force distribution depends on the longitudinal force generated by the tire. In power distribution, sharing a quick response can be said to be suitable for tire characteristics. However, in Equation (8), since the second term is likely to be an unstable output, it is necessary to set an upper limit and a lower limit when calculating the target value of the yaw moment.

次に、効果を説明する。
実施例1の車両用転舵制御装置にあっては、以下に列挙する効果が得られる。
Next, the effect will be described.
In the vehicle steering control device according to the first embodiment, the following effects can be obtained.

(1) ECU103は、後輪102RR,102RLの転舵をステアリング操舵角の一次遅れ応答とし、前輪102FR,102FLの左右駆動力を、ステアリング操舵角にハイパスフィルタをかけた応答と、さらにその出力を微分した応答との和の応答となるように制御する。すなわち、後輪転舵および駆動力配分の応答性を、ステアリング操舵角に対するタイヤの応答特性に適応させることができ、駆動力配分によるヨーモーメントの制御応答性の良さを生かした制御を実現できる。   (1) The ECU 103 uses the steering of the rear wheels 102RR and 102RL as a first-order lag response of the steering steering angle, the right and left driving force of the front wheels 102FR and 102FL, the response obtained by applying a high-pass filter to the steering steering angle, and the output thereof Control to be a sum response with the differentiated response. That is, the responsiveness of the rear wheel steering and the driving force distribution can be adapted to the tire response characteristics with respect to the steering angle, and the control utilizing the good control responsiveness of the yaw moment by the driving force distribution can be realized.

(2) ECU103は、目標制駆動力算出部103bにより算出された目標制駆動力と、後輪転舵角およびヨーモーメント算出部103aにより算出された目標ヨーモーメントに基づいて目標駆動力配分を算出する駆動力配分算出部103cを備え、右モータ駆動部103e,左モータ駆動部103fにより、右電動モータ104R,左電動モータ104Lを駆動するため、運転者の加減速意志に適応した後輪転舵制御および駆動力配分制御を実現できる。   (2) The ECU 103 calculates the target driving force distribution based on the target braking / driving force calculated by the target braking / driving force calculating unit 103b and the target yaw moment calculated by the rear wheel turning angle and yaw moment calculating unit 103a. A driving force distribution calculation unit 103c, and the right motor driving unit 103e and the left motor driving unit 103f drive the right electric motor 104R and the left electric motor 104L. Driving force distribution control can be realized.

(3) 後輪転舵角およびヨーモーメント算出部103aは、目標ヨーモーメントに対し上限値および下限値を設定するため、駆動力配分による目標ヨーモーメントが実現不可能な値となるのを防止できる。   (3) Since the rear wheel turning angle and yaw moment calculation unit 103a sets an upper limit value and a lower limit value for the target yaw moment, it is possible to prevent the target yaw moment due to the distribution of driving force from becoming an unrealizable value.

(4) 後輪転舵角およびヨーモーメント算出部103aは、車両の横すべり角がゼロとなる目標後輪転舵角および目標ヨーモーメントを算出するため、車両の進行方向と車両の向いている方向とが常にほぼ一致する、すなわち車体スリップ角がほぼゼロとなるような車両挙動を実現できる。   (4) The rear wheel turning angle and yaw moment calculation unit 103a calculates the target rear wheel turning angle and the target yaw moment at which the side slip angle of the vehicle becomes zero. It is possible to realize a vehicle behavior that always matches substantially, that is, the vehicle body slip angle is substantially zero.

(他の実施例)
以上、本発明を実施するための最良の形態を、実施例1に基づいて説明したが、本発明の具体的な構成は実施例1に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
(Other examples)
Although the best mode for carrying out the present invention has been described based on the first embodiment, the specific configuration of the present invention is not limited to the first embodiment and does not depart from the gist of the present invention. Such design changes are included in the present invention.

例えば、実施例1では、本発明の車両用転舵制御装置を電気自動車に適用し、駆動力配分手段として2つの電動モータを設けた例を示したが、本発明は、エンジン駆動力を左右駆動輪に配分する差動制限装置を備えた車両にも適用可能である。   For example, in the first embodiment, an example in which the vehicle steering control device of the present invention is applied to an electric vehicle and two electric motors are provided as driving force distribution means has been described. The present invention is also applicable to a vehicle equipped with a differential limiting device that distributes to drive wheels.

