JP2005195909A - Liquid crystal display and method for manufacturing the same - Google Patents

Liquid crystal display and method for manufacturing the same Download PDF

Info

Publication number
JP2005195909A
JP2005195909A JP2004002557A JP2004002557A JP2005195909A JP 2005195909 A JP2005195909 A JP 2005195909A JP 2004002557 A JP2004002557 A JP 2004002557A JP 2004002557 A JP2004002557 A JP 2004002557A JP 2005195909 A JP2005195909 A JP 2005195909A
Authority
JP
Japan
Prior art keywords
glass
substrate
liquid crystal
counter substrate
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002557A
Other languages
Japanese (ja)
Inventor
Hideo Yamanaka
英雄 山中
Hiroshi Matsueda
寛 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004002557A priority Critical patent/JP2005195909A/en
Publication of JP2005195909A publication Critical patent/JP2005195909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display which provides high heat radiation effects at a low cost, and to provide a method for manufacturing the same. <P>SOLUTION: The liquid crystal display has a TFT substrate 2, a counter substrate 3 placed opposite to the TFT substrate with a specified gap in between, a liquid crystal held in the gap between the TFT substrate and the counter substrate, a dustproof glass 4 of the TFT substrate side stuck to the TFT substrate, a dustproof glass 5 of the counter substrate side stuck to the counter substrate, and a metal frame 6 to attach the TFT substrate and the counter substrate thereto, wherein the end parts of the TFT substrate, the counter substrate, the dustproof glass of the TFT substrate side and the dustproof glass of the counter substrate side are in contact with the metal frame via a high thermal conductivity mold resin 7. The dustproof glass of the counter substrate side has a laminated structure of quartz glass or transparent crystallized glass 9 and high thermal conductivity glass 10 stuck to each other, and stuck to the counter substrate via the high thermal conductivity glass surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は液晶表示装置及びその製造方法に関する。詳しくは、高熱伝導性ガラスと石英ガラスまたは透明結晶化ガラスとを貼り合わせた積層ガラスをLCDパネルに貼り合わせることによって、高い放熱効果による高輝度化、長寿命化を得ようとした液晶表示装置及びその製造方法に係るものである。   The present invention relates to a liquid crystal display device and a manufacturing method thereof. Specifically, a liquid crystal display device that has achieved high brightness and long life due to a high heat dissipation effect by laminating a laminated glass of high thermal conductivity glass and quartz glass or transparent crystallized glass to an LCD panel. And a manufacturing method thereof.

近年の液晶プロジェクタ装置は、高輝度化に伴う入射光量の増大により、熱による不都合が重要な問題となっている。
そこで、これまでは、(1)冷却ファンにより冷却し、熱を帯びた空気を排気する(2)入射側の偏光板を液晶パネルから1〜5mm程度離して設置して液晶パネルに偏光板の熱が直接伝わるのを防止し、その間に冷却風を流す(3)液晶パネルの入射側及び出射側に低反射膜付きの放熱ガラス(熱伝導率1W/m・K以上)を貼り合わせて放熱効果を高めるとともに、冷却風によりゴミが液晶パネルに付着しても画質劣化が起きないようにする(4)液冷方式熱交換媒体として液体を封入し、冷却効果を高める(5)ペルチェ素子等の電子冷却装置を取り付け、強制冷却する等の対策が行われている。
In recent liquid crystal projector devices, the inconvenience due to heat has become an important problem due to the increase in the amount of incident light accompanying the increase in luminance.
Therefore, until now, (1) Cooling with a cooling fan and exhausting the heated air (2) Placing the polarizing plate on the incident side about 1 to 5 mm away from the liquid crystal panel and placing the polarizing plate on the liquid crystal panel (3) Heat radiation glass with a low reflection film (heat conductivity of 1 W / m · K or more) is attached to the incident side and the emission side of the liquid crystal panel. In addition to enhancing the effect, image quality deterioration will not occur even if dust adheres to the liquid crystal panel due to cooling air (4) Encapsulating liquid as a liquid cooling type heat exchange medium to enhance the cooling effect (5) Peltier element, etc. Measures such as installing an electronic cooling device and forced cooling are being taken.

ところが、上記(1)の様に冷却ファンによる空冷方式の場合、充分な冷却効果を得るため、送風量を増やしていくとファンの高速回転及び大型化により騒音の問題が生じ、静かな室内でプレゼンテーションを行ったり、ホームシアターとして使用したりする場合には不適当である。
また、上記(2)の様に発熱体である入射側の偏光板を分離独立させることで、液晶パネルへの影響を低減し、放熱効果を高めることはできるが、やはり効果には限界がある。なお、偏光板における偏光体の保持板として使用している青板ガラスまたは白板ガラスも熱伝導性が悪く、放熱効果が不充分となり、上記(1)の場合と同様に冷却ファンの出力アップに頼らざるを得ず、騒音の問題を解消することができない。
また、上記(4)の液冷式については、温度上昇に伴い、圧力抜き、気泡発生、混入異物及び冷却媒体漏れ等が生じ、信頼性の点で問題がある。また、冷却機構についても複雑で大掛かりなものが必要となりコストが大幅に上昇してしまう。
また、上記(5)のペルチェ素子等の電子冷却装置を付加した固体冷却方式の場合、構造が複雑でコストが大幅に上昇してしまうだけではなく、充分な冷却効果が得られるには至っていない。
However, in the case of the air cooling system using a cooling fan as in (1) above, in order to obtain a sufficient cooling effect, increasing the air flow causes a problem of noise due to the high-speed rotation and enlargement of the fan, and it can be used in a quiet room. It is not suitable for presentations and home theater use.
In addition, as described in (2) above, the incident-side polarizing plate, which is a heating element, can be separated and made independent to reduce the influence on the liquid crystal panel and enhance the heat dissipation effect, but the effect is still limited. . Note that the blue plate glass or white plate glass used as the polarizing plate holding plate in the polarizing plate also has poor thermal conductivity, and the heat dissipation effect is insufficient, and as in the case of (1), it depends on increasing the output of the cooling fan. There is no choice but to solve the noise problem.
In addition, the liquid cooling type (4) has a problem in terms of reliability due to pressure relief, bubble generation, foreign matter contamination, cooling medium leakage, and the like as the temperature rises. In addition, a complicated and large-scale cooling mechanism is required, which greatly increases the cost.
In addition, in the case of the solid cooling method to which the electronic cooling device such as the Peltier element of (5) above is added, not only the structure is complicated and the cost is significantly increased, but also a sufficient cooling effect has not been obtained. .

そこで、最近は熱伝導率42.1(W/m・K)以上の単結晶サファイア(以後 サファイアと言う)を液晶パネルに直接透明接着剤で貼り合わせる方法で冷却を促進することが提案されている(例えば、特許文献1参照。)。   Therefore, recently, it has been proposed to promote cooling by a method in which single crystal sapphire (hereinafter referred to as sapphire) having a thermal conductivity of 42.1 (W / m · K) or higher is directly bonded to a liquid crystal panel with a transparent adhesive. (For example, refer to Patent Document 1).

