JP2005203464A - Charged particle beam exposure device - Google Patents

Charged particle beam exposure device Download PDF

Info

Publication number
JP2005203464A
JP2005203464A JP2004006343A JP2004006343A JP2005203464A JP 2005203464 A JP2005203464 A JP 2005203464A JP 2004006343 A JP2004006343 A JP 2004006343A JP 2004006343 A JP2004006343 A JP 2004006343A JP 2005203464 A JP2005203464 A JP 2005203464A
Authority
JP
Japan
Prior art keywords
charged particle
individual
particle beam
converging
diaphragm plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004006343A
Other languages
Japanese (ja)
Other versions
JP4015626B2 (en
Inventor
Osamu Kamimura
理 上村
Yasunari Hayata
康成 早田
Susumu Goto
進 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004006343A priority Critical patent/JP4015626B2/en
Publication of JP2005203464A publication Critical patent/JP2005203464A/en
Application granted granted Critical
Publication of JP4015626B2 publication Critical patent/JP4015626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam exposure technology by which a plurality of opening groups are adjusted to allow charged particle beams to pass through, the passage of the beam can be checked and a tilt of the charged particle beam accompanied by the driving of electrostatic lenses can be adjusted when a plurality of charged particle beams such as a plurality of electron beams or the like are formed, and correction can be performed to reduce image deformation generated in a lighting optical system, a reduction system, a non-optical axis symmetrical electromagnetic field, and a deviated image. <P>SOLUTION: Eight-polar electrostatic deflectors 100 and 110 as angle adjustment deflectors, image rotary lenses 120 and 130 as rotary adjusters and electronic detectors 140 and 150 are provided between an aperture array 31 and an electrostatic lens array 32, and between the electrostatic lens array 32 and a blanker array 33 within a plural charged particle beam formation section 3, thereby adjusting the angle of beam passage and rotation to detect the passage of a beam. Furthermore, the voltage application method of the angle adjustment deflector is changed and it is used as a nonpoint correcting device to correct image deformation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主に半導体集積回路等の露光に用いられる電子ビーム露光装置やイオンビーム露光装置等の荷電粒子ビーム露光技術に関する。   The present invention relates to a charged particle beam exposure technique such as an electron beam exposure apparatus or an ion beam exposure apparatus mainly used for exposure of a semiconductor integrated circuit or the like.

電子ビーム露光装置には、従来、スポット状のビームを用いるポイントビーム型やサイズ可変の矩形ビームを使用する可変矩形ビーム型、および特定パターンを一括で露光するセルプロジェクション型の装置がある。   Conventional electron beam exposure apparatuses include a point beam type using a spot-shaped beam, a variable rectangular beam type using a variable size rectangular beam, and a cell projection type apparatus for exposing a specific pattern in a lump.

ポイントビーム型の電子ビーム露光装置ではスポット状の電子ビームを用いて描画するため、高解像度で描画が行える反面、スループットが低く、用途は主に研究開発や露光マスク製作である。可変矩形ビーム型およびセルプロジェクション型の電子ビーム露光装置では、形状ビームを用いることから、ポイントビーム型に比べるとスループットが1〜2桁高いが、基本的には単一の電子ビームで描画するため0.1μm程度の微細なパターンが高集積している場合などでは、スループットの点で問題が多い。   Since the point beam type electron beam exposure apparatus uses a spot-like electron beam for drawing, high-resolution drawing is possible, but the throughput is low, and the application is mainly for research and development and exposure mask production. Since the variable rectangular beam type and cell projection type electron beam exposure apparatuses use a shape beam, the throughput is one to two orders of magnitude higher than that of the point beam type, but basically, drawing is performed with a single electron beam. When fine patterns of about 0.1 μm are highly integrated, there are many problems in terms of throughput.

この問題を解決する装置として、描画するパターンをパターン透過孔としてステンシルマスクに形成し、電子ビームで照明して試料面に転写するステンシルマスク型の電子ビーム露光装置がある。また、複数の開口を有する絞り板を電子ビームで照明し、複数の開口を通過して形成される複数の電子ビームを個別に制御し、縮小電子光学系を介して試料面に照射して所望のパターンを描画するマルチ電子ビーム型露光装置が提案されている(例えば、非特許文献1参照)。双方とも一度に露光する面積、すなわち露光面積が従来にくらべて広いため、スループットがより改善できるという特徴がある。   As an apparatus for solving this problem, there is a stencil mask type electron beam exposure apparatus in which a pattern to be drawn is formed as a pattern transmission hole on a stencil mask, illuminated with an electron beam and transferred to a sample surface. In addition, a diaphragm plate having a plurality of apertures is illuminated with an electron beam, a plurality of electron beams formed through the plurality of apertures are individually controlled, and the sample surface is irradiated through a reduction electron optical system to be desired. A multi-electron beam type exposure apparatus that draws the pattern is proposed (see Non-Patent Document 1, for example). Both of them have a feature that the area to be exposed at one time, that is, the exposure area is wider than the conventional case, so that the throughput can be further improved.

「ジャーナル・オブ・バキューム・サイエンス・アンド・テクノロジー」(Journal of Vacuum Science and Technology, B 18 (6), Nov/Dec 2000, 3061-3066)"Journal of Vacuum Science and Technology" (Journal of Vacuum Science and Technology, B 18 (6), Nov / Dec 2000, 3061-3066)

しかしながら、前記マルチ電子ビーム型露光装置では、マルチ電子ビームを形成するために、複数個の開口を有する絞り板と、前記開口を通過した複数電子ビームそれぞれを収束する静電レンズと、複数電子ビームをそれぞれ偏向する偏向器群を設置し、それら前記絞り板、前記静電レンズ、前記偏向器群を各電子ビームが通過するよう、電子ビームの方向、像回転を調整する必要がある。   However, in the multi-electron beam exposure apparatus, in order to form a multi-electron beam, a diaphragm plate having a plurality of openings, an electrostatic lens that converges each of the plurality of electron beams that have passed through the openings, and a plurality of electron beams It is necessary to adjust the direction of the electron beam and the image rotation so that each electron beam passes through the diaphragm plate, the electrostatic lens, and the deflector group.

