JP2005205459A - Method for joining members to be joined - Google Patents

Method for joining members to be joined Download PDF

Info

Publication number
JP2005205459A
JP2005205459A JP2004015276A JP2004015276A JP2005205459A JP 2005205459 A JP2005205459 A JP 2005205459A JP 2004015276 A JP2004015276 A JP 2004015276A JP 2004015276 A JP2004015276 A JP 2004015276A JP 2005205459 A JP2005205459 A JP 2005205459A
Authority
JP
Japan
Prior art keywords
resistance value
bonding material
bonding
joining
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015276A
Other languages
Japanese (ja)
Inventor
Koji Ikeda
浩二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004015276A priority Critical patent/JP2005205459A/en
Publication of JP2005205459A publication Critical patent/JP2005205459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining the members to be joined by causing an exothermic reaction in a joining material containing an electroconductive material by supplying an electric current to the joining material inserted between two members to be joined, which method can reduce defective joints and thermal damages to the members to be joined and the joining materials due to abnormal exothermic reactions by reducing the dispersion of a heat generation amount by controlling the exothermic reaction in the joining material. <P>SOLUTION: In the joining method, the member 1 to be joined and the member 2 to be joined are joined such that the joining material 3 containing the electroconductive material is sandwiched between the member 1 to be joined and the member 2 to be joined, and the joining material 3 generates heat by the exothermic reaction caused by supplying the electric current to the joining material 3 in the sandwiched state. Such a material that its electric resistance is reduced at a high temperature and the reduced electric resistance is held even when the temperature is lowered to the original temperature is used as the joining material 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込み、その状態にて接合材に通電することにより接合材を発熱させ被接合体を接合する方法に関するものである。   The present invention relates to a method of sandwiching a bonding material containing a conductive material between two objects to be bonded and heating the bonding material by energizing the bonding material in that state to bond the objects to be bonded. It is.

従来より、被接合体の接合方法として、導電性粒子を含有する接合材をはさみ込み、その状態で、その接合材に通電し発熱させ、その発熱により、被接合体を接合するという方法が知られており、例えば特許文献1の様なものがある。これは、導電性粒子を含有する熱可塑性樹脂を接合材として使用したものであり、その接合材に通電したとき、接合材が発熱抵抗体となり発熱し、その熱により、熱可塑性樹脂が溶融し、被接合体との接着力を増加させ、冷却されることにより、接合が完了する。この方法では、被接合体全体を加熱したりすることなく、局所的な加熱を行うことが可能であるため、被接合体への熱ダメージが少なく、また、加熱、冷却の時間が短くてすむため、非常に効率の良い方法である。
また、接合材の温度を瞬時に昇温できればできるほど、本接合方法の効果が発揮できるものであり、その時に重要なことは接合材の温度制御性である。これに対し、本方法では、供給する電流を一定に制御しながら通電する方法を行っており、それにより、発熱量を制御し、適度な溶融状態を実現できる可能性がある。
特開平8−270870号公報
2. Description of the Related Art Conventionally, as a method for joining objects to be joined, there is a method in which a joining material containing conductive particles is sandwiched, and in that state, the joining material is energized to generate heat, and the joined objects are joined by the generated heat. For example, there is something like Patent Document 1. This uses a thermoplastic resin containing conductive particles as a bonding material, and when the bonding material is energized, the bonding material becomes a heating resistor and generates heat, and the heat causes the thermoplastic resin to melt. The bonding is completed by increasing the adhesive force with the object to be bonded and cooling. In this method, since it is possible to perform local heating without heating the entire object to be bonded, thermal damage to the object to be bonded is small, and heating and cooling time can be shortened. Therefore, it is a very efficient method.
In addition, as the temperature of the bonding material can be increased instantaneously, the effect of the present bonding method can be exhibited, and what is important at that time is the temperature controllability of the bonding material. On the other hand, in this method, a method of energizing while supplying a constant current to be supplied is performed, whereby it is possible to control the heat generation amount and realize an appropriate molten state.
JP-A-8-270870

しかしながら、前記従来の構成では、全体の発熱量を制御することは可能ではある。しかしながら、接合部分にはさみ込んだ接合材の厚み、幅が設定のものよりも異なった場合、例えば、幅が広かった場合は、その電気抵抗値は小さく、発熱量が少なくなり、さらには接合材自身の熱容量は大きくなる。これにより、接合材の温度上昇が所望の量が得られず接合不良が生じやすくなる。また逆に、接合材の幅が狭かった場合は、その電気抵抗値は大きくなり、発熱量が多く、接合材自身の熱容量は大きくなる。これにより、接合材の温度上昇が所望の量より多くなり、接合材や被接合体に熱ダメージが生じやすくなる。
接合材の体積抵抗値は、その接合材の温度により変化していくため、接合材の幅の設定値からの誤差による発熱量の設定値からの差は自動的に補正される方向ではあるが、熱容量の変化分等も自動的に補正するというのは非常に困難である。
However, in the conventional configuration, it is possible to control the total heat generation amount. However, when the thickness and width of the bonding material sandwiched in the bonded portion are different from those of the set material, for example, when the width is wide, the electrical resistance value is small, the calorific value is reduced, and further the bonding material Its own heat capacity increases. As a result, a desired amount of the temperature rise of the bonding material cannot be obtained, and bonding failure is likely to occur. Conversely, when the width of the bonding material is narrow, the electrical resistance value increases, the amount of heat generation increases, and the heat capacity of the bonding material itself increases. As a result, the temperature rise of the bonding material becomes greater than the desired amount, and thermal damage is likely to occur in the bonding material and the bonded object.
Since the volume resistance value of the bonding material changes depending on the temperature of the bonding material, the difference from the set value of the calorific value due to an error from the set value of the width of the bonding material is in a direction that is automatically corrected. It is very difficult to automatically correct the change in the heat capacity.