特開2000−206507号公報JP 2000-206507 A

しかしながら、サファイアは従来の放熱ガラス{石英ガラス、透明結晶化ガラス(ネオセラム、クリアセラム等)}に比べ、5〜6倍のコストアップとなり、普及を制約している。   However, sapphire is 5 to 6 times more expensive than conventional heat-dissipating glass {quartz glass, transparent crystallized glass (neoceram, clearserum, etc.)} and restricts its spread.

本発明は以上の点に鑑みて創案されたものであって、低コストで高い放熱効果を得ることができる液晶表示装置及びその製造方法を提供することが目的である。   The present invention has been made in view of the above points, and an object thereof is to provide a liquid crystal display device capable of obtaining a high heat dissipation effect at low cost and a method for manufacturing the same.

上記の目的を達成するために、本発明に係る液晶表示装置は、液晶を挟んで対向させた駆動基板と対向基板と、少なくとも前記対向基板に透明接着剤で貼り合わせられた防塵基板と、前記駆動基板及び対向基板を取り付ける枠体を有し、前記駆動基板、対向基板及び防塵基板の端部が高熱伝導性樹脂を介して前記枠体と接する液晶表示装置であって、前記防塵基板は、石英ガラスまたは透明結晶化ガラスと熱伝導率が10(W/m・k)以上の複屈折のある高熱伝導性ガラスを透明接着剤で貼り合わせた積層構造を有し、前記高熱伝導性ガラス面で前記対向基板と透明接着剤で貼り合わせられている。   In order to achieve the above object, a liquid crystal display device according to the present invention includes a driving substrate and a counter substrate that are opposed to each other with liquid crystal interposed therebetween, a dust-proof substrate that is bonded to at least the counter substrate with a transparent adhesive, A liquid crystal display device having a frame body to which the drive substrate and the counter substrate are attached, and an end portion of the drive substrate, the counter substrate, and the dust-proof substrate is in contact with the frame body via a high thermal conductive resin, It has a laminated structure in which quartz glass or transparent crystallized glass and high thermal conductivity glass having a birefringence of 10 (W / m · k) or more are bonded with a transparent adhesive, and the high thermal conductivity glass surface And bonded to the counter substrate with a transparent adhesive.

ここで、対向基板に透明接着剤で貼り合わせられた防塵基板が、石英ガラスまたは透明結晶化ガラスと高熱伝導性ガラスを透明接着剤で貼り合わせた積層構造を有し、高熱伝導性ガラス面で対向基板と透明接着剤で貼り合わせられていることによって、液晶パネルに発生した熱を高熱伝導性ガラスを介して石英ガラスまたは透明結晶化ガラスに逃がし、更に高熱伝導性ガラスを介して高熱伝導性樹脂を経て枠体へ熱を逃がし空気中に熱放散することができるので、放熱効果を高め液晶パネルの高輝度化、長寿命化を図ることができる。
なお、石英ガラスまたは透明結晶化ガラスと高熱伝導性ガラスを透明接着剤で貼り合わせた積層構造を有する防塵基板を、石英ガラスまたは透明結晶化ガラス面で対向基板と貼り合わせたとしても液晶パネルに発生した熱の放熱効果は充分でない。これは、液晶パネルと高熱伝導性ガラスとの間に高熱伝導性ガラスよりも熱伝導率の低い石英ガラスまたは透明結晶化ガラスが存在するために、液晶パネルで発生した熱を効率的に逃がすことができないからである。
また、駆動基板、対向基板及び防塵基板の端部が高熱伝導性樹脂を介して枠体と接していない場合には、液晶パネルに発生した熱を高熱伝導性樹脂を介して枠体に充分に逃がすことができずに充分な放熱効果が得られない。
Here, the dust-proof substrate bonded to the counter substrate with a transparent adhesive has a laminated structure in which quartz glass or transparent crystallized glass and high thermal conductivity glass are bonded together with a transparent adhesive. By being bonded to the counter substrate with a transparent adhesive, the heat generated in the liquid crystal panel is released to quartz glass or transparent crystallized glass through the high thermal conductivity glass, and further to the high thermal conductivity through the high thermal conductivity glass. Since heat can be released to the frame body through the resin and can be dissipated in the air, the heat dissipation effect can be enhanced, and the brightness and life of the liquid crystal panel can be increased.
Note that even if a dustproof substrate having a laminated structure in which quartz glass or transparent crystallized glass and high thermal conductivity glass are bonded together with a transparent adhesive is bonded to the opposite substrate on the quartz glass or transparent crystallized glass surface, The heat dissipation effect of the generated heat is not sufficient. This is because quartz glass or transparent crystallized glass with lower thermal conductivity than the high thermal conductivity glass exists between the liquid crystal panel and the high thermal conductivity glass, so that the heat generated in the liquid crystal panel can be efficiently released. It is because it is not possible.
In addition, when the edges of the drive substrate, counter substrate and dust-proof substrate are not in contact with the frame through the high thermal conductive resin, the heat generated in the liquid crystal panel is sufficiently applied to the frame through the high thermal conductive resin. It cannot escape and a sufficient heat dissipation effect cannot be obtained.

なお、透明接着剤は、UV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤で、強い入射光に耐える耐光性の特性を有するタイプが好ましい。
また、ショア硬度30以下好ましくは15〜25の透明接着剤を100μm以下好ましくは10〜30μmの厚さで介在させて石英ガラス或いは透明結晶化ガラスと高熱伝導性ガラスを貼り合わせた積層構造の複合ガラスとするのが好ましい。
The transparent adhesive is a UV irradiation curable type, UV irradiation curable type, thermosetting type, visible light irradiation curable type, visible light irradiation curable type, thermosetting type or thermosetting type transparent adhesive, which is resistant to strong incident light. A type having light-resistant characteristics to withstand is preferable.
Also, a composite of a laminated structure in which a transparent adhesive having a Shore hardness of 30 or less, preferably 15 to 25, is interposed with a thickness of 100 μm or less, preferably 10 to 30 μm, and quartz glass or transparent crystallized glass and high thermal conductivity glass are bonded together. Glass is preferred.

