JP2005199269A - 液滴吐出装置、パターン形成方法、並びに表示装置の作製方法 - Google Patents

液滴吐出装置、パターン形成方法、並びに表示装置の作製方法 Download PDF

Info

Publication number
JP2005199269A
JP2005199269A JP2004364373A JP2004364373A JP2005199269A JP 2005199269 A JP2005199269 A JP 2005199269A JP 2004364373 A JP2004364373 A JP 2004364373A JP 2004364373 A JP2004364373 A JP 2004364373A JP 2005199269 A JP2005199269 A JP 2005199269A
Authority
JP
Japan
Prior art keywords
shaping
layer
composition
shape
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004364373A
Other languages
English (en)
Other versions
JP4583904B2 (ja
JP2005199269A5 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Keitarou Imai
馨太郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2004364373A priority Critical patent/JP4583904B2/ja
Publication of JP2005199269A publication Critical patent/JP2005199269A/ja
Publication of JP2005199269A5 publication Critical patent/JP2005199269A5/ja
Application granted granted Critical
Publication of JP4583904B2 publication Critical patent/JP4583904B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】 本発明は、材料の利用効率を向上させ、かつ、作製工程を簡略化して作製可能な表示装置及びその作製技術を提供することを目的とする。また、それらの表示装置を構成する配線等のパターンを、所望の形状で制御性よく形成できる技術を提供することも目的とする。
【解決手段】 本発明の液滴吐出装置の一は、パターン形成材料を含む組成物を吐出する吐出手段と、組成物が被形成領域に付着する前に、組成物の形状を整形する整形手段とを有し、整形手段が、吐出手段と被形成領域との間に設けられる。
【選択図】 図1