実施例1の電気自動車のシステム構成図である。1 is a system configuration diagram of an electric vehicle according to a first embodiment. ECUの制御ブロック図である。It is a control block diagram of ECU. ECUで実行される目標後輪転舵角および目標ヨーモーメント算出制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the target rear-wheel steering angle and target yaw moment calculation control processing which are performed by ECU. ステアリング操舵に対するタイヤの応答特性図である。FIG. 4 is a response characteristic diagram of a tire with respect to steering.

符号の説明Explanation of symbols

101 左右輪独立駆動車
102FR 右前輪
102FL 左前輪
102RR 右後輪
102RL 左後輪
103a ヨーモーメント算出部
103b 目標制駆動力算出部
103c 駆動力配分算出部
103d 後輪転舵角駆動部
103e 右モータ駆動部
103f 左モータ駆動部
104R 右電動モータ
104L 左電動モータ
105R 右車輪速センサ
105L 左車輪速センサ
106 第1操舵機構
107 ステアリングホイール
108 操舵角センサ
109 ブレーキペダルセンサ
110 アクセルペダルセンサ
111 第2転舵機構
101 Left and right wheel independent driving vehicle 102FR Right front wheel 102FL Left front wheel 102RR Right rear wheel 102RL Left rear wheel 103a Yaw moment calculating unit 103b Target braking / driving force calculating unit 103c Driving force distribution calculating unit 103d Rear wheel turning angle driving unit 103e Right motor driving unit 103f Left motor drive unit 104R Right electric motor 104L Left electric motor 105R Right wheel speed sensor 105L Left wheel speed sensor 106 First steering mechanism 107 Steering wheel 108 Steering angle sensor 109 Brake pedal sensor 110 Accelerator pedal sensor 111 Second steering mechanism

Claims (4)

後輪の転舵角を変化させる後輪転舵機構と、
駆動輪の左右駆動力配分を変化させる駆動力配分手段と、
車両状態に応じて前記後輪転舵機構および駆動力配分手段を制御する制御手段と、
を備えた車両用転舵制御装置において、
前記制御手段は、
ステアリング操舵角の一次遅れ応答となる目標後輪転舵角を算出する目標後輪転舵角算出部と、
算出された目標後輪転舵角に基づいて前記後輪転舵機構を駆動する後輪転舵角駆動部と、
ステアリング操舵角にハイパスフィルタをかけた応答と、さらにその出力を微分した応答との和の応答となる目標ヨーモーメントを算出する目標ヨーモーメント算出部と、
算出された目標ヨーモーメントに基づいて目標駆動力配分を算出する駆動力配分算出部と、
算出された目標駆動力配分に基づいて前記駆動力配分手段を駆動する駆動輪駆動部と、
を有することを特徴とする車両用転舵制御装置。
A rear wheel steering mechanism for changing the steering angle of the rear wheels;
Driving force distribution means for changing the left and right driving force distribution of the drive wheels;
Control means for controlling the rear wheel steering mechanism and the driving force distribution means according to the vehicle state;
In a vehicle steering control device comprising:
The control means includes
A target rear wheel turning angle calculation unit for calculating a target rear wheel turning angle that is a first-order lag response of the steering angle;
A rear wheel turning angle drive unit for driving the rear wheel turning mechanism based on the calculated target rear wheel turning angle;
A target yaw moment calculating unit that calculates a target yaw moment that is a response of the sum of a response obtained by applying a high-pass filter to the steering angle and a response obtained by differentiating the output;
A driving force distribution calculating unit that calculates the target driving force distribution based on the calculated target yaw moment;
A drive wheel drive unit for driving the drive force distribution means based on the calculated target drive force distribution;
A vehicle steering control device comprising:
請求項1に記載の車両用転舵制御装置において、
前記駆動力配分手段は、各駆動輪毎に付与され独立に駆動力を発生する電動モータであり、
運転者による加減速指令を検出する加減速指令検出手段を設け、
前記制御手段に、運転者による加減速指令から目標制駆動力を算出する目標制駆動力算出部を設け、
前記駆動力配分算出部は、算出された目標制駆動力と目標ヨーモーメントに基づいて目標駆動力配分を算出し、
前記駆動輪駆動部は、算出された目標駆動力配分に基づいて、各電動モータを駆動することを特徴とする車両用転舵制御装置。
The vehicle steering control device according to claim 1,
The driving force distribution means is an electric motor that is given to each driving wheel and generates driving force independently,
Acceleration / deceleration command detection means for detecting the acceleration / deceleration command by the driver is provided,
The control means is provided with a target braking / driving force calculation unit for calculating a target braking / driving force from an acceleration / deceleration command by the driver,
The driving force distribution calculating unit calculates a target driving force distribution based on the calculated target braking / driving force and target yaw moment,
The driving wheel driving unit drives each electric motor based on the calculated target driving force distribution, the vehicle steering control device.
請求項1または請求項2に記載の車両用転舵制御装置において、
前記目標ヨーモーメント算出部は、目標ヨーモーメントに対し上限値および下限値を設定することを特徴とする車両用転舵制御装置。
In the vehicle steering control device according to claim 1 or 2,
The vehicle steering control device, wherein the target yaw moment calculating unit sets an upper limit value and a lower limit value for the target yaw moment.
請求項2または請求項3に記載の車両用転舵制御装置において、
前記目標後輪転舵角算出部および目標ヨーモーメント算出部は、車両の横すべり角がゼロとなる目標後輪転舵角および目標ヨーモーメントを算出することを特徴とする車両用転舵制御装置。
In the vehicle steering control device according to claim 2 or 3,
The target rear wheel turning angle calculation unit and the target yaw moment calculation unit calculate a target rear wheel turning angle and a target yaw moment at which a side slip angle of the vehicle becomes zero.
JP2004017180A 2004-01-26 2004-01-26 Steering control device for vehicle Pending JP2005206114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017180A JP2005206114A (en) 2004-01-26 2004-01-26 Steering control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017180A JP2005206114A (en) 2004-01-26 2004-01-26 Steering control device for vehicle