また、防塵基板が、石英ガラスまたは透明結晶化ガラスと高熱伝導性ガラスを透明接着剤で貼り合わせた積層構造を有することによって、コストの上昇を抑えることができる。即ち、光学的制約から入射側に一定厚さの防塵基板を用いることを前提として、防塵基板を高熱伝導性ガラスのみで構成した場合には、液晶パネルで発生した熱の放熱は充分に行えるが、高熱伝導性ガラスの使用量が多くコストが大幅に上昇してしまう。一方、防塵基板を前記貼り合わせ積層構造とした場合には、高熱伝導性ガラスの使用量が少なくコストを抑制することができる。
なお、防塵基板を前記貼り合わせ積層構造とすると、高熱伝導性ガラス厚みに依存して防塵基板を高熱伝導性ガラスのみで構成した場合と同じ放熱効果は得られないが、駆動基板、対向基板及び防塵基板の端部が高熱伝導性樹脂を介して枠体と接することによって、放熱効果の減少分は補完できる。
Further, since the dustproof substrate has a laminated structure in which quartz glass or transparent crystallized glass and high thermal conductivity glass are bonded together with a transparent adhesive, an increase in cost can be suppressed. That is, on the premise that a dust-proof substrate with a certain thickness is used on the incident side due to optical restrictions, if the dust-proof substrate is composed only of high thermal conductivity glass, the heat generated in the liquid crystal panel can be sufficiently dissipated. The amount of high heat conductive glass used is large and the cost is greatly increased. On the other hand, when the dustproof substrate has the laminated structure, the amount of the high thermal conductivity glass used is small and the cost can be suppressed.
Note that when the dust-proof substrate has the laminated structure, the same heat dissipation effect as when the dust-proof substrate is composed of only the high thermal conductivity glass cannot be obtained depending on the thickness of the high thermal conductivity glass. Since the end of the dustproof substrate is in contact with the frame through the high thermal conductive resin, the decrease in the heat dissipation effect can be supplemented.

また、防塵基板が前記貼り合わせ積層構造を有することによって、防塵基板の厚さが減少することによる冷却効果の減少やデフォーカス効果の減少を抑制することができる。即ち、一定厚さの高熱伝導性ガラスを使用して防塵基板を形成することを前提として、防塵基板を高熱伝導性ガラスのみで構成した場合には、防塵基板の厚さが薄く、防塵基板の冷却効果及びデフォーカス効果が減少してしまう。一方、前記貼り合わせ積層構造の場合には、防塵基板の厚さが高熱伝導性ガラスに貼り合わせる石英ガラスまたは透明結晶化ガラスの厚さの分だけ厚く、防塵基板の冷却効果及びデフォーカス効果の減少を抑制することができる。   In addition, since the dustproof substrate has the laminated structure, it is possible to suppress a decrease in cooling effect and a decrease in defocus effect due to a decrease in the thickness of the dustproof substrate. That is, assuming that the dust-proof substrate is formed by using high-heat conductive glass of a certain thickness, when the dust-proof substrate is composed only of high-heat conductive glass, the dust-proof substrate is thin and the dust-proof substrate The cooling effect and the defocus effect are reduced. On the other hand, in the case of the bonded laminated structure, the dust-proof substrate is thicker by the thickness of the quartz glass or transparent crystallized glass to be bonded to the high thermal conductive glass, and the dust-proof substrate cooling effect and defocus effect are increased. Reduction can be suppressed.

なお、防塵基板は、少なくとも石英ガラスまたは透明結晶化ガラス表面に低反射膜が形成されることが好ましい。これにより、防塵基板の透過特性を向上させて、空気中への熱放散のばらつきを抑えて冷却効果を促進することができる。   The dust-proof substrate preferably has a low reflection film formed on at least the surface of quartz glass or transparent crystallized glass. Thereby, the permeation | transmission characteristic of a dust-proof board | substrate can be improved, the dispersion | variation in the heat dissipation to the air can be suppressed, and the cooling effect can be accelerated | stimulated.

また、上記の目的を達成するために、本発明に係る液晶表示装置の製造方法は、駆動基板と対向基板を所定の間隙を介して重ね合わせる工程と、前記駆動基板及び対向基板の間隙内に液晶を注入封止する工程と、石英ガラスまたは透明結晶化ガラスの表面に低反射膜を形成する工程と、前記石英ガラスまたは透明結晶化ガラスの低反射膜が形成された面とは反対の面に熱伝導率が10(W/m・k)以上の複屈折のある高熱伝導性ガラスを透明接着剤で貼り合わせて積層ガラスを形成する工程と、低反射膜が形成された石英ガラスまたは透明結晶化ガラスの石英ガラスまたは透明結晶化ガラス面を前記駆動基板に透明接着剤で貼り合わせる工程と、前記積層ガラスの高熱伝導性ガラス面を前記対向基板に透明接着剤で貼り合わせる工程と、これらの工程後に、前記駆動基板及び対向基板を枠体に取り付ける工程と、前記駆動基板、前記対向基板、前記石英ガラスまたは透明結晶化ガラス及び前記積層ガラスと前記枠体との間隙に高熱伝導性樹脂を充填固着する工程を備える。   In order to achieve the above object, a method of manufacturing a liquid crystal display device according to the present invention includes a step of superimposing a driving substrate and a counter substrate through a predetermined gap, and a gap between the driving substrate and the counter substrate. The surface opposite to the surface where the liquid crystal is injected and sealed, the step of forming a low reflection film on the surface of quartz glass or transparent crystallized glass, and the surface of the quartz glass or transparent crystallized glass on which the low reflection film is formed A laminated glass with a high thermal conductivity glass having a birefringence of 10 (W / m · k) or more and a transparent adhesive, and a quartz glass with a low reflection film or transparent A step of bonding the quartz glass or transparent crystallized glass surface of the crystallized glass to the drive substrate with a transparent adhesive, a step of bonding the high thermal conductivity glass surface of the laminated glass to the counter substrate with a transparent adhesive, and these of After the step, a step of attaching the drive substrate and the counter substrate to the frame, and a high thermal conductive resin in the gap between the drive substrate, the counter substrate, the quartz glass or transparent crystallized glass, and the laminated glass and the frame. A step of filling and fixing.

ここで、石英ガラスまたは透明結晶化ガラスの低反射膜が形成された面とは反対の面に熱伝導率が10(W/m・k)以上の複屈折のある高熱伝導性ガラスを透明接着剤で貼り合わせて積層ガラスを形成することによって、既存の設備及び材料を利用して低反射膜が形成された積層ガラスを形成することができる。即ち、現在使用されている低反射膜が形成された石英ガラスまたは透明結晶化ガラスの石英ガラスまたは透明結晶化ガラス面に高熱伝導性ガラスを貼り合わせることによって、低反射膜が形成された積層ガラスを形成することができるために、既存の設備及び材料を利用して低反射膜が形成された積層ガラスを安価に形成することができる。   Here, transparent heat-bonded high thermal conductivity glass with birefringence of 10 (W / m · k) or more on the surface opposite to the surface on which the low reflection film of quartz glass or transparent crystallized glass is formed By laminating with an agent to form a laminated glass, it is possible to form a laminated glass on which a low reflection film is formed using existing equipment and materials. That is, a laminated glass in which a low-reflective film is formed by bonding high-thermal-conductivity glass to the quartz glass or transparent crystallized glass surface of quartz glass or transparent crystallized glass on which a low-reflective film is currently used. Therefore, it is possible to inexpensively form a laminated glass on which a low reflection film is formed using existing equipment and materials.