Description

本発明は、液滴を吐出(噴出)し、パターンを形成する液滴吐出装置、パターンの形成方法、並びにその方法を用いた表示装置の作製方法に関する。
薄膜トランジスタ(以下、「TFT」という。)及びそれを用いた電子回路は、半導体、絶縁体及び導電体などの各種薄膜を基板上に積層し、適宜フォトリソグラフィ技術により所定のパターンを形成して製造されている。フォトリソグラフィ技術とは、フォトマスクと呼ばれる透明な平板面上に光を通さない材料で形成した回路等のパターンを、光を利用して目的とする基板上に転写する技術であり、半導体集積回路等の製造工程において広く用いられている。
従来のフォトリソグラフィ技術を用いた製造工程では、フォトレジストと呼ばれる感光性の有機樹脂材料を用いて形成されるマスクパターンの取り扱いだけでも、露光、現像、焼成、剥離といった多段階の工程が必要になる。従って、フォトリソグラフィ工程の回数が増える程、製造コストは必然的に上がってしまうことになる。このような問題点を改善するために、フォトリソグラフィ工程を削減してTFTを製造することが試みられている(例えば、特許文献1参照。)。
しかし、上記特許文献1に記載された技術は、TFTの製造工程で複数回行われるフォトリソグラフィ工程の一部を印刷法で置き替えただけのものであり、抜本的に工程数の削減に寄与できるものではない。また、フォトリソグラフィ技術においてマスクパターンを転写するために用いる露光装置は、等倍投影露光若しくは縮小投影露光により、数ミクロンから1ミクロン以下のパターンを転写するものであり、原理的にみて、一辺が1メートルを越えるような大面積基板を一括で露光することは技術的に困難である。
特開平11−251259号公報
本発明は、TFT及びそれを用いる電子回路並びにTFTによって形成される表示装置の製造工程においてフォトリソグラフィ工程の回数を削減し、或いはその工程自体を無くすことで製造工程を簡略化し、一辺が1メートルを越えるような大面積の基板にも、低いコストで歩留まり良く製造することができる技術を提供することを目的とする。
また、本発明は、それらの表示装置を構成する配線等のパターンを、所望の形状で制御性よく形成できる技術を提供することも目的とする。
上述した従来技術の課題を解決するために、本発明においては以下の手段を講じる。
本発明は、配線層若しくは電極を形成する導電層や、所定のパターンを形成するためのマスク層など表示パネルを作製するために必要なパターンのうち、少なくとも一つ若しくはそれ以上を、選択的にパターンを形成可能な方法により形成して、表示装置を作製することを特徴とするものである。選択的にパターンを形成可能な方法として、導電層や絶縁層など形成し、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターンを形成することが可能な、液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)を用いる。また、パターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)なども用いることができる。
本発明において、上記方法によって形成領域に付着した組成物を有する液滴は、整形(加工)手段によって、所望のパターンに形状を整形(変形)される。微細化が求められる配線の場合、吐出された液滴を、整形手段の有する細い線状の整形部に含ませ、線を引くように描画することによって、より細い配線パターンを形成することが可能になる。
また、液滴を吐出口から、直接形成領域に付着させるのではなく、整形手段(整形部)を経由し、液滴の形状を変形させてから、所望の太さで形成領域に描画する。整形手段(整形部)としては、細い線状の糸のようなものを伝わせて液滴の液量を調節し、形成領域上を走査することによって、微細な配線を形成する。整形手段(整形部)は、線状の糸の複数集まった筆のような物でもよく、糸状でも板状でも、その形状には限定されない。比較的広い範囲にパターンを形成したい場合は、一度に広い領域に付着できるような整形手段(整形部)を選択すればよい。
本発明によると、液滴を吐出する吐出口の大きさに関わらず、所望な幅のパターンを制御性よく形成することができる。
整形手段、及び整形物は、無機材料でも有機材料又は珪素と酸素との結合で骨格構造が形成された材料で形成してもよい。液滴を加工するだけの手段であるので、金属などの導電材料でも、樹脂などの絶縁材料でもよい。また、繊維などを用いることもできる。装置に設置することを考慮すると、比較的軽量で加工の容易なものが好ましい。微細な配線パターンなどを描画したい場合は、カーボンナノチューブなどの、ナノチューブ材料を用いることもできる。カーボンナノチューブなどの極細炭素繊維は、グラファイトナノファイバ、カーボンナノファイバ、チューブ状グラファイト、カーボンナノコーン、又はコーン状グラファイトなども用いることができる。加工手段の材料は、その加工する液滴が有する組成物によって、反応等が起こらないような材料を選択するとよい。
本発明の表示装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現する有機物、若しくは有機物と無機物の混合物を含む媒体を、電極間に介在させた発光素子とTFTとが接続された発光表示装置や、液晶材料を有する液晶素子を表示素子として用いる液晶表示装置などがある。
また、本発明は、液滴吐出法によりパターンを形成するに際し、その形成する領域に密着性を向上させる手段(下地前処理)を行い、表示装置の信頼性を向上させる。
本発明は、密着性を高める効果を有する物質を利用して、配線、その他半導体膜、絶縁膜、マスク等を含む表示装置を構成することを特徴とする。工程において、所定の組成物を含む液滴を細孔から吐出して所定のパターンを形成する際、その密着性を高めるために下地前処理として高融点金属からなる物質を形成する。具体的には、高融点金属からなる導電層上又はその両端に、塗布法等により、溶媒に混入された配線材料(配線材料(導電性材料)を溶媒に溶解又は分散させたものを含む)を形成し、配線を形成することを特徴とする。例えば、高融点金属や、3d遷移元素からなる導電層上に、液滴吐出法により、溶媒に混入された導電体を吐出する。液滴吐出法以外に、スピンコーティング法、ディップ法、その他の塗布法、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)により、前記高融点金属からなる導電層上に、溶媒に混入された導電体を形成してもよい。
下地前処理として用いられる物質は、酸化チタン(TiOX)、チタン酸ストロンチウム(SrTiO3)、セレン化カドミウム(CdSe)、タンタル酸カリウム(KTaO3)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)、酸化亜鉛(ZnO)、酸化鉄(Fe23)、酸化タングステン(WO3)等を用いることができる。
ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、又は陽極酸化法により形成することができる。また物質は、その形成方法により膜としての連続性を有さなくても良い。
前記高融点金属、または3d遷移元素として、Ti(チタン)、W(タングステン)、Cr(クロム)、Al(アルミニウム)、Ta(タンタル)、Ni(ニッケル)、Zr(ジルコニウム)、Hf(ハフニウム)、V(バナジウム)、Ir(イリジウム)、Nb(ニオブ)、Pd(鉛)、Pt(白金)、Mo(モリブデン)、Co(コバルト)、Rh(ロジウム)、Sc(スカンジウム)、Mn(マンガン)、Fe(鉄)、Cu(銅)又はZn(亜鉛)の材料、またそれらの酸化物、窒化物、酸化窒化物などを用いることができる。前記導電層は、スパッタリング法、蒸着法、イオン注入法、CVD法、ディップ法、スピンコート法等の公知の方法で形成することを特徴とし、好適には、スパッタリング法、ディップ法又はスピンコート法で形成することを特徴とする。また、後に導電層を絶縁化する場合には、導電層を0.01〜10nmの厚さで形成し、自然酸化で絶縁化すると簡便であり好ましい。
また、他の方法として、被形成領域(被形成面)に対してプラズマ処理を行う方法がある。プラズマ処理の条件は、空気、酸素又は窒素を処理ガスとして用い、圧力を数十Torr〜1000Torr(133000Pa)、好ましくは100(13300Pa)〜1000Torr(133000Pa)、より好ましくは700Torr(93100Pa)〜800Torr(106400Pa)、つまり大気圧又は大気圧近傍の圧力となる状態で、パルス電圧を印加する。このとき、プラズマ密度は、1×1010〜1×1014-3、所謂コロナ放電やグロー放電の状態となるようにする。空気、酸素又は窒素の処理ガスを用いプラズマ処理を用いることにより、材質依存性なく、表面改質を行うことができる。その結果、あらゆる材料に対して表面改質を行うことができる。
また、他の方法として、液滴吐出法によるパターンとその形成領域との密着性を上げるために、接着材として機能するような有機材料系の物質を形成してもよい。材料としては、感光性または非感光性の有機材料(有機樹脂材料)(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト、ベンゾシクロブテンなど)、低誘電率であるLow k材料などの一種、もしくは複数種からなる膜、またはこれらの膜の積層などを用いることができる。また、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む材料、もしくは置換基にフッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いてもよい。作製法としては、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)を用いることもできる。塗布法で得られるTOF膜やSOG膜なども用いることができる。
上記、液滴吐出法を用いて形成される導電体の領域に、下地前処理として密着性向上や、表面改質のために行われる工程は、液滴吐出法を用いて形成したパターンの上に、さらに導電体を形成する場合行っても良い。また、その場合の下地前処理として、液滴吐出法によって第1の導電層を形成した後、紫外線の照射をする紫外線照射処理を行い、処理領域に第2の導電層を液滴吐出法により形成しても良い。例えば、径の大きな吐出口を用いて、幅広のパターンを形成した後、本発明を用いて、整形手段により幅広のパターンに部分的に重なるように細いパターンを形成し、微細なパターンを形成することも出来る。
導電体(導電層)を形成するため、液滴吐出法により吐出口から吐出する組成物は、導電性材料を溶媒に溶解又は分散させたものを用いる。導電性材料とは、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al等の金属、Cd、Znの金属硫化物、Fe、Ti、Si、Ge、Si、Zr、Baなどの酸化物、ハロゲン化銀の微粒子又は分散性ナノ粒子に相当する。また、透明導電膜として用いられるインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタン等に相当する。但し、吐出口から吐出する組成物は、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但し、銀、銅を用いる場合には、不純物対策のため、合わせてバリア膜を設けるとよい。バリア膜としては、窒化珪素膜やニッケルボロン(NiB)を用いるとことができる。
また、導電性材料の周りに他の導電性材料がコーティングされ、複数の層になっている粒子でも良い。例えば、銅の周りにニッケルボロン(NiB)がコーティングされ、その周囲に銀がコーティングされている3層構造の粒子などを用いても良い。溶媒は、酢酸ブチル、酢酸エチル等のエステル類、イソプロピルアルコール、エチルアルコール等のアルコール類、メチルエチルケトン、アセトン等の有機溶剤等を用いる。組成物の粘度は20cp以下が好適であり、これは、乾燥が起こることを防止したり、吐出口から組成物を円滑に吐出できるようにしたりするためである。また、組成物の表面張力は、40mN/m以下が好適である。但し、用いる溶媒や、用途に合わせて、組成物の粘度等は適宜調整するとよい。一例として、ITOや、有機インジウム、有機スズを溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・S、銀を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・S、金を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・Sに設定するとよい。
本発明では、表示装置を構成する導電層を液滴吐出法によって形成することができる。まずゲート線やソース線、他の引き回し配線など比較的広い線幅で形成する導電層(バスラインとも呼ばれる)を、液滴吐出法によって直接形成する。このソース線や、ゲート線より枝分かれするように接続して形成する画素部内のゲート電極やソース、ドレイン電極、他の配線などの比較的細い線幅の導電層を、本発明の整形手段によって、整形することによって微細な配線を描画し形成することができる。本発明によりゲート配線の線幅は10μm以上40μm以下、ゲート電極の線幅は5μm以上20μm以下、好ましくは0.3μm以上10μm以下、ゲート配線の線幅がゲート電極の線幅の約2倍となるような配線が形成できる。本発明により、配線への大電流を効率よく、高速で流すための低抵抗化と、電極への断線のないパターンの微細化という要求が、両方満たすことができる。本発明により、液滴の吐出口の径に制限されず、より小さな微細な配線も形成することができる。
本発明の液滴吐出装置の一は、パターン形成材料を含む組成物を吐出する吐出手段と、組成物が被形成領域に付着する前に、組成物の形状を整形する整形手段とを有し、整形手段が、吐出手段と被形成領域との間に設けられる。
本発明の液滴吐出装置の一は、パターン形成材料を含む組成物を吐出する吐出手段と、組成物が被形成領域に付着した後に、組成物の形状を整形する整形手段とを有する。
上記構造において、整形手段は液滴吐出手段の吐出口に接して設けられてもよく、離れて設けて別々に走査することもできる。また、整形手段は整形部を有し、整形部の形状は針状、柱状、棒状、糸状、板状または管状など多様な形状を用いることができる。
本発明のパターン形成方法の一は、パターン形成材料を含む組成物を被形成領域に向かって吐出し、組成物が被形成領域に付着する前に、組成物の形状を整形することによって、選択的にパターンを形成する。
本発明のパターン形成方法の一は、パターン形成材料を含む組成物を被形成領域に向かって吐出し、組成物が被形成領域に付着した後であって、かつ固化する前に、組成物の形状を整形することによって、選択的にパターンを形成する。
上記構成において、組成物の形状は、整形手段の整形部によって整形されるが、整形部が針状、糸状のように細い形状の場合、微細なパターンに整形でき、柱状、板状など比較的面積の大きい形状であると一度に大きなパターンを形成することができる。
本発明の表示装置の作製方法の一は、半導体層、配線及び電極を有し、導電性材料を含む組成物を被形成領域上に吐出し、組成物の形状の一部を整形し、組成物を選択的に拡張することによって、配線及び電極を形成する。
上記構成において、配線、及び電極は前述の導電体を形成する材料によって、液滴吐出法によって形成することができる。電極はゲート電極層として用いることができ、ゲート電極層のチャネル方向の幅は、5μm以上100μm以下、より好ましくは0.3μm以上10μm以下であるとよい。液滴吐出法により、液量を0.1pl以上40pl吐出し、パターンを形成することができる。
上記構成において、半導体層が、水素とハロゲン元素を含むガスにより形成された、結晶構造を含むセミアモルファス半導体であってもよい。水素とハロゲン元素を含むガスにより形成された非単結晶半導体、水素とハロゲン元素を含むガスにより形成された多結晶半導体であってもよい。電極と半導体層の交差する領域のチャネル方向の長さが5μm以上100μm以下、より好ましくは0.3μm以上10μm以下であると好ましい。また、上記構成の表示装置で、表示画面を構成したことを特徴とするテレビジョン装置を作製することができる。
ゲート絶縁層は、第1の窒化珪素膜、酸化珪素膜及び第2の窒化珪素膜を順次積層して形成することで、ゲート電極の酸化を防止出来、かつ、ゲート絶縁層の上層側に形成する半導体層と良好な界面を形成することが出来る。
本発明は、ゲート電極層や配線層、及びパターニングの時に利用するマスクを形成する際に液滴吐出法により行うことを特徴としているが、表示装置を作製するために必要なパターンのうち、少なくとも一つ若しくはそれ以上を、選択的にパターンを形成可能な方法により形成して、表示装置を製造することで本発明の目的は達成される。
また、隔壁等に用いられる絶縁層は、有機材料、無機材料又は珪素と酸素との結合で骨格構造が形成された材料で形成してもよい。有機材料は、その平坦性が優れているため、後に導電体を成膜した際にも、段差部で膜厚が極端に薄くなったり、断線が起こったりすることがなく、好適である。また、有機材料は、誘電率が低い。そのため、複数の配線の層間絶縁体として用いると、配線容量が低減し、多層配線を形成することが可能となり、高性能化及び高機能化が実現される。
一方、珪素と酸素との結合で骨格構造が形成された材料としては、シロキサン系ポリマーが代表例として挙げられ、詳しくは、珪素と酸素との結合で骨格構造が構成され置換基に少なくとも水素を含む材料、又は、置換基にフッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料である。この材料も平坦性に優れており、また透明性や耐熱性をも有し、シロキサンポリマーからなる絶縁体を形成後に300度〜600度程度以下の温度で加熱処理を行うことができる。
本発明により、導電層のパターンをその線幅によって作り分けることが出来るので、表示装置を構成する配線のうち、太い幅の低抵抗な配線と、画素部などに用いられる微細な配線の両方とを、その役割によって要求される機能を満たすように形成することができる。
本発明によれば、液滴吐出法により、配線層やマスクのパターニングを直接行うことができるので、材料の利用効率を向上させて、かつ、作製工程を簡略化したTFT及びそれを用いた信頼性の高い表示装置を得ることができる
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
図29は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
TFTは、その主要な構成要素として、半導体層、ゲート絶縁層及びゲート電極層が挙げられ、半導体層に形成されるソース及びドレイン領域に接続する配線層がそれに付随する。構造的には基板側から半導体層、ゲート絶縁層及びゲート電極層を配設したトップゲート型と、基板側からゲート電極層、ゲート絶縁層及び半導体層を配設したボトムゲート型などが代表的に知られているが、本発明においてはそれらの構造のどのようなものを用いても良い。
半導体層を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体(以下「AS」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれる。以下「SAS」ともいう。)半導体などを用いることができる。
SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測することが出来、珪素を主成分とする場合にはラマンスペクトルが520cm-1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。SASは、珪化物気体をグロー放電分解(プラズマCVD)して形成する。珪化物気体としては、SiH4、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることが可能である。またGeF4を混合させても良い。この珪化物気体をH2、又は、H2とHe、Ar、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2〜1000倍の範囲。圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHz。基板加熱温度は300℃以下でよい。膜中の不純物元素として、酸素、窒素、炭素などの大気成分の不純物は1×1020cm-1以下とすることが望ましく、特に、酸素濃度は5×1019/cm3以下、好ましくは1×1019/cm3以下とする。