Publications (1)

Publication Number Publication Date
JP2005206114A true JP2005206114A (en) 2005-08-04

Family

ID=34902101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017180A Pending JP2005206114A (en) 2004-01-26 2004-01-26 Steering control device for vehicle

Country Status (1)

Country Link
JP (1) JP2005206114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001516A (en) * 2018-06-27 2020-01-09 マツダ株式会社 Control device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001516A (en) * 2018-06-27 2020-01-09 マツダ株式会社 Control device for vehicle
JP7025713B2 (en) 2018-06-27 2022-02-25 マツダ株式会社 Vehicle control device

Similar Documents

Publication Publication Date Title
US10144416B2 (en) Apparatus and method for controlling vehicle
JP5830554B2 (en) Control method for four-wheel steering vehicle
JP4568302B2 (en) Vehicle longitudinal acceleration control apparatus using jerk information
CN109747632B (en) Torque distribution method for double-power-source driven vehicle
JP5359085B2 (en) Lane maintenance support device and lane maintenance support method
JP4556775B2 (en) Vehicle steering system
JP5189084B2 (en) Vehicle behavior stabilization control device
JP5569631B2 (en) Lane maintenance support method and lane maintenance support device
JP2011183904A (en) Vehicular motion controller
JP2006117176A (en) Turning behavior controller for vehicle
JP2007038928A (en) Vehicle rollover prevention unit
CN108025713A (en) Method and electronic brake control unit for the control for performing motor vehicles
JP2010158963A (en) Device and method for controlling vehicle
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP2010260544A (en) Motion control method of vehicle using jerk information
JP5347499B2 (en) Vehicle control apparatus and vehicle control method
JP5347500B2 (en) Vehicle control apparatus and vehicle control method
JP5071154B2 (en) Vehicle attitude control device and vehicle attitude control method
JP4519819B2 (en) Vehicle motion control device
JP2011161957A (en) Central controller
JP2005206114A (en) Steering control device for vehicle
JP2005218222A (en) Behavior controller for vehicle
JP4604685B2 (en) Device for determining vehicle turning travel assist yaw moment
JP2006182050A (en) Braking force control device for four-wheel independent drive vehicle
JP5918303B2 (en) Vehicle whose motion is controlled using jerk information

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051117