上記した本発明の液晶表示装置では、低コストで高い放熱効果を得ることができ、液晶パネルの高輝度化、長寿命化を図ることができる。   In the above-described liquid crystal display device of the present invention, a high heat dissipation effect can be obtained at low cost, and the brightness and life of the liquid crystal panel can be increased.

また、本発明の液晶表示装置の製造方法では、既存の設備及び材料を利用して低反射膜が形成された積層ガラスを安価に形成することができ、効率的に本発明の液晶表示装置を形成することができる。   Moreover, in the manufacturing method of the liquid crystal display device of this invention, the laminated glass in which the low reflection film was formed can be formed inexpensively using the existing equipment and materials, and the liquid crystal display device of this invention can be formed efficiently. Can be formed.

以下、本発明の実施の形態を図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用した液晶表示装置の一例である透過型液晶表示装置を説明するための模式的な断面図であり、ここで示す透過型液晶表示装置1はシール剤によって所定の間隙を介して重ね合わせられた石英ガラスから成るTFT基板2及び石英ガラスやネオセラムから成る対向基板3と、これらTFT基板と対向基板の間隙内に保持された液晶(図示せず)とを備えている。また、TFT基板には低反射膜が形成された厚さ約0.7mmのTFT基板側防塵ガラス4が所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせられ、対向基板には低反射膜8が形成された厚さ約1.1mmの対向基板側防塵ガラス5が所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせられている。また、TFT基板及び対向基板は黒化処理されたアルミニウム等から成る金属枠6に取り付けられており、金属枠とTFT基板、対向基板と、TFT基板側防塵ガラス及び対向基板側防塵ガラスの間隙には高熱伝導性モールド樹脂7が充填固着されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to provide an understanding of the present invention.
FIG. 1 is a schematic cross-sectional view for explaining a transmissive liquid crystal display device as an example of a liquid crystal display device to which the present invention is applied. The transmissive liquid crystal display device 1 shown here has a predetermined gap by a sealing agent. There are provided a TFT substrate 2 made of quartz glass and a counter substrate 3 made of quartz glass or neoceram, and a liquid crystal (not shown) held in a gap between the TFT substrate and the counter substrate. The TFT substrate side dust-proof glass 4 having a low reflection film formed on the TFT substrate is a UV irradiation curable type, a UV irradiation curable type, a heat curable type, a visible light irradiation curable type, or a predetermined condition. A counter substrate-side dust-proof glass 5 having a thickness of about 1.1 mm and having a low reflection film 8 formed on the counter substrate is bonded together with a visible light irradiation curing type and a thermosetting or thermosetting transparent adhesive. They are bonded together with a UV irradiation curable type or a UV irradiation curable type and a thermosetting type or a visible light irradiation curable type or a visible light irradiation curable type and a thermosetting type or a thermosetting type transparent adhesive. In addition, the TFT substrate and the counter substrate are attached to a metal frame 6 made of blackened aluminum or the like. In the gap between the metal frame and the TFT substrate, the counter substrate, the TFT substrate side dustproof glass and the counter substrate side dustproof glass. Is filled and fixed with a high thermal conductive mold resin 7.

上記したTFT基板側防塵ガラスは、その少なくとも出射側表面に低反射膜が形成された石英ガラスや透明結晶化ガラス(ネオセラム、クリアセラム等)9から成り、低反射膜が形成された面とは反対面がTFT基板に所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせられている。
なお、このときはショア硬度30以下、好ましくは15〜25の透明接着剤を100μm以下、好ましくは10〜30μmの厚さで介在させて貼り合わせるのが好ましい。
The above-mentioned TFT substrate side dustproof glass is composed of quartz glass or transparent crystallized glass (neo-ceram, clear serum, etc.) 9 having a low-reflection film formed on at least the light-exiting surface, and the surface on which the low-reflection film is formed. The opposite surface is bonded to the TFT substrate with UV irradiation curing type or UV irradiation curing type and thermosetting type or visible light irradiation curing type or visible light irradiation curing type and thermosetting type or thermosetting type transparent adhesive under predetermined conditions. It has been.
In this case, a transparent adhesive having a Shore hardness of 30 or less, preferably 15 to 25, is preferably laminated with a thickness of 100 μm or less, preferably 10 to 30 μm.

また、上記した対向基板側防塵ガラスは、その少なくとも入射側表面に低反射膜が形成された厚さ約0.6mmの石英ガラスや透明結晶化ガラスに所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで厚さ約0.5mmの高熱伝導性ガラス10を貼り合わせた積層構造を有し、高熱伝導性ガラス面が対向基板に所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせられている。
なお、このときも、ショア硬度30以下、好ましくは15〜25の透明接着剤を100μm以下、好ましくは10〜30μmの厚さで介在させて貼り合わせるのが好ましい。
In addition, the above-mentioned counter-substrate-side dust-proof glass has a UV irradiation curing type or UV irradiation curing under predetermined conditions on quartz glass or transparent crystallized glass having a thickness of about 0.6 mm, on which a low reflection film is formed at least on the incident side surface. A laminated structure in which a high thermal conductive glass 10 having a thickness of about 0.5 mm is bonded with a mold, a thermosetting type, a visible light irradiation curable type, a visible light irradiation curable type, a thermosetting type, or a thermosetting type transparent adhesive. A transparent surface having a high thermal conductivity glass surface on a counter substrate with UV irradiation curing type or UV irradiation curing type and thermosetting type or visible light irradiation curing type or visible light irradiation curing type and thermosetting type or thermosetting type under predetermined conditions Bonded with an adhesive.
At this time, it is preferable that a transparent adhesive having a Shore hardness of 30 or less, preferably 15 to 25, is interposed and bonded with a thickness of 100 μm or less, preferably 10 to 30 μm.

ここでの光学特性を満足する高熱伝導性ガラスには、10(W/m・K)以上の石英ガラス、透明結晶化ガラス(ネオセラム、クリアセラムなど)以外で光学特性を満足する更に高い熱伝導性ガラス例えばサファイアなどがある。   The high thermal conductivity glass that satisfies the optical properties here has higher thermal conductivity that satisfies the optical properties other than quartz glass of 10 (W / m · K) or more, and transparent crystallized glass (neoceram, clear serum, etc.). For example, sapphire.

上記した本発明を適用した透過型液晶表示装置では、液晶パネルで発生した熱を高熱伝導性ガラスを介して石英ガラスまたは透明結晶化ガラスに効果的に逃がすことができ、更に、高熱伝導性ガラスから高熱伝導性モールド樹脂を経て金属枠へ熱を逃がし空気中或いはLCDパネル取り付け金属体に熱放散することができ、高い放熱効果を得ることができるので、透過型液晶表示装置の高輝度化、長寿命化を図ることができる。   In the transmissive liquid crystal display device to which the present invention described above is applied, the heat generated in the liquid crystal panel can be effectively released to the quartz glass or the transparent crystallized glass through the high thermal conductivity glass, and further, the high thermal conductivity glass. Heat can be released to the metal frame through the highly heat-conductive mold resin and can be dissipated in the air or to the LCD panel mounting metal body, and a high heat dissipation effect can be obtained. Long life can be achieved.