前記絞り板、前記静電レンズ、前記偏向器群を設置する際、その間隔は、絞り板内の開口間隔、すなわち複数電子ビームの間隔より大きく、設置位置誤差がビーム通過に及ぼす影響は無視できなくなる。   When the diaphragm plate, the electrostatic lens, and the deflector group are installed, the distance between them is larger than the opening interval in the diaphragm plate, that is, the interval between the plurality of electron beams, and the influence of the installation position error on the beam passage is negligible. Disappear.

前記静電レンズは、複数枚の電極で構成されており、また前記偏向器群は多数の配線を有するため、前記静電レンズおよび前記偏向器群を移動してビーム通過の調整を行なうことは困難である。   Since the electrostatic lens is composed of a plurality of electrodes, and the deflector group has a large number of wires, it is possible to adjust the beam passage by moving the electrostatic lens and the deflector group. Have difficulty.

前記静電レンズを構成する複数枚電極の製作誤差は、レンズ電圧軸の軸倒れを発生する。軸倒れにより、静電レンズへ電圧印加に伴う電子ビームの角度および像回転が変化するため、これら角度および像回転を調整する必要がある。   A manufacturing error of a plurality of electrodes constituting the electrostatic lens causes a tilt of the lens voltage axis. Due to the tilting of the axis, the angle of the electron beam and the image rotation accompanying voltage application to the electrostatic lens change. Therefore, it is necessary to adjust the angle and the image rotation.

前記の調整により、前記絞り板、前記静電レンズ、前記偏向器群を電子ビームが通過しているかの確認ができることが望ましい。   It is desirable that it can be confirmed by the adjustment whether an electron beam passes through the diaphragm plate, the electrostatic lens, and the deflector group.

マルチ電子ビーム形成部への照射電子光学系、およびマルチ電子ビーム形成部で形成されたマルチ電子ビームを試料面へ縮小投影する縮小光学系においては、歪曲収差により像歪が発生する。   In the irradiation electron optical system for the multi-electron beam forming unit and the reduction optical system for reducing and projecting the multi-electron beam formed by the multi-electron beam forming unit onto the sample surface, image distortion occurs due to distortion.

また、磁路形状や装置内の磁性材料および静電レンズに印加する高電圧配線など、光軸に対して非対称な電磁場や、偏向器による像偏向などでも像歪が発生する。前記歪曲収差を含め、このような像歪を低減できることが望ましい。   Further, image distortion is also caused by an electromagnetic field that is asymmetric with respect to the optical axis, such as a magnetic path shape, a magnetic material in the apparatus, and a high-voltage wiring applied to the electrostatic lens, or image deflection by a deflector. It is desirable that such image distortion can be reduced including the distortion.

本発明は、上記した従来の問題点に鑑みてなされたものであり、複数電子ビーム等のような複数荷電粒子ビームを形成する際、複数の開口群を荷電粒子ビームが通過するための調整を行ない、ビームの通過を確認することができ、さらに静電レンズ駆動に伴う荷電粒子ビームの傾きを調整することができ、さらにまた、照射光学系、縮小光学系、非光軸対称な電磁場および像偏向で発生する像歪を低減するための補正を行なうことが可能にする
荷電粒子ビーム露光技術を提供することを目的とする。
The present invention has been made in view of the above-described conventional problems. When a plurality of charged particle beams such as a plurality of electron beams are formed, adjustment for allowing the charged particle beams to pass through a plurality of aperture groups is performed. The beam can be confirmed, the tilt of the charged particle beam can be adjusted as the electrostatic lens is driven, and the irradiation optical system, the reduction optical system, the non-axisymmetric electromagnetic field and image can be adjusted. An object of the present invention is to provide a charged particle beam exposure technique that enables correction for reducing image distortion caused by deflection.

上記目的を達成するために、本発明では、荷電粒子源から放射される荷電粒子ビームを複数の荷電粒子ビームに分割するための複数の開口を有する絞り板(例えば、アパーチャアレイ)と、前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に収束する個別収束手段(例えば、静電レンズアレイ)と、前記個別収束手段で収束した荷電粒子ビームのそれぞれを個別に偏向する個別偏向手段(例えば、ブランカアレイ)とで構成されるマルチビーム形成手段(例えば、マルチ電子ビーム形成部)を有し、前記マルチビーム形成手段により形成された複数の荷電粒子ビームを用いて被露光基板を露光する荷電粒子ビーム露光装置において、前記マルチビーム形成手段が、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの角度を調整する角度調整手段(例えば、静電偏向器)と、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する回転調整手段(例えば、像回転レンズ)と、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間で荷電粒子ビームを検出する検出手段とを具備してなることを特徴とする。   In order to achieve the above object, in the present invention, a diaphragm plate (for example, an aperture array) having a plurality of openings for dividing a charged particle beam emitted from a charged particle source into a plurality of charged particle beams, Individual focusing means (for example, an electrostatic lens array) for individually focusing charged particle beams that have passed through each of the apertures, and individual deflection means (for example, for individually deflecting each of the charged particle beams converged by the individual focusing means) , A blanker array) and a multi-beam forming unit (for example, a multi-electron beam forming unit), and charging the substrate to be exposed using a plurality of charged particle beams formed by the multi-beam forming unit. In the particle beam exposure apparatus, the multi-beam forming means is disposed between the diaphragm plate and the individual focusing means and between the individual focusing means and the front. An angle adjusting means (for example, an electrostatic deflector) that adjusts the angle of the charged particle beam between the individual deflecting means, the diaphragm plate and the individual converging means, and the individual converging means and the individual deflecting means; Between the aperture plate and the individual converging unit and between the individual converging unit and the individual deflecting unit. And detecting means for detecting the particle beam.