図29は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図30に示すように、COG(Chip on Glass)によりドライバICを基板700上に実装しても良い。図30において、基板701はシール材702によって封止基板703と張り合わされており、基板700上に設けられたドライバIC707a、ドライバIC707b、ドライバIC707c、ドライバIC705a、ドライバIC705bは、それぞれFPC704a、FPC704b、FPC704c、FPC706a、FPC706bと接続している。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。
また、画素に設けるTFTをSASで形成する場合には、図31に示すように走査線側の駆動回路3702を基板3700上に形成し一体化することも出来る。図31において、3701は画素領域であり、信号線側駆動回路は、COGによりドライバIC3705a、3705bを実装し、FPC3704a、3704bに接続している。
(実施の形態1)
本発明の実施の形態について、図1及び図16を用いて説明する。
図1の(A)〜(D)は、本発明の装置のパターン形成方法の詳細図である。本発明は、液滴を吐出しパターンを形成する方法を用いている。
図1(A)において、50は被形成領域、11はヘッド部、12bは液滴吐出手段の制御手段、18はノズルであり、隣接して10は整形手段、14は整形部、12aは整形手段の制御手段である。制御手段12bによってノズル18より吐出されたパターン形成材料を有する液滴13は、筆状の整形部14に付着し、整形部14を伝って被形成領域50上にパターン15のような形状に形成される。整形手段及びヘッド部を方向16の方へ走査することによりパターン15は線状のパターンとなる。
本実施の形態のように整形部14を先端方向にむかって径を細くした、針状にした場合、ノズル18の吐出口から吐出された液滴の大きさを被形成領域50に付着するまでに整形し、より線幅の狭い微細なパターン15を形成することができる。整形部14を走査することによって、被形成領域50に付着する液滴の量を調節することができる。よって整形部14の形状と走査速度を制御することによって、ノズルの吐出口の径に依存せず、所望の幅及び形状にパターン15を形成することができる。
図1(A)では、液滴はノズルの吐出口より吐出されてから、被形成面に付着するまでの間に、整形手段により、所望の形状に整形される例を示した。図1(B)では、液滴を被形成領域に吐出した後、組成物が固化する前に形状を整形する方法を示す。
図1(B)において、60は被形成領域であり、21はヘッド部、22bは液滴吐出手段の制御手段、28はノズルであり、隣接して20は整形手段、24は整形部、22aは整形手段の制御手段である。制御手段22bによってノズル28より吐出されたパターン形成材料を有する液滴は、被形成領域60に液滴23として付着する。この液滴23が完全に固化する前に、整形手段20及び整形部24は制御手段22aによって方向27の方へ移動し、方向26の方へ液滴23の上を走査される。そのとき整形部24は液滴23を整形し、その形状を変形させパターン25を形成する。このとき液滴23は、完全に固化する前なので整形部24によって、自由にパターンを整形することができる。
整形部24の形状と、方向26への走査速度、方向27への移動距離などを調節することによって、ノズルの吐出口の径に依存せず、所望の幅及び形状にパターン25を形成することができる。
整形部14、24の形状は、本実施の形態では、先端に従って径が細くなる針状の形態を用いたが、形成したいパターンの形状によって、柱状、板状、糸状など適宜選択することができる。パターンを広く形成したい場合は、先端行くほど一度に液滴と接する面積が大きくなるようにへら状のものを用いてもよい。また、筆のように複数の細い毛(糸)が束ねてある物を用いてもよい。
次に図1(C)、(D)に他の整形手段の方法を示す。図1(C)、(D)は、整形部がノズルに一体形成されている例である。図1(C)において、70は被形成領域、30はヘッド部、32は液滴吐出手段の制御手段、38はノズルであり、ノズル38に整形手段である整形部34が設置されている。整形部34は内部に空間33を有する管(チューブ)状であり、ノズル38より吐出されたパターン形成材料を有する液滴は整形部34の空間33を通過して液滴を制御され、液滴31の形状に整形され被形成領域に付着する。液滴31の形状は、整形部34の空間33の大きさによって自由に制御することができるので、微細なパターンも形成することができる。
図1(D)のように連続的に、液滴を吐出し、方向46へ走査することによって被形成領域80上に、微細な線状パターン41を形成することもできる。整形部34の空間33の大きさと、走査速度を制御することによって、吐出口の大きさに依存せず、自由に所望なパターンを形成することができる。よってペン先を付け替えるように、整形部34の形状を選択し、設置することにより多様な形状のパターンに対応できる。勿論、図1(C)、(D)に、図1(A)、(B)を組み合わせることもできる。より、精密な整形を行うことができるので、微細なパターンの形成に効果的である。
整形部の形状や材質は、形成領域に形成したいパターンによって自由に選択することができる。材質は硬性なものでも、軟性なものでもよく、整形したいパターンを形成する材料の粘性などに合わせて選択すればよい。このとき、物理的に液滴を整形する場合は、パターンを形成する材料と、整形部の材料が反応しないことが望ましい。しかし、整形部と接触することによって物性を変化させ、被形成領域上にパターンを形成することもできる。
整形手段、及び整形部の材料は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機材料でも、アクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子その他の有機材料又はシロキサン系材料を出発材料として形成された珪素、酸素、水素からなる化合物のうちSi−O−Si結合を含む無機シロキサン、珪素上の水素がメチルやフェニルのような有機基によって置換された有機シロキサン系の材料で形成することができる。液滴を整形するだけの手段であるので、金属などの導電材料でも、樹脂などの絶縁材料でもよい。また、繊維などを用いることもできる。より又は装置に設置することを考慮すると、比較的軽量で整形の容易なものが好ましい。微細な配線パターンなどを描画したい場合は、カーボンナノチューブなどの、ナノチューブ材料を用いることもできる。カーボンナノチューブなどの極細炭素繊維は、グラファイトナノファイバ、カーボンナノファイバ、チューブ状グラファイト、カーボンナノコーン、又はコーン状グラファイトなども用いることができる。
本発明においては、整形手段によって、被形成領域に液滴を吐出する吐出口の形状や大きさに依存することなく、絵筆やペンなどで絵を描くように、自由に所望なパターンを描画し、形成することができる。
(実施の形態2)
本発明の実施の形態について、図2〜図7、図8〜図13を用いて説明する。より詳しくは、本発明を適用した表示装置の作製方法について説明する。まず、本発明を適用した、チャネルエッチ型の薄膜トランジスタを有する表示装置の作製方法について説明する。図2〜図7はそれぞれ図8〜図13に対応しており、図2〜図7は表示装置画素部の上面図であり、図8〜図13の(A)は、図2〜図7における線A―A'による断面図、(B)は線B―B'による断面図、(C)は線C―C'による断面図である。
基板100の上に、下地前処理として密着性を向上させる下地膜101を形成し、図2及び図8(A)、(B)及び(C)のように、ゲート配線層103を形成する。基板100は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等からなるガラス基板、石英基板、シリコン基板、金属基板、ステンレス基板又は本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板を用いる。また、基板100の表面が平坦化されるようにCMP法などによって、研磨しても良い。なお、基板100上に、絶縁層を形成してもよい。絶縁層は、CVD法、プラズマCVD法、スパッタリング法、スピンコート法等の公知の方法により、珪素を含む酸化物材料、窒化物材料を用いて、単層又は積層して形成される。この絶縁層は、形成しなくても良いが、基板100からの汚染物質などを遮断する効果がある。ガラス基板よりの汚染を防ぐための下地層を形成する場合は、その上に液滴吐出法によって形成するゲート配線層103の下地前処理として下地膜101を形成する。
パターンの形成に用いる液滴吐出装置の一態様は図16に示されている。液滴吐出手段1403の個々のヘッド1405及び1412は制御手段1407に接続され、それがコンピュータ1410で制御することにより予めプログラミングされたパターンを描画することができる。描画するタイミングは、例えば、基板1400上に形成されたマーカー1411を基準に行えば良い。或いは、基板1400の縁を基準にして基準点を確定させても良い。これをCCDなどの撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。勿論、基板1400上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、1412を個別に制御することができる。また、1413は整形手段であり、本実施の形態では、制御手段1407より制御され、走査される。
ヘッド1405と1412のノズルのサイズは異なっており、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、導電材料や有機、無機材料などをそれぞれ吐出し、描画することができ、層間膜のような広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。ヘッド1405、1412より吐出された組成物を含む液滴は、整形手段1413によって所望のパターンに整形される。本実施の形態では、液滴吐出手段1403の有するヘッド1405、1414と、整形手段1413を別々に走査する例を示したが、実施の形態1で示したように、隣接して設置しても、一体形成するように設置してもよい。大型基板を用いる場合、ヘッド1405は基板上を、矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。
本実施の形態で下地前処理として形成する下地膜101は、ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、又は陽極酸化法により形成することができる。また物質は、その形成方法により膜としての連続性を有さなくても良い。ディップコーティング法、スピンコーティング法等の塗布法により形成する場合、溶媒を除去する必要があるとき、焼成したり、乾燥すればよい。
本実施の形態では、下地膜101として、スパッタリング法により所定の結晶構造を有するTiOX(代表としてはTiO2)結晶を形成する場合を説明する。ターゲットには金属チタン(チタンチューブ)を用い、アルゴンガスと酸素を用いてスパッタリングを行う。更にHeガスを導入してもよい。成膜室又は処理物が設けられた基板を加熱しながらTiOXを形成してもよい。
このように形成されるTiOXは非常に薄膜であってもよい。
また、スパッタリング法や蒸着法などの方法により、Ti(チタン)、W(タングステン)、Cr(クロム)、Ta(タンタル)、Ni(ニッケル)、Mo(モリブデン)などの金属材料若しくはその酸化物で形成される下地膜101を形成してもよい。
下地膜101は0.01〜10nmの厚さで形成すれば良いが、極薄く形成すれば良いので、必ずしも層構造を持っていなくても良い。下地膜として、高融点金属材料や、3d遷移元素を用いて、下地膜が導電性を有している場合、導電層形成領域以外の下地膜においては、下記の2つの方法を行うことが望ましい。
第1の方法としては、ゲート配線層103と重ならない下地膜101を絶縁化して、絶縁層を形成する。つまり、ゲート配線層103と重ならない下地膜101を酸化して絶縁化する。このように、下地膜101を酸化して絶縁化する場合には、当該下地膜101を0.01〜10nmの厚さで形成しておくことが好適であり、そうすると容易に酸化させることができる。なお、酸化する方法としては、酸素雰囲気下に晒す方法を用いてもよいし、熱処理を行う方法を用いてもよい。また、酸素プラズマ法、O3酸化法、UV−O3酸化法なども用いることができる。
第2の方法としては、ゲート配線層103の形成領域(導電性材料を含む組成物と吐出領域)に選択的に形成する。下地膜101は、液滴吐出法などを用いて、基板上に選択的に形成してもよいし、全面に形成した後、ゲート配線層103をマスクとして選択的に下地膜101をエッチングして除去してもよい。この工程を用いる場合には下地膜101の厚さに制約はない。
また、下地前処理の他の方法として、形成領域(被形成面)に対してプラズマ処理を行う方法がある。プラズマ処理の条件は、空気、酸素又は窒素を処理ガスとして用い、圧力を数十Torr〜1000Torr(133000Pa)、好ましくは100(13300Pa)〜1000Torr(133000Pa)、より好ましくは700Torr(93100Pa)〜800Torr(106400Pa)、つまり大気圧又は大気圧近傍の圧力となる状態で、パルス電圧を印加する。このとき、プラズマ密度は、1×1010〜1×1014-3、所謂コロナ放電やグロー放電の状態となるようにする。空気、酸素又は窒素の処理ガスを用いプラズマ処理を用いることにより、材質依存性なく、表面改質を行うことができる。その結果、あらゆる材料に対して表面改質を行うことができる。
また、他の方法として、液滴吐出法によるパターンのその形成領域との密着性を上げるために、接着材として機能するような有機材料系の物質を形成してもよい。有機材料(有機樹脂材料)(ポリイミド、アクリル)やシリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む材料、もしくは置換基にフッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いてもよい。
液滴吐出法によりゲート配線層103を形成する(図2、図8参照。)。本発明は、表示装置を構成する導電層のうち、画素間を跨ぎ、比較的太い線幅で形成されるゲート配線層や、容量配線層と、各画素内に比較的細線で形成されるゲート電極層、などの電極層を作り分ける。先にゲート配線層や容量配線層などの太い線幅を有する導電層を、吐出口の径を調節し形成することにより、断線等がなく信頼性の高い、かつ低抵抗なゲート配線層、容量配線層を形成することができる。
ゲート配線層103の形成は、液滴吐出手段を用いて行う。液滴吐出手段とは、組成物の吐出口を有するノズルや、1つ又は複数のノズルを具備したヘッド等の液滴を吐出する手段を有するものの総称とする。液滴吐出手段が具備するノズルの径は、0.02〜100μm(好適には30μm以下)に設定し、該ノズルから吐出される組成物の吐出量は0.001pl〜100pl(好適には0.1pl以上40pl以下、より好ましくは10pl以下)に設定する。吐出量は、ノズルの径の大きさに比例して増加する。また、被処理物とノズルの吐出口との距離は、所望の箇所に滴下するために、出来る限り近づけておくことが好ましく、好適には0.1〜3mm(好適には1mm以下)程度に設定する。
吐出口から吐出する組成物は、導電性材料を溶媒に溶解又は分散させたものを用いる。導電性材料とは、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al等の金属、Cd、Znの金属硫化物、Fe、Ti、Si、Ge、Si、Zr、Baなどの酸化物、ハロゲン化銀の微粒子又は分散性ナノ粒子に相当する。また、透明導電膜として用いられるインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタン等に相当する。但し、吐出口から吐出する組成物は、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但し、銀、銅を用いる場合には、不純物対策のため、合わせてバリア膜を設けるとよい。バリア膜としては、窒化珪素膜やニッケルボロン(NiB)を用いるとことができる。
また、導電性材料の周りに他の導電性材料がコーティングされ、複数の層になっている粒子でも良い。例えば、銅の周りにニッケルボロン(NiB)がコーティングされ、その周囲に銀がコーティングされている3層構造の粒子などを用いても良い。溶媒は、酢酸ブチル、酢酸エチル等のエステル類、イソプロピルアルコール、エチルアルコール等のアルコール類、メチルエチルケトン、アセトン等の有機溶剤等を用いる。組成物の粘度は20Pa・s以下が好適であり、これは、乾燥が起こることを防止したり、吐出口から組成物を円滑に吐出できるようにしたりするためである。また、組成物の表面張力は、40mN/m以下が好適である。但し、用いる溶媒や、用途に合わせて、組成物の粘度等は適宜調整するとよい。一例として、ITOや、有機インジウム、有機スズを溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・s、銀を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・s、金を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・sに設定するとよい。
また、導電層は、複数の導電性材料を積層しても良い。また、始めに導電性材料として銀を用いて、液滴吐出法で導電層を形成した後、銅などでめっきを行ってもよい。めっきは電気めっきや化学(無電界)めっき法で行えばよい。めっきは、めっきの材料を有する溶液を満たした容器に基板表面を浸してもよいが、基板を斜め(または垂直)に立てて設置し、めっきする材料を有する溶液を、基板表面に流すように塗布してもよい。基板を立てて溶液を塗布するようにめっきを行うと、工程装置が小型化する利点がある。
各ノズルの径や所望のパターン形状などに依存するが、ノズルの目詰まり防止や高精細なパターンの作製のため、導電体の粒子の径はなるべく小さい方が好ましく、好適には粒径0.1μm以下が好ましい。組成物は、電解法、アトマイズ法又は湿式還元法等の公知の方法で形成されるものであり、その粒子サイズは、一般的に約0.01〜10μmである。但し、ガス中蒸発法で形成すると、分散剤で保護されたナノ粒子は約7nmと微細であり、またこのナノ粒子は、被覆剤を用いて各粒子の表面を覆うと、溶剤中に凝集がなく、室温で安定に分散し、液体とほぼ同じ挙動を示す。従って、被覆剤を用いることが好ましい。
組成物を吐出する工程は、減圧下で行うと、組成物を吐出して被処理物に着弾するまでの間に、該組成物の溶媒が揮発し、後の乾燥と焼成の工程を省略することができる。また、減圧下で行うと、導電体の表面に酸化膜などが形成されないため好ましい。また、組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、例えば、乾燥は100度で3分間、焼成は200〜350度で15分間〜60分間で行うもので、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミングは特に限定されない。乾燥と焼成の工程を良好に行うためには、基板を加熱しておいてもよく、そのときの温度は、基板等の材質に依存するが、一般的には100〜800度(好ましくは200〜350度)とする。本工程により、組成物中の溶媒の揮発、又は化学的に分散剤を除去するとともに、周囲の樹脂が硬化収縮することで、ナノ粒子間を接触させ、融合と融着を加速する。