また、対向基板側防塵ガラスを高熱伝導性ガラスのみから構成せずに、即ち、対向基板側防塵ガラスとして厚さ約1.1mmの高熱伝導性ガラスを使用せずに、対向基板側防塵ガラスを低反射膜形成した石英ガラスまたは透明結晶化ガラスと高熱伝導性ガラスを貼り合わせた積層構造とし、厚さ約0.5mmの高熱伝導性ガラス及び厚さ約0.6mmの石英ガラスまたは透明結晶化ガラスを使用しているために、対向基板側防塵ガラスのコストを抑えることができ、低コストでの透過型液晶表示装置を実現している。   Further, the counter substrate side dustproof glass is not composed of the high thermal conductivity glass alone, that is, the counter substrate side dustproof glass is not used as the counter substrate side dustproof glass without using the high thermal conductivity glass having a thickness of about 1.1 mm. A laminated structure in which quartz glass or transparent crystallized glass with a low reflection film is formed and high thermal conductivity glass are laminated, high thermal conductivity glass with a thickness of about 0.5 mm and quartz glass with a thickness of about 0.6 mm or transparent crystallization Since glass is used, the cost of the counter substrate side dust-proof glass can be suppressed, and a low-cost transmissive liquid crystal display device is realized.

ここで、コストを抑えるという点では、対向基板側防塵ガラスとして厚さが薄い単体の高熱伝導性ガラス(例えば、厚さ約0.5mmのサファイア)を用いるということも考えられる。この点について、以下詳細に検討する。なお、以下では対向基板側防塵ガラスとして厚さ約1.1mmのサファイアを用いる場合と、厚さ約0.5mmのサファイアと厚さ約0.6mmのネオセラムを貼り合せた積層構造の複合ガラスを用いる場合を例に挙げて説明を行う。   Here, in terms of cost reduction, it is conceivable to use a single high-heat conductive glass (for example, sapphire having a thickness of about 0.5 mm) having a small thickness as the counter-substrate-side dust-proof glass. This point will be discussed in detail below. In the following, a composite glass having a laminated structure in which sapphire having a thickness of about 1.1 mm is used as the dust-proof glass on the opposite substrate side and sapphire having a thickness of about 0.5 mm and neoceram having a thickness of about 0.6 mm are bonded together. The case where it is used will be described as an example.

(1)冷却効果
防塵ガラスとして厚さ約1.1mmのサファイアを用いた場合には、例えば0.7型LCDパネルの温度上昇が常温から23.3℃であり、厚さ約0.5mmのサファイアガラスと厚さ約0.6mmのネオセラムを貼り合せた積層構造の複合ガラスを用いた場合にはLCDパネルの温度上昇が25.4℃である。ここで、厚さ約1.1mmのネオセラムを用いた場合のLCDパネルの温度上昇が39.0℃であるので、厚さ約1.1mmのサファイアよりも厚さ約0.5mmのサファイアと厚さ約0.6mmのネオセラムを貼り合せた積層構造の複合ガラスは、厚さ約1.1mmのネオセラムガラスに対する冷却効果が約13%減少する程度に押さえられる。
(1) Cooling effect When sapphire with a thickness of about 1.1 mm is used as the dust-proof glass, for example, the temperature rise of a 0.7-type LCD panel is from normal temperature to 23.3 ° C., and the thickness is about 0.5 mm. When a composite glass having a laminated structure in which sapphire glass and neoceram having a thickness of about 0.6 mm are bonded together, the temperature rise of the LCD panel is 25.4 ° C. Here, since the temperature rise of the LCD panel when using neoceram having a thickness of about 1.1 mm is 39.0 ° C., the thickness of the sapphire is about 0.5 mm thicker than that of about 1.1 mm thick. The laminated composite glass having about 0.6 mm of neoceram bonded together is suppressed to such an extent that the cooling effect on neoceram glass having a thickness of about 1.1 mm is reduced by about 13%.

(2)デフォーカス効果
図2にデフォーカス効果の検証を説明するための模式図を示す。入射側(対向基板側)のデフォーカス効果は、対向基板側防塵ガラスの厚さt1、対向基板の厚さt2、対向基板側防塵ガラスの屈折率n1、対向基板の屈折率n2とすると、toptical=(t1/n1)+(t2/n2)で示される光学距離が大きいほど対向基板側防塵ガラス表面のゴミ等が投射レンズ11を経てスクリーン14に投影される焦点面とスクリーンとの距離Dが大きくなる。ここで、下記表1に示す様に、[1]対向基板側防塵ガラスとして厚さ約1.1mm、屈折率1.768(屈折率は波長589nmにおける値、以下同じ)のサファイア、対向基板として厚さ約1.1mm、屈折率1.541のネオセラムを用いた場合の光学距離は1.335、[2]対向基板側防塵ガラスとして厚さ約0.5mm、屈折率1.768(屈折率は波長589nmにおける値、以下同じ)のサファイア、対向基板として厚さ約1.1mm、屈折率1.541のネオセラムを用いた場合の光学距離は0.996であるので、厚さ約1.1mmのサファイアよりも厚さ約0.5mmのサファイアは、デフォーカス効果が約25%減少する。
これは、サファイアの厚さ減少により光学距離が短くなったためである。
しかし、厚さ約0.5mmのサファイアと厚さ約0.6mmのネオセラムを貼り合せた積層構造の複合ガラスは、厚さ約1.1mmのサファイアと同じ厚さなので、同じデフォーカス効果が得られる。
(2) Defocus Effect FIG. 2 is a schematic diagram for explaining verification of the defocus effect. The defocus effect on the incident side (opposite substrate side) is as follows. The thickness t1 of the counter substrate side dustproof glass, the thickness t2 of the counter substrate, the refractive index n1 of the counter substrate side dustproof glass, and the refractive index n2 of the counter substrate are t. As the optical distance indicated by optical = (t1 / n1) + (t2 / n2) increases, the distance D between the focal plane on which the dust or the like on the opposite substrate side dust-proof glass surface is projected onto the screen 14 through the projection lens 11 and the screen D Becomes larger. Here, as shown in Table 1 below, [1] Sapphire having a thickness of about 1.1 mm and a refractive index of 1.768 (the refractive index is a value at a wavelength of 589 nm, the same shall apply hereinafter) The optical distance is 1.335 when Neoceram having a thickness of about 1.1 mm and a refractive index of 1.541 is used. [2] The counter substrate side dust-proof glass is about 0.5 mm thick and has a refractive index of 1.768 (refractive index. Is a value at a wavelength of 589 nm, the same applies hereinafter), and the optical distance is 0.996 when using Neoceram with a thickness of about 1.1 mm and a refractive index of 1.541 as the counter substrate, so the thickness is about 1.1 mm. Sapphire having a thickness of about 0.5 mm than that of sapphire reduces the defocus effect by about 25%.
This is because the optical distance is shortened due to a decrease in the thickness of sapphire.
However, the composite glass with a laminated structure in which sapphire with a thickness of about 0.5 mm and neoceram with a thickness of about 0.6 mm are laminated has the same thickness as that of sapphire with a thickness of about 1.1 mm. It is done.

