JP2005200459A - Pellet - Google Patents

Pellet Download PDF

Info

Publication number
JP2005200459A
JP2005200459A JP2004005372A JP2004005372A JP2005200459A JP 2005200459 A JP2005200459 A JP 2005200459A JP 2004005372 A JP2004005372 A JP 2004005372A JP 2004005372 A JP2004005372 A JP 2004005372A JP 2005200459 A JP2005200459 A JP 2005200459A
Authority
JP
Japan
Prior art keywords
polymer
polymer alloy
soluble polymer
yarn
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004005372A
Other languages
Japanese (ja)
Other versions
JP4710227B2 (en
Inventor
Takashi Ochi
隆志 越智
Norio Suzuki
則雄 鈴木
Akira Kidai
明 木代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004005372A priority Critical patent/JP4710227B2/en
Publication of JP2005200459A publication Critical patent/JP2005200459A/en
Application granted granted Critical
Publication of JP4710227B2 publication Critical patent/JP4710227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer alloy pellet having excellent heat resistance for obtaining polymer alloy fibers competent for a mass production. <P>SOLUTION: This pellet is formed from a sea-island structure or laminar structure polymer alloy comprising an easily soluble polymer and a slight soluble polymer, and has a color tone index: b* value of -1 to 10 and melt viscosity of ≤300 Pa×s, and has the melting point of the easily soluble polymer within a range of -20 to +20°C from the melting point of the slight soluble polymer. This pellet is also formed from a sea-island structure or laminar structure polymer alloy comprising an easily soluble polymer and a slight soluble polymer, and has a color tone index: b* value of -1 to 10, and melt viscosity of ≤100 Pa×s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、易溶解性ポリマーと難溶解性ポリマーからなるポリマーアロイ繊維を紡糸性、糸加工性良く得ることができ、しかも得られたポリマーアロイ繊維から易溶解性ポリマーを溶出することにより優れた性能を有するナノファイバーを容易に得ることのできるポリマーアロイペレットに関するものである。   The present invention can obtain a polymer alloy fiber composed of an easily soluble polymer and a hardly soluble polymer with good spinnability and yarn processability, and is excellent by eluting the easily soluble polymer from the obtained polymer alloy fiber. The present invention relates to a polymer alloy pellet from which nanofibers having performance can be easily obtained.

ナイロン6(N6)やナイロン66(N66)に代表されるポリアミド繊維やポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)に代表されるポリエステル繊維は力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されている。   Polyamide fibers, such as nylon 6 (N6) and nylon 66 (N66), and polyester fibers, such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), have excellent mechanical properties and dimensional stability. It is widely used for interiors, vehicle interiors, and industrial applications.

しかし、単一のポリマーからなる繊維ではその性能に限界があるため、従来から共重合やポリマーブレンドといったポリマー改質、また複合紡糸や混繊紡糸による機能の複合化が検討されてきた。中でも、ポリマーブレンドは新しくポリマーを設計する必要が無く、しかも単成分紡糸機を用いても製造が可能であることから特に活発な検討が行われてきた。   However, since the performance of a single polymer fiber is limited, conventionally, polymer modification such as copolymerization and polymer blending, and composite functions by composite spinning and mixed fiber spinning have been studied. In particular, polymer blends do not require a new polymer design and can be produced using a single-component spinning machine, and thus have been actively studied.

ところで、特にポリエステル繊維やポリアミド繊維は衣料用途に用いられてきたこともあり、ポリマー改質だけでなく、繊維の断面形状や極細糸による性能向上の検討も活発に行われてきた。このような検討の一つとして、海島複合紡糸を利用したポリエステルの超極細糸が生み出され、スエード調の人工皮革という大型新製品に結実していった。また、この超極細糸を一般衣料に適用し、通常の繊維では絶対に得られないピーチタッチの優れた風合いの衣料にも展開されている。さらに、衣料用途のみならず、ワイピングクロスといった生活資材や産業資材用途にも展開され、超極細繊維は現在の合成繊維の世界で確固たる地位を築いている。特に最近では、特開2001−1252号公報や特開2002−224945号公報に記載のようにコンピューターのハードディスク用の表面研磨布や、特開2002−102332号公報や特開2002−172163号公報に記載のように細胞吸着材のようなメディカル材料にまで応用が拡がっている。   By the way, in particular, polyester fibers and polyamide fibers have been used for apparel applications. In addition to polymer modification, studies have been actively conducted not only on the modification of polymers but also on the performance improvement by using fiber cross-sectional shapes and ultrafine yarns. One such study was the creation of ultra-fine polyester yarn using sea-island composite spinning, which resulted in a large new product called suede-like artificial leather. Moreover, this super extra fine thread is applied to general clothing, and it has also been developed to clothing having an excellent peach touch texture that cannot be obtained with ordinary fibers. Furthermore, it is being developed not only for clothing but also for daily and industrial materials such as wiping cloth, and ultrafine fibers have established a firm position in the world of synthetic fibers today. Particularly recently, as described in JP-A-2001-1252 and JP-A-2002-224945, surface polishing cloths for hard disks of computers, JP-A-2002-102332, and JP-A-2002-172163 As described, the application has been extended to medical materials such as cell adsorbents.

このため、さらにレベルの高い人工皮革や高質感衣料を得るために、より細い繊維が望まれていた。また、IT産業の隆盛を支えるためハードディスクの大容量化が推進されているが、このためにはさらにハードディスクの記録密度を上げることが必須であり、そのためには、現在平均表面粗さが1nm以上であるハードディスク表面をさらに平滑化することが必要である(目標は平均表面粗さ0.5nm以下)。このため、ハードディスク表面を磨くための研磨布に用いる繊維をさらに極細化したナノファイバーが望まれていた。   For this reason, in order to obtain a higher level of artificial leather and high-quality clothing, thinner fibers have been desired. In order to support the growth of the IT industry, the increase in hard disk capacity is being promoted. To this end, it is essential to increase the recording density of the hard disk. It is necessary to further smooth the hard disk surface (the target is an average surface roughness of 0.5 nm or less). For this reason, there has been a demand for nanofibers in which the fibers used in the polishing cloth for polishing the hard disk surface are further refined.

しかしながら、現在の海島複合紡糸技術では単糸繊度は0.04dtex(直径2μm相当)が限界であり、ナノファイバーに対するニーズに充分応えられるレベルではなかった。また、ポリマーブレンド繊維により超極細糸を得る方法が従来から検討されているが、ここで得られた単糸繊度は最も細いものでも0.001dtex(直径0.4μm相当)であり、やはりナノファイバーに対するニーズに充分応えられるレベルではなかった(特許文献1、2)。しかも、ここで得られる超極細糸の単糸繊度はポリマーブレンド繊維中での島ポリマーの分散状態で決定されるが、該公報で用いられているポリマーブレンド系では島ポリマーの分散が不十分であるため、得られる超極細糸の単糸繊度ばらつきが大きいものであった。   However, the current sea-island composite spinning technology has a limit of 0.04 dtex (corresponding to a diameter of 2 μm) as the single yarn fineness, and is not at a level that can sufficiently meet the needs for nanofibers. In addition, methods for obtaining ultra-fine yarns from polymer blend fibers have been studied in the past, but the single yarn fineness obtained here is 0.001 dtex (equivalent to a diameter of 0.4 μm) even at the finest, and nanofibers are also used. It was not at a level that could fully meet the needs for (Patent Documents 1 and 2). In addition, the single yarn fineness of the ultrafine yarn obtained here is determined by the dispersion state of the island polymer in the polymer blend fiber, but the island polymer is not sufficiently dispersed in the polymer blend system used in the publication. For this reason, the obtained ultra extra fine yarn has a large single yarn fineness variation.

また、従来のポリマーブレンド繊維の技術はそのほとんどが紡糸機のチップホッパー中でのドライブレンドであり、ブレンド斑や経時的なブレンド比の変動により、紡糸性が悪く大量生産に耐えうるものではなかった。一方、PETにポリエチレンナフタレート(PEN)を共重合した共重合ポリエステルにポリエーテルイミド(PEI)を二軸押出混練機を用いて混練し、PEIがナノサイズで分散したポリマーアロイ繊維を得ている例(特許文献3)もあるが、この時はPEIが高融点であるため高温での混練、紡糸過程で主成分である共重合ポリエステルが熱劣化し、紡糸性が悪く、また得られた繊維の力学特性も低いものであった。   Also, most of the conventional polymer blend fiber technologies are dry blending in the tip hopper of a spinning machine, and due to fluctuations in blend spots and blend ratios over time, the spinning properties are poor and cannot withstand mass production. It was. On the other hand, polyetherimide (PEI) is kneaded with a copolyester obtained by copolymerizing polyethylene naphthalate (PEN) with PET using a twin screw extrusion kneader to obtain a polymer alloy fiber in which PEI is dispersed in nano-size. There is also an example (Patent Document 3). At this time, since PEI has a high melting point, the copolyester, which is the main component in the kneading and spinning process at a high temperature, is thermally deteriorated and the spinnability is poor. The mechanical properties of were also low.

また、一般にポリマーブレンドはブレンドされたポリマー間で共重合などの相互作用があり、熱履歴によりポリマー品質に大きな差ができてしまう。すなわち、ナノファイバーを得るための原料として前述の特許文献1、2で採用しているポリマーブレンドの組み合わせを単純に二軸押出混練機に適用したとしても、耐熱性が劣化したポリマーしか得られず、ポリアミドのゲル化などにより紡糸性が悪く大量生産に耐えうるものではなかった。より具体的には、二軸押出混練機での混練は高温、高剪断変形によりポリマー同士を微細にブレンドしていくのであるが、ここでポリマー間で共重合反応が起こったり、ポリマーの熱分解によりゲルなどの熱変性物が生成しやすい。この程度はポリマー組成と混練条件に依存するが、ポリアミドやポリエチレングリコールなどは熱変性しやすいポリマーとして知られている。このように生成した熱変性物は紡糸の際、異物として振る舞い糸切れを誘発するだけでなく、濾層での目詰まりを起こし工程圧力が上昇し易く紡糸パックの交換周期が短くなることにより、生産性を著しく低下させてしまう。さらに熱変性物は、レオロジー的には長時間緩和成分となる場合が多く、アロイポリマーの伸長粘度を著しく増加させ曳糸性を低下させてしまう。特にこの伸長粘度増加の問題は、紡糸という、自由表面を持った溶融ポリマー流が大変形する場では致命的であった。このため、紡糸という特異な成形加工に適した耐熱性の良いポリマーアロイペレットを得ることが非常に難しく、樹脂の世界とは異なり繊維の世界ではポリマーアロイの利用が進んでいないのが現状である。   In general, a polymer blend has an interaction such as copolymerization between blended polymers, and a large difference in polymer quality is caused by a thermal history. That is, even if the combination of the polymer blends used in Patent Documents 1 and 2 described above as a raw material for obtaining nanofibers is simply applied to a twin-screw extrusion kneader, only a polymer having deteriorated heat resistance can be obtained. However, due to gelation of polyamide, etc., the spinnability was poor and could not withstand mass production. More specifically, kneading in a twin-screw extrusion kneader involves fine blending of polymers with high temperature and high shear deformation. Here, a copolymerization reaction occurs between the polymers or the polymer is thermally decomposed. As a result, a heat-denatured product such as a gel is easily generated. This degree depends on the polymer composition and kneading conditions, but polyamide, polyethylene glycol, and the like are known as polymers that are easily heat-denatured. The heat-denatured product thus produced not only behaves as a foreign object during spinning, but also causes clogging in the filter layer, and the process pressure is likely to rise, shortening the replacement cycle of the spinning pack, Productivity will be significantly reduced. Furthermore, the heat-modified product often becomes a relaxing component in terms of rheology for a long time, and remarkably increases the elongation viscosity of the alloy polymer and lowers the spinnability. In particular, the problem of this increase in elongational viscosity was fatal in the case of spinning, where the molten polymer flow having a free surface undergoes large deformation. For this reason, it is very difficult to obtain polymer alloy pellets with good heat resistance suitable for special molding processing called spinning, and unlike the resin world, the use of polymer alloys is not progressing in the fiber world. .

このため、耐熱性が良く紡糸性に優れたポリマーアロイペレットが望まれていた。
特開昭54−73921号公報(1〜5ページ) 特開平6−272114号公報(1〜4ページ) 特開平8−113829号公報(7〜12ページ)
For this reason, polymer alloy pellets having good heat resistance and excellent spinnability have been desired.
JP 54-73922 (1-5 pages) JP-A-6-272114 (pages 1 to 4) JP-A-8-113829 (pages 7-12)

本発明は、大量生産に耐えうるポリマーアロイ繊維を得るための耐熱性に優れたポリマーアロイペレットを提供するものである。   The present invention provides a polymer alloy pellet excellent in heat resistance for obtaining a polymer alloy fiber that can withstand mass production.

上記目的は、易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が300Pa・s以下のペレットであり、易溶解性ポリマーの融点が難溶解性ポリマーの融点から−20〜+20℃の範囲であるペレット、または易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が100Pa・s以下であるペレットにより達成される。 The above object is a sea-island structure or a layered structure polymer alloy composed of an easily soluble polymer and a hardly soluble polymer, and is a pellet having a b * value of −1 to 10 and a melt viscosity of 300 Pa · s or less as an index of the color tone. , Pellets whose melting point of the easily soluble polymer is in the range of −20 to + 20 ° C. from the melting point of the hardly soluble polymer, or a sea-island structure or a layered structure polymer alloy composed of the easily soluble polymer and the hardly soluble polymer. This is achieved by pellets having an index b * value of −1 to 10 and a melt viscosity of 100 Pa · s or less.