レーザ光の照射は、連続発振またはパルス発振の気体レーザ又は固体レーザを用いれば良い。前者の気体レーザとしては、エキシマレーザ、YAGレーザ等が挙げられ、後者の固体レーザとしては、Cr、Nd等がドーピングされたYAG、YVO4等の結晶を使ったレーザ等が挙げられる。なお、レーザ光の吸収率の関係から、連続発振のレーザを用いることが好ましい。また、パルス発振と連続発振を組み合わせた所謂ハイブリッドのレーザ照射方法を用いてもよい。但し、基板100の耐熱性に依っては、レーザ光の照射による加熱処理は、基板100が破壊しないように、数マイクロ秒から数十秒の間で瞬間的に行うとよい。瞬間熱アニール(RTA)は、不活性ガスの雰囲気下で、紫外光乃至赤外光を照射する赤外ランプやハロゲンランプなどを用いて、急激に温度を上昇させ、数分〜数マイクロ秒の間で瞬間的に熱を加えて行う。この処理は瞬間的に行うために、実質的に最表面の薄膜のみを加熱することができ、下層の膜には影響を与えない。つまり、プラスチック基板等の耐熱性が弱い基板にも影響を与えない。
液滴吐出法を用いて形成する導電層の下地前処理として、前述した下地膜101を形成する工程を行ったが、この処理工程は、ゲート配線層103を形成した後にも行っても良い。
また、液滴吐出法により、ゲート配線層103を組成物を吐出し形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をならすように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。プレスする時に、加熱工程を行っても良い。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面を平坦化する場合適用することができる。
次に、ゲート電極層104、ゲート電極層105を形成する。ゲート電極層104はゲート配線層103に接して形成する(図3参照。)。ゲート電極層104は、ゲート配線層103を形成した後、本発明の整形手段90によって、整形することによって微細な配線を描画し形成することができる。本実施の形態では、ゲート配線層103を形成した後、ゲート配線層103が完全に固化する前に、整形手段90の有する整形部によってゲート配線層の一部を拡張し、ゲート電極層104として形成する(図9参照。)。このようにゲート配線層103とゲート電極層104を同じ層で一体形成すると、境界無く形成できるので、より低抵抗化することができる。一方ゲート電極層105は、新たに導電性材料を吐出し、整形手段91を用いて細線化するように整形し、ゲート電極層105を形成する。勿論、ゲート電極層104もゲート配線層103の一部と一体形成せず、ゲート電極層105と同様に、新たに導電性材料を吐出し、整形手段によって整形してもよい。この場合、ゲート電極層104、105を形成する領域にも前述の下地前処理を行っても良い。下地前処理として、ゲート配線層103とゲート電極層104が接する領域に、密着性を向上するための処理として紫外線照射処理後、ゲート電極層104を形成してもよい。本発明によりゲート配線層の線幅は10μm以上40μm以下、ゲート電極層の線幅は5μm以上20μm以下より好ましくは0.3以上10μm以下、ゲート配線層の線幅がゲート電極層の線幅の約2倍となるような配線が形成できる。
また、ゲート配線層103とゲート電極層104、105を同時に形成しても良い。その場合、液滴吐出装置の複数のヘッドのノズルに、整形部の大きさのことなる整形手段をそれぞれ設置し、一回の走査でゲート配線層103とゲート電極層104、105を同時に形成する。例えば、ゲート配線層103を形成する領域には、ノズルのみ、ゲート電極層104、105を形成する領域には、微細なパターンに整形できるような整形部を有する整形手段が設置されたノズルのヘッドを走査する。ゲート配線層103を形成する吐出口からは連続的に導電性材料を吐出し、ゲート電極層104、105を形成する吐出口からは、その形成領域にヘッドが走査された時に、導電性材料を吐出、及び整形手段により整形する。このようにしても、線幅の異なるパターンを形成することができ、スループットを向上することができる。
次に、ゲート電極層104、105の上にゲート絶縁層106を形成する(図4、図10参照。)。ゲート絶縁層106としては、珪素の酸化物材料又は窒化物材料等の公知の材料で形成すればよく、積層でも単層でもよい。本実施の形態では、窒化珪素膜、酸化珪素膜、窒化珪素膜3層の積層を用いる。またそれらや、酸化窒化珪素膜の単層、2層からなる積層でも良い。好適には、緻密な膜質を有する窒化珪素膜を用いるとよい。また、液滴吐出法で形成される導電層に銀や銅などを用いる場合、その上にバリア膜として窒化珪素膜やNiB膜を形成すると、不純物の拡散を防ぎ、表面を平坦化する効果がある。なお、低い成膜温度でゲートリーク電流に少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。
次に半導体層を形成する。一導電型を有する半導体層は必要に応じて形成すればよい。本実施の形態では、半導体層107、108と一導電型を有する半導体層としてN型半導体層109、110を積層する(図4、図10参照。)。またN型半導体層を形成し、Nチャネル型TFTのNMOS構造、P型半導体層を形成したPチャネル型TFTのPMOS構造、Nチャネル型TFTとPチャネル型TFTとのCMOS構造を作製することができる。また、導電性を付与するために、導電性を付与する元素をドーピングによって添加し、不純物領域を半導体層に形成することで、Nチャネル型TFT、Pチャネル型TFTを形成することもできる。
半導体層は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜すればよい。半導体層の材料に限定はないが、好ましくはシリコン又はシリコンゲルマニウム(SiGe)合金などで形成すると良い。
半導体層は、アモルファス半導体(代表的には水素化アモルファスシリコン)、結晶性半導体(代表的にはポリシリコン)を素材として用いている。ポリシリコンには、800℃以上のプロセス温度を経て形成される多結晶シリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度で形成される多結晶シリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促進する元素などを添加し結晶化させた結晶シリコンなどを含んでいる。
また、他の物質として、セミアモルファス半導体又は半導体層の一部に結晶相を含む半導体を用いることもできる。セミアモルファス半導体とは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造の半導体であり、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものである。典型的にはシリコンを主成分として含み、格子歪みを伴って、ラマンスペクトルが520cm-1よりも低波数側にシフトしている半導体層である。また、未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。ここでは、このような半導体をセミアモルファス半導体(以下「SAS」と呼ぶ。)と呼ぶ。このSASは所謂微結晶(マイクロクリスタル)半導体(代表的には微結晶シリコン)とも呼ばれている。
このSASは珪化物気体をグロー放電分解(プラズマCVD)することにより得ることができる。代表的な珪化物気体としては、SiH4であり、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることができる。また、GeF4、F2を混合してもよい。この珪化物気体を水素、若しくは水素とヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種又は複数種の希ガス元素で希釈して用いることでSASの形成を容易なものとすることができる。珪化物気体に対する水素の希釈率は、例えば流量比で2倍〜1000倍とすることが好ましい。勿論、グロー放電分解によるSASの形成は、減圧下で行うことが好ましいが、大気圧における放電を利用しても形成することができる。代表的には、0.1Pa〜133Paの圧力範囲で行えば良い。グロー放電を形成するための電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHzである。高周波電力は適宜設定すれば良い。基板加熱温度は300℃以下が好ましく、100〜200℃の基板加熱温度でも形成可能である。ここで、主に成膜時に取り込まれる不純物元素として、酸素、窒素、炭素などの大気成分に由来する不純物は1×1020cm-3以下とすることが望ましく、特に、酸素濃度は5×1019cm-3以下、好ましくは1×1019cm-3以下となるようにすることが好ましい。また、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なSASが得られる。また半導体層としてフッ素系ガスより形成されるSAS層に水素系ガスより形成されるSAS層を積層してもよい。
半導体層に、結晶性半導体層を用いる場合、その結晶性半導体層の作製方法は、公知の方法(レーザー結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた熱結晶化法等)を用いれば良い。結晶化を助長する元素を導入しない場合は、非晶質珪素膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによって非晶質珪素膜の含有水素濃度を1×1020atoms/cm3以下にまで放出させる。これは水素を多く含んだ非晶質珪素膜にレーザ光を照射すると膜が破壊されてしまうからである。
非晶質半導体層への金属元素の導入の仕方としては、当該金属元素を非晶質半導体層の表面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整が容易であるという点で有用である。また、このとき非晶質半導体層の表面の濡れ性を改善し、非晶質半導体層の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を成膜することが望ましい。
非晶質半導体層の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく、熱処理やレーザ光照射を単独で、複数回行っても良い。
また、結晶性半導体層を、直接基板に線状プラズマ法により形成しても良い。また、線状プラズマ法を用いて、結晶性半導体層を選択的に基板に形成してもよい。
半導体として、有機材料を用いる有機半導体を用いてもよい。有機半導体としては、低分子材料、高分子材料などが用いられ、有機色素、導電性高分子材料などの材料も用いることが出来る。
本実施の形態では、半導体として、非晶質半導体を用いる。半導体層を形成し、その後、プラズマCVD法等により一導電型を有する半導体層としてN型半導体層を形成する。
続いて、レジストやポリイミド等の絶縁体からなるマスクを用いて、半導体層、N型半導体層を同時にパターン加工し、半導体層107、108、N型半導体層109、110を形成する(図4、図10参照。)。マスクは組成物を選択的に吐出して形成することができる。マスクは、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なポジ型レジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
再び、レジストやポリイミド等の絶縁体からなるマスクを液滴吐出法を用いて形成し、そのマスクを用いて、エッチング加工によりゲート絶縁層106の一部に貫通孔145を形成して、その下層側に配置されているゲート電極層105の一部を露出させる。エッチング加工はプラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF4、NF3、Cl2、BCl3、などのフッ素系又は塩素系のガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
マスクを除去した後、ソース配線層118、電源線119を液滴吐出法によって形成する(図5、図11参照。)。ソース配線層118、電源線119とを形成する工程も、前述したゲート配線層103とを形成したときと同様に形成することができる。
ソース配線層118、電源線119を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。また、透光性を有するインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを組み合わせても良い。
導電性材料を含む組成物を吐出し、整形手段によって整形して、ソース及びドレイン電極層111、113、115、116、導電層112を形成し、ソース及びドレイン電極層111、113、115、116をマスクとして、N型半導体層をパターン加工する(図6、図12参照。)。なお、図示しないが、ソース及びドレイン電極層111、113、115、116、導電層112を形成する前に、ソース及びドレイン電極層111、113、115、116、導電層112が形成する領域に選択的にTiOx膜などを形成する、前述の下地前処理工程を行っても良い。そうすると、導電層は密着性よく形成できる。
また、液滴吐出法を用いて形成する導電層の下地前処理として、前述した下地膜を形成する工程を行い、かつ、この処理工程は、導電層を形成した後にも行っても良い。この工程により、層間の密着性が向上するため、表示装置の信頼性も向上することができる。
ソースまたはドレイン電極層111、115、導電層112は、先に形成したソース配線層118、電源線119と接して形成するため、ゲート電極層104、ゲート電極層105を形成したときのように、整形手段を用いて一体形成してもよい。本実施の形態では、ソース配線層118が完全に固化する前に整形手段によってソースまたはドレイン電極層111を形成し、電源線119が固化する前に導電層112及びソースまたはドレイン電極層115を整形手段によって形成する。整形部を極細のナノチューブのような材料を用いると、より微細なパターンが形成できる。
ゲート絶縁層106に形成した貫通孔145において、ソースまたはドレイン電極層116とゲート電極層105とを電気的に接続させる。導電層112は容量素子を形成する。このソースまたはドレイン電極層111、113、115、116、導電層112を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。また、透光性を有するインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを組み合わせても良い。
ゲート絶縁層106の一部に貫通孔145を形成する工程を、ソースまたはドレイン電極層111、113、115、116、導電層112形成後に、ソースまたはドレイン電極層111、113、115、116、導電層112をマスクとして用いて貫通孔145を形成してもよい。そして貫通孔145に導電層を形成しソースまたはドレイン電極層116とゲート電極層105を電気的に接続する。この場合、工程が簡略化する利点がある。
続いて、ゲート絶縁層106上に選択的に、導電性材料を含む組成物を吐出して、第1の電極層117を形成する(図7、図13参照。)。第1の電極層117は、基板100側から光を放射する場合、または透過型のEL表示パネルを作製する場合には、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物により所定のパターンを形成し、焼成によって形成しても良い。
また、好ましくは、スパッタリング法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)などで形成する。より好ましくは、ITOに酸化珪素が2〜10重量%含まれたターゲットを用いてスパッタリング法で酸化珪素を含む酸化インジウムスズを用いる。この他、酸化珪素を含み酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した酸化物導電性材料を用いても良い。スパッタリング法で第1の電極層117を形成した後は、液滴吐出法を用いてマスク層を形成しエッチングにより、所望のパターンに形成すれば良い。本実施の形態では、第1の電極層117は、透光性を有する導電性材料により液滴吐出法を用いて形成し、具体的には、インジウム錫酸化物、ITOと酸化珪素から構成されるITSOを用いて形成する。図示しないが、第1の電極層117を形成する領域にゲート配線層103を形成する時と同様に、TiOx膜を形成し、下地前処理を行ってもよい。下地前処理によって、密着性が向上し、所望なパターンに第1の電極層117を形成する事ができる。
本実施の形態では、ゲート絶縁層は窒化珪素からなる窒化珪素膜、酸化窒化珪素膜(酸化珪素膜)、窒化珪素膜の3層の例を前述した。好ましい構成として、酸化珪素を含む酸化インジウムスズで形成される第1の電極層117は、ゲート絶縁層106に含まれる窒化珪素からなる絶縁層と密接して形成され、それにより電界発光層で発光した光が外部に放射される割合を高めることが出来るという効果を発現させることができる。また、ゲート絶縁層はゲート配線層や、ゲート電極層と、第1の電極層の間に介在し、容量素子として機能することもできる。
また、発光した光を基板100側とは反対側に放射させる構造とする場合、反射型のEL表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅))、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチング加工を組み合わせて第1の電極層117を形成しても良い。
第1の電極層117は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層117の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
以上の工程により、基板100上にボトムゲート型(逆スタガ型ともいう。)のTFTと画素電極が接続された表示パネル用のTFTを有する基板100が完成する。また本実施の形態のTFTはチャネルエッチ型である。
次に、絶縁層(隔壁、土手とも呼ばれる)121を選択的に形成する(図33参照。)。絶縁層121は、第1の電極層117上に開口部を有するように形成する。本実施の形態では、絶縁層121を全面に形成し、レジスト等のマスクによって、エッチングしパターニングする。絶縁層121を、直接選択的に形成できる液滴吐出法や印刷法などを用いて形成する場合は、エッチングによるパターニングは必ずしも必要はない。また絶縁層121も本発明の整形手段によって、所望の形状に整形できる。絶縁層121の形成領域の面積によって、整形部の形状は柱状や、へらのような板状などを選択すると、生産性が向上する。
絶縁層121は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン系材料を出発材料として形成された珪素、酸素、水素からなる化合物のうちSi−O−Si結合を含む無機シロキサン、珪素上の水素がメチルやフェニルのような有機基によって置換された有機シロキサン系の絶縁材料で形成することができる。アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成してもよい。
また、液滴吐出法により、絶縁層121を組成物を吐出し形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をならすように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。この工程により平坦性が向上すると、表示パネルの表示ムラなどを防止することができ、高繊細な画像を表示することができる。
表示パネル用のTFTを有する基板100の上に、発光素子を形成する(図33参照。)。
電界発光層122を形成する前に、大気圧中で200℃の熱処理を行い絶縁層121中若しくはその表面に吸着している水分を除去する。また、減圧下で200〜400℃、好ましくは250〜350℃に熱処理を行い、そのまま大気に晒さずに電界発光層122を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。