Figure 2005195909
Figure 2005195909

(3)コントラストへの影響
サファイアは複屈折があるので、C軸方向またはC軸方向投影線方向と透過すべき偏光透過軸との成す角度±2°以内、またはC軸と直交する軸(例えば、M軸またはA軸)と透過すべき偏光透過軸との成す角度±2°以内などの制約があり、液晶パネルとの高精度な組立てが要求される。図3にサファイアC軸精度とコントラストとの関係を示す。ここで示す様に、厚さ約0.5mmのサファイアと厚さ約0.6mmのネオセラムを貼り合せた積層構造の複合ガラスと厚さ約1.1mmのサファイアを比較した場合は、サファイア厚み違いによるコントラストの影響はほとんどないといえる。
(3) Influence on contrast Since sapphire has birefringence, the angle between the C axis direction or the C axis direction projection line direction and the polarization transmission axis to be transmitted is within ± 2 °, or an axis orthogonal to the C axis (for example, , M axis or A axis) and a polarization transmission axis to be transmitted are limited within ± 2 °, and high-precision assembly with a liquid crystal panel is required. FIG. 3 shows the relationship between sapphire C-axis accuracy and contrast. As shown here, the difference in sapphire thickness is found when comparing a composite glass with a laminated structure of approximately 0.5 mm thick sapphire and approximately 0.6 mm thick neoceram laminated to approximately 1.1 mm thick sapphire. It can be said that there is almost no influence of contrast.

上記(1)〜(3)より、対向基板側防塵ガラスとして厚さが薄い高熱伝導性ガラスを用いた場合には、高熱伝導性ガラスの厚さ減少により冷却効果及びデフォーカス効果が減少することがわかる。
ここで、本発明を適用した透過型液晶表示装置では、対向基板側防塵ガラスとして高熱伝導性ガラスと石英ガラスまたは透明結晶化ガラスとを貼り合わせているために、単に厚さを薄くした高熱伝導性ガラスと比べると、冷却効果及びデフォーカス効果の減少を抑制することができる。
From the above (1) to (3), when the thin highly heat conductive glass is used as the counter substrate side dustproof glass, the cooling effect and the defocus effect are reduced due to the decrease in the thickness of the high heat conductive glass. I understand.
Here, in the transmission type liquid crystal display device to which the present invention is applied, since the high heat conductive glass and the quartz glass or the transparent crystallized glass are bonded together as the counter substrate side dustproof glass, the high heat conductivity is simply reduced in thickness. As compared with the glass, the decrease in the cooling effect and the defocus effect can be suppressed.

以下、上記した透過型液晶表示装置の製造方法について説明する。即ち、本発明を適用した液晶表示装置の製造方法の一例である透過型液晶表示装置の製造方法について説明する。   Hereinafter, a manufacturing method of the above-described transmission type liquid crystal display device will be described. That is, a method for manufacturing a transmissive liquid crystal display device, which is an example of a method for manufacturing a liquid crystal display device to which the present invention is applied, will be described.

本発明を適用した液晶表示装置の製造方法の一例では、先ず、図4(a)で示す様に、石英ガラスから成るTFT基板と石英ガラス或いはネオセラムから成る対向基板をシール剤及びコモン剤によって所定の間隙を介して重ね合わせて空セルを形成し、これらTFT基板と対向基板の間隙内に液晶を注入封止する。   In an example of a manufacturing method of a liquid crystal display device to which the present invention is applied, first, as shown in FIG. 4A, a TFT substrate made of quartz glass and a counter substrate made of quartz glass or neoceram are predetermined with a sealant and a common agent. An empty cell is formed by overlapping through the gap, and liquid crystal is injected and sealed in the gap between the TFT substrate and the counter substrate.

また、図4(b)で示す様に、石英ガラス或いはネオセラム4の表面に低反射膜8を形成して、低反射膜が形成された厚さ約0.6mmの防塵ガラスを形成する。
次に、図4(c)で示す様に、厚さ約0.6mmの低反射膜が形成された石英ガラス或いはネオセラム面とは反対面に厚さ約0.5mmの高熱伝導性ガラス例えばサファイアを所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせて、入射側に低反射膜が形成された厚さ約1.1mmの積層構造の複合ガラスからなる防塵ガラスを形成する。
なお、ショア硬度30以下、好ましくは15〜25の透明接着剤を100μm以下、好ましくは10〜30μmの厚さで介在させて低反射膜形成した石英ガラス或いは透明結晶化ガラスと高熱伝導性ガラスを貼り合わせた積層構造の複合ガラスとするのが好ましい。
Further, as shown in FIG. 4B, a low reflection film 8 is formed on the surface of quartz glass or neo-serum 4 to form a dustproof glass having a thickness of about 0.6 mm on which the low reflection film is formed.
Next, as shown in FIG. 4 (c), quartz glass with a low reflection film having a thickness of about 0.6 mm or high thermal conductive glass having a thickness of about 0.5 mm on the surface opposite to the neoceram surface, for example, sapphire. Is bonded to the incident side with a transparent adhesive of UV irradiation curable type or UV irradiation curable type and thermosetting type or visible light irradiation curable type or visible light irradiation curable type and thermosetting type or thermosetting type. A dust-proof glass made of a composite glass having a laminated structure having a thickness of about 1.1 mm on which a low reflection film is formed is formed.
In addition, a quartz glass or transparent crystallized glass and a high thermal conductivity glass formed by interposing a transparent adhesive having a Shore hardness of 30 or less, preferably 15 to 25 with a thickness of 100 μm or less, preferably 10 to 30 μm, and having a low reflection film. A composite glass having a laminated structure is preferable.

続いて、図4(d)で示す様に、TFT基板に防塵ガラスの低反射膜が形成された面とは反対面を所定条件のUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせると共に、対向基板に上記の積層構造の複合ガラスの高熱伝導性ガラス面をUV照射硬化型またはUV照射硬化型及び熱硬化型または可視光照射硬化型または可視光照射硬化型及び熱硬化型または熱硬化型の透明接着剤などで貼り合わせる。
なお、このときもショア硬度30以下、好ましくは15〜25の透明接着剤を100μm以下、好ましくは10〜30μmの厚さで介在させて貼り合わせるのが好ましい。
Subsequently, as shown in FIG. 4 (d), the surface opposite to the surface on which the low-reflection film of the dust-proof glass is formed on the TFT substrate is UV-irradiation-type or UV-irradiation-type and thermosetting-type or visible under the predetermined conditions. It is bonded with a light irradiation curable type or visible light irradiation curable type and a thermosetting type or thermosetting type transparent adhesive, etc., and the high thermal conductivity glass surface of the composite glass having the above laminated structure is attached to the counter substrate by the UV irradiation curable type or Bonding is performed using a UV irradiation curable type and a thermosetting type or a visible light irradiation curable type or a visible light irradiation curable type and a thermosetting type or a thermosetting type transparent adhesive.
At this time, it is preferable that the transparent adhesive having a Shore hardness of 30 or less, preferably 15 to 25, is laminated with a thickness of 100 μm or less, preferably 10 to 30 μm.

その後、TFT基板にフレキ基板12を異方性導電膜の熱圧着で取り付けると共に、TFT基板及び対向基板を黒化処理されたアルミニウム等から成る金属枠に取り付け、TFT基板、対向基板、TFT基板側防塵ガラス及び対向基板側防塵ガラスと金属枠の間を高熱伝導性モールド樹脂で固着し、見切り板13を取り付けることによって、図4(e)で示す様な透過型液晶表示装置を得ることができる。   After that, the flexible substrate 12 is attached to the TFT substrate by thermocompression bonding of an anisotropic conductive film, and the TFT substrate and the counter substrate are attached to a metal frame made of blackened aluminum, etc., and the TFT substrate, counter substrate, TFT substrate side A transmissive liquid crystal display device as shown in FIG. 4E can be obtained by fixing between the dust-proof glass and the counter-substrate-side dust-proof glass and the metal frame with a high thermal conductive mold resin and attaching the parting plate 13. .

上記した本発明を適用した液晶表示装置の製造方法では、対向基板に積層構造の複合ガラスの高熱伝導性ガラス面を貼り合わせる工程以外は、既存の防塵ガラスが貼り合わせられた透過型液晶表示装置の製造方法を利用しており、既存の設備及び材料を利用して低コストで高い放熱効果を有する透過型液晶表示装置を得ることができる。   In the method of manufacturing a liquid crystal display device to which the present invention is applied, a transmission type liquid crystal display device in which an existing dust-proof glass is bonded, except for a step of bonding a high thermal conductive glass surface of a composite glass having a laminated structure to a counter substrate. Thus, it is possible to obtain a transmissive liquid crystal display device having a high heat dissipation effect at low cost by using existing equipment and materials.

なお、上記では本発明を適用した液晶表示装置の一例として透過型液晶表示装置を例に挙げて説明を行ったが、反射型液晶表示装置であっても対向基板に、石英ガラスや透明結晶化ガラスに高熱伝導性ガラスを貼り合わせた積層構造を有する対向基板側防塵ガラスを貼り合わせると共に、TFT基板、対向基板及び対向基板側防塵ガラスと金属枠の間隙に高熱伝導性モールド樹脂が充填されることによって、低コストで高い放熱効果を奏する。   In the above description, a transmissive liquid crystal display device has been described as an example of a liquid crystal display device to which the present invention is applied. However, even a reflective liquid crystal display device has quartz glass or transparent crystallization on a counter substrate. The counter substrate side dustproof glass having a laminated structure in which glass is bonded with high thermal conductivity glass is bonded together, and the gap between the TFT substrate, counter substrate, counter substrate side dustproof glass and metal frame is filled with high thermal conductivity mold resin. As a result, a high heat dissipation effect is achieved at low cost.

本発明を適用した液晶表示装置の一例である透過型液晶表示装置を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the transmissive liquid crystal display device which is an example of the liquid crystal display device to which this invention is applied. デフォーカス効果の検証を説明するための模式図である。It is a schematic diagram for demonstrating verification of a defocus effect. サファイアC軸精度とコントラストとの関係を示すグラフである。It is a graph which shows the relationship between sapphire C-axis accuracy and contrast. 本発明を適用した液晶表示装置の製造方法の一例を説明するための模式的な図である。It is a schematic diagram for demonstrating an example of the manufacturing method of the liquid crystal display device to which this invention is applied.

符号の説明Explanation of symbols

1 透過型液晶表示装置
2 TFT基板
3 対向基板
4 TFT基板側防塵ガラス
5 対向基板側防塵ガラス
6 金属枠
7 高熱伝導性モールド樹脂
8 低反射膜
9 石英ガラスまたは透明結晶化ガラス
10 高熱伝導性ガラス
11 投射レンズ
12 フレキ基板
13 見切り板
14 スクリーン
DESCRIPTION OF SYMBOLS 1 Transmission type liquid crystal display device 2 TFT substrate 3 Counter substrate 4 TFT substrate side dust-proof glass 5 Counter substrate side dust-proof glass 6 Metal frame 7 High thermal conductive mold resin 8 Low reflective film 9 Quartz glass or transparent crystallized glass 10 High thermal conductive glass 11 Projection lens 12 Flexible substrate 13 Parting plate 14 Screen

Claims (6)

液晶を挟んで対向させた駆動基板と対向基板と、少なくとも前記対向基板に透明接着剤で貼り合わせられた防塵基板と、前記駆動基板及び対向基板を取り付ける枠体を有し、前記駆動基板、対向基板及び防塵基板の端部が高熱伝導性樹脂を介して前記枠体と接する液晶表示装置であって、
前記防塵基板は、石英ガラスまたは透明結晶化ガラスと熱伝導率が10(W/m・k)以上の複屈折のある高熱伝導性ガラスを透明接着剤で貼り合わせた積層構造を有し、前記高熱伝導性ガラス面で前記対向基板と透明接着剤で貼り合わせられている
ことを特徴とする液晶表示装置。
A driving substrate opposed to the liquid crystal, a counter substrate, a dust-proof substrate bonded to at least the counter substrate with a transparent adhesive, and a frame for attaching the driving substrate and the counter substrate; A liquid crystal display device in which ends of the substrate and the dust-proof substrate are in contact with the frame body through a high thermal conductive resin,
The dustproof substrate has a laminated structure in which quartz glass or transparent crystallized glass and high thermal conductivity glass having a birefringence of 10 (W / m · k) or more are bonded with a transparent adhesive, A liquid crystal display device, wherein the counter substrate and the transparent substrate are bonded to each other on a highly thermally conductive glass surface.
前記複屈折のある高熱伝導性ガラスは、C軸方向またはC軸方向投影線方向と透過すべき偏光透過軸との成す角度が±2°以内、またはC軸と直交する軸と透過すべき偏光透過軸との成す角度が±2°以内、またはC面と透過すべき偏光の透過方向に垂直な面との成す角度が±2°以内である
ことを特徴とする請求項1に記載の液晶表示装置。
The birefringent highly thermally conductive glass has a C-axis direction or C-axis direction projection line direction and a polarization transmission axis to be transmitted within ± 2 °, or polarized light to be transmitted with an axis orthogonal to the C-axis. 2. The liquid crystal according to claim 1, wherein an angle formed with the transmission axis is within ± 2 °, or an angle formed between the C plane and a surface perpendicular to the transmission direction of the polarized light to be transmitted is within ± 2 °. Display device.
前記防塵基板は、ショア硬度30以下の透明接着剤を100μm以下の厚みで介在させて前記石英ガラス或いは透明結晶化ガラスと前記高熱伝導性ガラスを貼り合わせた
ことを特徴とする請求項1に記載の液晶表示装置。
2. The dust-proof substrate is formed by laminating the quartz glass or transparent crystallized glass and the high thermal conductivity glass with a transparent adhesive having a Shore hardness of 30 or less interposed in a thickness of 100 μm or less. Liquid crystal display device.
ショア硬度30以下の透明接着剤を100μm以下の厚みで介在させて前記防塵基板を少なくとも前記対向基板に貼り合わせた
ことを特徴とする請求項1に記載の液晶表示装置。
The liquid crystal display device according to claim 1, wherein a transparent adhesive having a Shore hardness of 30 or less is interposed with a thickness of 100 μm or less, and the dust-proof substrate is bonded to at least the counter substrate.
前記防塵基板は、入射側の前記石英ガラスまたは透明結晶化ガラス表面に低反射膜が形成された
ことを特徴とする請求項1に記載の液晶表示装置。
The liquid crystal display device according to claim 1, wherein the dust-proof substrate has a low-reflection film formed on the surface of the incident side of the quartz glass or transparent crystallized glass.
駆動基板と対向基板を所定の間隙を介して重ね合わせる工程と、
前記駆動基板及び対向基板の間隙内に液晶を注入封止する工程と、
石英ガラスまたは透明結晶化ガラスの表面に低反射膜を形成する工程と、
前記石英ガラスまたは透明結晶化ガラスの低反射膜が形成された面とは反対の面に熱伝導率が10(W/m・k)以上の複屈折のある高熱伝導性ガラスを透明接着剤で貼り合わせて積層ガラスを形成する工程と、
低反射膜が形成された石英ガラスまたは透明結晶化ガラスの石英ガラスまたは透明結晶化ガラス面を前記駆動基板に透明接着剤で貼り合わせる工程と、
前記積層ガラスの高熱伝導性ガラス面を前記対向基板に透明接着剤で貼り合わせる工程と、
これらの工程後に、前記駆動基板及び対向基板を枠体に取り付ける工程と、
前記駆動基板、前記対向基板、前記石英ガラスまたは透明結晶化ガラス及び前記積層ガラスと前記枠体との間隙に高熱伝導性樹脂を充填固着する工程を備える
ことを特徴とする液晶表示装置の製造方法。
Superimposing the driving substrate and the counter substrate through a predetermined gap;
Injecting and sealing liquid crystal in the gap between the driving substrate and the counter substrate;
Forming a low reflection film on the surface of quartz glass or transparent crystallized glass;
A highly heat-conductive glass having a birefringence of 10 (W / m · k) or more on the surface opposite to the surface on which the low reflection film of quartz glass or transparent crystallized glass is formed with a transparent adhesive. Bonding and forming a laminated glass;
Bonding the quartz glass or transparent crystallized glass surface of quartz glass or transparent crystallized glass with a low reflective film to the drive substrate with a transparent adhesive;
Bonding the high thermal conductivity glass surface of the laminated glass to the counter substrate with a transparent adhesive;
After these steps, attaching the drive substrate and the counter substrate to the frame,
A method of manufacturing a liquid crystal display device, comprising: a step of filling and fixing a high thermal conductive resin in a gap between the driving substrate, the counter substrate, the quartz glass or transparent crystallized glass, and the laminated glass and the frame body. .
JP2004002557A 2004-01-08 2004-01-08 Liquid crystal display and method for manufacturing the same Pending JP2005195909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002557A JP2005195909A (en) 2004-01-08 2004-01-08 Liquid crystal display and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002557A JP2005195909A (en) 2004-01-08 2004-01-08 Liquid crystal display and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005195909A true JP2005195909A (en) 2005-07-21

Family

ID=34817716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002557A Pending JP2005195909A (en) 2004-01-08 2004-01-08 Liquid crystal display and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005195909A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216758A (en) * 2008-03-07 2009-09-24 Seiko Epson Corp Electro-optical apparatus and electronic device
CN101881895B (en) * 2009-01-22 2013-04-24 精工爱普生株式会社 Liquid crystal display apparatus and projector
WO2019004435A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Polarization plate, image display device using same, and mobile body
US11297290B2 (en) 2018-11-05 2022-04-05 Seiko Epson Corporation Projector and method for controlling projector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216758A (en) * 2008-03-07 2009-09-24 Seiko Epson Corp Electro-optical apparatus and electronic device
CN101881895B (en) * 2009-01-22 2013-04-24 精工爱普生株式会社 Liquid crystal display apparatus and projector
WO2019004435A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Polarization plate, image display device using same, and mobile body
JPWO2019004435A1 (en) * 2017-06-29 2019-11-07 京セラ株式会社 Polarizing plate, image display device using the same, and moving body
US11297290B2 (en) 2018-11-05 2022-04-05 Seiko Epson Corporation Projector and method for controlling projector

Similar Documents

Publication Publication Date Title
TWI246631B (en) Liquid crystal display device, liquid crystal projector device, and cooling method of panel
US11520218B2 (en) Projection apparatus and phosphor wheel thereof
JP2009047969A (en) Projector and display apparatus
JP2007121505A (en) Reflection type liquid crystal display
US7551280B2 (en) Method for manufacturing optical element, method for manufacturing projector, optical element and projector
CN100568082C (en) Projector and optics
JP2002296568A (en) Reflection type liquid crystal display element and manufacturing method therefor
JP5838646B2 (en) Projection type image device and method of manufacturing optical element of projection type image device
JP4135088B2 (en) Liquid crystal display device and liquid crystal projector
JP2004205599A (en) Reflective liquid crystal display element
JP3434193B2 (en) Transmissive display
TW200426731A (en) Optoelectronic device accommodated in installing case, projection display device and installing case
JP2004245914A (en) Liquid crystal projector device and transparent plate used for same, and liquid crystal display panel
JP2005195909A (en) Liquid crystal display and method for manufacturing the same
US20200089043A1 (en) Electro-optical device and electronic apparatus
US7719743B2 (en) Reflective light modulator and projector device
WO1998036313A1 (en) Liquid crystal display
JP2005208165A (en) Liquid crystal display element and liquid crystal projector using the display element
JP2004070163A (en) Display element
JP2547984B2 (en) Projection display device
JP2003075912A (en) Liquid crystal projector and its assembling method
JP5150469B2 (en) Optical unit and projection type liquid crystal display device using the same
JPH10123983A (en) Liquid crystal display device
JP2005189487A (en) Liquid crystal display element and liquid crystal projector devoce using the same
JP2005208079A (en) Liquid crystal display element and liquid crystal projector device using the element