本発明の耐熱性に優れたポリマーアロイペレットにより、ブレンド斑や経時的なブレンド比の変動が少ないポリマーアロイ繊維を紡糸性良く得ることができ、これから単繊維繊度ばらつきの小さなナノファイバーや多孔繊維を得ることができる。   The polymer alloy pellets excellent in heat resistance of the present invention can obtain a polymer alloy fiber with little variation in blending spots and blend ratio over time with good spinnability. From this, nanofibers and porous fibers with small single fiber fineness variation can be obtained. Can be obtained.

本発明では易溶解性ポリマーと難溶解性ポリマーからなるポリマーアロイペレットであるが、ここで易溶解性、難溶解性とはある溶剤に対する溶解性に差があることを意味するものである。これにより、繊維化後、易溶解性ポリマーを溶出することによりナノファイバーを得ることができるのである。例えばアルカリ易溶解ポリマーとしては、ポリエステルやポリカーボネート(PC)等が挙げられる。また、酸易溶解ポリマーとしてはポリアミド等が挙げられる。また、熱水溶解ポリマーとしてはアルキレンオキサイド(PAO)やそれをエステル結合で鎖伸長したポリエーテルエステル、またポリビニルアルコール(PVA)やその変成物等が挙げられる。有機溶媒溶解ポリマーとしてはポリスチレン(PS)やポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンが挙げられる。易溶解性および難溶解性ポリマーの融点は160℃以上であれば、得られるポリマーアロイ繊維の耐熱性が向上するため好ましい。また、融点が240℃以下であると耐熱性の低いポリマーと混練しても、混練温度を低く設定できるため好ましい。また、難溶解性ポリマーでは、その性質を損なわない範囲で他の成分が共重合されていても良いが、難溶解性ポリマー本来の耐熱性や力学特性を保持するためには共重合率は5mol%あるいは5重量%以下であることが好ましい。ここで、ポリアミドはN6やN66、ナイロン11(N11)、ナイロン12(N12)等が挙げられる。また、ポリエステルはPETやPBT、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)、PEN等が挙げられる。   In the present invention, it is a polymer alloy pellet made of an easily soluble polymer and a hardly soluble polymer. Here, easy solubility and hardly soluble means that there is a difference in solubility in a certain solvent. Thereby, nanofiber can be obtained by eluting the easily soluble polymer after fiberization. For example, polyester and polycarbonate (PC) etc. are mentioned as an easily meltable polymer. Examples of the acid-soluble polymer include polyamide. Examples of the hot water-soluble polymer include alkylene oxide (PAO), polyether esters obtained by chain-extending them with ester bonds, polyvinyl alcohol (PVA), and modified products thereof. Examples of the organic solvent-soluble polymer include polyolefins such as polystyrene (PS), polyethylene (PE), and polypropylene (PP). The melting point of the easily soluble and hardly soluble polymer is preferably 160 ° C. or higher because the heat resistance of the resulting polymer alloy fiber is improved. Moreover, since melting | fusing point is 240 degrees C or less, even if it knead | mixes with a polymer with low heat resistance, since the kneading | mixing temperature can be set low, it is preferable. In addition, in the hardly soluble polymer, other components may be copolymerized as long as the properties thereof are not impaired. However, in order to maintain the inherent heat resistance and mechanical properties of the hardly soluble polymer, the copolymerization rate is 5 mol. % Or 5% by weight or less is preferable. Here, examples of the polyamide include N6, N66, nylon 11 (N11), nylon 12 (N12), and the like. Examples of the polyester include PET, PBT, polytrimethylene terephthalate (PTT), polylactic acid (PLA), and PEN.

本発明ではポリマーアロイペレットの耐熱性が重要であるが、これはペレットの色調で評価することができる。より具体的には、黄味の指標であるb*値が−1〜10の範囲にあることが重要である。この範囲にあれば混練過程でのポリマーの熱劣化が少なくゲル等の熱変性物が少ないのである。b*値は好ましくは6以下、より好ましくは4以下である。なお、混練前のポリマーのb*値が8を超えるものについては混練後b*値の増加が2以下であれば本願目的を達し得るので好ましい。 In the present invention, the heat resistance of the polymer alloy pellet is important, and this can be evaluated by the color tone of the pellet. More specifically, it is important that the b * value, which is an index of yellowness, is in the range of −1 to 10. Within this range, there is little thermal degradation of the polymer during the kneading process, and there are few thermally denatured products such as gels. The b * value is preferably 6 or less, more preferably 4 or less. In addition, it is preferable that the b * value of the polymer before kneading exceeds 8 if the increase in the b * value after kneading is 2 or less because the object of the present application can be achieved.

また、耐熱性の指標としては分子鎖末端基量を挙げることもできる。特にポリアミドはポリエステルに比べ耐熱性に劣り、熱劣化によりゲル化する傾向があることが知られている。さらに、ポリアミドとポリエステルをポリマーアロイ化すると、ポリエステルの分子鎖末端が触媒的に働くためか、ポリアミド単独の場合よりもはるかにゲル化傾向があることが本発明を検討する中から明らかになってきた。ポリアミドはゲル化すると、糸切れや糸斑が発生するだけでなく、ポリマーの濾過圧力や、口金背面圧力等の工程圧力が上昇し、吐出量の上限が低くなったり、パックライフが短くなるため、単位時間あたりの生産性が大幅に低下するだけでなく、糸切れが頻発するといった大きな問題を引き起こしていた。このため、本発明のポリマーアロイペレット中のポリアミドのアミン末端基量は60mol当量/t以下とすることが好ましい。アミン末端基量はより好ましくは40mol当量/t以下である。なお、アミン末端基量を減じるためには、混練時の温度、滞留時間などを減じるほか、あらかじめ酢酸などで末端封鎖処理されたポリアミドを用いることも効果的である。同様に本発明のポリマーアロイペレット中のポリエステルでは、カルボキシル末端基量を60mol当量/t以下とすることが好ましい。カルボキシル末端基量はより好ましくは40mol当量/t以下である。なお、これらの末端基量は、ポリマーアロイペレット中のポリアミドあるいはポリエステルの重量換算で算出する。   In addition, as an index of heat resistance, the amount of molecular chain end groups can also be mentioned. In particular, it is known that polyamide is inferior in heat resistance to polyester and tends to gel due to thermal deterioration. Furthermore, it has become clear from the study of the present invention that when a polyamide and polyester are polymer alloyed, the molecular chain ends of the polyester act catalytically, or the gel tendency tends to be much greater than that of polyamide alone. It was. When polyamide gels, not only thread breakage and thread unevenness occur, but the process pressure such as polymer filtration pressure and back pressure of the base rises, the upper limit of the discharge amount becomes lower, and the pack life becomes shorter. Not only did the productivity per unit time drop significantly, but it caused major problems such as frequent thread breaks. For this reason, it is preferable that the amount of amine end groups of the polyamide in the polymer alloy pellets of the present invention is 60 mol equivalent / t or less. The amount of amine end groups is more preferably 40 mol equivalent / t or less. In order to reduce the amount of amine end groups, it is also effective to use polyamide that has been end-capped with acetic acid or the like in addition to reducing the temperature and residence time during kneading. Similarly, in the polyester in the polymer alloy pellets of the present invention, the amount of carboxyl end groups is preferably 60 mol equivalent / t or less. The amount of carboxyl end groups is more preferably 40 mol equivalent / t or less. These terminal group amounts are calculated in terms of the weight of the polyamide or polyester in the polymer alloy pellets.

また、本発明のポリマーアロイペレット中では難溶解性ポリマーと易溶解性ポリマーが海島構造あるいは層状構造を採っていることが重要である。海島構造とは一方が海、他方が島の相分離した構造を、層状構造とは異種のポリマー同士がお互いに層状に入り組みあった相分離構造を言うものである。ここで、島成分のポリマーの平均分散径は1nm〜1μmの範囲で微分散していると、紡糸過程で島成分の直径が100nm以下まで小さくなりナノファイバーを得やすいため好ましい。   In the polymer alloy pellets of the present invention, it is important that the hardly soluble polymer and the easily soluble polymer have a sea-island structure or a layered structure. The sea-island structure is a phase-separated structure in which one is the sea and the other is the island, and the layered structure is a phase-separated structure in which different polymers are layered together. Here, it is preferable that the average dispersion diameter of the polymer of the island component is finely dispersed in the range of 1 nm to 1 μm because the diameter of the island component is reduced to 100 nm or less during the spinning process, and nanofibers are easily obtained.

また、繊維化した後、島ドメイン(ナノファイバー断面)を円形に近づけるためには、島ポリマーと海ポリマーは非相溶であることが好ましい。しかしながら、単なる非相溶ポリマーの組み合わせでは島ポリマーが充分に超微分散化し難い。このため、組み合わせるポリマーの相溶性を最適化することが好ましいが、この指標の一つが溶解度パラメータ(SP値)である。SP値とは(蒸発エネルギー/モル容積)1/2で定義される物質の凝集力を反映するパラメータであり、SP値が近い物同士では相溶性が良いポリマーアロイが得られる可能性がある。SP値は種々のポリマーで知られているが、例えば「プラスチック・データブック」旭化成アミダス株式会社/プラスチック編集部共編、189ページ等に記載されている。2つのポリマーのSP値の差が1〜9(MJ/m31/2であると、非相溶化による島ドメインの円形化と超微分散化が両立させやすく好ましい。例えばN6とPETはSP値の差が6(MJ/m31/2程度であり好ましい例であるが、N6とPEはSP値の差が11(MJ/m31/2程度であり好ましくない例として挙げられる。 In order to make the island domain (nanofiber cross section) close to a circular shape after fiber formation, the island polymer and the sea polymer are preferably incompatible. However, it is difficult for the island polymer to be sufficiently finely dispersed by a simple combination of incompatible polymers. For this reason, it is preferable to optimize the compatibility of the polymer to be combined. One of the indicators is the solubility parameter (SP value). The SP value is a parameter reflecting the cohesive strength of a substance defined by (evaporation energy / molar volume) 1/2 , and a polymer alloy having good compatibility may be obtained between materials having close SP values. The SP value is known for various polymers, and is described, for example, in “Plastic Data Book”, edited by Asahi Kasei Amidus Corporation / Plastics Editorial Department, page 189. It is preferable that the difference between the SP values of the two polymers is 1 to 9 (MJ / m 3 ) 1/2 because it is easy to achieve both circularization of island domains and ultrafine dispersion due to incompatibility. For example, the difference in SP value between N6 and PET is about 6 (MJ / m 3 ) 1/2, which is a preferable example. The difference between N6 and PE is about 11 (MJ / m 3 ) 1/2 in SP value. There are some unfavorable examples.

本発明の第1の様態は、易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が300Pa・s以下、易溶解性ポリマーの融点が難溶解性ポリマーの融点から−20〜+20℃の範囲であるペレットのペレットである。易溶解性ポリマーの融点が難溶解性ポリマーの融点から−20〜+20℃の範囲とすることにより、混練温度をなるべく低く抑え、ポリマーアロイの熱劣化を抑制することができる。また、熱劣化を抑制できるだけでなく、混練の際の押出混練機中での融解状況に差を生じにくいため高効率混練し易いのである。また、熱分解や熱劣化し易いポリマーを1成分に用いる際は、混練だけでなく紡糸温度を低く抑える必要があるが、これにも有利となるのである。ここで、非晶性ポリマーなど融点が観測されない場合には、ガラス転移温度(Tg)あるいはビカット軟化温度あるいは熱変形温度でこれに代える。また、溶融粘度を300Pa・s以下とすると、口金からポリマーアロイが吐出された際に膨らむ、いわゆるバラス現象を抑制することができ、さらに固化前の紡糸張力を低減できるため、糸がつながらず五月雨状になることを抑制し、紡糸性を著しく向上できるのである。ポリマーアロイの溶融粘度は好ましくは150Pa・s以下、より好ましくは100Pa・s以下である。この時の溶融粘度は、融点が高い方のポリマーの融点+35℃の温度、剪断速度1216sec-1で測定した値である。 The first aspect of the present invention is a sea-island structure or a layered structure polymer alloy composed of an easily soluble polymer and a hardly soluble polymer, and has a b * value of −1 to 10 and a melt viscosity of 300 Pa · s as an index of the color tone. Hereinafter, it is a pellet of a pellet whose melting point of the easily soluble polymer is in the range of −20 to + 20 ° C. from the melting point of the hardly soluble polymer. By setting the melting point of the easily soluble polymer within the range of −20 to + 20 ° C. from the melting point of the hardly soluble polymer, the kneading temperature can be kept as low as possible and the thermal deterioration of the polymer alloy can be suppressed. Further, not only can heat deterioration be suppressed, but also high efficiency kneading is easy because a difference in melting conditions in the extruder kneader during kneading is unlikely to occur. Further, when a polymer that is easily decomposed or thermally deteriorated is used as one component, it is necessary to keep the spinning temperature low as well as kneading, which is advantageous. Here, when a melting point such as an amorphous polymer is not observed, the glass transition temperature (T g ), Vicat softening temperature or heat distortion temperature is used instead. Further, when the melt viscosity is 300 Pa · s or less, the so-called ballast phenomenon that expands when the polymer alloy is discharged from the die can be suppressed, and the spinning tension before solidification can be reduced. Therefore, the spinnability can be remarkably improved. The melt viscosity of the polymer alloy is preferably 150 Pa · s or less, more preferably 100 Pa · s or less. The melt viscosity at this time is a value measured at a melting point of the polymer having a higher melting point + 35 ° C. and a shear rate of 1216 sec −1 .