電界発光層122として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。電界発光層122上に第2の電極層123を積層形成して、発光素子を用いた表示機能を有する表示装置が完成する(図33参照。)。本実施の形態では、表示素子にEL(発光)素子を用いたので、EL(発光)表示装置となるが、表示素子の液晶材料を用いた液晶表示素子を用いた場合、液晶表示装置を完成することができる。
図示しないが、第2の電極層123を覆うようにしてパッシベーション膜を設けることは有効である。パッシベーション膜としては、窒化珪素(SiN)、酸化珪素(SiO2)、酸化窒化珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CNX)を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。例えば窒素含有炭素膜(CNX)\窒化珪素(SiN)のような積層、また有機材料を用いることも出来、スチレンポリマーなど高分子の積層でもよい。また、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む材料、もしくは置換基にフッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いてもよい。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザー蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH4、C22、C66など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC24ガスとN2ガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層が酸化するといった問題を防止できる。
続いて、シール材を形成し、封止基板を用いて封止する。その後、ゲート配線層103にフレキシブル配線基板を接続し、外部との電気的な接続をしても良い。これは、ソース配線層118も同様である。
なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。
以上示したように、本実施の形態では、フォトマスクを利用した光露光工程を用いないことにより、工程を省略することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。
また、液滴を吐出する吐出口の大きさに関わらず、所望な幅のパターンを制御性よく形成することができるため、電気特性や信頼性が向上する。
(実施の形態3)
本発明の実施の形態として、図14及び図15を用いて説明する。本実施の形態は、実施の形態2において、薄膜トランジスタとしてトップゲート型(順スタガ型)の薄膜トランジスタを用いるものである。よって、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。なお、図15の(A)は、図14における線A―A'による断面図、(B)は線B―B'による断面図、(C)は線C―C'による断面図である。
基板100上に、導電性材料を含む組成物を液滴吐出法により吐出して、ソース配線層118、電源線119を形成する。次に本発明の整形手段を用いて、ソースまたはドレイン電極層111、113、115、116、導電層112を形成する。ソースまたはドレイン電極層111、115、導電層112は、先に形成したソース配線層118、電源線119と接して形成するため、ゲート電極層104、ゲート電極層105を形成したときのように、整形手段を用いて一体形成してもよい。本実施の形態では、ソース配線層118が完全に固化する前に整形手段によってソースまたはドレイン電極層111を形成し、電源線119が固化する前に導電層112及びソースまたはドレイン電極層115を整形手段によって形成する。整形部を極細のナノチューブのような材料を用いると、より微細なパターンが形成できる。
ソース及びドレイン電極層111、113、115、116上にN型半導体層形成し、レジスト等からなるマスクをによってエッチングする。レジストは液滴吐出法を用いて形成すればよい。N型半導体層上に半導体層を形成し再び、マスク等を用いてパターニングする。よってN型半導体層109、110、半導体層107、108が形成される。
次に、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁層106を単層又は積層構造で形成する。特に好ましい形態としては、窒化珪素からなる絶縁層106a、酸化珪素からなる絶縁層106b、窒化珪素からなる絶縁層106cの3層の積層体がゲート絶縁層に相当する。
レジストやポリイミド等の絶縁体からなるマスクを液滴吐出法を用いて形成し、そのマスクを用いて、エッチング加工によりゲート絶縁層106の一部に貫通孔146、147を形成して、その下層側に配置されているソースまたはドレイン電極層113、116の一部を露出させる。
導電性材料を含む組成物を吐出して、ゲート配線層103を形成する。次に本発明の整形手段を用いて、ゲート電極層104、105を形成する。ゲート電極層104は、先に形成したゲート配線層103と接して形成するため、ソースまたはドレイン電極層111を形成したときのように、整形手段を用いて一体形成してもよい。本実施の形態では、ゲート配線層103が完全に固化する前に整形手段によってゲート電極層104を形成する。整形部に極細のナノチューブのような材料を用いると、より微細なパターンが形成できる。ゲート電極層104のチャネル方向の幅を狭くできるため、より低抵抗化し、移動度が向上する。
ゲート絶縁層106に形成した貫通孔146において、ゲート電極層105とソース及びドレイン電極層116とを電気的に接続させる。また、ゲート電極層105、ゲート絶縁層106、導電層112は容量素子を形成する。
第1の電極層117を液滴吐出法で形成する。勿論本発明の整形手段によって、整形し所望のパターンに形成することもできる。第1の電極層とソースまたはドレイン電極層113とを、先に形成した貫通孔147において電気的に接続する。
その後、実施の形態2同様に絶縁層を形成し、第1の電極層上に開口部を設けたのち、電界発光層、第2の導電層を形成する。さらに、シール材を形成し、封止基板を用いて封止する。その後、ゲート配線層103、またはソース配線層118にフレキシブル配線基板を接続しても良い。以上によって、表示機能を有する表示パネルを作製することができる。
以上示したように、本実施の形態では、フォトマスクを利用した光露光工程を用いないことにより、工程を省略することができる。また、液滴吐出法を用いて基板上に直接的に各種のパターンを形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。
また、液滴を吐出する吐出口の大きさに関わらず、所望な幅のパターンを制御性よく形成することができるため、電気特性や信頼性が向上する。
(実施の形態4)
本発明を適用して薄膜トランジスタを形成し、該薄膜トランジスタを用いて表示装置を形成することができるが、発光素子を用いて、なおかつ、該発光素子を駆動するトランジスタとしてN型トランジスタを用いた場合、該発光素子から発せられる光は、下面放射、上面放射、両面放射のいずれかを行う。ここでは、それぞれの場合に応じた発光素子の積層構造について、図32を用いて説明する。
また、本実施の形態では、本発明を適用したチャネル保護膜を有するチャネル保護型の薄膜トランジスタ481を用いる。チャネル保護膜は、液滴吐出法を用いてポリイミド又はポリビニルアルコール等を滴下してもよい。その結果、露光工程を省略することができる。チャネル保護膜としては、無機材料(酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素など)、感光性または非感光性の有機材料(有機樹脂材料)(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト、ベンゾシクロブテンなど)、低誘電率であるLow k材料などの一種、もしくは複数種からなる膜、またはこれらの膜の積層などを用いることができる。また、シリコン(Si)と酸素(O)との結合で骨格構造が構成され、置換基に少なくとも水素を含む材料、もしくは置換基にフッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有する材料を用いてもよい。作製法としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることができる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)を用いることもできる。塗布法で得られるTOF膜やSOG膜なども用いることができる。
まず、光が基板480側に放射する場合、つまり下面放射を行う場合について、図32(A)を用いて説明する。この場合、トランジスタ481に電気的に接続するように、ソース・ドレイン配線483、第1の電極484、電界発光層485、第2の電極486が順に積層される。次に、光が基板480と反対側に放射する場合、つまり上面放射を行う場合について、図32(B)を用いて説明する。トランジスタ481に電気的に接続するソース・ドレイン配線462、第1の電極463、電界発光層464、第2の電極465が順に積層される。上記構成により、第1の電極463において光が透過しても、該光は配線462において反射され、基板480と反対側に放射する。なお、本構成では、第1の電極463には透光性を有する材料を用いる必要はない。最後に、光が基板480側とその反対側の両側に放射する場合、つまり両面放射を行う場合について、図32(C)を用いて説明する。トランジスタ481に電気的に接続するソース・ドレイン配線471、第1の電極472、電界発光層473、第2の電極474が順に積層される。このとき、第1の電極472と第2の電極474のどちらも透光性を有する材料、又は光を透過できる厚さで形成すると、両面放射が実現する。
発光素子は、電界発光層を第1の電極と第2の電極で挟んだ構成になっている。 第1の電極及び第2の電極は仕事関数を考慮して材料を選択する必要があり、そして第1の電極及び第2の電極は、画素構成によりいずれも陽極、又は陰極となりうる。本実施の形態では、駆動用TFTの極性がNチャネル型であるため、第1の電極を陰極、第2の電極を陽極とすると好ましい。また駆動用TFTの極性がpチャネル型である場合、第1の電極を陽極、第2の電極を陰極とするとよい。
また第1の電極が陽極であった場合、電界発光層は、陽極側から、HIL(ホール注入層)、HTL(ホール輸送層)、EML(発光層)、ETL(電子輸送層)、EIL(電子注入層)の順に積層するのが好ましい。また、第1の電極が陰極である場合はその逆となり、陰極側からEIL(電子注入層)、ETL(電子輸送層)、EML(発光層)、HTL(ホール輸送層)、HIL(ホール注入層)、第2の電極である陽極の順に積層するのが好ましい。なお電界発光層は、積層構造以外に単層構造、又は混合構造をとることがでる。
また、電界発光層として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。
具体的には、HILとしてCuPcやPEDOT、HTLとしてα−NPD、ETLとしてBCPやAlq3、EILとしてBCP:LiやCaF2 、をそれぞれ用いる。また上面放射型の場合で、第2の電極に透光性を有するITOやITSOを用いる場合、ベンゾオキサゾール誘導体(BzOS)にLiを添加したBzOS−Liなどを用いることができる。また例えばEMLは、R、G、Bのそれぞれの発光色に対応したドーパント(Rの場合DCM等、Gの場合DMQD等)をドープしたAlq3を用いればよい。
なお、電界発光層は上記材料に限定されない。例えば、CuPcやPEDOTの代わりに酸化モリブデン(MoOx:x=2〜3)等の酸化物とα−NPDやルブレンを共蒸着して形成し、ホール注入性を向上させることもできる。また電界発光層の材料は、有機材料(低分子又は高分子を含む)、又は有機材料と無機材料の複合材料として用いることができる。
また、図32には図示していないが、基板480の対向基板にカラーフィルタを形成してもよい。カラーフィルタは液滴吐出法によって形成することができ、その場合、前述の下地前処理として光プラズマ処理などを適用することができる。本発明の下地膜により、所望なパターンに密着性よくカラーフィルタを形成することができる。カラーフィルターを用いると、高精細な表示を行うこともできる。カラーフィルターにより、各RGBの発光スペクトルにおいてブロードなピークを鋭くなるように補正できるからである。
以上、各RGBの発光を示す材料を形成する場合を説明したが、単色の発光を示す材料を形成し、カラーフィルターや色変換層を組み合わせることによりフルカラー表示を行うことができる。例えば、白色又は橙色の発光を示す電界発光層を形成する場合、カラーフィルター、色変換層、又はカラーフィルターと色変換層とを組み合わせたものを別途設けることによってフルカラー表示ができる。カラーフィルターや色変換層は、例えば第2の基板(封止基板)に形成し、基板へ張り合わせればよい。また上述したように、単色の発光を示す材料、カラーフィルター、及び色変換層のいずれも液滴吐出法により形成することができる。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
上記構成において、陰極としては、仕事関数が小さい材料を用いることが可能で、例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。電界発光層は、単層型、積層型、また層の界面がない混合型のいずれでもよく、またシングレット材料、トリプレット材料、又はそれらを組み合わせた材料や、低分子材料、高分子材料及び中分子材料を含む有機材料、電子注入性に優れる酸化モリブデン等に代表される無機材料、有機材料と無機材料の複合材料のいずれを用いてもよい。第1の電極484、463、472は光を透過する透明導電膜を用いて形成し、例えばITO、ITSOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いる。なお、第1の電極484、463、472形成前に、酸素雰囲気中でのプラズマ処理や真空雰囲気下での加熱処理を行うとよい。隔壁(土手ともいう)は、珪素を含む材料、有機材料及び化合物材料を用いて形成する。また、多孔質膜を用いても良い。但し、アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、上層の薄膜が段切れせずに形成されるため好ましい。本実施の形態は、上記の実施の形態と自由に組み合わせることが可能である。
(実施の形態5)
実施の形態2乃至4によって作製される表示パネルにおいて、半導体層をSASで形成することによって、図31で説明したように、走査線側の駆動回路を基板3700上に形成することができる。
図22は、1〜15cm2/V・secの電界効果移動度が得られるSASを使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。
図22において500で示すブロックが1段分のサンプリングパルスを出力するパルス出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。541はバッファ回路であり、その先に画素542が接続される。
図23は、パルス出力回路500の具体的な構成を示したものであり、nチャネル型のTFT601〜613で回路が構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定することができる。
また、バッファ回路541の具体的な構成を図24に示す。バッファ回路も同様にnチャネル型のTFT620〜635で構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で設定することとなる。
このような回路を実現するには、TFT相互を配線によって接続する必要があり、その場合における配線の構成例を図25に示す。図25では、実施の形態2と同様に、ゲート電極層104、ゲート絶縁層106(窒化珪素からなる絶縁層106a、酸化珪素からなる絶縁層106b、窒化珪素からなる絶縁層106cの3層の積層体)、SASで形成される半導体層107、ソース及びドレインを形成するN型半導体層109、ソース及びドレイン電極層111、116が形成された状態を示している。この場合、基板100上には、ゲート電極層104と同じ工程で接続配線層170、171、172を形成しておく。そして、接続配線層170、171、172が露出するようにゲート絶縁層の一部をエッチング加工して、ソース及びドレイン電極層111、116及びそれと同じ工程で形成する接続配線層173により適宜TFTを接続することにより様々な回路を実現することができる。
(実施の形態6)
次に、実施の形態2乃至4によって作製される表示パネルに駆動用のドライバ回路を実装する態様について説明する。
まず、COG方式を採用した表示装置について、図31を用いて説明する。基板3700上には、文字や画像などの情報を表示する画素領域3701、走査側の駆動回路3702が設けられる。複数の駆動回路が設けられた基板を、矩形状に分断し、分断後の駆動回路(以下ドライバICと表記)3705a、3705bは、基板3700上に実装される。図31は複数のドライバIC3705、該ドライバIC3705の先にテープ3704を実装する形態を示す。また、分割する大きさを画素部の信号線側の辺の長さとほぼ同じにし、単数のドライバICに、該ドライバICの先にテープを実装してもよい。
また、TAB方式を採用してもよく、その場合は、複数のテープを貼り付けて、該テープにドライバICを実装すればよい。COG方式の場合と同様に、単数のテープに単数のドライバICを実装してもよく、この場合には、強度の問題から、ドライバICを固定する金属片等を一緒に貼り付けるとよい。
これらの表示パネルに実装されるドライバICは、生産性を向上させる観点から、一辺が300mmから1000mm以上の矩形状の基板上に複数個作り込むとよい。
つまり、基板上に駆動回路部と入出力端子を一つのユニットとする回路パターンを複数個形成し、最後に分割して取り出せばよい。ドライバICの長辺の長さは、画素部の一辺の長さや画素ピッチを考慮して、長辺が15〜80mm、短辺が1〜6mmの矩形状に形成してもよいし、画素領域の一辺、又は画素部の一辺と各駆動回路の一辺とを足した長さに形成してもよい。
ドライバICのICチップに対する外形寸法の優位性は長辺の長さにあり、長辺が15〜80mmで形成されたドライバICを用いると、画素部に対応して実装するのに必要な数がICチップを用いる場合よりも少なくて済み、製造上の歩留まりを向上させることができる。また、ガラス基板上にドライバICを形成すると、母体として用いる基板の形状に限定されないので生産性を損なうことがない。これは、円形のシリコンウエハからICチップを取り出す場合と比較すると、大きな優位点である。
図31において、画素領域3701の外側の領域には、駆動回路が形成されたドライバIC3705a、3705bが実装される。これらのドライバIC3705a、3705bは、信号線側の駆動回路である。RGBフルカラーに対応した画素領域を形成するためには、XGAクラスで信号線の本数が3072本必要であり、UXGAクラスでは4800本が必要となる。このような本数で形成された信号線は、画素領域3701の端部で数ブロック毎に区分して引出線を形成し、ドライバIC3705a、3705bの出力端子のピッチに合わせて集められる。
ドライバICは、基板上に形成された結晶質半導体により形成されることが好適であり、該結晶質半導体は連続発光のレーザ光を照射することで形成されることが好適である。従って、当該レーザ光を発生させる発振器としては、連続発光の固体レーザ又は気体レーザを用いる。連続発光のレーザを用いると、結晶欠陥が少なく、大粒径の多結晶半導体層を用いて、トランジスタを作成することが可能となる。また移動度や応答速度が良好なために高速駆動が可能で、従来よりも素子の動作周波数を向上させることができ、特性バラツキが少ないために高い信頼性を得ることができる。なお、さらなる動作周波数の向上を目的として、トランジスタのチャネル長方向とレーザ光の走査方向と一致させるとよい。これは、連続発光レーザによるレーザ結晶化工程では、トランジスタのチャネル長方向とレーザ光の基板に対する走査方向とが概ね並行(好ましくは−30°〜30°)であるときに、最も高い移動度が得られるためである。なおチャネル長方向とは、チャネル形成領域において、電流が流れる方向、換言すると電荷が移動する方向と一致する。このように作製したトランジスタは、結晶粒がチャネル方向に延在する多結晶半導体層によって構成される活性層を有し、このことは結晶粒界が概ねチャネル方向に沿って形成されていることを意味する。