また、前記角度調整手段が、前記絞り板と前記個別収束手段との間における荷電粒子ビームの角度を調整する第1の静電偏向器と、前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの角度を調整する第2の静電偏向器とで構成されていることを特徴とする。   The angle adjusting means includes a first electrostatic deflector that adjusts an angle of the charged particle beam between the aperture plate and the individual converging means, and between the individual converging means and the individual deflecting means. And a second electrostatic deflector for adjusting the angle of the charged particle beam.

また、前記回転調整手段が、前記絞り板と前記個別収束手段との間における荷電粒子ビームの像回転を調整する第1の像回転レンズと、前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する第2の像回転レンズとで構成されていることを特徴とする。   In addition, the rotation adjusting unit includes a first image rotating lens that adjusts an image rotation of the charged particle beam between the diaphragm plate and the individual converging unit, and between the individual converging unit and the individual deflecting unit. And a second image rotation lens for adjusting the image rotation of the charged particle beam.

さらに、荷電粒子源から放射される荷電粒子ビームを複数の荷電粒子ビームに分割するための複数の開口を有する絞り板と、前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に収束する個別収束手段、または前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に偏向する個別偏向手段とで構成されるマルチビーム形成手段を有し、前記マルチビーム形成手段により形成された複数の荷電粒子ビームを用いて被露光基板を露光する荷電粒子ビーム露光装置において、前記マルチビーム形成手段が、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間における荷電粒子ビームの角度を調整する角度調整手段と、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する回転調整手段と、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間で荷電粒子ビームを検出する検出手段とを具備してなることを特徴とする。   Further, a diaphragm plate having a plurality of apertures for dividing the charged particle beam emitted from the charged particle source into a plurality of charged particle beams, and an individual for individually converging the charged particle beam that has passed through each of the plurality of apertures A plurality of charged particles formed by the multi-beam forming means, comprising: a converging means; or individual beam deflecting means for individually deflecting the charged particle beam that has passed through each of the plurality of openings. In a charged particle beam exposure apparatus that exposes a substrate to be exposed using a beam, the multi-beam forming unit is charged between the diaphragm plate and the individual converging unit or between the diaphragm plate and the individual deflecting unit. Angle adjusting means for adjusting the angle of the particle beam, and between the diaphragm plate and the individual converging means, or between the diaphragm plate and the individual deflecting means. A rotation adjusting means for adjusting the image rotation of the charged particle beam in the lens, and a detecting means for detecting the charged particle beam between the diaphragm plate and the individual converging means or between the diaphragm plate and the individual deflecting means. It is characterized by comprising.

さらにまた、前記荷電粒子ビーム露光装置において、前記角度調整手段を非点補正器として動作させることにより、像歪を補正するよう構成したことを特徴とする。   Furthermore, the charged particle beam exposure apparatus is configured to correct image distortion by operating the angle adjusting means as an astigmatism corrector.

本発明によれば、複数荷電粒子ビームを形成する際、複数の開口を有する絞り板および静電レンズおよび偏向器群の間を荷電粒子ビームが通過するための調整を行ない、ビームの通過を確認することができ、さらに静電レンズ駆動に伴う荷電粒子ビームの傾きを調整することができる。また、照射光学系、縮小光学系、非光軸対称な電磁場および像偏向等により発生する像歪を低減するための補正を行なうことが可能となる。   According to the present invention, when a plurality of charged particle beams are formed, adjustment is performed so that the charged particle beam passes between the diaphragm plate having a plurality of openings, the electrostatic lens, and the deflector group, and the passage of the beam is confirmed. In addition, the tilt of the charged particle beam accompanying the driving of the electrostatic lens can be adjusted. Further, it is possible to perform correction for reducing image distortion caused by an irradiation optical system, a reduction optical system, a non-optical axis symmetric electromagnetic field, image deflection, and the like.

以下、本発明の実施例について、図面を参照して詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

荷電粒子ビーム露光装置の一例として、以下に示す本実施例では電子ビーム露光装置の場合について説明する。なお、本発明は、電子ビームに限らず、イオンビーム等の荷電粒子を用いた露光装置にも同様に適用できる。   As an example of the charged particle beam exposure apparatus, a case of an electron beam exposure apparatus will be described in the following embodiment. The present invention is not limited to an electron beam, and can be similarly applied to an exposure apparatus using charged particles such as an ion beam.

図1は、本発明の一実施例に係るマルチ電子ビーム露光装置の概略構成を示す。電子源1から放射される電子ビームは、コリメータレンズ20を含む照射光学系2を介して、マルチ電子ビーム形成部3に入射する。   FIG. 1 shows a schematic configuration of a multi-electron beam exposure apparatus according to an embodiment of the present invention. The electron beam emitted from the electron source 1 enters the multi-electron beam forming unit 3 via the irradiation optical system 2 including the collimator lens 20.

マルチ電子ビーム形成部3は、アパーチャアレイ31、静電レンズアレイ32、ブランカアレイ33、8極静電偏向器100、110、像回転レンズ120、130、検出器140、150で構成される。静電レンズ32は、上電極32a、中電極32b、下電極32cの3枚の電極で構成される。   The multi-electron beam forming unit 3 includes an aperture array 31, an electrostatic lens array 32, a blanker array 33, octupole electrostatic deflectors 100 and 110, image rotation lenses 120 and 130, and detectors 140 and 150. The electrostatic lens 32 includes three electrodes, an upper electrode 32a, a middle electrode 32b, and a lower electrode 32c.

アパーチャアレイ31は、複数の開口を有する絞り板で、ここで分割された電子ビームそれぞれが静電レンズアレイ32によりブランカアレイ33位置近傍に収束される。ブランカアレイ33は、個々の電子ビームを独立に偏向する偏向器群である。   The aperture array 31 is a diaphragm plate having a plurality of openings, and each of the electron beams divided here is converged in the vicinity of the position of the blanker array 33 by the electrostatic lens array 32. The blanker array 33 is a group of deflectors that independently deflect individual electron beams.

角度調整用偏向器として8極静電偏向器100は、アパーチャアレイ31を通過した電子ビームを偏向し、8極静電偏向器110は、静電レンズ32を通過した電子ビームを偏向する。   As an angle adjusting deflector, an octupole electrostatic deflector 100 deflects the electron beam that has passed through the aperture array 31, and an octupole electrostatic deflector 110 deflects the electron beam that has passed through the electrostatic lens 32.

回転調整器として像回転レンズ120は、アパーチャアレイ31を通過した電子ビームを像回転させ、像回転レンズ130は、静電レンズアレイ32を通過した電子ビームを像回転させる。   As the rotation adjuster, the image rotation lens 120 rotates the image of the electron beam that has passed through the aperture array 31, and the image rotation lens 130 rotates the image of the electron beam that has passed through the electrostatic lens array 32.

アパーチャアレイ31を通過した電子ビームは静電レンズアレイ32の上面で反射されるため、反射電子を電子検出器140で検出する。静電レンズアレイ32を通過した電子ビームはブランカアレイ33上面で反射されるため、反射電子を電子検出器150で検出する。なお、反射電子だけでなく、2次電子を検出するようにしてもよい。   Since the electron beam that has passed through the aperture array 31 is reflected by the upper surface of the electrostatic lens array 32, the reflected electrons are detected by the electron detector 140. Since the electron beam that has passed through the electrostatic lens array 32 is reflected on the upper surface of the blanker array 33, the reflected electrons are detected by the electron detector 150. In addition to the reflected electrons, secondary electrons may be detected.

マルチ電子ビーム形成部3で複数化された電子ビームは、2段の対称磁気ダブレット・レンズを構成する第1縮小系第1投影レンズ41と第1縮小系第2投影レンズ42、および第2縮小系第1投影レンズ43と第2縮小系第2投影レンズ44で構成された縮小光学系4により、ウエハ5上に縮小投影される。   The plurality of electron beams formed by the multi-electron beam forming unit 3 includes a first reduction system first projection lens 41, a first reduction system second projection lens 42, and a second reduction lens that form a two-stage symmetric magnetic doublet lens. The image is reduced and projected onto the wafer 5 by the reduction optical system 4 including the system first projection lens 43 and the second reduction system second projection lens 44.

縮小光学系4内にはブランキングアパーチャBAがあり、ブランカアレイ33で偏向された各電子ビーム(例えばビーム330')を遮蔽する。   A blanking aperture BA is provided in the reduction optical system 4 and blocks each electron beam (for example, the beam 330 ′) deflected by the blanker array 33.

ブランキングアパーチャBAで遮蔽されていない電子ビームは、偏向器6によりウエハ5上を走査される。所望のパターンに応じて、ブランカアレイ33の電圧をオン/オフすることにより、試料(被露光基板)5、例えばウエハ上に所望のパターンを露光する。   The electron beam not shielded by the blanking aperture BA is scanned on the wafer 5 by the deflector 6. A desired pattern is exposed on the sample (substrate to be exposed) 5, for example, a wafer, by turning on / off the voltage of the blanker array 33 according to the desired pattern.

ステージ7を移動し、マーク8を光軸上近傍に位置させることにより、電子ビームの照射によりマーク8から放出される反射電子もしくは2次電子を検出する電子検出器9、またはマーク8を透過した電子を透過電子検出器9'を用いて、縮小投影された複数電子ビームの位置計測、電流量計測、ビーム形状計測等を行なう。   By moving the stage 7 and positioning the mark 8 in the vicinity of the optical axis, the mark 8 is transmitted through the electron detector 9 for detecting reflected electrons or secondary electrons emitted from the mark 8 by irradiation of the electron beam or the mark 8. Using a transmission electron detector 9 ′, the electron is subjected to position measurement, current amount measurement, beam shape measurement, and the like of a plurality of electron beams projected in a reduced scale.

つぎに、本発明による電子ビームの通過、傾きの調整方法について説明する。   Next, a method for adjusting the passage and inclination of the electron beam according to the present invention will be described.

図2(a)のように、アパーチャアレイ31を通過した電子ビームが静電レンズアレイ32を通過していない場合、図2(b)のように、静電偏向器100で電子ビームを偏向することにより、静電レンズアレイ32を通過させることができる。静電レンズアレイ32を通過しない電子ビームは、静電レンズアレイ32の上面で反射もしくは2次電子を放出するため、これらの電子は検出器140で計測される。検出器140で計測した電子量が最小となる条件から、静電レンズアレイ32を電子ビームが通過したとみなせる。または、静電レンズアレイ32通過後の電子ビームはブランカアレイ33上面で反射するため、検出器150により、電子ビームの通過を確認できる。   When the electron beam that has passed through the aperture array 31 does not pass through the electrostatic lens array 32 as shown in FIG. 2A, the electron beam is deflected by the electrostatic deflector 100 as shown in FIG. Thus, the electrostatic lens array 32 can be passed. The electron beam that does not pass through the electrostatic lens array 32 is reflected by the upper surface of the electrostatic lens array 32 or emits secondary electrons, so that these electrons are measured by the detector 140. From the condition that the amount of electrons measured by the detector 140 is minimized, it can be considered that the electron beam has passed through the electrostatic lens array 32. Alternatively, since the electron beam after passing through the electrostatic lens array 32 is reflected on the upper surface of the blanker array 33, the detector 150 can confirm the passage of the electron beam.

図2(c)のように、静電レンズアレイ32を通過した電子ビームがブランカアレイ33を通過していない場合、静電偏向器110で電子ビームを偏向することにより、図2(d)のようにブランカアレイ33を通過させることができる。ブランカアレイ33通過後の電子ビームは、ブランカアレイ33上面で放出される反射もしくは2次電子の電子量が最小となる条件を検出器150で確認するか、または、下流にあって反射電子もしくは2次電子を検出する電子検出器9、または試料5を透過した電子を透過電子検出器9'で計測する。   As shown in FIG. 2C, when the electron beam that has passed through the electrostatic lens array 32 has not passed through the blanker array 33, the electron beam is deflected by the electrostatic deflector 110, whereby the electron beam shown in FIG. Thus, the blanker array 33 can be passed. The electron beam that has passed through the blanker array 33 is checked by the detector 150 for conditions under which the amount of reflected or secondary electrons emitted from the upper surface of the blanker array 33 is minimized, or is reflected downstream from the reflected electrons or 2 The electron detector 9 for detecting the secondary electrons or the electrons transmitted through the sample 5 are measured by the transmission electron detector 9 ′.

図3(a)のように、アパーチャアレイ31を通過した電子ビーム300に回転ずれがあり、静電レンズアレイ開口301を通過していない場合、像回転レンズ120で電子ビームを回転することにより、図3(b)のように静電レンズアレイ32を通過させることができる。静電レンズアレイ32を通過しない電子ビームは、静電レンズアレイ32の上面で反射もしくは2次電子を放出するため、これらの電子は検出器140で計測される。検出器140で計測した電子量が最小となる条件から、静電レンズアレイ32を電子ビームが通過したとみなせる。または、静電レンズアレイ32通過後の電子ビームはブランカアレイ33上面で反射するため、反射電子もしくは2次電子を電子検出器150で計測する。   As shown in FIG. 3A, when the electron beam 300 that has passed through the aperture array 31 has a rotational shift and does not pass through the electrostatic lens array opening 301, by rotating the electron beam with the image rotation lens 120, The electrostatic lens array 32 can be passed as shown in FIG. The electron beam that does not pass through the electrostatic lens array 32 is reflected by the upper surface of the electrostatic lens array 32 or emits secondary electrons, so that these electrons are measured by the detector 140. From the condition that the amount of electrons measured by the detector 140 is minimized, it can be considered that the electron beam has passed through the electrostatic lens array 32. Alternatively, since the electron beam after passing through the electrostatic lens array 32 is reflected on the upper surface of the blanker array 33, reflected electrons or secondary electrons are measured by the electron detector 150.

同様に、静電レンズアレイ32を通過した電子ビームに回転ずれがあり、ブランカアレイ33を通過していない場合、像回転レンズ130で電子ビームを回転することにより、ブランカアレイ33を通過させることができる。ブランカアレイ33通過後の電子ビームは、検出器150で計測した電子量が最小となる条件で確認するか、または、下流の電子検出器9または透過電子検出器9'で計測する。   Similarly, when the electron beam that has passed through the electrostatic lens array 32 has a rotational shift and does not pass through the blanker array 33, the electron beam is rotated by the image rotation lens 130, thereby allowing the blanker array 33 to pass. it can. The electron beam after passing through the blanker array 33 is checked under the condition that the amount of electrons measured by the detector 150 is minimized, or is measured by the downstream electron detector 9 or the transmission electron detector 9 ′.

図4(a)は静電レンズアレイ32に電圧を印加する前の状態、図4(b)は電圧を印加した後の状態を示している。静電レンズアレイ32の組立誤差等の影響で、静電レンズアレイ32の電圧軸VAXが、アパーチャアレイ31を通過した電子ビームの方向と異なる場合がある。このとき、電圧印加に伴い電子ビームは角度および回転が変化する。図4(c)のように、静電偏向器110および像回転レンズ130を用いることにより、電圧印加に伴う電子ビームの角度および回転変化を調整し、ブランカアレイ33を通過させることができる。   4A shows a state before the voltage is applied to the electrostatic lens array 32, and FIG. 4B shows a state after the voltage is applied. The voltage axis VAX of the electrostatic lens array 32 may be different from the direction of the electron beam that has passed through the aperture array 31 due to the influence of an assembly error of the electrostatic lens array 32 or the like. At this time, the angle and rotation of the electron beam change with voltage application. As shown in FIG. 4C, by using the electrostatic deflector 110 and the image rotation lens 130, the angle and rotation change of the electron beam accompanying voltage application can be adjusted, and the blanker array 33 can be passed.

つぎに、本発明における像歪の補正方法について説明する。   Next, an image distortion correction method according to the present invention will be described.

8極静電偏向器100および110を偏向器として用いる場合の電圧割振りは、X方向の偏向電圧、Y方向の偏向電圧をそれぞれV、Vとすると、図5(a)のようになっている(図中、αは定数)。これに対し、図5(b)のように電圧印加を行なうと、偏向器100および110は非点補正器として働く。VSTX、VSTYはそれぞれX、Y方向の非点補正電圧である。 When the octupole electrostatic deflectors 100 and 110 are used as deflectors, the voltage allocation is as shown in FIG. 5A when the deflection voltage in the X direction and the deflection voltage in the Y direction are V X and V Y , respectively. (In the figure, α is a constant). On the other hand, when a voltage is applied as shown in FIG. 5B, the deflectors 100 and 110 function as astigmatism correctors. V STX and V STY are astigmatism correction voltages in the X and Y directions, respectively.

要素電子光学系3内の位置100または110では、複数電子ビームの広がりが大きいため、この位置で非点補正器を作用させると、像歪が発生する。   At the position 100 or 110 in the element electron optical system 3, the spread of the plurality of electron beams is large. Therefore, when the astigmatism corrector is operated at this position, image distortion occurs.

照射光学系2および縮小光学系4および光軸に対して非対称な電磁場で発生する像歪を、非点補正器で発生する像歪でキャンセルするように調整することにより、照射光学系および縮小光学系での像歪を低減できる。   By adjusting so that the image distortion generated in the electromagnetic field asymmetric with respect to the irradiation optical system 2 and the reduction optical system 4 and the optical axis is canceled by the image distortion generated by the astigmatism corrector, the irradiation optical system and the reduction optical system are adjusted. The image distortion in the system can be reduced.

像偏向による歪に関しては、予め偏向器動作に伴う像歪を計測し、それをキャンセルするような像歪を偏向器に同期して非点補正器で発生させることにより低減する。   The distortion due to the image deflection is reduced by measuring the image distortion accompanying the operation of the deflector in advance and generating the image distortion by the astigmatism corrector in synchronization with the deflector.

偏向器100および110に、図5(a)および(b)に示す電圧を重畳して印加することにより、偏向器と非点補正器の機能を同時に満たすことが可能となる。   By superimposing and applying the voltages shown in FIGS. 5A and 5B to the deflectors 100 and 110, the functions of the deflector and the astigmatism corrector can be satisfied simultaneously.

前述の8極静電補正器100および110は、電磁偏向器でもよい。この場合は、偏向器として動作させる電流と非点補正器として動作させる電流の和を印加する。   The above-described octupole electrostatic correctors 100 and 110 may be electromagnetic deflectors. In this case, the sum of the current that operates as the deflector and the current that operates as the astigmatism corrector is applied.

また、図6は、本発明の別の実施例を示す。すなわち、図6のように、マルチ電子ビーム形成部3がアパーチャアレイ31と静電レンズアレイ32とで構成されるマルチ電子ビーム露光装置でも、アパーチャアレイ31と静電レンズアレイ32との間に角度調整用偏向器(8極静電偏向器)100および回転調整器(像回転レンズ)120を設置することにより、通過する電子ビームの角度および回転の調整を行い、また、角度調整用偏向器を非点補正器として作用させることにより、照射光学系、縮小光学系、光軸に対して非対称な電磁場および像偏向等で発生する像歪を低減するための補正を行なうことが可能となる。   FIG. 6 shows another embodiment of the present invention. That is, as shown in FIG. 6, even in a multi-electron beam exposure apparatus in which the multi-electron beam forming unit 3 includes the aperture array 31 and the electrostatic lens array 32, the angle between the aperture array 31 and the electrostatic lens array 32. By installing the adjustment deflector (octupole electrostatic deflector) 100 and the rotation adjuster (image rotation lens) 120, the angle and rotation of the passing electron beam are adjusted. By acting as an astigmatism corrector, it is possible to perform correction for reducing image distortion caused by an irradiation optical system, a reduction optical system, an electromagnetic field asymmetric with respect to the optical axis, and image deflection.

また、図7は、本発明のさらに別の実施例を示す。すなわち、図7のように、マルチ電子ビーム形成部3がアパーチャアレイ31とブランカアレイ33とで構成されるマルチ電子ビーム露光装置でも、アパーチャアレイ31とブランカアレイ33との間に角度調整用偏向器(8極静電偏向器)110および回転調整器(像回転レンズ)130を設置することにより、通過する電子ビームの角度および回転の調整を行い、また、角度調整用偏向器を非点補正器として作用させることにより、照射光学系、縮小光学系、光軸に対して非対称な電磁場および像偏向等で発生する像歪を低減するための補正を行なうことが可能となる。   FIG. 7 shows still another embodiment of the present invention. That is, as shown in FIG. 7, even in a multi-electron beam exposure apparatus in which the multi-electron beam forming unit 3 includes an aperture array 31 and a blanker array 33, an angle adjusting deflector is provided between the aperture array 31 and the blanker array 33. (An 8-pole electrostatic deflector) 110 and a rotation adjuster (image rotation lens) 130 are installed to adjust the angle and rotation of the passing electron beam, and the angle adjusting deflector is an astigmatism corrector. Thus, it is possible to perform correction for reducing image distortion caused by an irradiation optical system, a reduction optical system, an electromagnetic field asymmetric with respect to the optical axis, image deflection, and the like.

以上詳述したように、本発明によれば、複数荷電粒子ビームを形成する際、複数の開口を有する絞り板および静電レンズおよび偏向器群の間を荷電粒子ビームが通過するための調整を行ない、ビームの通過を確認することができ、さらに静電レンズ駆動に伴う荷電粒子ビームの傾きを調整することができる。また、照射光学系、縮小光学系、非光軸対称な電磁場および像偏向等により発生する像歪を低減するための補正を行なうことが可能となる。また、デバイス製造において、従来以上に歩留まりが高くスループットが高い製造が可能となる。   As described above in detail, according to the present invention, when a plurality of charged particle beams are formed, adjustment is performed so that the charged particle beam passes between the diaphragm plate having a plurality of openings, the electrostatic lens, and the deflector group. It is possible to confirm the passage of the beam and to adjust the inclination of the charged particle beam accompanying the driving of the electrostatic lens. Further, it is possible to perform correction for reducing image distortion caused by an irradiation optical system, a reduction optical system, a non-optical axis symmetric electromagnetic field, image deflection, and the like. Further, in device manufacturing, it is possible to manufacture with higher yield and higher throughput than before.

本発明の一実施例に係るマルチ電子ビーム露光装置の概略構成を示す図。1 is a diagram showing a schematic configuration of a multi-electron beam exposure apparatus according to an embodiment of the present invention. 本発明による角度調整手段による角度調整方法を説明する図。The figure explaining the angle adjustment method by the angle adjustment means by this invention. 本発明における回転調整手段による像回転調整方法を説明する図。The figure explaining the image rotation adjustment method by the rotation adjustment means in this invention. 本発明による角度調整手段により、静電レンズの軸倒れに伴うビーム角度変化を調整する方法を説明する図。The figure explaining the method of adjusting the beam angle change accompanying the axis tilt of an electrostatic lens by the angle adjustment means by this invention. 本発明における8極静電偏向器の偏向器の場合(a)および非点補正器の場合(b)の電圧割振りを説明する図。The figure explaining the voltage allocation of the case of the deflector of the octupole electrostatic deflector in the present invention (a) and the case of the astigmatism corrector (b). 本発明の別の実施例になるマルチ電子ビーム露光装置の概略構成を説明する図。The figure explaining schematic structure of the multi electron beam exposure apparatus which becomes another Example of this invention. 本発明のさらに別の実施例になるマルチ電子ビーム露光装置の概略構成を説明する図。The figure explaining schematic structure of the multi electron beam exposure apparatus which becomes another Example of this invention.

符号の説明Explanation of symbols

1…電子銃、2…照射光学系、3…マルチ電子ビーム形成部、4…縮小電子光学系、5…試料(ウエハ)、6…偏向器、7…試料ステージ、8…マーク、9…電子検出器、9'…透過電子検出器、20…コリメータレンズ、31…アパーチャアレイ、32…静電レンズアレイ、32a…上電極、32b…中電極、32c…下電極、33…ブランカアレイ、41…第1縮小系第1投影レンズ、42…第1縮小系第2投影レンズ、43…第2縮小系第1投影レンズ、44…第2縮小系第2投影レンズ、100、110…8極静電偏向器、120、130…像回転レンズ、140、150…電子検出器、300…アパーチャアレイを通過したビーム、301…静電レンズアレイ開口、330'…被ブランキングビーム、BA…ブランキング絞り、VAX…静電レンズアレイ電圧軸。   DESCRIPTION OF SYMBOLS 1 ... Electron gun, 2 ... Irradiation optical system, 3 ... Multi electron beam formation part, 4 ... Reduction electron optical system, 5 ... Sample (wafer), 6 ... Deflector, 7 ... Sample stage, 8 ... Mark, 9 ... Electron Detector, 9 '... Transmission electron detector, 20 ... Collimator lens, 31 ... Aperture array, 32 ... Electrostatic lens array, 32a ... Upper electrode, 32b ... Middle electrode, 32c ... Lower electrode, 33 ... Blanker array, 41 ... 1st reduction system 1st projection lens, 42 ... 1st reduction system 2nd projection lens, 43 ... 2nd reduction system 1st projection lens, 44 ... 2nd reduction system 2nd projection lens, 100, 110 ... 8 pole electrostatics Deflector, 120, 130 ... Image rotation lens, 140, 150 ... Electron detector, 300 ... Beam that passed through aperture array, 301 ... Electrostatic lens array aperture, 330 '... Beam to be blanked, BA ... Blanking diaphragm, VA ... electrostatic lens array voltage axis.

Claims (5)

荷電粒子源から放射される荷電粒子ビームを複数の荷電粒子ビームに分割するための複数の開口を有する絞り板と、前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に収束する個別収束手段と、前記個別収束手段で収束した荷電粒子ビームのそれぞれを個別に偏向する個別偏向手段とで構成されるマルチビーム形成手段を有し、前記マルチビーム形成手段により形成された複数の荷電粒子ビームを用いて被露光基板を露光する荷電粒子ビーム露光装置において、前記マルチビーム形成手段が、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの角度を調整する角度調整手段と、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する回転調整手段と、前記絞り板と前記個別収束手段との間および前記個別収束手段と前記個別偏向手段との間で荷電粒子ビームを検出する検出手段とを具備してなることを特徴とする荷電粒子ビーム露光装置。   A diaphragm having a plurality of apertures for dividing a charged particle beam emitted from a charged particle source into a plurality of charged particle beams, and an individual converging means for individually converging the charged particle beams that have passed through each of the plurality of apertures And a multi-beam forming unit configured to individually deflect each of the charged particle beams converged by the individual converging unit, and a plurality of charged particle beams formed by the multi-beam forming unit. In the charged particle beam exposure apparatus that uses and exposes the substrate to be exposed, the multi-beam forming means includes a charged particle beam between the diaphragm plate and the individual converging means and between the individual converging means and the individual deflecting means. An angle adjusting means for adjusting the angle of the angle between the diaphragm plate and the individual converging means and between the individual converging means and the individual deflecting means. Rotation adjusting means for adjusting the image rotation of the charged particle beam, and detecting means for detecting the charged particle beam between the diaphragm plate and the individual converging means and between the individual converging means and the individual deflecting means. A charged particle beam exposure apparatus comprising: 前記角度調整手段が、前記絞り板と前記個別収束手段との間における荷電粒子ビームの角度を調整する第1の静電偏向器と、前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの角度を調整する第2の静電偏向器とで構成されていることを特徴とする請求項1に記載の荷電粒子ビーム露光装置。   A first electrostatic deflector for adjusting the angle of the charged particle beam between the aperture plate and the individual converging unit; and charged particles between the individual converging unit and the individual deflecting unit. The charged particle beam exposure apparatus according to claim 1, comprising a second electrostatic deflector that adjusts a beam angle. 前記回転調整手段が、前記絞り板と前記個別収束手段との間における荷電粒子ビームの像回転を調整する第1の像回転レンズと、前記個別収束手段と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する第2の像回転レンズとで構成されていることを特徴とする請求項1又は2に記載の荷電粒子ビーム露光装置。   The rotation adjusting means adjusts the image rotation of the charged particle beam between the aperture plate and the individual converging means, and the charged particles between the individual converging means and the individual deflecting means. 3. The charged particle beam exposure apparatus according to claim 1, comprising a second image rotation lens that adjusts the image rotation of the beam. 荷電粒子源から放射される荷電粒子ビームを複数の荷電粒子ビームに分割するための複数の開口を有する絞り板と、前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に収束する個別収束手段、または前記複数の開口のそれぞれを通過した荷電粒子ビームを個別に偏向する個別偏向手段とで構成されるマルチビーム形成手段を有し、前記マルチビーム形成手段により形成された複数の荷電粒子ビームを用いて被露光基板を露光する荷電粒子ビーム露光装置において、前記マルチビーム形成手段が、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間における荷電粒子ビームの角度を調整する角度調整手段と、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間における荷電粒子ビームの像回転を調整する回転調整手段と、前記絞り板と前記個別収束手段との間、または前記絞り板と前記個別偏向手段との間で荷電粒子ビームを検出する検出手段とを具備してなることを特徴とする荷電粒子ビーム露光装置。   A diaphragm having a plurality of apertures for dividing a charged particle beam emitted from a charged particle source into a plurality of charged particle beams, and an individual converging means for individually converging the charged particle beams that have passed through each of the plurality of apertures Or a multi-beam forming unit configured to individually deflect the charged particle beam that has passed through each of the plurality of openings, and the plurality of charged particle beams formed by the multi-beam forming unit In the charged particle beam exposure apparatus that uses and exposes the substrate to be exposed, the multi-beam forming means is a charged particle beam between the diaphragm plate and the individual converging means or between the diaphragm plate and the individual deflection means. Between the diaphragm plate and the individual converging unit, or between the diaphragm plate and the individual deflecting unit. A rotation adjusting means for adjusting the image rotation of the charged particle beam; and a detecting means for detecting the charged particle beam between the diaphragm plate and the individual converging means or between the diaphragm plate and the individual deflecting means. A charged particle beam exposure apparatus characterized by comprising: 前記角度調整手段を非点補正器として動作させることにより、像歪を補正するよう構成したことを特徴とする請求項1又は4に記載の荷電粒子ビーム露光装置。   5. The charged particle beam exposure apparatus according to claim 1, wherein the angle adjustment unit is operated as an astigmatism corrector to correct image distortion.
JP2004006343A 2004-01-14 2004-01-14 Charged particle beam exposure system Expired - Fee Related JP4015626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006343A JP4015626B2 (en) 2004-01-14 2004-01-14 Charged particle beam exposure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006343A JP4015626B2 (en) 2004-01-14 2004-01-14 Charged particle beam exposure system

Publications (2)

Publication Number Publication Date
JP2005203464A true JP2005203464A (en) 2005-07-28
JP4015626B2 JP4015626B2 (en) 2007-11-28

Family

ID=34820344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006343A Expired - Fee Related JP4015626B2 (en) 2004-01-14 2004-01-14 Charged particle beam exposure system

Country Status (1)

Country Link
JP (1) JP4015626B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077778A (en) * 2011-09-30 2013-04-25 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method
KR20140092747A (en) * 2012-12-26 2014-07-24 가부시키가이샤 뉴플레어 테크놀로지 Multi charged particle beam writing device
WO2018167924A1 (en) * 2017-03-16 2018-09-20 株式会社ニコン Charged particle beam optical system, exposure apparatus, exposure method, and device manufacturing method
EP3400608A4 (en) * 2016-01-09 2019-08-21 Kla-Tencor Corporation Heat-spreadable blanking system for high throughput electron beam apparatus
JP2019212680A (en) * 2018-05-31 2019-12-12 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography apparatus and adjustment method therefor
JP2023514498A (en) * 2020-02-21 2023-04-06 エーエスエムエル ネザーランズ ビー.ブイ. inspection equipment
JP7457820B2 (en) 2020-02-21 2024-03-28 エーエスエムエル ネザーランズ ビー.ブイ. Charged particle inspection tools and inspection methods
JP7482238B2 (en) 2020-02-21 2024-05-13 エーエスエムエル ネザーランズ ビー.ブイ. Inspection Equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077778A (en) * 2011-09-30 2013-04-25 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method
KR20140092747A (en) * 2012-12-26 2014-07-24 가부시키가이샤 뉴플레어 테크놀로지 Multi charged particle beam writing device
KR101598154B1 (en) 2012-12-26 2016-02-26 가부시키가이샤 뉴플레어 테크놀로지 Multi charged particle beam writing device
CN113990728A (en) * 2016-01-09 2022-01-28 科磊股份有限公司 Heat dissipating blanking system for high flux electron beam devices
EP3400608A4 (en) * 2016-01-09 2019-08-21 Kla-Tencor Corporation Heat-spreadable blanking system for high throughput electron beam apparatus
CN113990728B (en) * 2016-01-09 2024-03-26 科磊股份有限公司 Heat dissipation blanking system for high flux electron beam device
WO2018167924A1 (en) * 2017-03-16 2018-09-20 株式会社ニコン Charged particle beam optical system, exposure apparatus, exposure method, and device manufacturing method
US11276546B2 (en) 2017-03-16 2022-03-15 Nikon Corporation Charged particle beam optical system, exposure apparatus, exposure method and device manufacturing method
JP7192254B2 (en) 2018-05-31 2022-12-20 株式会社ニューフレアテクノロジー Multi-charged particle beam drawing device and its adjustment method
JP2019212680A (en) * 2018-05-31 2019-12-12 株式会社ニューフレアテクノロジー Multi-charged particle beam lithography apparatus and adjustment method therefor
JP2023514498A (en) * 2020-02-21 2023-04-06 エーエスエムエル ネザーランズ ビー.ブイ. inspection equipment
JP7457820B2 (en) 2020-02-21 2024-03-28 エーエスエムエル ネザーランズ ビー.ブイ. Charged particle inspection tools and inspection methods
JP7482238B2 (en) 2020-02-21 2024-05-13 エーエスエムエル ネザーランズ ビー.ブイ. Inspection Equipment

Also Published As

Publication number Publication date
JP4015626B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
US10504681B2 (en) Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
TWI534849B (en) Projection lens arrangement
KR101900050B1 (en) Muli-charged particle beam apparatus
JP3787417B2 (en) Electron beam exposure method and electron beam exposure apparatus
JP4679978B2 (en) Charged particle beam application equipment
US6940080B2 (en) Charged particle beam lithography system, lithography method using charged particle beam, method of controlling charged particle beam, and method of manufacturing semiconductor device
US9208989B2 (en) Lithography system and method of refracting
JP4092280B2 (en) Charged beam apparatus and charged particle detection method
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
US6815698B2 (en) Charged particle beam exposure system
JP3983772B2 (en) Charged particle beam application equipment
JP4015626B2 (en) Charged particle beam exposure system
JP3800343B2 (en) Charged particle beam exposure system
JP5159035B2 (en) Lens array and charged particle beam exposure apparatus including the lens array
JP4143204B2 (en) Charged particle beam exposure apparatus and device manufacturing method using the apparatus
JP2003332206A (en) Aligner using electron beam and processing device using the electronic beam
JP7480917B1 (en) Multi-charged particle beam writing system
JP2007109677A (en) Charged beam device and charged particle detecting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees