JP2005200236A - Carbonated hardened body - Google Patents

Carbonated hardened body Download PDF

Info

Publication number
JP2005200236A
JP2005200236A JP2004005642A JP2004005642A JP2005200236A JP 2005200236 A JP2005200236 A JP 2005200236A JP 2004005642 A JP2004005642 A JP 2004005642A JP 2004005642 A JP2004005642 A JP 2004005642A JP 2005200236 A JP2005200236 A JP 2005200236A
Authority
JP
Japan
Prior art keywords
calcium silicate
secondary particles
carbonated
inorganic material
carbonation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004005642A
Other languages
Japanese (ja)
Inventor
Yuzo Yokoyama
祐三 横山
Tomoshige Tsutao
友重 蔦尾
Miyuki Miyazaki
幸 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004005642A priority Critical patent/JP2005200236A/en
Publication of JP2005200236A publication Critical patent/JP2005200236A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonated hardened body which is lightweight and has sufficient strength and which is suitable, in particular, as a ceiling material and suitable for recycling a calcium silicate heat reserving material. <P>SOLUTION: The carbonated hardened body is formed from an inorganic material containing hollow spherical secondary particles of calcium silicate crystal (preferably, xonotlite crystal);(preferably, the inorganic material is a crushed product of the calcium silicate heat insulating material composed of hollow spherical secondary particles of calcium silicate crystal). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は炭酸化硬化体に関し、詳しくは、軽量かつ十分な強度を有し、特に天井材などの調湿建材として好適であり、また、廃棄物のリサイクルにも好適な炭酸化硬化体に関する。   The present invention relates to a carbonated cured body, and more particularly, to a carbonated cured body having a light weight and sufficient strength, particularly suitable as a humidity control building material such as a ceiling material, and also suitable for recycling waste.

近年、建物などの居住空間において、より快適な居住環境が求められており、調湿性や断熱性に優れた無機質材料が多用されている。しかし、通常無機質材料は比重が大きいため重量が重いという問題があった。この問題を解決するため、例えば、特許文献1には、軽量気泡コンクリートの粉粒体と水を混合すること、得られた混合物を加圧下で成形すること及び得られた成形体を炭酸ガス雰囲気下で養生することからなる炭酸硬化成形体を製造する方法が開示されている。   In recent years, in living spaces such as buildings, a more comfortable living environment has been demanded, and inorganic materials having excellent humidity control and heat insulation properties are frequently used. However, the inorganic material usually has a problem of heavy weight because of its large specific gravity. In order to solve this problem, for example, Patent Document 1 discloses mixing a lightweight cellular concrete powder and water, molding the resulting mixture under pressure, and forming the resulting molded body in a carbon dioxide atmosphere. A method for producing a carbonic acid-cured molded body comprising curing underneath is disclosed.

しかしながら、本発明者等の検討によれば、上記炭酸硬化成形体の比重は概ね1.0〜1.3の水準であり、建物などの居住空間に用いるには、その軽量性は必ずしも十分ではなく、特に天井パネルなどの天井材に用いることは困難であった。   However, according to the study by the present inventors, the specific gravity of the carbonate-cured molded body is approximately 1.0 to 1.3, and its lightness is not sufficient for use in a living space such as a building. In particular, it has been difficult to use for ceiling materials such as ceiling panels.

一方、近年軽量で断熱性に優れた建材として、珪酸カルシウム保温材が多用されているが、珪酸カルシウム保温材の廃棄物は、そのリサイクルが難しく、一部再生利用されているものの大半は廃棄物として埋め立などに用いる以外有効な利用方法がないという問題があった。   On the other hand, calcium silicate heat insulating materials have been used frequently as building materials that are lightweight and have excellent heat insulation properties in recent years, but the waste of calcium silicate heat insulating materials is difficult to recycle, and most of them are recycled. However, there is a problem that there is no effective usage method except for use in landfill.

特開平7−25679号公報Japanese Patent Laid-Open No. 7-25679

本発明の目的は、上記従来の問題点に鑑み、軽量かつ十分な強度を有し、特に、天井材として好適であり、また珪酸カルシウム保温材のリサイクルにも好適な炭酸化硬化体を提供することにある。   An object of the present invention is to provide a carbonated cured body that is light and has sufficient strength in view of the above-described conventional problems, and is particularly suitable as a ceiling material and also suitable for recycling a calcium silicate heat insulating material. There is.

請求項1記載の炭酸化硬化体は、珪酸カルシウム結晶の中空球状二次粒子を含有する無機材料からなることを特徴とする。   The carbonated cured product according to claim 1 is made of an inorganic material containing hollow spherical secondary particles of calcium silicate crystals.

請求項2記載の炭酸化硬化体は、請求項1記載の炭酸化硬化体であって、無機材料が、珪酸カルシウム結晶の中空球状二次粒子からなる珪酸カルシウム保温材の粉砕品であることを特徴とする。   The carbonated cured body according to claim 2 is the carbonated cured body according to claim 1, wherein the inorganic material is a pulverized product of a calcium silicate heat insulating material comprising hollow spherical secondary particles of calcium silicate crystals. Features.

請求項3記載の炭酸化硬化体は、請求項1又は2記載の炭酸化硬化体であって、珪酸カルシウム結晶がゾノトライト結晶であることを特徴とする。   The carbonated cured body according to claim 3 is the carbonated cured body according to claim 1 or 2, wherein the calcium silicate crystal is a zonotlite crystal.

以下、本発明を詳細に説明する。
本発明において、炭酸化硬化体とは、ワラストナイトやゾノトライトなど珪酸カルシウムを含む無機材料と水などとの混合物からなる賦形体を二酸化炭素に接触させ、珪酸カルシウムなどの無機材料成分を二酸化炭素と反応させる(以下、「炭酸化処理」ともいう)ことで得られる硬化体を意味する。
Hereinafter, the present invention will be described in detail.
In the present invention, the carbonated cured product refers to a shaped body made of a mixture of an inorganic material containing calcium silicate such as wollastonite and zonotolite with water, and contacts an inorganic material component such as calcium silicate with carbon dioxide. It means a cured product obtained by reacting with (hereinafter also referred to as “carbonation treatment”).

本発明で用いられる珪酸カルシウム結晶の中空球状二次粒子としては、例えば、一般に珪酸カルシウム保温材に多用されるゾノトライト結晶の中空状二次粒子などが挙げられ、このような中空球状二次粒子は、例えば、石灰と珪石粉から珪酸カルシウム結晶を水熱合成で生成させる過程で珪酸カルシウム結晶の二次粒子をまりも状の中空粒子にするなど従来公知の方法で得られるものである。   Examples of the hollow sphere secondary particles of calcium silicate crystals used in the present invention include, for example, hollow secondary particles of zonotolite crystals that are commonly used in calcium silicate heat insulating materials. For example, in the process of generating calcium silicate crystals from lime and silica powder by hydrothermal synthesis, the secondary particles of calcium silicate crystals are obtained by a conventionally known method, such as turning into a hollow hollow particle.

上記珪酸カルシウム結晶がゾノトライト結晶であると、得られる炭酸化硬化体の軽量性や強度が向上する点で好ましい。   It is preferable that the calcium silicate crystal is a zonotlite crystal in terms of improving the lightness and strength of the obtained carbonized cured body.

また、本発明においては、上記珪酸カルシウム結晶の中空球状二次粒子からなる珪酸カルシウム保温材の粉砕品を無機材料として用い、この無機材料と水などとの混合物からなる賦形体を炭酸化処理することで炭酸化硬化体を得ることも可能である。このため、従来リサイクルが困難であった上記珪酸カルシウム保温材の廃材についても実質的に100%の再生率でリサイクルすることが可能となる。   Further, in the present invention, a pulverized product of calcium silicate heat insulating material composed of hollow spherical secondary particles of calcium silicate crystals is used as an inorganic material, and a shaped body composed of a mixture of the inorganic material and water is carbonized. It is also possible to obtain a carbonated cured product. For this reason, the waste material of the calcium silicate heat insulating material, which has been difficult to recycle, can be recycled at a substantially 100% regeneration rate.

上記珪酸カルシウム保温材の廃材の粉砕品を使用する場合、その粒径は50〜100μmであることが好ましい。50μmより小さいと珪酸カルシウム結晶の中空球状二次粒子が破壊されるおそれがあり、炭酸化硬化体の比重が大きくなることがある。また、100μmより大きいと炭酸化硬化体の強度が低下することがある。   When the pulverized product of the waste material of the calcium silicate heat insulating material is used, the particle size is preferably 50 to 100 μm. If it is smaller than 50 μm, the hollow spherical secondary particles of calcium silicate crystals may be destroyed, and the specific gravity of the carbonated cured product may increase. On the other hand, if it is larger than 100 μm, the strength of the carbonated cured product may be lowered.

本発明の炭酸化処理において使用される水の添加量は、賦形体の成形方法により所望の比率で混合される。例えば、乾燥した珪酸カルシウム結晶の中空球状二次粒子を原料として乾式プレス成型法により賦形する場合、原料固形分全量に対する添加水量の割合は、1.7〜20重量%が好ましい。この範囲より少ないと、炭酸化処理時に粒子間への二酸化炭素の溶解量が少なく反応速度が小さくなり十分な組織の緻密化が期待できない。また、この範囲より大きくなると、100℃以上の炭酸化処理時に層間剥離の原因になる場合がある。   The amount of water used in the carbonation treatment of the present invention is mixed at a desired ratio by the molding method of the shaped body. For example, in the case of shaping by dry press molding method using dried spherical spherical secondary particles of calcium silicate crystals as a raw material, the ratio of the amount of added water to the total amount of raw material solids is preferably 1.7 to 20% by weight. If the amount is less than this range, the amount of carbon dioxide dissolved between the particles during carbonation treatment is small and the reaction rate is low, so that sufficient densification of the structure cannot be expected. Moreover, when larger than this range, it may become a cause of delamination at the time of a carbonation process of 100 degreeC or more.

また、抄造法、脱水プレス法等の湿式法により賦形する場合は、原料固形分全量に対する添加水量は200〜400重量%が好ましい。この範囲より少ないと原料の分散性が悪く、不均一になったり、表面への型の柄の転写性が落ちる。この範囲より多いと賦形時に余分な水を搾り出す時間が長くなる。   Moreover, when shape | molding by wet methods, such as a papermaking method and a spin-drying | dehydration press method, 200-400 weight% is preferable for the amount of water added with respect to the raw material solid content whole quantity. If the amount is less than this range, the dispersibility of the raw material is poor, the material becomes non-uniform, and the transferability of the pattern on the surface decreases. If it exceeds this range, the time to squeeze out excess water during shaping will become longer.

なお、上記無機材料中には、上記材料以外にも、目的に応じ珪砂、フライアッシュ、炭酸カルシウム、消石灰、石膏、高炉スラグ、シリカフューム、タルク、マイカ等の無機充填材、パーライト、フライアッシュバルーン、ガラスバルーン、シリカフラワー、スチレンビーズ等の軽量骨材、発泡スチロールビーズ、ポリウレタンフォーム粒子等の樹脂発泡体のビーズあるいは粉砕品、珪藻土、シリカゲル、活性炭、ゼオライト、セピオライト、アタパルジャイト等の多孔材料、木片、パルプ等の天然繊維、ビニロン、ポリピロピレン、ポリ塩化ビニル、ポリエステル、ポリアミド等の合成樹脂繊維、カーボン繊維、活性炭、竹炭、無機多孔材、ホタテ貝粉、過酸化物等の酸化剤、ヒドラジド化合物、アゾール化合物、アジン化合物等の化学物質、悪臭吸着剤などが添加されたものであってもよい。   In addition to the above materials, in addition to the above materials, inorganic fillers such as silica sand, fly ash, calcium carbonate, slaked lime, gypsum, blast furnace slag, silica fume, talc, mica, pearlite, fly ash balloon, Lightweight aggregates such as glass balloons, silica flowers, styrene beads, beads or pulverized products of resin foams such as polystyrene foam beads, polyurethane foam particles, porous materials such as diatomaceous earth, silica gel, activated carbon, zeolite, sepiolite, attapulgite, wood chips, pulp Natural fibers such as vinylon, polypyropylene, polyvinyl chloride, polyester, polyamide and other synthetic resin fibers, carbon fiber, activated carbon, bamboo charcoal, inorganic porous material, scallop powder, peroxides and other oxidizing agents, hydrazide compounds, azole compounds , Chemicals such as azine compounds , May be one such as malodor adsorbents were added.

上記無機材料と水などとの混合方法は、特に限定されず、一般にセメント等の混合に用いるミキサーを使用する方法が用いられ、ミキサーとしては、例えばオムニミキサー、アイリッヒミキサー、ヘンショルミキサー等が好適に用いられる。   The method of mixing the inorganic material with water or the like is not particularly limited, and a method of using a mixer generally used for mixing cement or the like is used. Examples of the mixer include an omni mixer, an Eirich mixer, and a Henschel mixer. Preferably used.

上記混合物の賦形方法としては、一般の窯業系建材の製造に用いられる方法が使用でき、例えば乾式プレス法、抄造法、脱水プレス法、フローオン法、押出し法等が挙げられる。また、賦形時に用いられる賦形型としては、特に限定されないが、耐久性と軽量性の面からアルミニウム合金製のものが好適である。   As a method for shaping the above mixture, a method used for production of general ceramic building materials can be used, and examples thereof include a dry press method, a papermaking method, a dehydration press method, a flow-on method, and an extrusion method. The shaping mold used at the time of shaping is not particularly limited, but an aluminum alloy is preferred from the viewpoint of durability and light weight.

上記炭酸化処理の方法としては、例えば気体状態あるいは超臨界状態の二酸化炭素を利用する方法等が挙げられる。この場合、二酸化炭素濃度は、任意の濃度が利用されるが、100%に近い濃度で処理することが、炭酸化の効率という点で好ましい。   Examples of the carbonation method include a method using carbon dioxide in a gas state or a supercritical state. In this case, an arbitrary concentration is used as the carbon dioxide concentration, but it is preferable to treat at a concentration close to 100% in terms of the efficiency of carbonation.

炭酸化処理温度は、通常20〜200℃であり、より好ましくは40〜120℃である。処理温度が低すぎると、十分な炭酸化処理を行うために長い時間を要し、生産性が悪くなることがあり、また、処理温度が高すぎると、炭酸化の反応量が少なからず増加するものの、過大なエネルギーが必要となることがあり工業生産性の観点から好ましくない。   Carbonation temperature is 20-200 degreeC normally, More preferably, it is 40-120 degreeC. If the treatment temperature is too low, it takes a long time to perform a sufficient carbonation treatment, and the productivity may be deteriorated. If the treatment temperature is too high, the reaction amount of carbonation increases considerably. However, excessive energy may be required, which is not preferable from the viewpoint of industrial productivity.

上記炭酸化処理の圧力としては、特に限定されないが、0.2〜2MPaであることが好ましい。圧力が0.2MPa未満の場合は、賦形体への二酸化炭素の浸透性や炭酸化処理効率が低下し、炭酸化処理が不十分になったり、十分な炭酸化処理を行うために長い時間を要したりすることがある。圧力が2MPaを超える場合は、中空球状二次粒子が破壊されやすくなり、炭酸化硬化体の比重が大きくなることがある。   Although it does not specifically limit as a pressure of the said carbonation process, It is preferable that it is 0.2-2 Mpa. When the pressure is less than 0.2 MPa, the carbon dioxide permeability to the shaped body and the carbonation treatment efficiency are lowered, and the carbonation treatment becomes insufficient, or a long time is required to perform sufficient carbonation treatment. It may be necessary. When the pressure exceeds 2 MPa, the hollow spherical secondary particles are likely to be broken, and the specific gravity of the carbonated cured product may increase.

上記炭酸化処理の時間としては特に限定されないが、5〜120分であることが好ましい。処理時間が短すぎると、炭酸化が不十分になって硬化体の機械的強度が得られ難くなることがある。また、処理時間が120分を超える場合には、炭酸化速度に大きな向上は見られず、生産性の面で好ましくない。   The time for the carbonation treatment is not particularly limited, but is preferably 5 to 120 minutes. If the treatment time is too short, the carbonation may be insufficient and it may be difficult to obtain the mechanical strength of the cured product. On the other hand, when the treatment time exceeds 120 minutes, the carbonation rate is not greatly improved, which is not preferable in terms of productivity.

本発明によれば、珪酸カルシウム結晶の中空球状二次粒子を含有する無機材料が炭酸化されることで、珪酸カルシウム成分と二酸化炭素との反応によって中空球状二次粒子を破壊することなく硬化することが可能となり、軽量性及び強度を兼ね備えた炭酸化硬化体を得ることができる。このため、特に建物の天井材などの用途に好適な炭酸化硬化体を提供することができる。   According to the present invention, the inorganic material containing the hollow sphere secondary particles of calcium silicate crystals is carbonated, so that the hollow sphere secondary particles are cured without being destroyed by the reaction between the calcium silicate component and carbon dioxide. It becomes possible, and the carbonation hardening body which has lightness and intensity | strength can be obtained. For this reason, it is possible to provide a carbonated cured body particularly suitable for applications such as building ceiling materials.

また、本発明によれば、珪酸カルシウム結晶の中空球状二次粒子からなる珪酸カルシウム保温材の粉砕品を無機材料として用いることが可能であり、この場合にも、上記同様の硬化を発揮することができる。このため、従来リサイクルが困難とされた珪酸カルシウム保温材の廃材についても容易にリサイクルすることが可能となる。   Further, according to the present invention, it is possible to use a pulverized product of calcium silicate heat insulating material composed of hollow spherical secondary particles of calcium silicate crystals as an inorganic material, and in this case as well, the same curing as described above can be exhibited. Can do. For this reason, it becomes possible to easily recycle the waste material of the calcium silicate heat insulating material that has been conventionally difficult to recycle.

本発明において、珪酸カルシウム結晶がゾノトライト結晶であると、得られる炭酸化硬化体の軽量性や強度が向上し、上記効果は更に確実なものとなる。   In the present invention, when the calcium silicate crystal is a zonotlite crystal, the lightness and strength of the obtained carbonated cured body are improved, and the above effects are further ensured.

以下に実施例および比較例を示すことにより、本発明を具体的に説明する。
尚、本発明は下記実施例のみに限定されるものではない。
(珪酸カルシウム結晶の中空球状二次粒子からなる無機材料の調整)
珪酸カルシウム保温材1号(東京マテリアルズ社製;品名「ケイカルエース・スーパーシリカボード」、ゾノトライト系保温材)を粉砕し、粒径100μm以下に調整して珪酸カルシウム結晶の中空球状二次粒子からなる無機材料Aを調整した。
The present invention will be specifically described below by showing examples and comparative examples.
In addition, this invention is not limited only to the following Example.
(Preparation of inorganic material consisting of hollow spherical secondary particles of calcium silicate crystals)
Calcium silicate heat insulating material No. 1 (manufactured by Tokyo Materials Co., Ltd .; product name “Keical Ace Super Silica Board”, zonotolite-based heat insulating material) is pulverized and adjusted to a particle size of 100 μm or less from hollow spherical secondary particles of calcium silicate crystals An inorganic material A was prepared.

(実施例1)
表1に示す重量部数のパルプ繊維(日本紙製紙社製;品番「Alabama River」)と水とをあらかじめミキサーで30秒間混合し混合液Aを作製した。次に表1に示す重量部数で上記無機材料A及び混合物Aをオムニミキサーで1分間混合した。得られた混合物5kgを、下面に吸引孔が多数設けられ、その上にフェルトが敷設された脱水プレス用型枠内(内寸350mm×640mm)に均一に展開した。
次に上記型枠内の吸引孔につながるホースを介して5分間吸引を行い余分な水分を除去した後、更に吸引を継続しつつプレス成型して賦形体を得た。
得られた賦形体を炭酸化処理装置に投入し、処理圧力1MPa、処理温度80℃で、1時間炭酸化処理を行い炭酸化硬化体を得た。
(Example 1)
The pulp fiber (manufactured by Nippon Paper Industries Co., Ltd .; product number “Alabama River”) and water shown in Table 1 were mixed in advance with a mixer for 30 seconds to prepare a mixed solution A. Next, the said inorganic material A and the mixture A were mixed for 1 minute by the omni mixer by the weight part shown in Table 1. FIG. 5 kg of the obtained mixture was uniformly developed in a dewatering press mold (inner dimensions 350 mm × 640 mm) in which many suction holes were provided on the lower surface and felt was laid thereon.
Next, suction was performed for 5 minutes through a hose connected to the suction hole in the mold to remove excess moisture, and press molding was performed while continuing suction to obtain a shaped body.
The obtained shaped product was put into a carbonation treatment apparatus, and subjected to carbonation treatment for 1 hour at a treatment pressure of 1 MPa and a treatment temperature of 80 ° C. to obtain a carbonated cured product.

(実施例2)
表1に示す重量部数の、パルプ繊維(日本紙製紙社製;品番「Alabama River」)と水とをあらかじめミキサーで30秒間混合し混合液Aを得た。次に表1に示す重量部数で上記無機材料A、シリカゲル(ユニオン化成社製、粒度50μmアンダー品)、及び混合物Aをオムニミキサーで1分間混合した。得られた混合物5kgを、下面に吸引孔が多数設けられ、その上にフェルトが敷設された脱水プレス用型枠内(内寸350mm×640mm)に均一に展開した。
次に上記型枠内の吸引孔につながるホースを介して5分間吸引を行い余分な水分を除去した後、更に吸引を継続しつつプレス成型して賦形体を得た。
得られた賦形体を炭酸化処理装置に投入し、処理圧力1MPa、処理温度90℃で、1時間炭酸化処理を行い炭酸化硬化体を得た。
(Example 2)
Pulp fibers (manufactured by Nippon Paper Industries Co., Ltd .; product number “Alabama River”) and water shown in Table 1 were mixed in advance for 30 seconds with a mixer to obtain a mixed solution A. Next, the inorganic material A, silica gel (manufactured by Union Kasei Co., Ltd., under 50 μm particle size), and mixture A were mixed in an omni mixer for 1 minute in the parts by weight shown in Table 1. 5 kg of the obtained mixture was uniformly developed in a dewatering press mold (inner dimensions 350 mm × 640 mm) in which a number of suction holes were provided on the lower surface and felt was laid thereon.
Next, suction was performed for 5 minutes through a hose connected to the suction hole in the mold to remove excess moisture, and press molding was performed while continuing suction to obtain a shaped body.
The obtained shaped body was put into a carbonation treatment apparatus, and subjected to carbonation treatment at a treatment pressure of 1 MPa and a treatment temperature of 90 ° C. for 1 hour to obtain a carbonated cured product.

(比較例1)
無機材料Aの替わりにALC(オートクレーブドライトウエイトコンクリート)粉砕物(粒径50μmアンダー品)を用いたこと以外は実施例1と同様にして炭酸化硬化体を得た。
(Comparative Example 1)
A carbonated cured body was obtained in the same manner as in Example 1 except that an ALC (autoclave light weight concrete) pulverized product (under-particle size of 50 μm) was used instead of the inorganic material A.

(比較例2)
無機材料Aの替わりにALC(オートクレーブドライトウエイトコンクリート)粉砕物(粒径50μmアンダー品)を用いたこと以外は実施例2と同様にして炭酸化硬化体を得た。
(Comparative Example 2)
A carbonated cured body was obtained in the same manner as in Example 2 except that ALC (autoclave light weight concrete) pulverized material (particle size under 50 μm) was used in place of the inorganic material A.

実施例及び比較例の炭酸化硬化体について、以下に示す方法で評価を行った。結果は表1に示した。
(比重)
得られた炭酸化硬化体を100mm角に切断し、温度23℃、湿度50%RHの室内に重量が恒量に至るまで放置した後、厚さ及び重量を測定し比重(重量/体積)を求めた。
(強度)
JIS A1408に準じて曲げ強さを求めた。試験体は5号片を用いた(試験体幅150mm、スパン150mm)。
About the carbonation hardening body of an Example and a comparative example, it evaluated by the method shown below. The results are shown in Table 1.
(specific gravity)
The obtained carbonized cured body is cut into a 100 mm square and left in a room at a temperature of 23 ° C. and a humidity of 50% RH until the weight reaches a constant weight, and then the thickness and weight are measured to obtain the specific gravity (weight / volume). It was.
(Strength)
The bending strength was determined according to JIS A1408. The test specimen used No. 5 piece (test specimen width 150 mm, span 150 mm).

Figure 2005200236
Figure 2005200236

表1より明らかなように、本発明の実施例においては、珪酸カルシウム結晶の中空球状二次粒子からなる珪酸カルシウム保温材の粉砕品が用いられたものであるにも拘わらず、比重が低く軽量であるとともに高い強度を有することが判明した。
As is apparent from Table 1, in the examples of the present invention, although the pulverized product of calcium silicate heat insulating material made of hollow spherical secondary particles of calcium silicate crystals is used, the specific gravity is low and light weight. And a high strength.

Claims (3)

珪酸カルシウム結晶の中空球状二次粒子を含有する無機材料からなることを特徴とする炭酸化硬化体。   A carbonated cured product comprising an inorganic material containing hollow spherical secondary particles of calcium silicate crystals. 無機材料が、珪酸カルシウム結晶の中空球状二次粒子からなる珪酸カルシウム保温材の粉砕品であることを特徴とする請求項1記載の炭酸化硬化体。   The carbonated cured body according to claim 1, wherein the inorganic material is a pulverized product of calcium silicate heat insulating material composed of hollow spherical secondary particles of calcium silicate crystals. 珪酸カルシウム結晶がゾノトライト結晶であることを特徴とする請求項1又は2記載の炭酸化硬化体。
The carbonated cured product according to claim 1 or 2, wherein the calcium silicate crystal is a zonotlite crystal.
JP2004005642A 2004-01-13 2004-01-13 Carbonated hardened body Withdrawn JP2005200236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005642A JP2005200236A (en) 2004-01-13 2004-01-13 Carbonated hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005642A JP2005200236A (en) 2004-01-13 2004-01-13 Carbonated hardened body

Publications (1)

Publication Number Publication Date
JP2005200236A true JP2005200236A (en) 2005-07-28

Family

ID=34819892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005642A Withdrawn JP2005200236A (en) 2004-01-13 2004-01-13 Carbonated hardened body

Country Status (1)

Country Link
JP (1) JP2005200236A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555734A (en) * 2013-03-13 2016-05-04 索里迪亚科技公司 Pavers and block composite materials and methods of preparation thereof
CN113149704A (en) * 2021-06-07 2021-07-23 乌鲁木齐胜达天利建材科技有限公司 Preparation method of autoclaved eggshell sand
CN113314349A (en) * 2021-06-24 2021-08-27 北华大学 Polyacrylonitrile/wood-based derived carbon porous material and preparation and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555734A (en) * 2013-03-13 2016-05-04 索里迪亚科技公司 Pavers and block composite materials and methods of preparation thereof
EP2970008A4 (en) * 2013-03-13 2016-11-16 Solidia Technologies Inc Pavers and block composite materials and methods of preparation thereof
CN113149704A (en) * 2021-06-07 2021-07-23 乌鲁木齐胜达天利建材科技有限公司 Preparation method of autoclaved eggshell sand
CN113149704B (en) * 2021-06-07 2023-08-01 乌鲁木齐胜达天利建材科技有限公司 Preparation method of autoclaved eggshell sand
CN113314349A (en) * 2021-06-24 2021-08-27 北华大学 Polyacrylonitrile/wood-based derived carbon porous material and preparation and application thereof
CN113314349B (en) * 2021-06-24 2022-07-15 北华大学 Polyacrylonitrile/wood-based derived carbon porous material and preparation and application thereof

Similar Documents

Publication Publication Date Title
JP5965193B2 (en) Inorganic board
JP2011508839A (en) Sound-absorbing ceiling tiles made of paper processing waste
KR100886696B1 (en) Mortar composition and preparation method thereof
CN105272097A (en) Novel magnesian cementing material and preparation method for magnesian cementing plate prepared from novel magnesian cementing material
JP2008100877A (en) Inorganic board and its manufacturing method
JP5190399B2 (en) Method for producing calcium silicate plate
JP4097420B2 (en) Cosmetic building materials
JP2007001043A (en) Surface decorative inorganic sheet due to papermaking process
JP2002154864A (en) Building material composition
KR100723929B1 (en) Concrete block of multi-fun ction for structure wall
JPH0138067B2 (en)
JP2005200236A (en) Carbonated hardened body
KR100814740B1 (en) Method for manufacturing the insulating material having sound-proofing effects
JP4684241B2 (en) Building material composition
JP2006001794A (en) Moisture absorbing/releasing building material and method for producing the same
JP5118738B2 (en) Wood cement board and manufacturing method thereof
JP2004196602A (en) Lightweight inorganic molding excellent in fire resistance and method for manufacturing the same
CN107216104A (en) A kind of preparation method of novel biomass binder materials and its biomass cementitious board
KR100547955B1 (en) Non-combustible, heat insulation, heat insulation, absorption. Construction method of foamed concrete mortar with sound insulation
JP2019151521A (en) Calcium silicate plate and method for producing the same
JP2005205879A (en) Inorganic board made by paper-making process and its manufacturing method
JP2004269282A (en) Composition for hardened material, inorganic hardened material, and hardened material hardened by carbonation
JP2004176357A (en) Design building material
JP6646313B2 (en) Method for producing hardened magnesium carbonate trihydrate and method for producing hydrated curable magnesium carbonate material
JP2007238397A (en) Lightweight inorganic plate like body and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090827