レーザ結晶化を行うには、レーザ光の大幅な絞り込みを行うことが好ましく、そのビームスポットの幅は、ドライバICの短辺の同じ幅の1〜3mm程度とすることがよい。また、被照射体に対して、十分に且つ効率的なエネルギー密度を確保するために、レーザ光の照射領域は、線状であることが好ましい。但し、ここでいう線状とは、厳密な意味で線を意味しているのではなく、アスペクト比の大きい長方形もしくは長楕円形を意味する。例えば、アスペクト比が2以上(好ましくは10〜10000)のものを指す。このように、レーザ光のビームスポットの幅をドライバICの短辺と同じ長さとすることで、生産性を向上させた表示装置の作製方法を提供することができる。
図31では、走査線駆動回路は画素部と共に一体形成し、信号線駆動回路としてドライバICを実装した形態を示した。しかしながら、本発明はこの形態に限定されず、走査線駆動回路及び信号線駆動回路の両方として、ドライバICを実装してもよい。その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにするとよい。
画素領域3701は、信号線と走査線が交差してマトリクスを形成し、各交差部に対応してトランジスタが配置される。本発明は、画素領域3701に配置されるトランジスタとして、非晶質半導体又はセミアモルファス半導体をチャネル部としたTFTを用いることを特徴とする。非晶質半導体は、プラズマCVD法やスパッタリング法等の方法により形成する。セミアモルファス半導体は、プラズマCVD法で300℃以下の温度で形成することが可能であり、例えば、外寸550×650mmの無アルカリガラス基板であっても、トランジスタを形成するのに必要な膜厚を短時間で形成するという特徴を有する。このような製造技術の特徴は、大画面の表示装置を作製する上で有効である。また、セミアモルファスTFTは、SASでチャネル形成領域を構成することにより2〜10cm2/V・secの電界効果移動度を得ることができる。従って、このTFTを画素のスイッチング用素子や、走査線側の駆動回路を構成する素子として用いることができる。従って、システムオンパネル化を実現した表示パネルを作製することができる。
なお、図31では、半導体層をSASで形成したTFTを用いることにより、走査線側駆動回路も基板上に一体形成することを前提として示している。半導体層をASで形成したTFTを用いる場合には、走査線側駆動回路及び信号線側駆動回路の両方をドライバICを実装してもよい。
その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにすることが好適である。例えば、走査線側のドライバICを構成するトランジスタには30V程度の耐圧が要求されるものの、駆動周波数は100kHz以下であり、比較的高速動作は要求されない。従って、走査線側のドライバを構成するトランジスタのチャネル長(L)は十分大きく設定することが好適である。一方、信号線側のドライバICのトランジスタには、12V程度の耐圧があれば十分であるが、駆動周波数は3Vにて65MHz程度であり、高速動作が要求される。そのため、ドライバを構成するトランジスタのチャネル長などはミクロンルールで設定することが好適である。
ドライバICの実装方法は、特に限定されるものではなく、公知のCOG方法やワイヤボンディング方法、或いはTAB方法を用いることができる。
ドライバICの厚さは、対向基板と同じ厚さとすることで、両者の間の高さはほぼ同じものとなり、表示装置全体としての薄型化に寄与する。また、それぞれの基板を同じ材質のもので作製することにより、この表示装置に温度変化が生じても熱応力が発生することなく、TFTで作製された回路の特性を損なうことはない。その他にも、本実施形態で示すようにICチップよりも長尺のドライバICで駆動回路を実装することにより、1つの画素領域に対して、実装されるドライバICの個数を減らすことができる。
以上のようにして、表示パネルに駆動回路を組み入れることができる。
(実施の形態7)
本実施の形態で示す表示パネルの画素の構成について、図26に示す等価回路図を参照して説明する。
図26(A)に示す画素は、列方向に信号線410及び電源線411〜413、行方向に走査線414が配置される。また、スイッチング用TFTであるTFT401、駆動用TFTであるTFT403、電流制御用TFTであるTFT404、容量素子402及び発光素子405を有する。
図26(C)に示す画素は、TFT303のゲート電極が、行方向に配置された電源線412に接続される点が異なっており、それ以外は図26(A)に示す画素と同じ構成である。つまり、図26(A)(C)に示す両画素は、同じ等価回路図を示す。しかしながら、列方向に電源線412が配置される場合(図26(A))と、行方向に電源線412が配置される場合(図26(C))では、各電源線は異なるレイヤーの導電体層で形成される。ここでは、TFT403のゲート電極が接続される配線に注目し、これらを作製するレイヤーが異なることを表すために、図26(A)(C)として分けて記載する。
図26(A)(C)に示す画素の特徴として、画素内にTFT403、404が直列に接続されており、TFT403のチャネル長L3、チャネル幅W3、TFT404のチャネル長L4、チャネル幅W4は、L3/W3:L4/W4=5〜6000:1を満たすように設定される点が挙げられる。6000:1を満たす場合の一例としては、L3が500μm、W3が3μm、L4が3μm、W4が100μmの場合がある。
なお、TFT403は、飽和領域で動作し発光素子405に流れる電流値を制御する役目を有し、TFT404は線形領域で動作し発光素子405に対する電流の供給を制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい。またTFT403には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。上記構成を有する本発明は、TFT404が線形領域で動作するために、TFT404のVGSの僅かな変動は発光素子405の電流値に影響を及ぼさない。つまり、発光素子405の電流値は、飽和領域で動作するTFT403により決定される。上記構成を有する本発明は、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して画質を向上させた表示装置を提供することができる。
図26(A)〜(D)に示す画素において、TFT401は、画素に対するビデオ信号の入力を制御するものであり、TFT401がオンして、画素内にビデオ信号が入力されると、容量素子402にそのビデオ信号が保持される。なお図26(A)(C)には、容量素子402を設けた構成を示したが、本発明はこれに限定されず、ビデオ信号を保持する容量がゲート容量などでまかなうことが可能な場合には、明示的に容量素子402を設けなくてもよい。
発光素子405は、2つの電極間に電界発光層が挟まれた構造を有し、順バイアス方向の電圧が印加されるように、画素電極と対向電極の間(陽極と陰極の間)に電位差が設けられる。電界発光層は有機材料や無機材料等の広汎に渡る材料により構成され、この電界発光層におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と、三重項励起状態から基底状態に戻る際の発光(リン光)とが含まれる。
図26(B)に示す画素は、TFT406と走査線415を追加している以外は、図26(A)に示す画素構成と同じである。同様に、図26(D)に示す画素は、TFT406と走査線415を追加している以外は、図26(C)に示す画素構成と同じである。
TFT406は、新たに配置された走査線415によりオン又はオフが制御される。TFT406がオンになると、容量素子402に保持された電荷は放電し、TFT404がオフする。つまり、TFT406の配置により、強制的に発光素子405に電流が流れない状態を作ることができる。従って、図26(B)(D)の構成は、全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができるため、デューティ比を向上することが可能となる。
図26(E)に示す画素は、列方向に信号線450、電源線451、452、行方向に走査線453が配置される。また、スイッチング用TFT441、駆動用TFT443、容量素子442及び発光素子444を有する。図26(F)に示す画素は、TFT445と走査線454を追加している以外は、図26(E)に示す画素構成と同じである。なお、図26(F)の構成も、TFT445の配置により、デューティ比を向上することが可能となる。
(実施の形態8)
走査線側入力端子部と信号線側入力端子部とに保護ダイオードを設けた一態様について図27を参照して説明する。図27において画素3400にはTFT501、502が設けられている。このTFTは実施の形態2と同様な構成を有している。
信号線側入力端子部には、保護ダイオード561と562が設けられている。この保護ダイオードは、TFT501若しくは502と同様な工程で作製され、ゲートとドレイン若しくはソースの一方とを接続することによりダイオードとして動作させている。図27で示す上面図の等価回路図を図28に示している。
保護ダイオード561は、ゲート電極層550、半導体層551、チャネル保護用の絶縁層552、配線層553から成っている。保護ダイオード562も同様な構造である。この保護ダイオードと接続する共通電位線554、555はゲート電極層と同じ層で形成している。従って、配線層553と電気的に接続するには、ゲート絶縁層にコンタクトホールを形成する必要がある。
ゲート絶縁層へのコンタクトホールは、液滴吐出法によりマスク層を形成し、エッチング加工すれば良い。この場合、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
信号配線層237はTFT501におけるソース及びドレイン配線層212と同じ層で形成され、それに接続している信号配線層237とソース又はドレイン側が接続する構造となっている。
走査信号線側の入力端子部も同様な構成である。このように、本発明によれば、入力段に設けられる保護ダイオードを同時に形成することができる。なお、保護ダイオードを挿入する位置は、本実施の形態のみに限定されず、駆動回路と画素との間に設けることもできる。
(実施の形態9)
図20は、液滴吐出法により作製されるTFT基板2800を用いてEL表示モジュールを構成する一例を示している。同図面において、TFT基板2800上には、画素により構成された画素部が形成されている。
図20では、画素部の外側であって、駆動回路と画素との間に、画素に形成されたものと同様なTFT又はそのTFTのゲートとソース若しくはドレインの一方とを接続してダイオードと同様に動作させた保護回路部2801が備えられている。駆動回路2809は、単結晶半導体で形成されたドライバIC、ガラス基板上に多結晶半導体膜で形成されたスティックドライバIC、若しくはSASで形成された駆動回路などが適用されている。
TFT基板2800は、液滴吐出法で形成されたスペーサ2806a、2806bを介して封止基板2820と固着されている。スペーサは、基板の厚さが薄く、また画素部の面積が大型化した場合にも、2枚の基板の間隔を一定に保つために設けておくことが好ましい。発光素子2804、2805上であって、TFT基板2800と封止基板2820との間にある空隙には透光性の樹脂材料を充填して固体化しても良いし、無水化した窒素若しくは不活性気体を充填させても良い。
図20では発光素子2804、2805をトップエミッション型の構成とした場合を示し、図中に示す矢印の方向に光を放射する構成としている。各画素は、画素を赤色、緑色、青色として発光色を異ならせておくことで、多色表示を行うことができる。また、このとき封止基板2820側に各色に対応した着色層2807a、2807b、2807cを形成しておくことで、外部に放射される発光の色純度を高めることができる。また、画素を白色発光素子として着色層2807a、2807b、2807cと組み合わせても良い。
駆動回路2809は、外部回路基板2811の一端に設けられた走査線若しくは信号線接続端子と、配線基板2810で接続される。また、TFT基板2800に接して若しくは近接させて、ヒートパイプ2813と放熱板2812を設け、放熱効果を高める構成としても良い。
なお、図20では、トップエミッションのELモジュールとしたが、発光素子の構成や外部回路基板の配置を変えてボトムエミッション構造としても良い。トップエミッション型の構成の場合、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、カーボンブラック等を混合させて形成すればよく、その積層でもよい。
また、TFT基板2800において、画素部が形成された側にシール材や接着性の樹脂を用いて樹脂フィルムを貼り付けて封止構造を形成てもよい。樹脂フィルムの表面には水蒸気の透過を防止するガスバリア膜を設けておくと良い。フィルム封止構造とすることで、さらなる薄型化及び軽量化を図ることができる。
(実施の形態10)
本発明によって形成される表示装置によって、テレビジョン装置を完成させることができる。図19はテレビジョン装置の主要な構成を示すブロック図を示している。表示パネルには、図29で示すような構成として画素部のみが形成されて走査線側駆動回路と信号線側駆動回路とがTAB方式により実装される場合と、図30に示すような構成として画素部とその周辺に走査線側駆動回路と信号線側駆動回路とがCOG方式により実装される場合と、図31に示すようにSASでTFTを形成し、画素部と走査線側駆動回路を基板上に一体形成し信号線側駆動回路を別途ドライバICとして実装する場合などがあるが、どのような形態としても良い。
その他の外部回路の構成として、映像信号の入力側では、チューナ804で受信した信号のうち、映像信号を増幅する映像信号増幅回路805と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路806と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路807などからなっている。コントロール回路807は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路808を設け、入力デジタル信号をm個に分割して供給する構成としても良い。
チューナ804で受信した信号のうち、音声信号は、音声信号増幅回路809に送られ、その出力は音声信号処理回路810を経てスピーカ813に供給される。制御回路811は受信局(受信周波数)や音量の制御情報を入力部812から受け、チューナ804や音声信号処理回路810に信号を送出する。
このモジュールを、図17に示すように、筐体2001に組みこんで、テレビジョン装置を完成させることができる。図20のようなEL表示モジュールを用いると、ELテレビジョン装置に、図21のような液晶表示モジュールを用いると液晶テレビジョン装置を完成することができる。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカ部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。
また、テレビジョン装置を、波長板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。波長板としてはλ/4板、λ/2板を用い、光を制御できるように設計すればよい。構成としては、順にTFT素子基板、発光素子、封止基板(封止材)、波長板(λ/4、λ/2)、偏光板となり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この波長板や偏光板は光が放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜を有していても良い。これにより、より高繊細で精密な画像を表示することができる。
筐体2001に液晶又はEL素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビ受像器の操作は、筐体に組みこまれたスイッチ又は別体のリモコン装置2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とすることができる。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面積の表示媒体として様々な用途に適用することができる。
(実施の形態11)
本発明を適用して、様々な表示装置を作製することができる。即ち、それら表示装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
その様な電子機器としては、ビデオカメラ、デジタルカメラ等のカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それらの例を図18に示す。
図18(A)は、パーソナルコンピュータであり、本体2101、筐体2102、表示部2103、キーボード2104、外部接続ポート2105、ポインティングマウス2106等を含む。本発明は、表示部2103の作製に適用される。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示することができる。
図18(B)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2201、筐体2202、表示部A2203、表示部B2204、記録媒体(DVD等)読み込み部2205、操作キー2206、スピーカー部2207等を含む。表示部A2203は主として画像情報を表示し、表示部B2204は主として文字情報を表示するが、本発明は、これら表示部A、B2203、2204の作製に適用される。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示することができる。
図18(C)は携帯電話であり、本体2301、音声出力部2302、音声入力部2303、表示部2304、操作スイッチ2305、アンテナ2306等を含む。本発明により作製される表示装置を表示部2304に適用することで、小型化し、配線等が精密化する携帯電話であっても、信頼性の高い高画質な画像を表示できる。
図18(D)はビデオカメラであり、本体2401、表示部2402、筐体2403、外部接続ポート2404、リモコン受信部2405、受像部2406、バッテリー2407、音声入力部2408、操作キー2409等を含む。本発明は、表示部2402に適用することができる。本発明により作製される表示装置を表示部2304に適用することで、小型化し、配線等が精密化するビデオカメラであっても、信頼性の高い高画質な画像を表示できる。本実施の形態は、上記の実施の形態と自由に組み合わせることができる。
本発明を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明に適用することのできる液滴吐出装置の構成を説明する図。 本発明が適用される電子機器を示す図。 本発明が適用される電子機器を示す図。 本発明の電子機器の主要な構成を示すブロック図。 本発明のEL表示モジュールの構成例を説明する断面図。 本発明の液晶表示モジュールの構成例を説明する断面図。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。 本発明の表示装置の作製方法を説明する図。 本発明のEL表示パネルに適用できる画素の構成を説明する回路図。 本発明のEL表示パネルを説明する上面図である。 図27で説明するEL表示パネルの等価回路図である。 本発明の表示装置の上面図。 本発明の表示装置の上面図。 本発明の表示装置の上面図。 本発明の表示装置の断面図。 本発明の表示装置の作製方法を説明する図。