本発明の第2の様態は、易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が100Pa・s以下であるペレットである。ここで、ポリマーアロイペレットの溶融粘度が100Pa・s以下であると、たとえポリマー同士の融点差が大きくとも、紡糸性を著しく向上できるのである。ポリマーアロイペレットの溶融粘度は好ましくは80Pa・s以下、より好ましくは60Pa・s以下、さらに好ましくは40Pa・s以下である。この時の溶融粘度は、融点が高い方のポリマーの融点+35℃の温度、剪断速度1216sec-1で測定した値である。 The second aspect of the present invention is a sea-island structure or a layered structure polymer alloy composed of an easily soluble polymer and a hardly soluble polymer, and has a b * value of -1 to 10 and an melt viscosity of 100 Pa · s as an index of the color tone. It is the following pellet. Here, if the melt viscosity of the polymer alloy pellets is 100 Pa · s or less, the spinnability can be remarkably improved even if the melting point difference between the polymers is large. The melt viscosity of the polymer alloy pellets is preferably 80 Pa · s or less, more preferably 60 Pa · s or less, and still more preferably 40 Pa · s or less. The melt viscosity at this time is a value measured at a melting point of the polymer having a higher melting point + 35 ° C. and a shear rate of 1216 sec −1 .

このようにポリマーアロイの溶融粘度を抑制するためには、溶融粘度が100Pa・s以下のポリマーを用いることが効果的である。ポリマーの溶融粘度はより好ましくは60Pa・s以下である。さらに、このような低粘度ポリマーを海とすることで島ポリマーを微分散させ易くなるという利点もある。さらに島ポリマーの微分散化には溶融粘度比も重要であり、島を形成するポリマーの方を低く設定すると剪断力による島ポリマーの変形が起こりやすいため、島ポリマーの微分散化が進みやすくナノファイバー化の観点からは好ましい。ただし、島ポリマーを過度に低粘度にすると海化しやすくなり、繊維全体に対するブレンド比を高くできないため、島ポリマー粘度は海ポリマー粘度の1/10以上とすることが好ましい。   Thus, in order to suppress the melt viscosity of the polymer alloy, it is effective to use a polymer having a melt viscosity of 100 Pa · s or less. The melt viscosity of the polymer is more preferably 60 Pa · s or less. Furthermore, there exists an advantage that it becomes easy to carry out fine dispersion of an island polymer by making such a low viscosity polymer into the sea. Furthermore, the melt viscosity ratio is also important for fine dispersion of the island polymer. If the polymer forming the island is set lower, the island polymer is likely to be deformed by shearing force. It is preferable from the viewpoint of fiberization. However, if the island polymer is excessively low in viscosity, it tends to be seamed and the blend ratio with respect to the whole fiber cannot be increased. Therefore, the island polymer viscosity is preferably 1/10 or more of the sea polymer viscosity.

また、ナノファイバーを得るためには難溶解性ポリマーを島とすることが必要なので、難溶解性ポリマーの重量比はポリマーアロイペレット全体に対して15〜50%であることが好ましい。なお、コストダウンのためマスターペレットを作製する場合には、難溶解性ポリマーの重量比を多くして難溶解性ポリマーを海とする場合もある。   Moreover, since it is necessary to make an insoluble polymer into an island in order to obtain nanofiber, it is preferable that the weight ratio of an insoluble polymer is 15 to 50% with respect to the whole polymer alloy pellet. In addition, when producing a master pellet for cost reduction, the weight ratio of a hardly soluble polymer may be increased and a slightly soluble polymer may be made into the sea.

本発明のポリマーアロイペレットの好ましいポリマーの組み合わせとしては、例えば以下のものを挙げることができる。難溶解性ポリマー/易溶解性ポリマー=N6/低融点ポリエステル、N6/低粘度ポリエステル、アルカリ難溶解ポリエステル/アルカリ易溶解の低粘度ポリエステル、ポリエステル/親水基共重合の低粘度ポリスチレン、ポリオレフィン/低粘度ポリエステル、ポリオレフィン/低粘度PC、PPS/ポリエステルなどである。   Examples of preferable polymer combinations of the polymer alloy pellets of the present invention include the following. Slightly soluble polymer / Easily soluble polymer = N6 / Low melting point polyester, N6 / Low viscosity polyester, Alkali hardly soluble polyester / Alkali easily soluble low viscosity polyester, Polyester / Hydrophilic copolymer low viscosity polystyrene, Polyolefin / Low viscosity Polyester, polyolefin / low viscosity PC, PPS / polyester and the like.

ところで、ペレットの集合体中にポリマー粉体が多いと、乾燥や紡糸配管中に滞留することにより異常な高重合度ポリマーが生成し、糸切れや糸斑を発生させる場合がある。特にポリアミドは熱により容易に重合が容易に進むため注意が必要であるが、ポリマーアロイの場合にはポリアミド単独に比べやや脆い傾向があり、ポリアミド単独よりも粉体が発生しやすい。このため、ポリマーアロイペレットでは粉体の管理に充分な注意を払うことが好ましい。ポリマーアロイペレット全体の粉体量は1000ppm以下であれば、乾燥や紡糸配管中に滞留する粉体を減少できるため、糸切れや糸斑を抑制することができ、好ましい。   By the way, if there are a lot of polymer powders in the aggregate of pellets, an abnormally high degree of polymerization polymer may be generated due to drying or staying in the spinning pipe, which may cause yarn breakage or yarn unevenness. In particular, since polyamide is easily polymerized easily by heat, attention is required. However, in the case of a polymer alloy, it tends to be slightly brittle compared to polyamide alone, and powder is more likely to be generated than polyamide alone. For this reason, it is preferable to pay sufficient attention to the management of powder in polymer alloy pellets. If the amount of the powder of the whole polymer alloy pellet is 1000 ppm or less, it is possible to reduce powder staying in the drying or spinning pipe, which is preferable because yarn breakage and yarn unevenness can be suppressed.

本発明のペレットの製造方法に特に制限はないが、例えば以下のような方法を採用することができる。すなわち、難溶解性ポリマーと易溶解性ポリマーを独立に計量、供給し、二軸押出混練機で溶融混練する際、混練部長がスクリュー有効長の20〜40%とする製造方法である。   Although there is no restriction | limiting in particular in the manufacturing method of the pellet of this invention, For example, the following methods are employable. That is, when the hardly soluble polymer and the easily soluble polymer are separately weighed and supplied and melt-kneaded with a twin-screw extrusion kneader, the kneading part length is 20 to 40% of the effective screw length.

ここで、混練するポリマーの供給方法が重要であり、難溶解性ポリマーと易溶解性ポリマーを別々に計量、供給することで経時的なブレンド比の変動を抑制できる。この時、ペレットとして別々に供給しても、溶融状態で別々に供給しても良い。また、2種のポリマーを押出混練機の根本に供給しても良いし、一方を押出混練機の途中から供給するサイドフィードとしても良い。さらに、混練条件にも注意を払うことが重要である。高混練とポリマー滞留時間の抑制を両立させるために、スクリューとしては同方向完全噛合型とすることが好ましい。さらに、スクリューは送り部(スクリュー)と混練部(ニーディングディスク部)から構成されているが、混練部長をスクリュー有効長の20〜40%とすることが重要である。混練部長を20%以上とすることで高混練とすることができ、また混練部長を40%以下とすることで、過度の剪断応力を避け、しかも滞留時間を短くすることができ、ポリマーの熱劣化を抑制することができる。加えて、混練を強化する場合は、押出混練機中でポリマーを逆方向に送るバックフロー機能のあるスクリューを設けることもできる。また、混練温度はポリマーアロイの熱劣化を抑制する観点から、高融点側のポリマーの融点から20℃〜50℃高温の範囲とすることが好ましい。さらに、ベント式として混練時の水分を減じることによってポリマーの加水分解を抑制し、アミン末端基やカルボキシル末端基量を、また粉体量も抑制することができる。また、二軸押出混練機中のポリマーの滞留時間は10分以内とすることが、ゲル化やアミド−エステル交換、エステル交換反応抑制の観点から好ましい。   Here, the method of supplying the polymer to be kneaded is important, and fluctuations in the blend ratio over time can be suppressed by separately weighing and supplying the hardly soluble polymer and the easily soluble polymer. At this time, you may supply separately as a pellet, or you may supply separately in a molten state. Two types of polymers may be supplied to the root of the extrusion kneader, or one of them may be a side feed that is supplied from the middle of the extrusion kneader. Furthermore, it is important to pay attention to the kneading conditions. In order to achieve both high kneading and suppression of the polymer residence time, the screw is preferably of the same direction complete meshing type. Furthermore, the screw is composed of a feeding part (screw) and a kneading part (kneading disk part), but it is important that the kneading part length is 20 to 40% of the effective screw length. By setting the kneading part length to 20% or more, high kneading can be achieved, and by setting the kneading part length to 40% or less, excessive shear stress can be avoided and the residence time can be shortened. Deterioration can be suppressed. In addition, when strengthening kneading, it is possible to provide a screw having a backflow function for sending the polymer in the reverse direction in an extrusion kneader. The kneading temperature is preferably in the range of 20 ° C. to 50 ° C. from the melting point of the polymer on the high melting point side, from the viewpoint of suppressing thermal degradation of the polymer alloy. Furthermore, the hydrolysis of the polymer can be suppressed by reducing the moisture at the time of kneading as a vent type, so that the amount of amine end groups and carboxyl end groups and the amount of powder can also be suppressed. The polymer residence time in the twin-screw extrusion kneader is preferably within 10 minutes from the viewpoints of gelation, amide-ester exchange, and transesterification reaction suppression.

本発明のペレットから得られるナノファイバーは、衣料(シャツやブルゾン、パンツ、コート等)、衣料資材、インテリア製品(カーテン、カーペット、マット、壁紙、家具など)、車輌内装製品(マット、カーシート、天井材など)、生活資材(ワイピングクロス、化粧用品、健康用品、玩具など)などの生活用途や、環境・産業資材用途(建材、研磨布、フィルター、有害物質除去製品など)やIT部品用途(センサー部品、電池部品、ロボット部品など)や、メディカル用途(血液フィルター、体外循環カラム、スキャフォールド(scaffold)、絆創膏(wound dressing, bandage)、人工血管、薬剤徐放体など)に好適である。   Nanofibers obtained from the pellets of the present invention include clothing (shirts, blousons, pants, coats, etc.), clothing materials, interior products (curtains, carpets, mats, wallpaper, furniture, etc.), vehicle interior products (mats, car seats, Living materials such as ceiling materials), household materials (wiping cloth, cosmetics, health products, toys, etc.), environmental / industrial materials (building materials, abrasive cloth, filters, harmful substance removal products, etc.) and IT parts (such as products) Sensor parts, battery parts, robot parts, etc.) and medical applications (blood filters, extracorporeal circulation columns, scaffolds, wound dressing, bandage, artificial blood vessels, sustained-release drugs, etc.).

なお、本発明のポリマーアロイペレットから得られるポリマーアロイ繊維は、前記したナノファイバーの前駆体としてだけでなく、ナノサイズの細孔を有する多孔繊維の前駆体としても、また機能性の付加されたポリマーアロイ繊維としても有用である。   In addition, the polymer alloy fiber obtained from the polymer alloy pellet of the present invention is not only used as a precursor of the nanofiber described above, but also as a precursor of a porous fiber having nano-sized pores. It is also useful as a polymer alloy fiber.

以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.

A.ポリマーの溶融粘度
東洋精機製キャピログラフ1Bにより、ポリマーの溶融粘度を測定した。なお、サンプル投入から測定開始までのポリマーの貯留時間は10分とした。
A. Polymer melt viscosity The polymer melt viscosity was measured with a Capillograph 1B manufactured by Toyo Seiki. The polymer storage time from sample introduction to measurement start was 10 minutes.

B.融点
Perkin Elmaer DSC-7を用いて、2nd runでポリマーの融解を示すピークトップ温度をポリマーの融点とした。このときの昇温速度は16℃/分、サンプル量は10mgとした。
B. Melting point
Using Perkin Elmaer DSC-7, the peak top temperature indicating the melting of the polymer in the second run was defined as the melting point of the polymer. At this time, the rate of temperature increase was 16 ° C./min, and the sample amount was 10 mg.

C.アミン末端基量
ポリマー1gをフェノール−エタノール混合溶媒に溶解し、滴定によりアミン末端基量をポリアミドの重量ベースで求めた。
C. Amine end group amount 1 g of the polymer was dissolved in a phenol-ethanol mixed solvent, and the amount of amine end group was determined by titration based on the weight of the polyamide.

D.カルボキシル末端基量
Mauriceらの方法[Anal.Chim.Acta,vol22,363(1960).]によった。
D. Carboxyl end group amount
Maurice et al. [Anal. Chim. Acta, vol 22, 363 (1960).].

E.b*
MINOLTA SPECTROPHOTOMETER CM−3700dで、光源をD65(色温度6504K)を用い、視野角10°で測定した。
E. b * Value MINOLTA SPECTROTOPOMETER CM-3700d was used with a light source of D 65 (color temperature 6504K) and a viewing angle of 10 °.