また、接合部分にはさみ込んだ接合材の幅や膜厚に部分的にばらつきがある場合は、部分的に電気抵抗値のばらつきが生じており、そこに通電すると発熱量のばらつきが生じてしまう。この場合、発熱量の多い部分に全体の発熱量を制御した場合は、発熱量の少ない部分には接合不良が生じやすく、また、発熱量の少ない部分に全体の発熱量を制御した場合は、発熱量の多い部分が高温になり、被接合体や接合材に熱ダメージが生じてしまう。この場合も、接合材の体積抵抗値はその接合材の温度により変化していくため、接合材の幅の設定値からの誤差による発熱量の設定値からの差は自動的に補正される方向ではあるが、熱容量の変化分等も自動的に補正するというのは非常に困難である。また、接合材の温度による電気抵抗値の変化は、樹脂と導電性粒子の電気抵抗値の温度依存性と、樹脂と導電性粒子との接触状態の変化により発生しているものであり、この場合、極端な電気抵抗値変化は発生せず、従来例では、樹脂の溶融状態にて体積抵抗値のピークを示し、初期温度での体積抵抗値と、溶融状態をかなり越えた温度での体積抵抗値はほぼ同等となっており、その時の体積抵抗値の比は最大値で1.5倍程度である。したがって、接合材の膜幅、膜厚等に大きなばらつきがある場合は、体積抵抗値の変化の割合が大きくないため、大きな補正は不可能である。さらには、温度による接合材の体積変化は、溶融開始温度にてピークを持つものであり、そのピークを越えていっても、初期の体積抵抗値よりも低くなるのではないため、十分に溶融し、接合が完了した部分においても、通電が持続していれば、いくら補正が働いても、徐々に温度は高くなってしまう。   In addition, when there is a partial variation in the width and film thickness of the bonding material sandwiched in the bonded portion, there is a partial variation in the electrical resistance value, and when the current is passed there, a variation in the amount of heat generated will occur. . In this case, if the overall heat generation amount is controlled in a portion where the heat generation amount is large, poor bonding is likely to occur in a portion where the heat generation amount is small, and if the overall heat generation amount is controlled in a portion where the heat generation amount is small, A portion having a large amount of heat generation becomes high temperature, and thermal damage is caused to the joined body and the bonding material. Also in this case, since the volume resistance value of the bonding material changes depending on the temperature of the bonding material, the difference from the setting value of the heat generation amount due to an error from the setting value of the bonding material width is automatically corrected. However, it is very difficult to automatically correct changes in heat capacity and the like. Moreover, the change in the electrical resistance value due to the temperature of the bonding material is caused by the temperature dependence of the electrical resistance value of the resin and the conductive particles and the change in the contact state between the resin and the conductive particles. In the conventional case, the volume resistance value peaked in the molten state of the resin, and the volume resistance value at the initial temperature and the volume at a temperature significantly exceeding the molten state were not observed. The resistance values are almost equal, and the ratio of the volume resistance values at that time is about 1.5 times the maximum value. Therefore, when there is a large variation in the film width, film thickness, etc. of the bonding material, since the rate of change in volume resistance value is not large, large correction is impossible. Furthermore, the volume change of the bonding material due to temperature has a peak at the melting start temperature, and even if the peak is exceeded, it does not become lower than the initial volume resistance value. However, even if the energization is continued even in the portion where the joining is completed, the temperature gradually increases no matter how much correction is applied.

本発明は、前記従来の課題を解決するもので、2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込み、その状態にて接合材に通電することにより接合材を発熱させ被接合体を接合する方法において、接合材の発熱を制御し、発熱量のばらつきを低減することにより、接合不良や、異常発熱による被接合体と接合材との熱ダメージの少ない接合方法を提供することを目的とする。   The present invention solves the above-described conventional problems. A bonding material containing a conductive material is sandwiched between two members to be bonded, and the bonding material generates heat by energizing the bonding material in that state. In the method of joining the objects to be joined, by controlling the heat generation of the bonding material and reducing the variation in the amount of heat generation, a bonding method with less bonding damage and thermal damage between the object to be bonded and the bonding material due to abnormal heat generation is achieved. The purpose is to provide.

前記従来の課題を解決するために、本発明の接合方法は、2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込む工程と、その状態にて接合材に通電することにより接合材を発熱させる工程とを備え、接合材は、昇温により、電気抵抗値が昇温前に比べ低下するものであり、かつ、元の温度に降温しても、その低下した電気抵抗値を維持するものである。   In order to solve the above-described conventional problems, the bonding method of the present invention includes a step of sandwiching a bonding material including a conductive material between two objects to be bonded, and energizing the bonding material in that state. And the step of heating the bonding material by heating, the bonding material has an electrical resistance value that decreases as a result of the temperature rise, and the reduced electrical resistance even if the temperature is lowered to the original temperature. The value is maintained.

被接合体にはさみ込んだ接合材の幅や膜厚にばらつきがある場合、例えば接合材の幅が広く膜厚の厚い部分は他の部分に比較し電気抵抗値が低く、その部分の発熱量は少なくなる。逆に、接合材の幅が狭く膜厚の薄い部分は他の部分に比較し電気抵抗値が高くなり、その部分の発熱量は多くなる。発熱量の多い部分に全体の発熱量を制御した場合は、発熱量の少ない部分の接合不良が生じやすく、また、発熱量の少ない部分に全体の発熱量を制御した場合は、発熱量の多い部分が高温になり、被接合体や接合材に熱ダメージが生じてしまう。また、接合材の幅や膜厚にばらつきがある場合でなく、接合幅が異なる部分がある場合は、それがそのまま電気抵抗値のばらつきとなり、それが発熱のばらつきとなってしまい、接合不良や被接合体と接合材とに熱ダメージが生じてしまう。   If there are variations in the width and film thickness of the bonding material sandwiched between the objects to be bonded, for example, the portion where the width of the bonding material is wide and the film thickness is large has a lower electrical resistance value than the other portions, and the amount of heat generated in that portion Will be less. On the contrary, the portion where the width of the bonding material is narrow and the film thickness is thin has a higher electrical resistance value than the other portions, and the amount of heat generated in that portion increases. If the overall heat generation amount is controlled in a part with a large amount of heat generation, poor bonding is likely to occur in a part where the heat generation amount is small, and if the overall heat generation amount is controlled in a part where the heat generation amount is small, the heat generation amount is large. A part becomes high temperature and a to-be-joined body and a joining material will be thermally damaged. In addition, when there is a variation in the bonding material width and film thickness, but there is a portion where the bonding width is different, it becomes a variation in the electric resistance value as it is, resulting in variation in heat generation, Thermal damage occurs to the object to be bonded and the bonding material.

本方法の接合材は昇温すると電気抵抗値が昇温前に比べ低下するものであるため、接合材が発熱し、被接合体との接合力が増加した後、その部分の電気抵抗値は低下し、その部分の発熱も低下することとなる。これにより、接合部分に電気抵抗値のばらつきや、分布がある場合、電気抵抗値の高い部分の発熱が多く、先に接合が完了する。その後、その部分の電気抵抗値が低下することにより発熱量も低下する。最終的にはすべての部分の接合が完了し、電気抵抗値が低下し、発熱量も低下する事となる。これは、接合材を昇温し、電気抵抗値が低下した後、降温してもその低下した電気抵抗値は低下した状態を維持できる接合材であるから実現できることである。もしも、降温した時、電気抵抗値が再度高くなってしまう接合材では、再度発熱量が増加してしまう。したがって、そのような接合材を用いることによって、部分的な接合不良や、異常発熱による被接合体と接合材の熱ダメージが生じにくい接合方法を提供することができる。   When the temperature of the bonding material of this method is increased, the electric resistance value decreases compared to that before the temperature increase, so that the bonding material generates heat and the bonding force with the object to be bonded is increased. And the heat generation at that portion also decreases. As a result, when there is a variation or distribution in the electrical resistance value at the joint portion, heat is generated in the portion with a high electrical resistance value, and the joining is completed first. Thereafter, the calorific value is also reduced due to a decrease in the electrical resistance value of the portion. Eventually, the joining of all the parts is completed, the electric resistance value is lowered, and the heat generation amount is also lowered. This is because the bonding material can maintain the reduced electric resistance value even if the temperature is lowered after the temperature of the bonding material is raised and the electric resistance value is lowered. If the bonding material has an electrical resistance value that increases again when the temperature is lowered, the amount of heat generated again increases. Therefore, by using such a bonding material, it is possible to provide a bonding method in which partial bonding failure and thermal damage between the bonded object and the bonding material due to abnormal heat generation are unlikely to occur.

また、本発明の接合方法は、少なくともどちらか一方には発熱抵抗体が形成されている2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込む工程と、その状態にて発熱抵抗体に通電することにより発熱抵抗体を発熱させ、その熱により接合材を加熱する工程とを備えたものであり、接合材は、昇温により、電気抵抗値が昇温前に比べ低下するものであり、かつ、元の温度に降温しても、その低下した電気抵抗値を維持するものである。   Further, the bonding method of the present invention includes a step of sandwiching a bonding material containing a conductive material between two members to be bonded, in which at least one of the heating resistors is formed, and in this state The heating resistor is heated by energizing the heating resistor, and the bonding material is heated by the heat. The bonding material has an electrical resistance value lower than that before the temperature rise due to temperature rise. In addition, even if the temperature is lowered to the original temperature, the lowered electric resistance value is maintained.

発熱抵抗体に通電し、その発熱抵抗体が発熱し、その熱により接合材を昇温する。そして接合材が昇温すされると、接合材と発熱抵抗体と被接合体との接合力は増加し、かつ、接合材の電気抵抗値は低下する。接合材が発熱抵抗体と接合した状態で電気抵抗値が低下すると、その部分の電気抵抗は発熱抵抗体の電気抵抗と接合材の電気抵抗との並列の電気抵抗となるため、複合部の電気抵抗値は、元の発熱抵抗体の電気抵抗値よりも低い値となる。そうすると、その部分の発熱量は低下していくこととなる。   The heating resistor is energized, the heating resistor generates heat, and the bonding material is heated by the heat. When the temperature of the bonding material is increased, the bonding force between the bonding material, the heating resistor, and the bonded object increases, and the electrical resistance value of the bonding material decreases. If the electrical resistance value decreases while the bonding material is bonded to the heating resistor, the electrical resistance at that portion becomes the parallel resistance of the heating resistor and the bonding material. The resistance value is lower than the electrical resistance value of the original heating resistor. If it does so, the emitted-heat amount of the part will fall.

したがって、本方法によっても、接合部分に電気抵抗値のばらつきや、分布がある場合においても、電気抵抗値の高い部分の発熱が多く、その後、その部分の電気抵抗値が低下することにより発熱量も低下する。一方、十分に発熱していない部分は比較的電気抵抗値が高い状態であり、発熱が続き、最終的にはすべての部分の接合が完了し、電気抵抗値が低下し、発熱量も低下する事となる。したがって、部分的な接合不良や、異常発熱による被接合体と接合材の熱ダメージが生じにくい接合方法を提供することができる。   Therefore, even in the case where there is a variation or distribution of the electrical resistance value in the joint portion even with this method, the heat generation amount is increased due to a large amount of heat generation in the portion with a high electrical resistance value, and then the electrical resistance value in that portion decreases. Also decreases. On the other hand, the part that does not generate enough heat has a relatively high electrical resistance value, and the heat generation continues, eventually joining all the parts is completed, the electric resistance value decreases, and the heat generation amount also decreases. It will be a thing. Therefore, it is possible to provide a bonding method in which partial bonding failure or thermal damage between the bonded object and the bonding material due to abnormal heat generation hardly occurs.

また、本発明の接合方法は、接合材が、昇温により、導電性材料同士が結合することにより、電気抵抗値が低下するものである。   Further, in the bonding method of the present invention, the electrical resistance value is lowered by bonding the conductive materials to each other by raising the temperature of the bonding material.

本発明によっては、導電性材料同士の結合により電気抵抗値が低下するものであるため、その電気抵抗値の変化の度合いが大きく、これにより、接合材の昇温により接合が完了し電気抵抗値が低下すると瞬時に発熱量も低下する事となる。したがって、より短時間にて接合を行うために接合材の急峻な昇温を行っても、被接合材への熱ダメージを少なくすることが可能となる。   Depending on the present invention, the electrical resistance value is lowered by the coupling between the conductive materials, so that the degree of change in the electrical resistance value is large. When the temperature decreases, the calorific value also decreases instantaneously. Therefore, even when the temperature of the bonding material is increased rapidly in order to perform bonding in a shorter time, it is possible to reduce thermal damage to the bonded material.

また、本発明の接合方法は、接合材は、平均粒子径が2〜100nmの金属材料を分散させた液状のものを用いるものである。   In the bonding method of the present invention, the bonding material is a liquid material in which a metal material having an average particle diameter of 2 to 100 nm is dispersed.

平均粒子径が2〜100nmのいわゆるナノ粒子と呼ばれる金属材料を分散させた液状のものを用いることの特徴として、熱処理をした場合の電気抵抗値を極めて低くできるということがある。また、もう一つの特徴として、熱処理の温度が極めて低温であるという特徴がある。例えば、平均粒子径が20nmの銀粒子を重量比で30%程度分散させたものでは、液状においては、その体積抵抗値は、0.01Ω・cm程度であるが、十分に熱処理をしたものでは、金属粒子同士が融合することにより、体積抵抗値は5μΩ・cm程度まで低減でき、その断面構造は、バルクに近い構造を示す。また、その時に必要な温度は250℃程度である。したがって、本方法では、そのような接合材を用いており、熱処理時の電気抵抗値が極めて低いため、接合が終了した後の発熱が抑えやすい。また、熱処理した後の断面構造が金属のバルクに近い状態であり、接合を液体や気体の密封用に用いる場合、密封性が良好な接合が可能となる。また、非常に低温の熱処理で実現できるため、被接合体のダメージが少ない状態で、良好密封性の接合が可能となる。   As a feature of using a liquid material in which a metal material called a so-called nanoparticle having an average particle diameter of 2 to 100 nm is dispersed, an electrical resistance value when heat-treated can be extremely low. Another feature is that the heat treatment temperature is extremely low. For example, in a case where silver particles having an average particle diameter of 20 nm are dispersed by about 30% by weight, the volume resistance value is about 0.01 Ω · cm in a liquid state, but it is not sufficiently heat-treated. When the metal particles are fused, the volume resistance value can be reduced to about 5 μΩ · cm, and the cross-sectional structure shows a structure close to the bulk. The temperature required at that time is about 250 ° C. Therefore, in this method, such a bonding material is used, and since the electric resistance value during the heat treatment is extremely low, it is easy to suppress heat generation after the bonding is completed. In addition, the cross-sectional structure after the heat treatment is in a state close to the bulk of the metal, and when bonding is used for sealing liquid or gas, bonding with good sealing performance is possible. Further, since it can be realized by a heat treatment at a very low temperature, it is possible to perform bonding with good sealing performance in a state where the damage to the objects to be bonded is small.

また、本発明の接合方法は、接合材は少なくとも半田を粒子状としたものを含んでなるものである。   In the bonding method of the present invention, the bonding material includes at least solder particles.

本方法によっても、熱処理後の抵抗値は極めて低く、また、その熱処理の温度も極めて低いため、接合が終了した後の発熱が抑えやすく、それにより、異常発熱による被接合体と接合材の熱ダメージが生じにくい接合方法を提供することができる。   Also with this method, the resistance value after the heat treatment is extremely low, and the temperature of the heat treatment is also very low, so that it is easy to suppress the heat generation after the bonding is completed, and thereby the heat of the joined body and the bonding material due to abnormal heat generation. It is possible to provide a bonding method in which damage is unlikely to occur.

また、本発明の接合方法は、接合材または発熱抵抗体への通電はその通電電流の制限がなされているものである。   In the bonding method of the present invention, the energization of the bonding material or the heating resistor is limited to the energization current.