Claims (20)

  1. パターン形成材料を含む組成物を吐出する吐出手段と、
    前記組成物が被形成領域に付着する前に、前記組成物の形状を整形する整形手段とを有し、
    前記整形手段が、前記吐出手段と前記被形成領域との間に設けられることを特徴とする液滴吐出装置。
  2. パターン形成材料を含む組成物を吐出する吐出手段と、
    前記組成物が被形成領域に付着した後に、前記組成物の形状を整形する整形手段とを有することを特徴とする液滴吐出装置。
  3. 請求項1または請求項2において、前記整形手段は前記液滴吐出手段の吐出口に接して設けられることを特徴とする液滴吐出装置。
  4. 請求項1乃至3のいずれか一項において、前記整形手段は整形部を有し、
    前記整形部の形状は針状であることを特徴とする液滴吐出装置。
  5. 請求項1乃至3のいずれか一項において、前記整形手段は整形部を有し、
    前記整形部の形状は柱状または板状であることを特徴とする液滴吐出装置。
  6. 請求項1乃至3のいずれか一項において、前記整形手段は整形部を有し、
    前記整形部の形状は管状であることを特徴とする液滴吐出装置。
  7. パターン形成材料を含む組成物を被形成領域に向かって吐出し、
    前記組成物が前記被形成領域に付着する前に、前記組成物の形状を整形することによって、選択的にパターンを形成することを特徴とするパターン形成方法。
  8. パターン形成材料を含む組成物を被形成領域に向かって吐出し、
    前記組成物が前記被形成領域に付着した後であって、かつ固化する前に、前記組成物の形状を整形することによって、選択的にパターンを形成することを特徴とするパターン形成方法。
  9. 請求項7または請求項8において、前記組成物の形状を、針状の整形物によって整形することを特徴とするパターン形成方法。
  10. 請求項7または請求項8において、前記組成物の形状を、柱状または板状の整形物によって整形することを特徴とするパターン形成方法。
  11. 請求項7乃至10のいずれか一項において、前記パターン形成材料として、銀、金、銅、又はインジウム錫酸化物を用いて形成することを特徴とするパターン形成方法。
  12. 半導体層、配線及び電極を有し、
    導電性材料を含む組成物を被形成領域上に吐出し、前記組成物の形状の一部を整形し、前記組成物を選択的に拡張することによって、前記配線及び前記電極を形成することを特徴とする表示装置の作製方法。
  13. 請求項12において、針状の整形物によって前記組成物の形状の一部を整形することを特徴とする表示装置の作製方法。
  14. 請求項12または請求項13において、前記導電性材料として、銀、金、銅、又はインジウム錫酸化物を用いて形成することを特徴とする表示装置の作製方法。
  15. 請求項12乃至14のいずれか一項において、前記電極はゲート電極層であり、前記ゲート電極層のチャネル方向の幅は0.3μm以上10μm以下となるように形成することを特徴とする表示装置の作製方法。
  16. 請求項12乃至15のいずれか一項において、前記電極と前記半導体層の交差する領域のチャネル方向の長さが0.3μm以上10μm以下となるように前記電極を形成することを特徴とする表示装置の作製方法。
  17. 請求項12乃至16のいずれか一項において、前記半導体層は、水素又はハロゲン元素を含むガスにより形成された非単結晶半導体であることを特徴とする表示装置の作製方法。
  18. 請求項12乃至17のいずれか一項において、前記半導体層は、水素又はハロゲン元素を含むガスにより形成されたセミアモルファス半導体であることを特徴とする表示装置の作製方法。
  19. 請求項12乃至17のいずれか一項において、前記半導体層は、水素とハロゲン元素を含むガスにより形成された多結晶半導体であることを特徴とする表示装置の作製方法。
  20. 請求項12乃至19のいずれか一項の方法により作製された表示装置で、表示画面を構成したことを特徴とするテレビジョン装置。
JP2004364373A 2003-12-17 2004-12-16 表示装置の作製方法 Expired - Fee Related JP4583904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364373A JP4583904B2 (ja) 2003-12-17 2004-12-16 表示装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003419923 2003-12-17
JP2004364373A JP4583904B2 (ja) 2003-12-17 2004-12-16 表示装置の作製方法