F.TEMによる断面観察
サンプルの超薄切片を切り出し、必要に応じ金属染色したものを、透過型電子顕微鏡(TEM)で観察した
TEM装置 : 日立社製H-7100FA型
G.ペレット全体中の粉体量
ペレット500gをJIS-Z8801による呼び寸法1.7mmの金網をはった篩い(直径30cm)の上に乗せ、上から0.1%のカチオン系界面活性剤を含む水をシャワー状(2リットル/分)にかけながら、振幅約7cm、60往復/分で1分間篩った。この操作を繰り返しペレット10kg分を篩った。ふるい落とされた粉体は水とともに岩城硝子社製1G1ガラスフィルターで濾過して集め、イオン交換水で洗った。これをガラスフィルターごと100℃で2時間乾燥、冷却した後秤量した。再度、イオン交換水で洗浄、乾燥、冷却を繰り返し重量変化が無くなったことを確認した後、この重量からあらかじめ秤量しておいたガラスフィルターの重量を引き、粉体重量を求めた。そしてこれをふるいにかけたペレット重量で徐することでペレット全体中の粉体量を計算した。
F. Cross-sectional observation by TEM An ultrathin section of the sample was cut out and metal-stained as necessary, and observed with a transmission electron microscope (TEM). TEM apparatus: H-7100FA type manufactured by Hitachi G. The amount of powder in the whole pellet 500 g of the pellet was placed on a sieve (diameter 30 cm) with a mesh size of 1.7 mm according to JIS-Z8801, and water containing 0.1% cationic surfactant from the top. Was sieved for 1 minute at an amplitude of about 7 cm and 60 reciprocations / minute. This operation was repeated and 10 kg of pellets were sieved. The screened powder was collected together with water using a 1G1 glass filter manufactured by Iwaki Glass Co., Ltd., and washed with ion-exchanged water. This was dried together with a glass filter at 100 ° C. for 2 hours, cooled and weighed. Again, after confirming that there was no weight change after repeated washing, drying and cooling with ion-exchanged water, the weight of the glass filter weighed in advance was subtracted from this weight to determine the powder weight. Then, the amount of powder in the whole pellet was calculated by gradually grading it with the weight of the sieved sieve.

H.繊維の力学特性
室温(25℃)で、引っ張り速度=100%/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
H. Mechanical properties of fiber A load-elongation curve was obtained under the conditions shown in JIS L1013 at room temperature (25 ° C.) with a pulling rate of 100% / min. Next, the load value at break was divided by the initial fineness, which was used as the strength, and the elongation at break was divided by the initial sample length to obtain a strong elongation curve.

I.繊維のウースター斑(U%)
ツェルベガーウスター株式会社製USTER TESTER 4を用いて給糸速度200m/分でノーマルモードで測定を行った。
I. Worcester spots on fibers (U%)
Measurement was performed in the normal mode at a yarn feeding speed of 200 m / min using a USTER TESTER 4 manufactured by Zerbegger Worcester.

J.繊維の熱収縮率
熱収縮率(%)=[(L0−L1)/L0)]×100(%)
L0:延伸糸をかせ取りし初荷重0.09cN/dtexで測定したかせの原長
L1:L0を測定したかせを実質的に荷重フリーの状態で沸騰水中で15分間処理し、風乾後初荷重0.09cN/dtex下でのかせ長
K.繊維中のブレンド比の経時変動
紡糸1時間毎にサンプリングした繊維の横断面TEM写真からブレンド比を重量換算で求め、24時間でのブレンド比の変動幅を計算した。
J. et al. Thermal contraction rate of fiber Thermal contraction rate (%) = [(L0−L1) / L0)] × 100 (%)
L0: The original length of the skein measured after the drawn yarn was scraped and measured at an initial load of 0.09 cN / dtex. L1: The skein measured at L0 was treated in boiling water for 15 minutes in a substantially load-free state, and the initial load after air drying. Skein length under 0.09 cN / dtex Variation with time of blend ratio in fiber The blend ratio was determined in terms of weight from a cross-sectional TEM photograph of the fiber sampled every hour of spinning, and the variation range of the blend ratio in 24 hours was calculated.

実施例1
溶融粘度49Pa・s(260℃、剪断速度1216sec-1)、融点220℃のアミン末端を酢酸で封鎖しアミン末端基量を50mol当量/tとしたN6を20重量%と溶融粘度180Pa・s(260℃、剪断速度1216sec-1)、融点225℃のイソフタル酸を8mol%、ビスフェノールAを4mol%共重合した融点225℃の共重合PET(co−PET1)を80重量%とを2軸押し出し混練機で260℃で混練してb*値=4のポリマーアロイチップを得た。この時の混練条件は以下のとおりであった。また、ポリマーアロイペレットの溶融粘度は260℃、1216sec-1で111Pa・sであった。また、アミン末端基量はポリアミド重量ベースで30mol当量/t、カルボキシル末端基量は共重合PET重量ベースで35mol当量/tであった。粉体量はペレットの重量ベースで500ppm以下であった。また、図1にこのペレットの断面TEM写真を示すが、島成分であるN6の直径は平均で500nm程度、また直径が1.2μmを超える粗大島は皆無でありブレンド斑の小さなものであった。
Example 1
N6 having a melt viscosity of 49 Pa · s (260 ° C., shear rate of 1216 sec −1 ) and a melting point of 220 ° C. with an amine terminal blocked with acetic acid and an amine terminal group amount of 50 mol equivalent / t, and a melt viscosity of 180 Pa · s ( 260 ° C., shear rate 1216 sec −1 ), biaxial extrusion kneading of 80% by weight of copolymerized PET (co-PET1) having a melting point of 225 ° C. obtained by copolymerizing 8 mol% of isophthalic acid having a melting point of 225 ° C. and 4 mol% of bisphenol A. The polymer alloy chip having a b * value = 4 was obtained by kneading at 260 ° C. with a machine. The kneading conditions at this time were as follows. The melt viscosity of the polymer alloy pellets was 111 Pa · s at 260 ° C. and 1216 sec −1 . Further, the amount of amine end groups was 30 mol equivalent / t based on the weight of polyamide, and the amount of carboxyl end groups was 35 mol equivalent / t based on the weight of copolymerized PET. The amount of powder was 500 ppm or less based on the weight of the pellets. Further, FIG. 1 shows a cross-sectional TEM photograph of this pellet. The diameter of N6, which is an island component, is about 500 nm on average, and there are no coarse islands with a diameter exceeding 1.2 μm, and the blend spots are small. .

スクリュー型式 同方向完全噛合型 2条ネジ
スクリュー 直径37mm、有効長さ1670mm、L/D=45.1
混練部長さはスクリュー有効長さの28%
混練部はスクリュー有効長さの1/3より吐出側に位置させた。
Screw type Same direction complete meshing type Double thread screw Screw diameter 37mm, effective length 1670mm, L / D = 45.1
The kneading part length is 28% of the effective screw length
The kneading part was located on the discharge side from 1/3 of the effective screw length.

途中3個所のバックフロー部有り
ポリマー供給 N6と共重合PETを別々に計量し、別々に混練機に供給した。
There are three backflow parts on the way. Polymer supply N6 and copolymerized PET were weighed separately and supplied separately to the kneader.

温度 260℃
ベント 2個所
次に、このポリマーアロイチップを図2に示す紡糸機を用いて紡糸し、ポリマーアロイ繊維を得た。ポリマーアロイチップをホッパー1から、275℃の溶融部2で溶融し、紡糸温度280℃の紡糸パック4を含むスピンブロック3に導いた。そして、限界濾過径15μmの金属不織布でポリマーアロイ溶融体を濾過した後、口金面温度262℃とした口金5から溶融紡糸した。この時、口金5としては図3に示すように吐出孔上部に直径0.3mmの計量部12を備えた、吐出孔径14が0.7mm、吐出孔長13が1.75mmのものを用いた。この時、ポリマーの溶融粘度が低いため口金から吐出直後にポリマー流が膨らむバラス現象は小さいものであった。さらに、口金下面から冷却開始点(チムニー6の上端部)までの距離は9cmであった。吐出された糸条7は20℃の冷却風で1mにわたって冷却固化され、口金5から1.8m下方に設置した給油ガイド8で給油された後、非加熱の第1引き取りローラー9および第2引き取りローラー10を介して900m/分で巻き取り速度で巻き取られ、6kg巻きの未延伸糸パッケージ11を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れは0回であった。そして、ポリマーアロイ繊維の未延伸糸を、図4に示す延伸装置によって、延伸熱処理した。未延伸糸15を、フィードローラー16によって供給し、第1ホットローラー17、第2ホットローラー18、第3ローラー19によって延伸熱処理し、延伸糸20を得た。この時、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とした。第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.2倍とした。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度4.0cN/dtex、伸度35%、U%=1.7%、熱収縮率11%の優れた特性を示した。また、得られたポリマーアロイ繊維の横断面をTEMで観察したところ、co−PET1(薄い部分)が海、N6(濃い部分)が島の海島構造を示し(図5)、N6島ドメインの数平均による直径は53nmであり、直径が100nmを超える粗大島は皆無であり、N6がナノサイズで均一に分散化したポリマーアロイ繊維が得られた。また、経時によるN6ブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。
260 ° C
Two vents Next, this polymer alloy chip was spun using a spinning machine shown in FIG. 2 to obtain a polymer alloy fiber. The polymer alloy chip was melted from the hopper 1 in the melting part 2 at 275 ° C. and led to the spin block 3 including the spinning pack 4 having a spinning temperature of 280 ° C. The polymer alloy melt was filtered with a metal nonwoven fabric having a limit filtration diameter of 15 μm, and then melt-spun from the die 5 having a die surface temperature of 262 ° C. At this time, as shown in FIG. 3, the base 5 was provided with a measuring portion 12 having a diameter of 0.3 mm at the upper part of the discharge hole, having a discharge hole diameter of 0.7 mm and a discharge hole length 13 of 1.75 mm. . At this time, since the melt viscosity of the polymer is low, the ballast phenomenon in which the polymer flow swells immediately after discharge from the die is small. Furthermore, the distance from the base lower surface to the cooling start point (the upper end of the chimney 6) was 9 cm. The discharged yarn 7 is cooled and solidified over 1 m with a cooling air of 20 ° C., and is supplied by an oil supply guide 8 installed 1.8 m below the base 5, and then the unheated first take-up roller 9 and the second take-up roller The unwinded yarn package 11 of 6 kg was obtained by being wound at a winding speed of 900 m / min via the roller 10. The spinnability at this time was good, and the number of breaks during continuous spinning for 24 hours was zero. And the unstretched yarn of the polymer alloy fiber was subjected to stretching heat treatment by a stretching apparatus shown in FIG. Undrawn yarn 15 was supplied by feed roller 16 and subjected to drawing heat treatment by first hot roller 17, second hot roller 18, and third roller 19 to obtain drawn yarn 20. At this time, the temperature of the 1st hot roller 17 was 90 degreeC, and the temperature of the 2nd hot roller 18 was 130 degreeC. The draw ratio between the first hot roller 17 and the second hot roller 18 was set to 3.2 times. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength 4.0 cN / dtex, elongation 35%, U% = 1.7%, and heat shrinkage 11%. Moreover, when the cross section of the obtained polymer alloy fiber was observed with TEM, co-PET1 (thin portion) showed sea and N6 (dark portion) showed island-island structure (FIG. 5), and the number of N6 island domains The average diameter was 53 nm, there were no coarse islands with a diameter exceeding 100 nm, and polymer alloy fibers in which N6 was nano-sized and uniformly dispersed were obtained. Further, the fluctuation range of the N6 blend ratio with time was 19.5 to 20.5% by weight, which was sufficiently small.

ここで得られたポリマーアロイ繊維を用いて丸編みを作製し、これを10%の水酸化ナトリウム水溶液(90℃、浴比1:100)で2時間浸漬することでポリマーアロイ繊維中のco−PET1の99%以上を加水分解除去した。この結果得られた、N6単独糸からなる丸編みは、海成分であるco−PET1が除去されたにもかかわらず、マクロに見るとあたかも長繊維のように連続しており、丸編み形状を保っていた。そして、この丸編みは通常のN6繊維からなる丸編みとは全く異なり、ナイロン特有の「ヌメリ感」が無く、逆に絹のような「きしみ感」やレーヨンのような「ドライ感」を有する物であった。   A circular knitting was produced using the polymer alloy fiber obtained here, and this was immersed in a 10% aqueous sodium hydroxide solution (90 ° C., bath ratio 1: 100) for 2 hours, thereby co-in the polymer alloy fiber. 99% or more of PET1 was hydrolyzed and removed. The resulting circular knitting made of N6 single yarn is continuous like a long fiber in spite of the removal of the sea component co-PET1, and has a circular knitting shape. I kept it. This circular knitting is completely different from the circular knitting made of normal N6 fibers, and has no “smoothness” peculiar to nylon, and conversely, has a “squeaking” feeling like silk and a “dry feeling” like rayon. It was a thing.

このN6単独糸からなる丸編みから糸を引きだし、これの繊維側面をSEMにより観察したところ、この糸は1本の糸ではなく無数のナノファイバーが凝集しながら繋がったナノファイバー集合体であった。さらにこれの繊維横断面をTEMによって観察した結果を図6に示すが、このN6ナノファイバーは単繊維直径が数十nm程度であることがわかった。そして、ナノファイバーの数平均による単繊維直径は56nm(3×10-5dtex)と従来にない細さであった。また、単繊維繊度が1×10-7〜1×10-4dtexの単繊維の重量比率は99%以上と、単繊維繊度ばらつきはごく小さいものであった。また、このN6ナノファイバー集合体からなる糸の力学特性を測定したところ、強度2.0cN/dtex、伸度50%であった。 When the yarn was pulled out from the circular knitting made of this N6 single yarn and the side surface of the fiber was observed by SEM, this yarn was not a single yarn but a nanofiber aggregate in which countless nanofibers were aggregated and connected. . Further, the result of observing the fiber cross section by TEM is shown in FIG. 6, and it was found that the N6 nanofiber has a single fiber diameter of about several tens of nanometers. The single fiber diameter based on the number average of the nanofibers was 56 nm (3 × 10 −5 dtex), which was an unprecedented fineness. Further, the single fiber fineness was 1 × 10 −7 to 1 × 10 −4 dtex, and the weight ratio of single fibers was 99% or more, and the single fiber fineness variation was very small. Further, when the mechanical properties of the yarn comprising this N6 nanofiber aggregate were measured, the strength was 2.0 cN / dtex and the elongation was 50%.

さらに、この丸編みにバフィングを施したところ、従来の超極細繊維では到達し得なかった超ピーチ感や人肌のようなしっとりとしたみずみずしい優れた風合いを示した。   Furthermore, when buffing was performed on this circular knitting, it showed a super peach feeling that was not possible with conventional ultra-fine fibers and a moist and fresh texture like human skin.

実施例2
実施例1で用いたN6と重量平均分子量12万、溶融粘度47Pa・s(240℃、1216sec-1)、融点170℃のポリL乳酸(光学純度99.5%以上)を用い、N6の含有率を20重量%とし、混練温度を230℃として実施例1と同様に溶融混練し、b*値=3のポリマーアロイチップを得た。なお、ポリ乳酸の重量平均分子量は以下のようにして求めた。試料のクロロホルム溶液にテトラヒドロフラン(THF)を混合し測定溶液とした。これをWaters社製ゲルパーミテーションクロマトグラフィー(GPC)Waters2690を用いて25℃で測定し、ポリスチレン換算で重量平均分子量を求めた。なお、実施例1で用いたN6の240℃、1216sec-1での溶融粘度は66Pa・sであった。また、このポリL乳酸の215℃、1216sec-1での溶融粘度は86Pa・sであった。この時のポリマーアロイペレットの溶融粘度は255℃、1216sec-1で27Pa・sであった。また、アミン末端基量はポリアミド重量ベースで25mol当量/t、カルボキシル末端基量はPLA重量ベースで35mol当量/tであった。粉体量はペレットの重量ベースで500ppm以下であった。また、島成分であるN6の直径は平均で500nm程度、また直径が1.5μmを超える粗大島は皆無であり、ブレンド斑の小さいものであった。
Example 2
Using N6 used in Example 1, poly L lactic acid (optical purity 99.5% or more) having a weight average molecular weight of 120,000, a melt viscosity of 47 Pa · s (240 ° C., 1216 sec −1 ) and a melting point of 170 ° C., and containing N6 The ratio was 20 wt%, the kneading temperature was 230 ° C., and melt kneading was performed in the same manner as in Example 1 to obtain a polymer alloy chip having a b * value = 3. The weight average molecular weight of polylactic acid was determined as follows. Tetrahydrofuran (THF) was mixed with the sample chloroform solution to obtain a measurement solution. This was measured at 25 ° C. using Waters 2690 gel permeation chromatography (GPC) Waters 2690, and the weight average molecular weight was calculated in terms of polystyrene. The melt viscosity of N6 used in Example 1 at 240 ° C. and 1216 sec −1 was 66 Pa · s. Further, the melt viscosity of this poly L lactic acid at 215 ° C. and 1216 sec −1 was 86 Pa · s. The melt viscosity of the polymer alloy pellets at this time was 27 Pa · s at 255 ° C. and 1216 sec −1 . The amount of amine end groups was 25 mol equivalent / t on a polyamide weight basis, and the amount of carboxyl end groups was 35 mol equivalent / t on a PLA weight basis. The amount of powder was 500 ppm or less based on the weight of the pellets. Moreover, the diameter of N6, which is an island component, was about 500 nm on average, and there were no coarse islands having a diameter exceeding 1.5 μm, and the blend spots were small.

これを溶融温度230℃、紡糸温度230℃(口金面温度215℃)、紡糸速度3500m/分で実施例1と同様に溶融紡糸を行った。この時、口金として口金孔径0.3mm、孔長0.55mmの通常の紡糸口金を使用したが、バラス現象はほとんど観察されず、実施例1に比べても大幅に紡糸性が向上し、120時間の連続紡糸で糸切れは0回であった。これにより、92dtex、36フィラメントの高配向未延伸糸を得たが、これの強度は2.4cN/dtex、伸度90%、熱収縮率43%、U%=0.7%と高配向未延伸糸として極めて優れたものであった。特に、バラスが大幅に減少したのに伴い、糸斑が大幅に改善された。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 230 ° C., a spinning temperature of 230 ° C. (die surface temperature of 215 ° C.), and a spinning speed of 3500 m / min. At this time, a normal spinneret having a base diameter of 0.3 mm and a hole length of 0.55 mm was used as the base, but almost no ballast phenomenon was observed, and the spinnability was greatly improved as compared with Example 1. The yarn breakage was zero in the continuous spinning for the time. As a result, a highly oriented undrawn yarn of 92 dtex and 36 filaments was obtained, and the strength thereof was 2.4 cN / dtex, the elongation was 90%, the heat shrinkage rate was 43%, and U% = 0.7%. The drawn yarn was extremely excellent. In particular, as the ballast was greatly reduced, the yarn spots were greatly improved.

この高配向未延伸糸を延伸温度90℃、延伸倍率1.39倍、熱セット温度130℃として実施例1と同様に延伸熱処理した。得られた延伸糸は67dtex、36フィラメントであり、強度3.6cN/dtex、伸度40%、熱収縮率9%、U%=0.7%の優れた特性を示した。   This highly oriented undrawn yarn was drawn and heat treated in the same manner as in Example 1 at a drawing temperature of 90 ° C., a draw ratio of 1.39 times, and a heat setting temperature of 130 ° C. The obtained drawn yarn was 67 dtex, 36 filaments, and exhibited excellent properties of a strength of 3.6 cN / dtex, an elongation of 40%, a heat shrinkage of 9%, and U% = 0.7%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、PLAが海、N6が島の海島構造を示し、島N6の数平均による直径は55nmであり、直径が100nmを超える粗大島は皆無であり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるN6ブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。   When the cross section of the obtained polymer alloy fiber was observed by TEM, the sea-island structure where PLA is the sea and N6 is the island, the number average diameter of the island N6 is 55 nm, and there is no coarse island with a diameter exceeding 100 nm. A polymer alloy fiber in which N6 is nano-sized and uniformly dispersed was obtained. Moreover, the fluctuation range of the N6 blend ratio with time was 19.5 to 20.5% by weight, which was sufficiently small.

ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後、130℃の熱水で30分処理しPLAの加水分解を進めた後、3%の水酸化ナトリウム水溶液(70℃)で1時間処理することで、ポリマーアロイ繊維中のPLAの99%以上を加水分解除去した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は60nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 The polymer alloy fiber obtained here was circularly knitted in the same manner as in Example 1, then treated with hot water at 130 ° C. for 30 minutes to proceed with hydrolysis of PLA, and then with a 3% aqueous sodium hydroxide solution (70 ° C.). By treating for 1 hour, 99% or more of PLA in the polymer alloy fiber was hydrolyzed and removed. As a result, a nanofiber aggregate was obtained. As a result of analyzing the single fiber fineness variation of the nanofiber in the same manner as in Example 1, the single fiber diameter based on the number average of the nanofibers was 60 nm (3 × 10 −5 dtex). The fineness of the single yarn was very small.

また、このN6ナノファイバー集合体からなる糸は、強度2cN/dtex、伸度45%であった。さらに140℃乾熱収縮率は3%であった。   Further, the yarn comprising this N6 nanofiber aggregate had a strength of 2 cN / dtex and an elongation of 45%. Further, the 140 ° C. dry heat shrinkage rate was 3%.

実施例3
溶融粘度100Pa・s(270℃、1216sec-1)、融点235℃の共重合PET(PEG1000を8重量%、イソフタル酸を7mol%共重合、以下co−PET2とよぶ)と溶融粘度42Pa・s(270℃、1216sec-1)の2−エチルヘキシルアクリレートを22%共重合したポリスチレン(co−PS1)を、co−PET2の含有率を20重量%とし、混練温度を250℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。得られたポリマーアロイペレットの溶融粘度は270℃、1216sec-1で77Pa・sであった。また、カルボキシル末端基濃度はco−PET2重量ベースで30mol当量/t、粉体量はペレット重量ベースで500ppm以下であった。また、島成分であるco−PET2の直径は平均で500nm程度、また直径1.5μmを超える粗大島は皆無であり、ブレンド斑の小さいものであった。
Example 3
Copolymerized PET having a melt viscosity of 100 Pa · s (270 ° C., 1216 sec −1 ) and a melting point of 235 ° C. (8% by weight of PEG 1000, 7 mol% of isophthalic acid, hereinafter referred to as co-PET2) and a melt viscosity of 42 Pa · s ( As in Example 1 , polystyrene (co-PS1) copolymerized with 22% 2-ethylhexyl acrylate at 270 ° C. and 1216 sec −1 ) was adjusted to a content of co-PET 2 of 20% by weight and a kneading temperature of 250 ° C. By melt-kneading, a polymer alloy chip having a b * value = 2 was obtained. The resulting polymer alloy pellets had a melt viscosity of 77 Pa · s at 270 ° C. and 1216 sec −1 . In addition, the carboxyl end group concentration was 30 mol equivalent / t on a 2 weight basis of co-PET, and the amount of powder was 500 ppm or less on a pellet weight basis. Moreover, the diameter of co-PET2, which is an island component, was about 500 nm on average, and there were no coarse islands exceeding 1.5 μm in diameter, and the blend spots were small.

これを溶融温度260℃、紡糸温度260℃(口金面温度245℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例1で用いたものと同様の紡糸口金を使用した。紡糸性は良好であり、24時間の連続紡糸で糸切れは1回であった。得られた未延伸糸を延伸温度100℃、延伸倍率2.49倍とし、熱セット装置としてホットローラーの代わりに実効長15cmの熱板を用い、熱セット温度115℃として実施例1と同様に延伸熱処理した。得られた延伸糸は166dtex、36フィラメントであり、強度1.2cN/dtex、伸度27%、U%=2.0%であった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C. (die surface temperature of 245 ° C.), and a spinning speed of 1200 m / min. At this time, the same spinneret as that used in Example 1 was used as the base. The spinnability was good, and the yarn was broken once after continuous spinning for 24 hours. The obtained undrawn yarn was drawn at a temperature of 100 ° C. and a draw ratio of 2.49 times. A hot plate having an effective length of 15 cm was used instead of a hot roller as a heat setting device, and the heat setting temperature was 115 ° C., as in Example 1. Stretch heat treatment was performed. The obtained drawn yarn was 166 dtex, 36 filament, the strength was 1.2 cN / dtex, the elongation was 27%, and U% = 2.0%.

得られたポリマーアロイ繊維の横断面をTEMで観察したところ、co−PS1が海、co−PET2が島の海島構造を示し、co−PET2の数平均による直径は50nmであり、直径が100nmを超える粗大島は皆無であり、co−PET2がナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるco−PET2ブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。   When the cross section of the obtained polymer alloy fiber was observed with a TEM, the sea-island structure in which co-PS1 was the sea and co-PET2 was the island, the diameter by the number average of co-PET2 was 50 nm, and the diameter was 100 nm. There were no coarse Oshima islands, and a polymer alloy fiber in which co-PET2 was nano-sized and uniformly dispersed was obtained. Further, the fluctuation range of the co-PET2 blend ratio with time was 19.5 to 20.5% by weight, which was sufficiently small.

ここで得られたポリマーアロイ繊維を実施例1と同様に丸編み後、テトラヒドロフラン(THF)に浸漬する事により、海成分であるco−PS1の99%以上を溶出した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は55nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 The polymer alloy fiber obtained here was circularly knitted in the same manner as in Example 1, and then immersed in tetrahydrofuran (THF) to elute 99% or more of co-PS1, which is a sea component. As a result, nanofiber aggregates were obtained. As a result of analyzing the single fiber fineness variation of the nanofibers in the same manner as in Example 1, the number average single fiber diameter of the nanofibers was 55 nm (3 × 10 −5 dtex). The fineness of the single yarn was very small.

さらに、このポリマーアロイ繊維を合糸して10万dtexのトウとした後、繊維長2mmに細かくカットした。そしてこれをTHF処理し、co−PS1を溶出することによりナノファイバー化した。このナノファイバー分散THF液をアルコール、続いて水に溶媒置換した後、叩解、抄紙を行い、不織布を得た。ここで得られた不織布はナノファイバーが単繊維レベルまで分散した物であった。これは血液フィルターなどのメディカル製品に最適な物であった。   Further, this polymer alloy fiber was combined into a tow of 100,000 dtex, and then finely cut to a fiber length of 2 mm. Then, this was treated with THF, and co-PS1 was eluted to form nanofibers. The nanofiber-dispersed THF solution was solvent-substituted with alcohol and then water, followed by beating and papermaking to obtain a nonwoven fabric. The nonwoven fabric obtained here was a product in which nanofibers were dispersed to the single fiber level. This was optimal for medical products such as blood filters.

実施例4
溶融粘度100Pa・s(260℃、1216sec-1)、融点225℃のPBTと溶融粘度50Pa・s(260℃、1216sec-1)の新日鐵化学社製共重合ポリスチレン(“エスチレン”KS−18、メチルメタクリレート共重合、以下co−PS2とよぶ)を、PBTの含有率を20重量%とし、混練温度を240℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。得られたポリマーアロイペレットの260℃、1216sec-1での溶融粘度は61Pa・sであった。また、カルボキシル末端基濃度は共重合PBT重量ベースで30mol当量/t、粉体量はペレット重量ベースで500ppm以下であった。
Example 4
Copolymer polystyrene (“Estyrene” KS-18) manufactured by Nippon Steel Chemical Co., Ltd., having a melt viscosity of 100 Pa · s (260 ° C., 1216 sec −1 ), a melting point of 225 ° C. PBT and a melt viscosity of 50 Pa · s (260 ° C., 1216 sec −1 ). , Methyl methacrylate copolymer, hereinafter referred to as co-PS2) was melt kneaded in the same manner as in Example 1 at a PBT content of 20% by weight and a kneading temperature of 240 ° C., and a polymer alloy chip having a b * value = 2. Got. The resulting polymer alloy pellets had a melt viscosity of 61 Pa · s at 260 ° C. and 1216 sec −1 . The carboxyl end group concentration was 30 mol equivalent / t based on the copolymerized PBT weight, and the amount of powder was 500 ppm or less based on the pellet weight.

これを溶融温度260℃、紡糸温度260℃(口金面温度245℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例1で用いたものと同様に図3に示すように吐出孔上部に直径0.23mmの計量部12を備えた、吐出孔径14が2mm、吐出孔長13が3mmの紡糸口金を使用した。紡糸性は良好であり、24時間の連続紡糸で糸切れは1回であった。得られた未延伸糸を合糸してトウと成し、これを90℃の温水バス中で2.6倍延伸を行い機械捲縮を付与した後、繊維長51mmにカットし、カードで解繊した後クロスラップウェーバーでウェッブとした。次にニードルパンチを用い、300g/m2の繊維絡合不織布とした。さらにポリエーテル系ポリウレタンを主体とする13重量%のポリウレタン組成物(PU)と87重量%のN,N’−ジメチルホルムアミド(DMF)からなる液を含浸させ、DMF40重量%水溶液中でPUを凝固後、水洗した。さらに、この不織布にトリクレン処理を行い、co−PS2を溶出することでPBTナノファイバーとPUからなる厚さ約1mmのナノファイバー構造体を得た。この1面をサンドペーパーでバフィング処理して厚さを0.8mmとした後、他面をエメリーバフ機で処理してナノファイバー集合体立毛面を形成し、さらに染色した後、仕上げを行いスエード調人工皮革を得た。この人工皮革は、従来の人工皮革に比べ柔らかできめ細かいだけでなく弾力性にも富む優れた風合いの物であった。 This was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C. (die surface temperature of 245 ° C.), and a spinning speed of 1200 m / min. At this time, as shown in FIG. 3, as the base used in Example 1, the metering part 12 having a diameter of 0.23 mm was provided on the upper part of the discharge hole, the discharge hole diameter 14 was 2 mm, and the discharge hole length 13 was 3 mm. A spinneret was used. The spinnability was good, and the yarn was broken once after continuous spinning for 24 hours. The obtained undrawn yarn is combined to form a tow, which is stretched 2.6 times in a 90 ° C. hot water bath to give mechanical crimps, cut to a fiber length of 51 mm, and unwound with a card. After fiber finishing, it was made into a web with a cross-wrap weber. Next, using a needle punch, a 300 g / m 2 fiber-entangled nonwoven fabric was obtained. Further impregnated with a liquid composed of 13% by weight polyurethane composition (PU) mainly composed of polyether polyurethane and 87% by weight N, N′-dimethylformamide (DMF), and solidified PU in a 40% by weight DMF aqueous solution. After washing with water. Further, the nonwoven fabric was subjected to trichlene treatment, and co-PS2 was eluted to obtain a nanofiber structure having a thickness of about 1 mm composed of PBT nanofibers and PU. After buffing one surface with sandpaper to a thickness of 0.8 mm, the other surface is treated with an emery buffing machine to form a nanofiber aggregate raised surface, and after further dyeing, finishing and suede tone An artificial leather was obtained. This artificial leather was not only softer and finer than conventional artificial leather, but also had an excellent texture rich in elasticity.

なお、カットファイバーの横断面をTEMで観察したところ、co−PS2が海、PBTが島の海島構造を示し、PBTの数平均による直径は50nmであり、直径が100nmを超える粗大島は皆無であり、PBTがナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるPBTのブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。また、このポリマーアロイ繊維は単糸繊度3.9dtex、強度1.3cN/dtex、伸度25%であった。   When the cross section of the cut fiber was observed with a TEM, it showed a sea-island structure in which co-PS2 was the sea and PBT was the island. The number average diameter of the PBT was 50 nm, and there were no coarse islands with a diameter exceeding 100 nm. There was obtained a polymer alloy fiber in which PBT was nano-sized and uniformly dispersed. Further, the fluctuation range of the blend ratio of PBT over time was 19.5 to 20.5% by weight, which was sufficiently small. The polymer alloy fiber had a single yarn fineness of 3.9 dtex, a strength of 1.3 cN / dtex, and an elongation of 25%.

また、カットファイバーとする前の糸をサンプリングし、このポリマーアロイ繊維を実施例1と同様に丸編み後、トリクロロエチレンに浸漬する事により、海成分であるco−PS2の99%以上を溶出した。これによりナノファイバー集合体を得たが、ナノファイバーの単糸繊度ばらつきを実施例1と同様に解析した結果、ナノファイバーの数平均による単糸直径は55nm(3×10-5dtex)と従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。 Further, the yarn before being cut fiber was sampled, and this polymer alloy fiber was circularly knitted in the same manner as in Example 1 and then immersed in trichloroethylene to elute 99% or more of the sea component co-PS2. As a result, nanofiber aggregates were obtained. As a result of analyzing the single fiber fineness variation of the nanofibers in the same manner as in Example 1, the number average single fiber diameter of the nanofibers was 55 nm (3 × 10 −5 dtex). The fineness of the single yarn was very small.

実施例5
溶融粘度180Pa・s(260℃、1216sec-1)、融点225℃のポリトリメチレンテレフタレート(PTT)と実施例2で用いたPLAを混練温度を240℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイチップを得た。得られたポリマーアロイペレットの260℃、1216sec-1での溶融粘度は47Pa・sであった。また、カルボキシル末端基濃度はPTT重量ベースで35mol当量/t、粉体量はペレット重量ベースで500ppm以下であった。
Example 5
A melt viscosity of 180 Pa · s (260 ° C., 1216 sec −1 ), polytrimethylene terephthalate (PTT) having a melting point of 225 ° C. and PLA used in Example 2 were melt-kneaded in the same manner as in Example 1 at a kneading temperature of 240 ° C. A polymer alloy chip having a b * value = 2 was obtained. The melt viscosity of the obtained polymer alloy pellets at 260 ° C. and 1216 sec −1 was 47 Pa · s. Further, the carboxyl end group concentration was 35 mol equivalent / t on a PTT weight basis, and the amount of powder was 500 ppm or less on a pellet weight basis.

これを溶融温度250℃、紡糸温度250℃(口金面温度235℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例4で用いたものと同様に図3に示すように吐出孔上部に直径0.23mmの計量部12を備えた、吐出孔径14が2mm、吐出孔長13が3mmの紡糸口金を使用した。紡糸性は良好であり、24時間の連続紡糸で糸切れは1回であった。そして、得られた未延伸糸を実施例1と同様に延伸熱処理した。この時、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とした。第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.5倍とした。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度2.5cN/dtex、伸度45%、U%=1.7%、熱収縮率11%の優れた特性を示した。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 250 ° C., a spinning temperature of 250 ° C. (die surface temperature of 235 ° C.), and a spinning speed of 1200 m / min. At this time, as shown in FIG. 3, as the base used in Example 4, the metering part 12 having a diameter of 0.23 mm was provided on the upper part of the discharge hole, the discharge hole diameter 14 was 2 mm, and the discharge hole length 13 was 3 mm. A spinneret was used. The spinnability was good, and the yarn was broken once after continuous spinning for 24 hours. Then, the obtained undrawn yarn was drawn and heat treated in the same manner as in Example 1. At this time, the temperature of the 1st hot roller 17 was 90 degreeC, and the temperature of the 2nd hot roller 18 was 130 degreeC. The draw ratio between the first hot roller 17 and the second hot roller 18 was 3.5 times. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength 2.5 cN / dtex, elongation 45%, U% = 1.7%, and heat shrinkage 11%.

また、この延伸糸の横断面をTEMで観察したところ、PLAが海、PTTが島の海島構造を示し、PTTの数平均による直径は60nmであり、PTTがナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるPTTブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。   Further, when a cross section of the drawn yarn was observed with a TEM, a polymer alloy in which PLA showed a sea-island structure, PTT was an island-island structure, the number average diameter of PTT was 60 nm, and PTT was nano-sized and uniformly dispersed. Fiber was obtained. Moreover, the fluctuation range of the PTT blend ratio with time was 19.5 to 20.5% by weight, which was sufficiently small.

このポリマーアロイ延伸糸と別途準備した熱収縮率18%の高収縮PET繊維(33dtex−6フィラメント)とエア混繊した。そしてこの混繊糸を経糸および緯糸に用いて平織りを作製した後、130℃の熱水で30分間処理し、PLAを加水分解した。その後、0.5%水酸化ナトリウム水溶液(70℃)で1時間処理することによりPLAを除去した。そして、高収縮PET繊維が大きく収縮しPLA除去に伴う空隙を埋めた織物であり、さらにPTTナノファイバーが布帛表面に浮き出していた。この織物は従来にない粘着質のタッチであり、研磨布として好適であった。   This polymer alloy drawn yarn was mixed with air and highly prepared PET fiber (33 dtex-6 filament) having a heat shrinkage rate of 18%, which was separately prepared. A plain weave was produced using the mixed yarn as warp and weft, and then treated with hot water at 130 ° C. for 30 minutes to hydrolyze PLA. Thereafter, PLA was removed by treatment with a 0.5% aqueous sodium hydroxide solution (70 ° C.) for 1 hour. The high-shrinkage PET fiber was greatly shrunk to fill the voids accompanying PLA removal, and the PTT nanofibers were raised on the fabric surface. This woven fabric has an unprecedented adhesive touch and was suitable as an abrasive cloth.

実施例6
溶融粘度58Pa・s(205℃、1216sec-1)、融点162℃のPPと実施例2で用いたPLAを混練温度を205℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイペレットを得た。得られたポリマーアロイペレットの205℃、1216sec-1での溶融粘度は100Pa・sであった。このペレットの粉体量は500ppm以下であった。
Example 6
A melt viscosity of 58 Pa · s (205 ° C., 1216 sec −1 ), PP having a melting point of 162 ° C. and PLA used in Example 2 were melt-kneaded in the same manner as in Example 1 at a kneading temperature of 205 ° C., and b * value = 2. Polymer alloy pellets were obtained. The obtained polymer alloy pellets had a melt viscosity of 100 Pa · s at 205 ° C. and 1216 sec −1 . The amount of powder in the pellets was 500 ppm or less.

これを溶融温度205℃、紡糸温度210℃(口金面温度197℃)、紡糸速度1200m/分で実施例1と同様に溶融紡糸を行った。この時、口金として実施例4で用いたものと同様に図3に示すように吐出孔上部に直径0.23mmの計量部12を備えた、吐出孔径14が2mm、吐出孔長13が3mmの紡糸口金を使用した。紡糸性は良好であり、24時間の連続紡糸で糸切れは1回であった。そして、得られた未延伸糸を実施例1と同様に延伸熱処理した。この時、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とした。第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.5倍とした。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度1.5cN/dtex、伸度60%、U%=1.7%、熱収縮率15%の優れた特性を示した。また、経時によるPPブレンド比の変動幅は19.5〜20.5重量%であり、充分小さいものであった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 205 ° C., a spinning temperature of 210 ° C. (die surface temperature of 197 ° C.), and a spinning speed of 1200 m / min. At this time, as shown in FIG. 3, as the base used in Example 4, the metering part 12 having a diameter of 0.23 mm was provided on the upper part of the discharge hole, the discharge hole diameter 14 was 2 mm, and the discharge hole length 13 was 3 mm. A spinneret was used. The spinnability was good, and the yarn was broken once after continuous spinning for 24 hours. Then, the obtained undrawn yarn was drawn and heat treated in the same manner as in Example 1. At this time, the temperature of the 1st hot roller 17 was 90 degreeC, and the temperature of the 2nd hot roller 18 was 130 degreeC. The draw ratio between the first hot roller 17 and the second hot roller 18 was 3.5 times. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength 1.5 cN / dtex, elongation 60%, U% = 1.7%, and heat shrinkage 15%. Further, the fluctuation range of the PP blend ratio with time was 19.5 to 20.5% by weight, which was sufficiently small.

実施例7
低粘度PPSである東レ社製PPS“トレリナ”M2588(MFR=300、316℃、5kgf)20重量%とホモPET([極限粘度=0.63)80重量%とを混練温度を300℃として実施例1と同様に溶融混練し、b*値=10のポリマーアロイペレットを得た。得られたポリマーアロイペレットの317℃、1216sec-1での溶融粘度は88Pa・sであった。なお、ヴァージンPPSのb*値は13であった。このペレットの粉体量は500ppm以下であった。
Example 7
PPS “Torelina” M2588 (MFR = 300, 316 ° C., 5 kgf) 20% by weight and 80% by weight of homo-PET ([extreme viscosity = 0.63)) manufactured by Toray Industries, Inc., which is a low-viscosity PPS, were carried out at 300 ° C. Melt-kneading was conducted in the same manner as in Example 1 to obtain polymer alloy pellets having a b * value = 10. The obtained polymer alloy pellets had a melt viscosity of 88 Pa · s at 317 ° C. and 1216 sec −1 . The b * value of virgin PPS was 13. The amount of powder in the pellets was 500 ppm or less.

これを溶融温度300℃、紡糸温度300℃、紡糸速度1200m/分として実施例1と同様に溶融紡糸を行った。この時、口金として実施例4で用いたものと同様に図3に示すように吐出孔上部に直径0.23mmの計量部12を備えた、吐出孔径14が2mm、吐出孔長13が3mmの紡糸口金を使用した。紡糸性は良好であり、24時間の連続紡糸で糸切れは3回であった。そして、得られた未延伸糸を実施例1と同様に延伸熱処理した。この時、第1ホットローラー17の温度を90℃、第2ホットローラー18の温度を130℃とした。第1ホットローラー17と第2ホットローラー18間の延伸倍率を3.5倍とした。得られたポリマーアロイ繊維は120dtex、36フィラメント、強度2.5cN/dtex、伸度50%、U%=1.7%、熱収縮率7%の優れた特性を示した。また、経時によるPPSブレンド比の変動幅は19.2〜20.6重量%であり、充分小さいものであった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 300 ° C., a spinning temperature of 300 ° C., and a spinning speed of 1200 m / min. At this time, as shown in FIG. 3, as the base used in Example 4, the metering part 12 having a diameter of 0.23 mm was provided on the upper part of the discharge hole, the discharge hole diameter 14 was 2 mm, and the discharge hole length 13 was 3 mm. A spinneret was used. The spinnability was good, and the yarn breakage was 3 times after continuous spinning for 24 hours. Then, the obtained undrawn yarn was drawn and heat treated in the same manner as in Example 1. At this time, the temperature of the 1st hot roller 17 was 90 degreeC, and the temperature of the 2nd hot roller 18 was 130 degreeC. The draw ratio between the first hot roller 17 and the second hot roller 18 was 3.5 times. The obtained polymer alloy fiber exhibited excellent properties of 120 dtex, 36 filaments, strength 2.5 cN / dtex, elongation 50%, U% = 1.7%, and heat shrinkage 7%. Moreover, the fluctuation range of the PPS blend ratio with time was 19.2 to 20.6% by weight, which was sufficiently small.

実施例8
N6を溶融粘度140Pa・s(260℃、剪断速度1216sec-1)、融点220℃のN6(45重量%)として実施例1と同様に溶融混練を行い、ポリマーアロイペレットを得た。このポリマーアロイペレットの溶融粘度は、260℃、1216sec-1で80Pa・s、b*値は4であった。このペレットの粉体量は500ppm以下であった。
Example 8
N6 was melt-kneaded in the same manner as in Example 1 with a melt viscosity of 140 Pa · s (260 ° C., shear rate of 1216 sec −1 ) and a melting point of 220 ° C. to obtain polymer alloy pellets. The polymer alloy pellets had a melt viscosity of 80 Pa · s at 260 ° C. and 1216 sec −1 and a b * value of 4. The amount of powder in the pellets was 500 ppm or less.

このポリマーアロイペレットを用い実施例1と同様に溶融紡糸を行い、ポリマーアロイ未延伸糸を得た。この時の紡糸性は良好であり、24時間の連続紡糸の間の糸切れは1回であった。そして、これをやはり実施例1と同様に延伸・熱処理して128dtex、36フィラメント、強度4.5cN/dtex、伸度37%の、U%=1.9%、熱収縮率12%の優れた特性を有するポリマーアロイ繊維を得た。得られたポリマーアロイ繊維の横断面をTEMで観察したところ、実施例1同様、co−PET1が海、N6が島の海島構造を示し、島N6の数平均による直径は80nmであり、直径150nmを超える粗大島は皆無であり、N6が超微分散化したポリマーアロイ繊維が得られた。また、経時によるN6ブレンド比の変動幅は44.2〜45.3重量%であり、充分小さいものであった。   Using this polymer alloy pellet, melt spinning was performed in the same manner as in Example 1 to obtain a polymer alloy undrawn yarn. The spinnability at this time was good, and there was one breakage during 24 hours of continuous spinning. This was also stretched and heat-treated in the same manner as in Example 1 and was excellent in 128 dtex, 36 filament, strength 4.5 cN / dtex, elongation 37%, U% = 1.9%, and heat shrinkage 12%. A polymer alloy fiber having characteristics was obtained. When the cross section of the obtained polymer alloy fiber was observed with a TEM, as in Example 1, co-PET1 was the sea, N6 was the island-island structure, the number average diameter of the island N6 was 80 nm, and the diameter was 150 nm. There was no coarse Oshima island exceeding 1, and a polymer alloy fiber in which N6 was ultrafinely dispersed was obtained. Moreover, the fluctuation range of the N6 blend ratio with time was 44.2 to 45.3% by weight, which was sufficiently small.

ここで得られたポリマーアロイ繊維を用いて実施例1同様に、アルカリ処理により紡績糸形状のナノファイバー集合体を得た。さらにこれらのナノファイバーの単糸繊度ばらつきを実施例1同様に解析した結果、ナノファイバーの数平均による単糸直径は85nmと従来にない細さであり、単糸繊度ばらつきも非常に小さいものであった。   Using the polymer alloy fiber obtained here, in the same manner as in Example 1, a spun yarn-shaped nanofiber assembly was obtained by alkali treatment. Furthermore, as a result of analyzing the single yarn fineness variation of these nanofibers in the same manner as in Example 1, the single yarn diameter based on the number average of nanofibers is 85 nm, which is an unprecedented thinness, and the single yarn fineness variation is very small. there were.

実施例9
N6のブレンド比を80重量%、混練温度を235℃として実施例2と同様に溶融混練を行い、b*値=4のポリマーアロイチップを得た。このポリマーアロイペレットの溶融粘度は255℃、1216sec-1で63Pa・sであり、アミン末端基量はポリアミド重量ベースで25mol当量/t、カルボキシル末端基量はPLA重量ベースで40mol当量/tであった。また、粉体量は500ppm以下であった。また、島成分であるPLAの直径は平均で600nm程度、直径が2μmを超える粗大島は皆無であり、ブレンド斑の小さいものであった。
Example 9
Melt kneading was carried out in the same manner as in Example 2 at a blending ratio of N6 of 80% by weight and a kneading temperature of 235 ° C. to obtain a polymer alloy chip having a b * value = 4. The polymer alloy pellets had a melt viscosity of 63 Pa · s at 255 ° C. and 1216 sec −1 , the amine end group amount was 25 mol equivalent / t based on polyamide weight, and the carboxyl end group amount was 40 mol equivalent / t based on PLA weight. It was. The amount of powder was 500 ppm or less. Moreover, the average diameter of PLA, which is an island component, was about 600 nm, and there were no coarse islands with a diameter exceeding 2 μm, and the blend spots were small.

このペレットをマスターペレットとして25重量%、希釈用として実施例2で用いたPLAを75重量%として、図7の装置を用いてマスターペレットと希釈用ペレットを独立に計量しながら、230℃で混練し、実施例2と同様に溶融紡糸を行った。なお、希釈のための混練条件はマスターペレットの混練条件に準じた。この時の紡糸性は良好であり、120時間の連続紡糸で糸切れは0回であった。これにより、92dtex、36フィラメントの高配向未延伸糸を得、実施例2と同様に延伸熱処理を行い、67dtex、36フィラメントのポリマーアロイ延伸糸を得た。これの強度は3.5cN/dtex、伸度42%、熱収縮率9%、U%=0.8%の優れた特性を示した。   This pellet was 25% by weight as a master pellet, 75% by weight of PLA used in Example 2 for dilution, and kneaded at 230 ° C. while independently measuring the master pellet and dilution pellet using the apparatus shown in FIG. Then, melt spinning was carried out in the same manner as in Example 2. The kneading conditions for dilution were the same as those for master pellets. The spinnability at this time was good, and the yarn breakage was zero after 120 hours of continuous spinning. Thereby, a highly oriented undrawn yarn of 92 dtex and 36 filaments was obtained, and a drawing heat treatment was performed in the same manner as in Example 2 to obtain a polymer alloy drawn yarn of 67 dtex and 36 filaments. The strength was 3.5 cN / dtex, the elongation was 42%, the heat shrinkage was 9%, and U% = 0.8%.

得られたポリマーアロイ繊維の横断面をTEM観察したところ、PLAが海、N6が島の海島構造を示し、島N6の数平均による直径は57nmであり、直径が100nmを超える粗大島は皆無であり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるN6ブレンド比の変動幅は18.9〜21.2重量%であり、充分小さいものであった。   When the cross section of the obtained polymer alloy fiber was observed with a TEM, the sea-island structure where PLA was the sea and N6 was the island, the number average diameter of the island N6 was 57 nm, and there were no coarse islands with a diameter exceeding 100 nm. In addition, a polymer alloy fiber in which N6 was nano-sized and uniformly dispersed was obtained. Further, the fluctuation range of the N6 blend ratio with time was 18.9 to 21.2% by weight, which was sufficiently small.

実施例10
5−ナトリウムスルホイソフタル酸を16mol%共重合した極限粘度0.48の共重合PET(co−PET3)をco−PS2の代わりに用い、混練温度を290℃として実施例4と同様に溶融混練を行った。しかし、co−PET3のスルホン酸塩の共重合量が過剰であるため、ポリマーアロイが脆く、粉体量がペレット集合体の1500ppm以上と多くなった。
Example 10
Copolymerization PET (co-PET3) having an intrinsic viscosity of 0.48 copolymerized with 16 mol% of 5-sodium sulfoisophthalic acid was used instead of co-PS2, and the kneading temperature was 290 ° C. went. However, since the copolymerization amount of the sulfonate salt of co-PET3 was excessive, the polymer alloy was brittle and the amount of powder increased to 1500 ppm or more of the pellet aggregate.

これを用いて、紡糸温度を290℃として実施例4と同様に溶融紡糸を行ったが、粉体量が多いため作業性が悪く、さらに粉体が異常に高重合度化し異物として作用することにより、24時間の紡糸で糸切れが3回と紡糸性は実施例4には及ばなかった。また、ここで得られた未延伸糸は脆く、図4の装置では延伸不能であった。   Using this, melt spinning was carried out in the same manner as in Example 4 at a spinning temperature of 290 ° C., but the workability was poor due to the large amount of powder, and the powder became abnormally highly polymerized and acted as foreign matter. As a result, the spinning performance was not as good as that of Example 4 because the yarn breakage was 3 times after spinning for 24 hours. The undrawn yarn obtained here was brittle and could not be drawn by the apparatus shown in FIG.

実施例11
実施例9で作製したポリマーアロイペレットを希釈することなく、溶融温度235℃、紡糸温度235℃として実施例2と同様に溶融紡糸を行ったところ、紡糸性は良好であり、24時間の連続紡糸で糸切れは0回であった。またこの高配向未延伸糸をやはり実施例2と同様に延伸熱処理することで、67dtex、36フィラメントのポリマーアロイ延伸糸を得、これの強度は3.8cN/dtexであった。
Example 11
When the polymer alloy pellets prepared in Example 9 were melt-spun in the same manner as in Example 2 at a melting temperature of 235 ° C. and a spinning temperature of 235 ° C. without dilution, the spinning property was good and continuous spinning for 24 hours. The yarn breakage was zero. The highly oriented undrawn yarn was also subjected to drawing heat treatment in the same manner as in Example 2 to obtain a 67 dtex, 36 filament polymer alloy drawn yarn, and the strength thereof was 3.8 cN / dtex.

得られたポリマーアロイ繊維の横断面をTEM観察したところ、N6が海、PLAが島の海島構造を示し、島PLAの数平均による直径は90nmであり、直径が150nmを超える粗大島は皆無であり、N6がナノサイズで均一分散化したポリマーアロイ繊維が得られた。また、経時によるN6ブレンド比の変動幅は79.5〜80.5重量%であり、充分小さいものであった。   When the cross section of the obtained polymer alloy fiber was observed by TEM, N6 was the sea, PLA was the island-island structure, the number average diameter of the island PLA was 90 nm, and there were no coarse islands with a diameter exceeding 150 nm. In addition, a polymer alloy fiber in which N6 was nano-sized and uniformly dispersed was obtained. Further, the fluctuation range of the N6 blend ratio with time was 79.5 to 80.5% by weight, which was sufficiently small.

さらに、このポリマーアロイ繊維を丸編みし、実施例2と同様にアルカリ処理しPLAを除去し、細孔の平均直径が85nmの多孔繊維を得ることができた。   Further, this polymer alloy fiber was circularly knitted and treated with alkali in the same manner as in Example 2 to remove PLA, and a porous fiber having an average pore diameter of 85 nm could be obtained.

実施例12
実施例1で用いたN6を90重量%、co−PET1を10重量%、混練温度を250℃として実施例1と同様に溶融混練を行い、b*値=4のポリマーアロイペレットを得た。このポリマーアロイペレットの溶融粘度は260℃、1216sec-1で64Pa・sであり、アミン末端基量はポリアミド重量ベースで40mol当量/t、カルボキシル末端基量はco−PET1重量ベースで35mol当量/tであった。また、粉体量はペレットの重量ベースで500ppm以下であった。
Example 12
N6 used in Example 1 was 90% by weight, co-PET1 was 10% by weight, the kneading temperature was 250 ° C., and melt kneading was performed in the same manner as in Example 1 to obtain polymer alloy pellets having a b * value = 4. The melt viscosity of this polymer alloy pellet is 64 Pa · s at 260 ° C. and 1216 sec −1 , the amine end group amount is 40 mol equivalent / t based on the weight of the polyamide, and the carboxyl end group amount is 35 mol equivalent / t based on the weight of co-PET. Met. The amount of powder was 500 ppm or less based on the weight of the pellets.

このペレットを溶融温度を260℃、紡糸温度を260℃、紡糸速度を3000m/分として実施例1と同様に溶融紡糸を行ったところ、紡糸性は良好であり、24時間の連続紡糸での糸切れは0回であった。また、1回の巻き取り量を7kgとしたが、巻き取ったパッケージ形状にも問題なく端面が膨れて崩れることは無かった。これは、このco−PET1がN6を拘束することにより、吸湿時の寸法安定性を向上させたためと考えられる。ここで得られた高配向未延伸糸の伸度は150%と、通常のN6では巻き取り不能の高伸度未延伸糸であった。この高伸度未延伸糸は複合仮撚りなどの糸加工原糸として有用であった。このように、本発明のポリマーアロイペレットは機能性の付加されたポリマーアロイ繊維の原料としても有用である。   When this pellet was melt-spun in the same manner as in Example 1 at a melting temperature of 260 ° C., a spinning temperature of 260 ° C., and a spinning speed of 3000 m / min, the spinnability was good and the yarn was obtained by continuous spinning for 24 hours. There were 0 cuts. Moreover, although the amount of winding at one time was 7 kg, the end face did not swell and collapse without any problem in the wound package shape. This is probably because the co-PET1 constrains N6 to improve dimensional stability during moisture absorption. The elongation of the highly oriented undrawn yarn obtained here was 150%, which was a high elongation undrawn yarn that could not be wound with ordinary N6. This high-stretched undrawn yarn was useful as a yarn processing raw yarn such as a composite false twist. Thus, the polymer alloy pellets of the present invention are also useful as a raw material for functionally added polymer alloy fibers.

比較例1
混練温度を280℃、混練部長さをスクリュー有効長さの50%とし、混練部はスクリュー有効長さの2/3より供給側に位置させて実施例1と同様に溶融混練を行い、ポリマーアロイペレットを得た。このポリマーアロイペレットの溶融粘度は、260℃、1216sec-1で101Pa・s、b*値は12であった。
Comparative Example 1
The kneading temperature was 280 ° C., the kneading part length was 50% of the effective screw length, and the kneading part was positioned on the supply side with respect to 2/3 of the effective screw length. Pellets were obtained. The polymer alloy pellets had a melt viscosity of 101 Pa · s and a b * value of 12 at 260 ° C. and 1216 sec −1 .

これを実施例1と同様に溶融紡糸したが、糸切れが頻発し紡糸性は不良であった。   This was melt-spun in the same manner as in Example 1. However, yarn breakage occurred frequently and the spinnability was poor.

比較例2
共重合PETを極限粘度=0.63のホモPETとし、混練温度を290℃として実施例1と同様に溶融混練を行い、ポリマーアロイペレットを得た。このポリマーアロイペレットの溶融粘度は、290℃、1216sec-1で100Pa・s、b*値は13であった。
Comparative Example 2
The copolymerized PET was homo-PET having an intrinsic viscosity = 0.63, the kneading temperature was 290 ° C., and melt kneading was performed in the same manner as in Example 1 to obtain polymer alloy pellets. The melt viscosity of this polymer alloy pellet was 290 ° C., 1216 sec −1 , 100 Pa · s, and the b * value was 13.

ポリマーの溶融温度および紡糸温度を290℃として、このポリマーを実施例1と同様に溶融紡糸したが、糸切れが頻発し紡糸性は不良であった。   The polymer was melt-spun at a temperature of 290 ° C., and the polymer was melt-spun in the same manner as in Example 1. However, yarn breakage occurred frequently and the spinnability was poor.

比較例3
三井住友ポリオレフィン社製低密度ポリエチレン“ミラソン”68P(MFR=23、融点105℃)20重量%とA&M社製ポリスチレン“スタイロン685”(MFR=4、ビカット軟化点=105℃)80重量%を混練温度を200℃として実施例1と同様に溶融混練し、b*値=2のポリマーアロイペレットを得た。得られたポリマーアロイペレットの169℃、1216sec-1での溶融粘度は400Pa・s以上であった。
Comparative Example 3
20% by weight of Mitsui Sumitomo Polyolefin's low density polyethylene “Mirason” 68P (MFR = 23, melting point 105 ° C.) and 80% by weight of A & M polystyrene “Styron 685” (MFR = 4, Vicat softening point = 105 ° C.) The mixture was melt-kneaded in the same manner as in Example 1 at a temperature of 200 ° C. to obtain polymer alloy pellets having a b * value = 2. The resulting polymer alloy pellets had a melt viscosity of 400 Pa · s or higher at 169 ° C. and 1216 sec −1 .

これを溶融温度200℃、紡糸温度200℃、紡糸速度1200m/分として実施例1と同様に溶融紡糸を行った。この時は溶融粘度が高すぎるため紡糸性は劣悪であり、連続巻き取りが不能であった。   This was melt-spun in the same manner as in Example 1 at a melting temperature of 200 ° C., a spinning temperature of 200 ° C., and a spinning speed of 1200 m / min. At this time, since the melt viscosity was too high, the spinnability was poor and continuous winding was impossible.

比較例4
実施例2で使用したN6とPLAをそれぞれ20重量%、80重量%となるようチップブレンドし、図2の紡糸機のホッパー1に仕込み、実施例2と同様に溶融紡糸を行った。しかし、ブレンド斑に起因して口金からのポリマーの吐出が不安定となり、24時間の連続紡糸で糸切れが18回と紡糸性は劣悪であった。また、わずかに巻き取った繊維中での、経時によるN6ブレンド比の変動幅は14〜26重量%とかなり大きくなった。
Comparative Example 4
N6 and PLA used in Example 2 were chip-blended so as to be 20% by weight and 80% by weight, respectively, charged into the hopper 1 of the spinning machine of FIG. 2, and melt-spun as in Example 2. However, the discharge of the polymer from the die became unstable due to the blend spots, and the spinnability was poor with 18 yarn breaks after 24 hours of continuous spinning. Further, the fluctuation range of the N6 blend ratio with time in the slightly wound fiber was considerably large as 14 to 26% by weight.

比較例5
実施例1で使用したN6単独で実施例11と同様に3000m/分で溶融紡糸を行ったが、巻き取り開始から15分でパッケージ端面が崩れ、巻き取り不能となった。これは、巻き取り糸が吸湿し、糸長手方向に膨潤したためであると考えられる。
Comparative Example 5
N6 used in Example 1 alone was melt-spun at 3000 m / min as in Example 11, but the package end face collapsed 15 minutes after the start of winding, making winding impossible. This is presumably because the wound yarn absorbed moisture and swelled in the longitudinal direction of the yarn.

Figure 2005200459
Figure 2005200459

実施例1のポリマーアロイペレットの横断面を示すTEM写真である。2 is a TEM photograph showing a cross section of a polymer alloy pellet of Example 1. FIG. 紡糸装置を示す図である。It is a figure which shows a spinning apparatus. 口金を示す図である。It is a figure which shows a nozzle | cap | die. 延伸装置を示す図である。It is a figure which shows an extending | stretching apparatus. 実施例1のポリマーアロイ繊維の繊維横断面を示すTEM写真である。2 is a TEM photograph showing a fiber cross section of a polymer alloy fiber of Example 1. FIG. 実施例1のナノファイバーの繊維横断面を示すTEM写真である。2 is a TEM photograph showing a fiber cross section of the nanofiber of Example 1. FIG. 紡糸装置を示す図である。It is a figure which shows a spinning apparatus.

符号の説明Explanation of symbols

1:ホッパー
2:溶融部
3:スピンブロック
4:紡糸パック
5:口金
6:チムニー
7:糸条
8:集束給油ガイド
9:第1引き取りローラー
10:第2引き取りローラー
11:巻き取り糸
12:計量部
13:吐出孔長
14:吐出孔径
15:未延伸糸
16:フィードローラー
17:第1ホットローラー
18:第2ホットローラー
19:第3ローラー
20:延伸糸
21:計量装置
22:二軸押出混練機
1: Hopper 2: Melting section 3: Spin block 4: Spin pack 5: Base 6: Chimney 7: Yarn 8: Focusing oiling guide 9: First take-up roller 10: Second take-up roller 11: Winding yarn 12: Weighing Part 13: Discharge hole length 14: Discharge hole diameter 15: Unstretched yarn 16: Feed roller 17: First hot roller 18: Second hot roller 19: Third roller 20: Stretched yarn 21: Metering device 22: Biaxial extrusion kneading Machine

Claims (5)

易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が300Pa・s以下のペレットであり、易溶解性ポリマーの融点が難溶解性ポリマーの融点から−20〜+20℃の範囲であるペレット。 It is a sea-island structure or layered structure polymer alloy composed of an easily soluble polymer and a hardly soluble polymer, and is a pellet having a b * value of −1 to 10 and a melt viscosity of 300 Pa · s or less, which is an index of color tone, and is easily soluble. Pellets whose melting point of the polymer is in the range of −20 to + 20 ° C. from the melting point of the hardly soluble polymer. 易溶解性ポリマーと難溶解性ポリマーからなる海島構造あるいは層状構造ポリマーアロイでありその色調の指標であるb*値が−1〜10、溶融粘度が100Pa・s以下であるペレット。 A pellet having a b * value of −1 to 10 and a melt viscosity of 100 Pa · s or less, which is a sea-island structure or a layered structure polymer alloy composed of an easily soluble polymer and a hardly soluble polymer. 易溶解性ポリマーが海成分、難溶解性ポリマーが島成分であり、難溶解性ポリマーの重量比がペレット全体に対して15〜50%である請求項1または2記載のペレット。   The pellet according to claim 1 or 2, wherein the easily soluble polymer is a sea component and the hardly soluble polymer is an island component, and the weight ratio of the hardly soluble polymer is 15 to 50% with respect to the whole pellet. 易溶解性ポリマーが融点160〜240℃の低融点ポリエステル、難溶解性ポリマーがポリアミドである請求項1〜3のうちいずれか1項記載のペレット。   The pellet according to any one of claims 1 to 3, wherein the easily soluble polymer is a low melting point polyester having a melting point of 160 to 240 ° C, and the hardly soluble polymer is polyamide. 易溶解性ポリマーがポリオレフィン、難溶解性ポリマーが融点160〜240℃の低融点ポリエステルである請求項1〜3のうちいずれか1項記載のペレット。   The pellet according to any one of claims 1 to 3, wherein the easily soluble polymer is a polyolefin, and the hardly soluble polymer is a low melting point polyester having a melting point of 160 to 240 ° C.
JP2004005372A 2004-01-13 2004-01-13 pellet Expired - Lifetime JP4710227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005372A JP4710227B2 (en) 2004-01-13 2004-01-13 pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005372A JP4710227B2 (en) 2004-01-13 2004-01-13 pellet

Publications (2)

Publication Number Publication Date
JP2005200459A true JP2005200459A (en) 2005-07-28
JP4710227B2 JP4710227B2 (en) 2011-06-29

Family

ID=34819726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005372A Expired - Lifetime JP4710227B2 (en) 2004-01-13 2004-01-13 pellet

Country Status (1)

Country Link
JP (1) JP4710227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068986A (en) * 2005-08-11 2007-03-22 Toray Ind Inc Makeup remover base material and makeup removing sheet
JP2007092239A (en) * 2005-09-29 2007-04-12 Mitsubishi Rayon Co Ltd Polypropylene fiber and woven or knit fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163411A (en) * 1983-03-03 1984-09-14 Toray Ind Inc Production of alternately arranged body of high polymers and equipment therefor
JPS59179812A (en) * 1983-03-28 1984-10-12 Toray Ind Inc Mutually arranged material and conjugated yarn of high polymer
JPH06272114A (en) * 1993-03-22 1994-09-27 Teijin Ltd Production of fiber assembly
JPH08158251A (en) * 1994-11-30 1996-06-18 Kanebo Ltd Production of porous polyamide fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163411A (en) * 1983-03-03 1984-09-14 Toray Ind Inc Production of alternately arranged body of high polymers and equipment therefor
JPS59179812A (en) * 1983-03-28 1984-10-12 Toray Ind Inc Mutually arranged material and conjugated yarn of high polymer
JPH06272114A (en) * 1993-03-22 1994-09-27 Teijin Ltd Production of fiber assembly
JPH08158251A (en) * 1994-11-30 1996-06-18 Kanebo Ltd Production of porous polyamide fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068986A (en) * 2005-08-11 2007-03-22 Toray Ind Inc Makeup remover base material and makeup removing sheet
JP2007092239A (en) * 2005-09-29 2007-04-12 Mitsubishi Rayon Co Ltd Polypropylene fiber and woven or knit fabric
JP4727368B2 (en) * 2005-09-29 2011-07-20 三菱レイヨン株式会社 Polypropylene fiber and woven / knitted fabric

Also Published As

Publication number Publication date
JP4710227B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
KR101029515B1 (en) Porous fiber
JP4184917B2 (en) Nanofiber assembly
KR101119051B1 (en) Nanofiber aggregate, hybrid fiber, fibrous structures, and processes for production of them
JP4100327B2 (en) Composite fiber
JP4134829B2 (en) Nanofiber mixed yarn
JP4229115B2 (en) Nanofiber assembly
JP2014074246A (en) Wet nonwoven fabric for liquid filtration filter and liquid filtration filter
JP2011047068A (en) Water-repelling polyester blended yarn
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP2008007870A (en) Polyester fine fiber and its fiber product
JP5819620B2 (en) Polyester microfiber
JP2014101613A (en) Ultra fine fiber
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP2005200593A (en) Pellet
JP4238929B2 (en) Polymer alloy fiber, method for producing the same, and fiber product using the same
JP4710227B2 (en) pellet
JP4315150B2 (en) Nanofiber
JP4270202B2 (en) Nanofiber assembly
JP4501516B2 (en) Wiping tool
JP4292893B2 (en) Polymer alloy crimped yarn
JP2007169866A (en) Dyed nanofiber aggregate
JP4325616B2 (en) Nanoporous fiber
JP2004332186A (en) Nanoporous fiber
JP2004270110A (en) Polymer alloy fiber
EP4283038A1 (en) Wet-laid nonwoven fabric sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R151 Written notification of patent or utility model registration

Ref document number: 4710227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

EXPY Cancellation because of completion of term