本方法では、通電を行い、接合材の電気抵抗値が低下していった時、電流を制限してい
るため、発熱量も同時に低下していき、発熱しすぎるという問題がなくなる。また、部分的に電気抵抗値の低下が不十分な状態があっても、その部分だけが異常な発熱をすることもなくなり、異常発熱による被接合体と接合材の熱ダメージが生じにくい接合方法を提供することができる。
In this method, since the current is limited when the electric resistance is lowered when the electric resistance value of the bonding material decreases, the amount of heat generation also decreases at the same time, thereby eliminating the problem of excessive heat generation. In addition, even if there is a state in which the electrical resistance value is not sufficiently reduced partially, only that part will not generate abnormal heat, and it is difficult to cause thermal damage between the joined body and the bonding material due to abnormal heat generation. Can be provided.

また、本発明の接合方法は、接合材または発熱抵抗体への通電は間欠的に複数回に分けて行うものである。   In the bonding method of the present invention, the energization to the bonding material or the heating resistor is intermittently performed in a plurality of times.

まず、最初の通電により、接合材の電気抵抗値のばらつきがある中で、電気抵抗値の高い部分が十分に発熱し、接合が完了し、電気抵抗値が低下する状態まで通電する。その後、通電を停止し、発熱した部分を冷却する。次に、2回目の通電を行い、相対的に電気抵抗値の低い部分が十分に発熱し、接合が完了し、電気抵抗値が低下する状態まで通電する。そして、通電を停止し、発熱した部分を冷却する。この様な動作を複数回繰り返し、すべての部分の接合を完了させるという方法である。本方法では、最初の通電で接合が完了した部分は、電気抵抗値が低下し、2回目の通電では、発熱量は非常に少なくなるため、2回目の通電では、最初の通電で接合が不十分な部分が優先的に発熱されることとなる。この様な動作の繰り返しにより接合を全部分行うものであるため、被接合体には、無駄な熱が伝わることがないため、被接合体への熱ダメージ少ない接合方法を提供することができる。   First, in the first energization, the electric resistance value of the bonding material varies, and the portion having a high electric resistance value generates heat sufficiently, and the electric current is energized until the bonding is completed and the electric resistance value decreases. Thereafter, the energization is stopped and the heated portion is cooled. Next, the second energization is performed, and the energization is performed until the portion having a relatively low electric resistance value generates sufficient heat, the joining is completed, and the electric resistance value decreases. And electricity supply is stopped and the part which heat-generated is cooled. Such an operation is repeated a plurality of times to complete the joining of all the parts. In this method, the electrical resistance value of the portion where the joining is completed by the first energization decreases, and the amount of heat generated becomes very small by the second energization. A sufficient part is preferentially heated. Since all of the bonding is performed by repeating such an operation, useless heat is not transmitted to the objects to be bonded, and thus a bonding method with less heat damage to the objects to be bonded can be provided.

本発明によれば、部分的な接合不良や、異常発熱による被接合体と接合材の熱ダメージが生じにくい接合方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the joining method which cannot produce the thermal damage of the to-be-joined body and joining material by partial joining failure and abnormal heat_generation | fever can be provided.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、実施の形態1に係る接合方法を示す概略構成図である。1と2はそれぞれ被接合体であり、絶縁性のガラスを用いている。3は接合材であり、被接合体2上に形成された後、被接合体1とではさみ込まれている。接合材3は、金属粒子を溶剤に分散させた液状のものであり、インクジェット法により、所望の位置に塗布している。金属粒子としては、金、銀、銅、白金等が好ましく用いられる。また、金属粒子の平均粒子径は1〜100nmのいわゆるナノ粒子が好ましく用いられる。本実施の形態では平均粒子径が20nmの銀粒子を用いており、その配合量は重量比で30%のものを用いている。4はそれぞれ金属からなる電極であり、被接合体2上に塗布された接合材3に電気的に接続するように配置されている。5は電源であり、接続線6より、電極4に通電可能に構成している。また、電源5は、電極4へ流す電流量を制限する制限手段を備えている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing a bonding method according to the first embodiment. 1 and 2 are to-be-joined bodies, respectively, and insulating glass is used. Reference numeral 3 denotes a bonding material, which is formed on the bonded body 2 and then sandwiched between the bonded body 1. The bonding material 3 is a liquid material in which metal particles are dispersed in a solvent, and is applied to a desired position by an ink jet method. As the metal particles, gold, silver, copper, platinum or the like is preferably used. Moreover, what is called a nanoparticle whose average particle diameter of a metal particle is 1-100 nm is used preferably. In the present embodiment, silver particles having an average particle diameter of 20 nm are used, and the amount used is 30% by weight. Reference numerals 4 denote electrodes made of metal, which are arranged so as to be electrically connected to the bonding material 3 applied on the bonded body 2. Reference numeral 5 denotes a power source, which is configured to be able to energize the electrode 4 from the connection line 6. In addition, the power source 5 includes a limiting unit that limits the amount of current flowing to the electrode 4.

次に動作について図1〜図4を用いて説明する。図1において、被接合体2上に形成された接合材3の膜厚は0.05mm、幅は0.2mm、長さは100mmであり、その時の二つの電極4間の電気抵抗値は1000Ωであった。この時の体積抵抗値は、0.01Ω・cmとなる。銀のバルクの体積抵抗値は、1.6μΩ・cmであるため、熱処理前の接合材3の体積抵抗値は6250倍もの高い値となっている。   Next, the operation will be described with reference to FIGS. In FIG. 1, the thickness of the bonding material 3 formed on the object to be bonded 2 is 0.05 mm, the width is 0.2 mm, and the length is 100 mm. The electric resistance value between the two electrodes 4 at that time is 1000Ω. Met. The volume resistance value at this time is 0.01 Ω · cm. Since the volume resistance value of the bulk of silver is 1.6 μΩ · cm, the volume resistance value of the bonding material 3 before the heat treatment is as high as 6250 times.

図2は被接合体2上に形成した接合材3に電気抵抗値のばらつきがある状態の一例を示している。A部は他の部分に比較し、膜幅が小となっており、この時、電気抵抗値は、A部は他の部分と比較し高くなっている。接合材3の電気抵抗値のばらつきは、図2の様に膜幅のばらつきによるものだけでなく、膜厚のばらつきや、金属粒子の分散のばらつきによっても発生する。   FIG. 2 shows an example of a state in which the bonding material 3 formed on the bonded body 2 has variations in electric resistance values. The A portion has a smaller film width than the other portions. At this time, the electrical resistance value of the A portion is higher than that of the other portions. The variation in the electrical resistance value of the bonding material 3 is caused not only by the variation in the film width as shown in FIG. 2, but also by the variation in the film thickness and the dispersion in the metal particles.

次に、図2の様に接合材3の膜幅にばらつきがあるものに対して、電源5の設定を、電圧を100V、制限電流を0.2アンペアとして通電を行った。この時に通電を行った場合の接合材3の状態変化を図3に示す。分かりやすくするため、基材1と接合材3との縦横比をかなり変化させて図示化している。図3の(a)は通電前の状態であり、銀粒子が粒子として積み重なった状態である。次に(b)は通電開始、ある時間後の状態である。
(b)では、通電による発熱により、部分的には銀粒子同士が結合しており、その結合している部分では被接合体2との接着力も増加しているが、その結合状態は接合材3の長手方向にばらつきが生じている。A部は、他の部分より膜幅が狭く電気抵抗値が高いため、発熱量が多く、それにより銀粒子の結合が他の部分に対してかなり進みやすい。また、この様に銀粒子の結合が進んだA部は、その電気抵抗値は他の部分より逆に低くなっている。この状態の時、A部の発熱量は他の部分より少なくなっている。したがって、この状態で通電を継続すると、A部以外のところの発熱が多く、その発熱の多い部分の結合がどんどん進んでいくことになる。そして、最終的には、(c)の様に、全体の結合が進んでいき、接合が行われることとなる。つまり、接合の進んだところは、電気抵抗値が低くなり発熱が抑制され、接合が進んでいないところは、電気抵抗値が相対的に低くなっておらず、その部分はその後、積極的に発熱するという自己制御的動作が行われる。また、電源5には電流制限を行っているため、接合材3の電極4間全体の発熱量は徐々に低下していき、電気抵抗値が十分に下がっていない部分のみが適度の発熱を継続するということになる。この時、電流制限がなく、定電圧制御を行った時は、電気抵抗値の低減に伴い、全体の発熱量がどんどん増加するということになり、所望の制御された発熱が不可能となる。そして、最終的には、電極4間で0.16Ωまで抵抗値の低減を行うことができた。この時の体積抵抗値は、8μΩ・cmであり、バルク値の5倍という、かなり低い値まで低減できている。
Next, as shown in FIG. 2, the power supply 5 was set to a voltage of 100 V and a current limit of 0.2 amperes with respect to the bonding material 3 having a variation in film width. FIG. 3 shows a change in the state of the bonding material 3 when energization is performed at this time. In order to make it easy to understand, the aspect ratio of the base material 1 and the bonding material 3 is changed considerably and illustrated. FIG. 3 (a) shows a state before energization, in which silver particles are stacked as particles. Next, (b) shows a state after a certain period of time from the start of energization.
In (b), the silver particles are partially bonded to each other due to heat generated by energization, and the bonding strength of the bonded body 2 is increased at the bonded portion. 3 has a variation in the longitudinal direction. The portion A has a narrower film width and a higher electrical resistance than the other portions, and therefore generates a large amount of heat, thereby making it easier for silver particles to bond to the other portions. In addition, the electrical resistance value of the portion A where the silver particles are bonded in this way is lower than that of the other portions. In this state, the amount of heat generated in part A is smaller than in other parts. Therefore, if energization is continued in this state, heat is generated at portions other than the portion A, and the coupling of the portions where the heat is generated proceeds more and more. Eventually, as shown in (c), the entire coupling proceeds and bonding is performed. In other words, where the bonding has progressed, the electric resistance value is low and heat generation is suppressed, and where the bonding is not progressing, the electric resistance value is not relatively low, and that portion is then actively heated. A self-control operation is performed. In addition, since the power source 5 is current-limited, the amount of heat generated between the electrodes 4 of the bonding material 3 gradually decreases, and only the portion where the electrical resistance value is not sufficiently lowered continues moderate heat generation. It will be to. At this time, when there is no current limitation and constant voltage control is performed, the total amount of heat generation increases as the electrical resistance value decreases, and the desired controlled heat generation becomes impossible. Finally, the resistance value could be reduced to 0.16Ω between the electrodes 4. The volume resistance value at this time is 8 μΩ · cm, which can be reduced to a considerably low value of 5 times the bulk value.

また、図4は、接合材3への通電開始後、接合材3の温度と電気抵抗値の変化の状態を定性的に示したものである。横軸は通電時間、縦軸はその時の温度と電気抵抗値とである。通電を開始すると、電気抵抗値に対応し発熱し、温度が急激に上昇する。そして温度が上昇すると電気抵抗値が徐々に低下していき、それに伴って発熱量が減少し、温度が低下していく。そして最終的には、電気抵抗値が非常に小さくなり、発熱量も少なく、温度も通電開始近くまで低下する。この様な急峻な電気抵抗値の低下は、接合材3に含んだ導電性材料同士が結合することにより、発生したものである。   FIG. 4 qualitatively shows the state of change in the temperature and electrical resistance value of the bonding material 3 after the energization of the bonding material 3 is started. The horizontal axis is the energization time, and the vertical axis is the temperature and electrical resistance value at that time. When energization is started, heat is generated corresponding to the electric resistance value, and the temperature rapidly increases. As the temperature rises, the electrical resistance value gradually decreases, and accordingly, the amount of heat generation decreases, and the temperature decreases. Eventually, the electric resistance value becomes very small, the amount of heat generation is small, and the temperature also decreases to near the start of energization. Such a steep decrease in the electrical resistance value is caused by bonding of the conductive materials included in the bonding material 3.

かかる方法によれば、被接合体1と被接合体2とにはさみ込んだ接合材3に通電することにより接合材3を発熱させるものであり、その接合材3は、昇温により、電気抵抗値が昇温前に比べ低下し、かつ元の温度に降温しても、その低下した電気抵抗値を維持するものであるため、接合材3が発熱し、被接合体1と被接合体2との接合力が増加した後、その部分の電気抵抗値は低下し、その部分の発熱も低下することとなる。これにより、接合材3に電気抵抗値のばらつきやがある場合、電気抵抗値の高い部分の発熱が多く、先に接合が完了する。その後、その部分の電気抵抗値が低下することにより発熱量も低下する。最終的にはすべての部分の接合が完了し、電気抵抗値が低下し、発熱量も低下する事となる。また、発熱量が低下し、接合部分の温度が低下しても、電気抵抗値は低下した状態を維持するため、再度発熱するということは生じない。したがって、部分的な接合不良や、異常発熱による被接合体1被接合体2と接合材3の熱ダメージが生じにくい接合方法を提供することができる。   According to this method, the bonding material 3 is heated by energizing the bonding material 3 sandwiched between the bonded body 1 and the bonded body 2, and the bonding material 3 has an electrical resistance due to a rise in temperature. Even if the value is lower than that before the temperature is raised and the temperature is lowered to the original temperature, the lowered electric resistance value is maintained, so that the joining material 3 generates heat, and the joined body 1 and the joined body 2 are heated. After the bonding force increases, the electrical resistance value of the portion decreases and the heat generation of the portion also decreases. As a result, when there is a variation in the electric resistance value in the bonding material 3, heat is generated in a portion having a high electric resistance value, and the bonding is completed first. Thereafter, the calorific value is also reduced due to a decrease in the electrical resistance value of the portion. Eventually, the joining of all the parts is completed, the electric resistance value is lowered, and the heat generation amount is also lowered. Further, even if the amount of heat generation is reduced and the temperature of the joint portion is reduced, the electric resistance value is maintained in a reduced state, so that it does not generate heat again. Therefore, it is possible to provide a bonding method in which partial bonding failure and thermal damage between the bonded body 1 and the bonded body 2 and the bonding material 3 due to abnormal heat generation are unlikely to occur.

また、かかる方法によれば、接合材3は、昇温により、導電性材料同士が結合することにより、電気抵抗値が低下するものであり、その電気抵抗値の変化の度合いが大きく、これにより、接合材3の昇温により接合が完了し電気抵抗値が低下すると瞬時に発熱量も低下する事となる。したがって、より短時間にて接合を行うために接合材3の急峻な昇温を行っても、被接合材1、被接合体2への熱ダメージを少なくすることが可能となる。   In addition, according to this method, the bonding material 3 has a low electrical resistance value due to the bonding between the conductive materials due to temperature rise, and the degree of change in the electrical resistance value is large. When the joining is completed by the temperature rise of the joining material 3 and the electric resistance value is lowered, the calorific value is instantaneously lowered. Therefore, even if the temperature of the bonding material 3 is increased rapidly in order to perform bonding in a shorter time, thermal damage to the bonded material 1 and the bonded object 2 can be reduced.

また、かかる方法によれば、接合材3は、平均粒子径が2〜100nmの金属材料を分散させた液状のものを用いており、熱処理をした場合の電気抵抗値を極めて低くでき、また、その熱処理の温度も極めて低温で良く、かつ、熱処理後の断面状態がバルク状に近い。したがって、熱処理時の電気抵抗値が極めて低いため、接合が終了した後の発熱が抑えやすい。また、熱処理した後の断面構造が金属のバルクに近い状態であり、接合を液体や気体の密封用に用いる場合、密封性が良好な接合が可能となる。また、非常に低温の熱処理で実現できるため、被接合体1と被接合体2の熱ダメージが少ない状態で、良好密封性の接合が可能となる。   In addition, according to such a method, the bonding material 3 uses a liquid material in which a metal material having an average particle diameter of 2 to 100 nm is dispersed, and the electrical resistance value when heat treatment is performed can be extremely low. The temperature of the heat treatment may be very low, and the cross-sectional state after the heat treatment is close to a bulk shape. Therefore, since the electrical resistance value at the time of heat treatment is extremely low, it is easy to suppress heat generation after the joining is completed. In addition, the cross-sectional structure after the heat treatment is in a state close to the bulk of the metal, and when bonding is used for sealing liquid or gas, bonding with good sealing performance is possible. In addition, since it can be realized by a heat treatment at a very low temperature, it is possible to bond with good sealing performance in a state where the thermal damage between the bonded body 1 and the bonded body 2 is small.

また、かかる方法によれば、接合材3への通電はその通電電流の制限がなされているものであり、通電を行い、接合材3の電気抵抗値が低下していった時、電流を制限しているため、発熱量も同時に低下していき、発熱しすぎるという問題がなくなる。また、部分的に電気抵抗値の低下が不十分な状態があっても、その部分だけが異常な発熱をすることもなくなり、異常発熱による被接合体1と被接合体2と接合材3への熱ダメージが生じにくい接合方法を提供することができる。   Further, according to such a method, the energization of the bonding material 3 is limited in its energization current, and the current is limited when the electric resistance is lowered after the energization is performed. As a result, the amount of generated heat also decreases at the same time, eliminating the problem of excessive heat generation. Further, even if there is a state where the electric resistance value is partially lowered, only that portion does not generate abnormal heat, and the bonded body 1, the bonded body 2 and the bonding material 3 are caused by abnormal heat generation. It is possible to provide a bonding method in which the thermal damage is less likely to occur.

なお、本実施の形態では、接合材3として、金属粒子を含んだ液体を用いたが、これは、少なくとも半田を粒子状としたものを含んでなるものを用いたものでもよい。その場合も、熱処理後の抵抗値は極めて低く、また、その熱処理の温度も極めて低いため、接合が終了した後の発熱が抑えやすく、それにより、異常発熱による被接合体1と被接合体2と接合材3の熱ダメージが生じにくい接合方法を提供することができる。さらには、液状のものでなく、粉体状のままであっても好ましく用いることができる。   In the present embodiment, a liquid containing metal particles is used as the bonding material 3, but this may be one that includes at least solder particles. Also in that case, since the resistance value after the heat treatment is extremely low and the temperature of the heat treatment is also extremely low, it is easy to suppress the heat generation after the joining is finished, and thereby the joined body 1 and the joined body 2 due to abnormal heat generation. Thus, it is possible to provide a bonding method in which the thermal damage of the bonding material 3 hardly occurs. Furthermore, it can be preferably used even if it is not liquid but remains in powder form.

また、本実施の形態において、接合のみを目的とし、密封性にこだわらない場合は、樹脂に導電性材料を含んだものも好適に用いることができる。その場合、シート状の接合材3も好ましく用いることができる。   In this embodiment, when the purpose is only bonding and the sealing performance is not particular, a resin containing a conductive material can be preferably used. In that case, the sheet-like bonding material 3 can also be preferably used.

なお、本実施の形態において、被接合体1、被接合体2にはガラスを用いたが、ある程度の電気抵抗値以上のものであれば、シリコン、セラミック、樹脂、等に対しても好適に用いることができる。   In the present embodiment, glass is used for the joined body 1 and the joined body 2, but it is also suitable for silicon, ceramic, resin, etc. as long as it has a certain electric resistance value or more. Can be used.

また、本実施の形態において、インクジェット法により接合材3を形成したが、これは、各種印刷法やディスペンサ法等により形成したものでも良い。   In the present embodiment, the bonding material 3 is formed by the ink jet method, but this may be formed by various printing methods, a dispenser method, or the like.

また、本実施の形態において、電極4は金属からなるが、これは、接合材3との接触部分に導電性のゴムを備え、接合材3との接触状態を良好に保つことも好適に用いることができる。   Moreover, in this Embodiment, although the electrode 4 consists of metal, this equips the contact part with the bonding | jointing material 3 with an electroconductive rubber | gum, and uses suitably also maintaining a contact state with the bonding | jointing material 3. be able to.

また、本実施の形態において、接合材3への通電の仕方は特に限定していないが、これは、接合材3への通電を間欠的に複数回に分けて行うことも有効である。まず、最初の通電により、接合材3の電気抵抗値のばらつきがある中で、電気抵抗値の高い部分が十分に発熱し、接合が完了し、電気抵抗値が低下する状態まで通電する。その後、通電を停止し、発熱した部分を冷却する。次に、2回目の通電を行い、相対的に電気抵抗値の低い部分が十分に発熱し、接合が完了し、電気抵抗値が低下する状態まで通電する。そして、通電を停止し、発熱した部分を冷却する。この様な動作を複数回繰り返し、すべての部分の接合を完了させるという方法である。本方法では、最初の通電で接合が完了した部分は、電気抵抗値が低下し、2回目の通電では、発熱量は非常に少なくなるため、2回目の通電では、最初の通電で接合が不十分な部分が優先的に発熱されることとなる。この様な動作の繰り返しにより接合を全部分行うものであるため、被接合体1と被接合体2には、無駄な熱が伝わることがないため、熱ダメージ少ない接合方法を提供することができる。   In the present embodiment, the method of energizing the bonding material 3 is not particularly limited, but it is also effective to perform the energization of the bonding material 3 intermittently in a plurality of times. First, during the first energization, the electric resistance value of the bonding material 3 varies, and the portion having a high electric resistance value sufficiently generates heat, and the energization is completed until the bonding is completed and the electric resistance value decreases. Thereafter, the energization is stopped and the heated portion is cooled. Next, the second energization is performed, and the energization is performed until the portion having a relatively low electric resistance value generates sufficient heat, the joining is completed, and the electric resistance value decreases. And electricity supply is stopped and the part which heat-generated is cooled. Such an operation is repeated a plurality of times to complete the joining of all the parts. In this method, the electrical resistance value of the portion where the joining is completed by the first energization decreases, and the amount of heat generated becomes very small by the second energization. A sufficient part is preferentially heated. Since all parts are joined by repeating such an operation, wasteful heat is not transmitted to the joined body 1 and the joined body 2, and thus a joining method with less thermal damage can be provided. .

また、本実施の形態において、接合材3は、両端部のあるライン状の形成を行い、これに通電を行ったが、これは、閉曲線状の接合材3に対して用いることも可能である。その場合、電極4の接合材3への通電は、電極4の接合体3への接続場所を変更しながら、複数回に分ける行うことが必要となることは言うまでもない。   Further, in the present embodiment, the bonding material 3 is formed in a line shape having both end portions and energized, but this can also be used for the bonding material 3 having a closed curve shape. . In that case, it is needless to say that energization of the bonding material 3 of the electrode 4 needs to be performed in a plurality of times while changing the connection location of the electrode 4 to the bonding body 3.

(実施の形態2)
図5は、実施の形態2に係る接合方法を示す概略断面図である。実施の形態1と異なる部分は、被接合体2上に発熱抵抗体7を形成したことと、電極4による通電は、その発熱抵抗体7に対して行うことである。発熱抵抗体7は、アルミ蒸着膜であり、その膜厚は0.1μm、幅は0.2mmとしており、その発熱抵抗体7上に、接合材3をインクジェット法により塗布し、その上から被接合材1を重ね合わせている。接合材3の膜厚は実施の形態1と同様、0.05mm、幅は0.2mmとしている。
(Embodiment 2)
FIG. 5 is a schematic cross-sectional view showing a bonding method according to the second embodiment. The difference from the first embodiment is that the heating resistor 7 is formed on the bonded body 2 and that the electrode 4 is energized to the heating resistor 7. The heating resistor 7 is an aluminum vapor deposition film, and has a film thickness of 0.1 μm and a width of 0.2 mm. The bonding material 3 is applied onto the heating resistor 7 by the ink jet method, and the coating is applied from above. The bonding material 1 is superposed. The film thickness of the bonding material 3 is 0.05 mm and the width is 0.2 mm, as in the first embodiment.

以下、その動作について説明する。図5において、電極4間の電気抵抗値は、160Ωであり、発熱抵抗体7の体積抵抗率を計算すると3.2μΩ・cmとなる。一方、接合材3の電極4間の電気抵抗値は1000Ωであり、体積抵抗値を計算すると0.01Ω・cmとなる。これに対し、電源5の設定を、電圧60V、制限電流を0.5アンペアとして通電を行った。この時、通電による発熱は、発熱抵抗体7と接合材3との両方で発生すると考えられるが、それらの電気抵抗値は、発熱抵抗体7が160Ω、接合材3が1000Ωであるため、通電直後は、約86%が発熱抵抗体7の部分で発熱する。そして、その発熱により、接合材3が加熱され、被接合材1と被接合材2とに対する接合力が増加し、かつ、銀粒子の結合が起こり、その部分の電気抵抗値が低下していく。この時、接合材3の体積抵抗値は8μΩ・cmまで低下し、その部分の発熱は、他の部分より極端に低下する。   The operation will be described below. In FIG. 5, the electric resistance value between the electrodes 4 is 160Ω, and the volume resistivity of the heating resistor 7 is calculated to be 3.2 μΩ · cm. On the other hand, the electrical resistance value between the electrodes 4 of the bonding material 3 is 1000Ω, and the volume resistance value is calculated to be 0.01Ω · cm. On the other hand, the power source 5 was set at a voltage of 60 V and a current limit of 0.5 ampere. At this time, heat generation due to energization is considered to occur in both the heating resistor 7 and the bonding material 3, but the electrical resistance values of the heating resistor 7 are 160Ω and the bonding material 3 is 1000Ω. Immediately after that, about 86% generates heat in the portion of the heating resistor 7. Then, due to the heat generation, the bonding material 3 is heated, the bonding force between the material to be bonded 1 and the material to be bonded 2 is increased, silver particles are bonded, and the electric resistance value of the portion is decreased. . At this time, the volume resistance value of the bonding material 3 is reduced to 8 μΩ · cm, and the heat generation in that portion is extremely reduced as compared with other portions.

発熱抵抗体7や、接合材3に電気抵抗値のばらつきがある場合も実施の形態1と同様に、電気抵抗値の高い部分から発熱し、接合が完了し、電気抵抗値が低下し、その部分の発熱が低下するという自己制御的動作が行われ、最終的にすべての部分の接合が完了することとなる。   Similarly to the first embodiment, when the heating resistor 7 or the bonding material 3 has a variation in the electric resistance value, heat is generated from a portion having a high electric resistance value, the bonding is completed, and the electric resistance value is lowered. A self-control operation is performed in which the heat generation of the portion is reduced, and finally, the joining of all the portions is completed.

かかる方法によれば、被接合体2には発熱抵抗体7が形成されており、その発熱抵抗体7に通電することにより発熱抵抗体7を発熱させ、その熱により被接合体1と被接合材2とにはさみ込まれた接合材3を加熱するものであり、その接合材3は、昇温により、電気抵抗値が昇温前に比較し低下し、かつ元の温度に降温しても、その低下した電気抵抗値を維持するものであるため、接合材3が昇温すると、接合材3と発熱抵抗体7と被接合体1との接合力は増加し、かつ、接合材3の電気抵抗値は低下する。接合材3が発熱抵抗体7と接合した状態で電気抵抗値が低下すると、その部分の電気抵抗は発熱抵抗体7の電気抵抗と接合材3の電気抵抗との並列の電気抵抗となるため、複合部の電気抵抗値は、元の発熱抵抗体7の電気抵抗値よりも低い値となる。そうすると、その部分の発熱量は低下していくこととなる。   According to this method, the heating resistor 7 is formed on the bonded body 2, and the heating resistor 7 is heated by energizing the heating resistor 7, and the heat is applied to the bonded body 1 and the bonded body. The bonding material 3 sandwiched between the materials 2 is heated. Even if the bonding material 3 is heated, the electrical resistance value is decreased as compared with that before the temperature is increased, and the bonding material 3 is lowered to the original temperature. In order to maintain the lowered electric resistance value, when the temperature of the bonding material 3 is increased, the bonding force of the bonding material 3, the heating resistor 7, and the bonded body 1 increases, and the bonding material 3 The electrical resistance value decreases. When the electrical resistance value decreases in a state where the bonding material 3 is bonded to the heat generating resistor 7, the electric resistance of the portion becomes an electric resistance in parallel with the electric resistance of the heat generating resistor 7 and the electric resistance of the bonding material 3. The electrical resistance value of the composite portion is lower than the electrical resistance value of the original heating resistor 7. If it does so, the emitted-heat amount of the part will fall.

したがって、本方法によっても、接合部分に電気抵抗値のばらつきがある場合においても、電気抵抗値の高い部分の発熱が多く、その後、その部分の電気抵抗値が低下することにより発熱量も低下する。一方、十分に発熱していない部分は比較的電気抵抗値が高い状態であり、発熱が続き、最終的にはすべての部分の接合が完了し、電気抵抗値が低下し、発熱量も低下する事となる。したがって、部分的な接合不良や、異常発熱による被接合体1と被接合体2と接合材3の熱ダメージが生じにくい接合方法を提供することができる。   Therefore, even in this method, even when there is a variation in the electrical resistance value at the joint portion, heat is generated at a portion where the electrical resistance value is high, and thereafter, the amount of heat generation is also reduced due to a decrease in the electrical resistance value at that portion. . On the other hand, the part that does not generate enough heat has a relatively high electrical resistance value, and the heat generation continues, eventually joining all the parts is completed, the electric resistance value decreases, and the heat generation amount also decreases. It will be a thing. Therefore, it is possible to provide a bonding method in which partial bonding failure and thermal damage of the bonded body 1, the bonded body 2, and the bonding material 3 due to abnormal heat generation hardly occur.

なお、本実施の形態では、発熱抵抗層7を被接合体2上に形成したが、これは、被接合体1上にも形成しても良く、さらには、アルミ蒸着膜だけでなく、銀膜や白金膜や銅膜等でも好ましく用いることができる。   In the present embodiment, the heating resistance layer 7 is formed on the bonded body 2, but it may be formed on the bonded body 1, and further, not only the aluminum vapor deposition film but also silver. A film, a platinum film, a copper film, or the like can be preferably used.

本発明にかかる接合方法は、2つの被接合体の間にはさみ込んだ導電性材料を含んでなる接合材に通電することにより接合材を発熱させ被接合体を接合するという効果を有し、EL(エレクトロルミネッセンス)やLEDの発光体の封止や、インクジェットヘッドに用いるPZTの封止等にも有用である。   The bonding method according to the present invention has the effect of heating the bonding material by energizing the bonding material containing the conductive material sandwiched between the two bonded objects, and bonding the bonded objects. It is also useful for sealing EL (electroluminescence) and LED emitters, sealing PZT used in inkjet heads, and the like.

本発明の実施の形態1における接合方法の概略構成図Schematic configuration diagram of the bonding method in Embodiment 1 of the present invention 本発明の実施の形態1における接合材3の電気抵抗値ばらつきがある場合の一例を示す概略図Schematic which shows an example in case there exists dispersion | variation in the electrical resistance value of the joining material 3 in Embodiment 1 of this invention. 本発明の実施の形態1における接合方法により、電気抵抗値が低減する状態を示す断面図Sectional drawing which shows the state in which an electrical resistance value reduces with the joining method in Embodiment 1 of this invention 本発明の実施の形態1における接合材の通電時間に対する、温度と電気抵抗値の変化の状態を示す図The figure which shows the state of the change of temperature and an electrical resistance value with respect to the energization time of the joining material in Embodiment 1 of this invention. 本発明の実施の形態2における接合方法の概略構成図Schematic configuration diagram of the joining method in Embodiment 2 of the present invention

符号の説明Explanation of symbols

1 被接合体
2 被接合体
3 接合材
7 発熱抵抗体
DESCRIPTION OF SYMBOLS 1 To-be-joined body 2 To-be-joined body 3 Joining material 7 Heating resistor

Claims (7)

2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込む工程と、
その状態にて前記接合材に通電することにより前記接合材を発熱させる工程とを備え、
前記接合材は、昇温により、電気抵抗値が昇温前に比べ低下するものであり、かつ、元の温度に降温しても、その低下した電気抵抗値を維持することを特徴とする接合方法。
Sandwiching a bonding material including a conductive material between two objects to be bonded;
And heating the bonding material by energizing the bonding material in that state,
The bonding material is characterized in that the electrical resistance value is lowered by the temperature rise as compared with the temperature before the temperature rise, and the lowered electrical resistance value is maintained even when the temperature is lowered to the original temperature. Method.
少なくともどちらか一方には発熱抵抗体が形成されている2つの被接合体の間に導電性材料を含んでなる接合材をはさみ込む工程と、
その状態にて前記発熱抵抗体に通電することにより前記発熱抵抗体を発熱させ、その熱により前記接合材を加熱する工程とを備えたものであり、
前記接合材は、昇温により、電気抵抗値が昇温前に比べ低下するものであり、かつ、元の温度に降温しても、その低下した電気抵抗値を維持することを特徴とする接合方法。
A step of sandwiching a bonding material comprising a conductive material between two members to be bonded, in which at least one of the heating resistors is formed;
In that state, the heating resistor is heated by energizing the heating resistor, and the bonding material is heated by the heat.
The bonding material is characterized in that the electrical resistance value is lowered by the temperature rise as compared with the temperature before the temperature rise, and the lowered electrical resistance value is maintained even when the temperature is lowered to the original temperature. Method.
接合材は、昇温により、導電性材料同士が結合することにより、電気抵抗値が低下するものであることを特徴とする請求項1または2に記載の接合方法。 The bonding method according to claim 1, wherein the bonding material is one in which an electrical resistance value is reduced by bonding conductive materials to each other by increasing temperature. 接合材は、平均粒子径が2〜100nmの金属粒子を分散させた液状の
ものであることを特徴とする請求項3に記載の接合方法。
The joining method according to claim 3, wherein the joining material is a liquid material in which metal particles having an average particle diameter of 2 to 100 nm are dispersed.
接合材は少なくとも半田を粒子状としたものを含んでなるものであることを特徴とする請求項3に記載の接合方法。 The joining method according to claim 3, wherein the joining material includes at least solder particles. 接合材または発熱抵抗体への通電はその通電電流の制限がなされていることを特徴とする請求項1〜5のいずれかに記載の接合方法。 6. The joining method according to claim 1, wherein energization of the joining material or the heating resistor is limited to the energization current. 接合材または発熱抵抗体への通電は間欠的に複数回に分けて行うことを特徴とする請求項1〜5のいずれかに記載の接合方法。 6. The joining method according to claim 1, wherein energization of the joining material or the heating resistor is performed intermittently in a plurality of times.
JP2004015276A 2004-01-23 2004-01-23 Method for joining members to be joined Pending JP2005205459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015276A JP2005205459A (en) 2004-01-23 2004-01-23 Method for joining members to be joined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015276A JP2005205459A (en) 2004-01-23 2004-01-23 Method for joining members to be joined

Publications (1)

Publication Number Publication Date
JP2005205459A true JP2005205459A (en) 2005-08-04

Family

ID=34900794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015276A Pending JP2005205459A (en) 2004-01-23 2004-01-23 Method for joining members to be joined

Country Status (1)

Country Link
JP (1) JP2005205459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009670A1 (en) * 2006-07-20 2008-01-24 Technische Universität Ilmenau Method for the creation of a soldered joint or a diffusion seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009670A1 (en) * 2006-07-20 2008-01-24 Technische Universität Ilmenau Method for the creation of a soldered joint or a diffusion seal

Similar Documents

Publication Publication Date Title
JP6217226B2 (en) Thermal mass flow meter, mass flow controller, and thermal mass flow meter manufacturing method
WO2009052662A1 (en) Fixing structure for heating module of hair dryer
WO2005105461A1 (en) Thermal print head
JP2005205459A (en) Method for joining members to be joined
JP2017062945A (en) Heater chip, joining device and joining method
CN106787948B (en) A kind of high temperature resistant Semiconductor Thermoelectric Generator and production method
JP2010253503A (en) Heater chip and joining apparatus
WO2007105510A1 (en) Thermoelectric module and process for producing the same
JP2022519008A (en) Selective energization sintering equipment
JP4107242B2 (en) Annealing method and substrate on which wiring is formed using the annealing method
JP2011124430A (en) Method of bonding solar cell module and bonding device
JP2000101229A (en) Thermall pressure-contact device for covered wire
JP4793053B2 (en) Planar heating element
WO2007032125A1 (en) Feeder head heating device
JP7108489B2 (en) soldering equipment
JP5933475B2 (en) Heating head unit and heating head
JPH07183078A (en) Self-temperature controlling, current-carrying heating element
JP5194726B2 (en) Planar heating element
JP2009026723A (en) Planar heating element
JP3869353B2 (en) Soldering apparatus, electrode and soldering method
JP2017224641A (en) Resistor and heater
JPH0456028A (en) Temperature fuse and its forming method
JP2022051177A (en) Hot end for three-dimensional printer, three-dimensional printer, and heating means
JPH04351877A (en) Heater
JP2016187811A (en) Joined body of aluminum member, and joining method of the aluminum member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807