Publications (3)

Publication Number Publication Date
JP2005199269A true JP2005199269A (ja) 2005-07-28
JP2005199269A5 JP2005199269A5 (ja) 2008-02-07
JP4583904B2 JP4583904B2 (ja) 2010-11-17

Family

ID=34829237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364373A Expired - Fee Related JP4583904B2 (ja) 2003-12-17 2004-12-16 表示装置の作製方法

Country Status (1)

Country Link
JP (1) JP4583904B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227535A (ja) * 2006-02-22 2007-09-06 Sony Corp 配線基板修正方法及び配線基板修正装置
JPWO2009035036A1 (ja) * 2007-09-14 2010-12-24 コニカミノルタホールディングス株式会社 電極の形成方法及び有機薄膜トランジスタ
JP2012109581A (ja) * 2011-12-19 2012-06-07 Mitsubishi Electric Corp 半導体製造方法および半導体装置
KR101333750B1 (ko) 2005-06-30 2013-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 미소 구조체, 마이크로 머신, 유기 트랜지스터, 전자 기기및 그 제조 방법
US8609443B2 (en) 2005-08-26 2013-12-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device manufacturing method
KR101345377B1 (ko) 2006-04-17 2013-12-24 삼성전자주식회사 비정질 ZnO계 TFT의 제조방법
KR20230095041A (ko) * 2015-11-20 2023-06-28 삼성디스플레이 주식회사 표시 장치, 타일형 표시 장치 및 이의 제조 방법

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130562A (ja) * 1983-01-14 1984-07-27 Kinugawa Rubber Ind Co Ltd 長尺物用塗布装置
JPS59193571U (ja) * 1983-06-13 1984-12-22 ナショナル住宅産業株式会社 コ−キングノズル
JPS625282A (ja) * 1985-06-29 1987-01-12 Toshiba Corp 記録装置
JPH0864937A (ja) * 1994-08-24 1996-03-08 Ibiden Co Ltd ペースト状物質塗布装置
JPH10223138A (ja) * 1996-12-04 1998-08-21 Dainippon Printing Co Ltd 蛍光体充填装置
JPH1157574A (ja) * 1997-08-20 1999-03-02 Ricoh Co Ltd 混合塗布装置及びそれを用いた混合塗布方法
JPH11204529A (ja) * 1998-01-19 1999-07-30 Seiko Epson Corp パターン形成方法および基板製造装置
JPH11237790A (ja) * 1998-02-23 1999-08-31 Brother Ind Ltd 画像形成装置
JPH11329221A (ja) * 1998-05-15 1999-11-30 Canon Inc ペースト状物質の塗布方法及び前記塗布方法を用いた画像表示装置
JP2001195990A (ja) * 1999-11-02 2001-07-19 Matsushita Electric Ind Co Ltd Ac型プラズマディスプレイ装置
JP2002086020A (ja) * 2000-09-11 2002-03-26 Fuji Photo Film Co Ltd 液体塗布装置
JP2002164356A (ja) * 1988-03-23 2002-06-07 Sgs Thomson Microelectronics Inc Mosトランジスタにおいてセルフアラインソース/ドレインコンタクトを形成する方法
JP2002177842A (ja) * 2000-12-07 2002-06-25 Kawasaki Steel Corp 鋼管に対する接着剤の塗布方法および塗布装置
JP2002316401A (ja) * 2001-04-20 2002-10-29 Matsushita Electric Ind Co Ltd 粘性材料塗布方法及び装置
JP2003059940A (ja) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd ミクロファブリケーション用基板、その製造方法および像状薄膜形成方法
JP2003120010A (ja) * 2001-10-19 2003-04-23 Aica Kogyo Co Ltd 塗床とその施工方法
JP2003151443A (ja) * 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd Ac型プラズマディスプレイパネル
JP2003311196A (ja) * 2002-04-19 2003-11-05 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、非接触型カード媒体、圧電体素子、並びにインクジェット式記録ヘッド
JP2004247704A (ja) * 2002-08-30 2004-09-02 Sharp Corp Tftアレイ基板、液晶表示装置、tftアレイ基板の製造方法および液晶表示装置の製造方法、並びに電子装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130562A (ja) * 1983-01-14 1984-07-27 Kinugawa Rubber Ind Co Ltd 長尺物用塗布装置
JPS59193571U (ja) * 1983-06-13 1984-12-22 ナショナル住宅産業株式会社 コ−キングノズル
JPS625282A (ja) * 1985-06-29 1987-01-12 Toshiba Corp 記録装置
JP2002164356A (ja) * 1988-03-23 2002-06-07 Sgs Thomson Microelectronics Inc Mosトランジスタにおいてセルフアラインソース/ドレインコンタクトを形成する方法
JPH0864937A (ja) * 1994-08-24 1996-03-08 Ibiden Co Ltd ペースト状物質塗布装置
JPH10223138A (ja) * 1996-12-04 1998-08-21 Dainippon Printing Co Ltd 蛍光体充填装置
JPH1157574A (ja) * 1997-08-20 1999-03-02 Ricoh Co Ltd 混合塗布装置及びそれを用いた混合塗布方法
JPH11204529A (ja) * 1998-01-19 1999-07-30 Seiko Epson Corp パターン形成方法および基板製造装置
JPH11237790A (ja) * 1998-02-23 1999-08-31 Brother Ind Ltd 画像形成装置
JPH11329221A (ja) * 1998-05-15 1999-11-30 Canon Inc ペースト状物質の塗布方法及び前記塗布方法を用いた画像表示装置
JP2001195990A (ja) * 1999-11-02 2001-07-19 Matsushita Electric Ind Co Ltd Ac型プラズマディスプレイ装置
JP2002086020A (ja) * 2000-09-11 2002-03-26 Fuji Photo Film Co Ltd 液体塗布装置
JP2002177842A (ja) * 2000-12-07 2002-06-25 Kawasaki Steel Corp 鋼管に対する接着剤の塗布方法および塗布装置
JP2002316401A (ja) * 2001-04-20 2002-10-29 Matsushita Electric Ind Co Ltd 粘性材料塗布方法及び装置
JP2003059940A (ja) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd ミクロファブリケーション用基板、その製造方法および像状薄膜形成方法
JP2003120010A (ja) * 2001-10-19 2003-04-23 Aica Kogyo Co Ltd 塗床とその施工方法
JP2003151443A (ja) * 2001-11-12 2003-05-23 Matsushita Electric Ind Co Ltd Ac型プラズマディスプレイパネル
JP2003311196A (ja) * 2002-04-19 2003-11-05 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、非接触型カード媒体、圧電体素子、並びにインクジェット式記録ヘッド
JP2004247704A (ja) * 2002-08-30 2004-09-02 Sharp Corp Tftアレイ基板、液晶表示装置、tftアレイ基板の製造方法および液晶表示装置の製造方法、並びに電子装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101333750B1 (ko) 2005-06-30 2013-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 미소 구조체, 마이크로 머신, 유기 트랜지스터, 전자 기기및 그 제조 방법
US8686405B2 (en) 2005-06-30 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof
US8609443B2 (en) 2005-08-26 2013-12-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device manufacturing method
JP2007227535A (ja) * 2006-02-22 2007-09-06 Sony Corp 配線基板修正方法及び配線基板修正装置
JP4696957B2 (ja) * 2006-02-22 2011-06-08 ソニー株式会社 配線基板修正方法及び配線基板修正装置
KR101345377B1 (ko) 2006-04-17 2013-12-24 삼성전자주식회사 비정질 ZnO계 TFT의 제조방법
JPWO2009035036A1 (ja) * 2007-09-14 2010-12-24 コニカミノルタホールディングス株式会社 電極の形成方法及び有機薄膜トランジスタ
JP2012109581A (ja) * 2011-12-19 2012-06-07 Mitsubishi Electric Corp 半導体製造方法および半導体装置
KR20230095041A (ko) * 2015-11-20 2023-06-28 삼성디스플레이 주식회사 표시 장치, 타일형 표시 장치 및 이의 제조 방법
KR102655956B1 (ko) 2015-11-20 2024-04-12 삼성디스플레이 주식회사 표시 장치, 타일형 표시 장치 및 이의 제조 방법

Also Published As

Publication number Publication date
JP4583904B2 (ja) 2010-11-17

Similar Documents

Publication Publication Date Title
KR101072412B1 (ko) 표시장치 및 그의 제조방법과, 텔레비젼 장치
JP6677785B2 (ja) ビデオカメラ
US20080280033A1 (en) Droplet Discharge Device, and Method for Forming Pattern, and Method for Manufacturing Display Device
US8619219B2 (en) Thin film transistor, display device and liquid crystal display device and method for manufacturing the same
JP4969041B2 (ja) 表示装置の作製方法
TWI392094B (zh) 發光顯示裝置,製造發光顯示裝置之方法及電視機
JP4614652B2 (ja) 薄膜トランジスタの作製方法、及び表示装置の作製方法
JP2005303283A (ja) パターン形成方法、薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置
JP4583904B2 (ja) 表示装置の作製方法
KR101065600B1 (ko) 박막 트랜지스터, 박막 트랜지스터의 제조 방법 및 표시 장치의 제조 방법
JP4879496B2 (ja) パターン形成方法
JP4877868B2 (ja) 表示装置の作製方法
JP5201791B2 (ja) 表示装置及び電子機器
JP4877867B2 (ja) 表示装置の作製方法
JP2005333118A (ja) 半導体装置及びその作製方法
JP5025208B2 (ja) 薄膜トランジスタの作製方法
JP4712332B2 (ja) 薄膜トランジスタの作製方法
JP2005167225A (ja) 発光装置及びその作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees