JP2005195382A - Method and apparatus for generating and irradiating terahertz electromagnetic wave - Google Patents

Method and apparatus for generating and irradiating terahertz electromagnetic wave Download PDF

Info

Publication number
JP2005195382A
JP2005195382A JP2003437003A JP2003437003A JP2005195382A JP 2005195382 A JP2005195382 A JP 2005195382A JP 2003437003 A JP2003437003 A JP 2003437003A JP 2003437003 A JP2003437003 A JP 2003437003A JP 2005195382 A JP2005195382 A JP 2005195382A
Authority
JP
Japan
Prior art keywords
terahertz
electromagnetic wave
terahertz electromagnetic
probe
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003437003A
Other languages
Japanese (ja)
Other versions
JP4209766B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2003437003A priority Critical patent/JP4209766B2/en
Publication of JP2005195382A publication Critical patent/JP2005195382A/en
Application granted granted Critical
Publication of JP4209766B2 publication Critical patent/JP4209766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a portable apparatus which can be operated terahertz probe brought close to a specimen in a terahertz electromagnetic wave generating and irradiating method for directly irradiating terahertz waves to foods, chemicals, human skin, etc. and detecting reflected waves. <P>SOLUTION: In the terahertz probe, a lens to be arranged in the terahertz probe for coupling the outputs of a pump laser beam and a signal laser beam into one fiber and introducing them to the terahertz probe; a crystal for terahertz generation; a terahertz waveguide; and a compact room temperature detector for detecting reflected waves from the specimen are firmly, longitudinally arranged in one compact case to acquire reflection output. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はレーザ光源を使ったテラヘルツ帯コヒーレント電磁波発生照射方法及び装置に関する。  The present invention relates to a terahertz band coherent electromagnetic wave generation irradiation method and apparatus using a laser light source.

波長可変レーザを用いて誘電体LiNbOや半導体GaP結晶などのテラヘルツ電磁波発生用結晶から周波数可変で単一周波数のコヒーレントテラヘルツを発生させることが可能となり、これらをテラヘルツ光源として、生体分子の同定、食品の検査、ガン細胞の検出、IC部品検査などに役立てることができる。すなわち、生体やがん細胞のテラヘルツ共振周波数にあわせて、検体のテラヘルツ帯画像を得る。このため、テラヘルツ電磁波ビームを局所的に照射し、検体を乗せたステージを移動させることにより画像を得ている。Using a wavelength tunable laser, it becomes possible to generate a single-frequency coherent terahertz with a variable frequency from a terahertz electromagnetic wave generating crystal such as a dielectric LiNbO 3 or a semiconductor GaP crystal, and using these as a terahertz light source, It can be used for food inspection, cancer cell detection, IC component inspection, and the like. That is, a terahertz band image of the specimen is obtained in accordance with the terahertz resonance frequency of the living body or cancer cell. For this reason, an image is obtained by locally irradiating a terahertz electromagnetic wave beam and moving the stage on which the specimen is placed.

しかし、店舗内の食品検査や、人体の皮膚、眼球の検査、口内検査などはステージ上の検体を用いての検査ではなく、テラヘルツ波を発生し,受光する携帯可能なプローブを棚の上に置かれている食品に近づけて、あるいは患者の皮膚の患部などに近づけて測定する必要があるがまだこのような携帯可能なテラヘルツ電磁波プローブは知られていない。  However, in-store food inspections, human skin and eyeball inspections, and oral inspections are not performed using specimens on the stage, but a portable probe that generates and receives terahertz waves is placed on the shelf. Although it is necessary to perform measurement close to the food that is placed or close to the affected area of the patient's skin, such a portable terahertz electromagnetic wave probe is not yet known.

従来の画像を得る方法ではポンプ光源として用いるYAGレーザ、信号光源として用いるオプティカルパラメトリックオシレータ(OPO)などは防振台上に置かれたレンズとミラを用いてテラヘルツ電磁波発生用結晶に照射され、二つのレーザの差周波数を有するテラヘルツ電磁波を得ていた。  In a conventional method of obtaining an image, a YAG laser used as a pump light source, an optical parametric oscillator (OPO) used as a signal light source, and the like are irradiated onto a terahertz electromagnetic wave generating crystal using a lens and a mirror placed on a vibration isolator. A terahertz electromagnetic wave having a difference frequency of two lasers was obtained.

また、テラヘルツ電磁波発生用結晶としてGaPを使った場合、二つの入射光の間の微小な角度整合部、出力テラヘルツ波の集光用法物面鏡、テラヘルツ電磁波検出用シリコンボロメータなどで構成され数十cm以上の大きさと微妙な光学系からできていたために定盤上に置かなければならず、携帯は困難であった。  In addition, when GaP is used as a crystal for generating terahertz electromagnetic waves, it consists of a fine angle matching part between two incident lights, a normal mirror for condensing output terahertz waves, a silicon bolometer for detecting terahertz electromagnetic waves, etc. It was difficult to carry because it had to be placed on a surface plate because of its size of more than cm and a delicate optical system.

本発明はこれらの欠点を除き、携帯可能な、小型かつ堅牢で、人の手によって移動させて計測することをを可能にするテラヘルツ電磁波発生照射方法及び装置を提供する。  The present invention eliminates these drawbacks and provides a terahertz electromagnetic wave generating and irradiating method and apparatus that are portable, small and robust, and can be moved and measured by a human hand.

ポンプ光レーザ、信号光レーザはいずれもファイバ結合型にする。波長可変Ybドープファイバレーザ(波長可変範囲1.03μm−1.11μm)はレーザ自体がガラスファイバで構成されており、最適なレーザ光源の一つである。ポンプ光源、信号光源がファイバ結合でない場合はレンズを使ってファイバに導入する。ポンプ光と信号光は通常偏光方向が互いに垂直である。ファイバ入出力型の偏光ビームコンバイナーを使って2つのファイバ出力を1つのファイバ出力へと変換し、テラヘルツ波発生照射部分、すなわちテラヘルツプローブに導入する。  Both the pump light laser and the signal light laser are of the fiber coupling type. The wavelength tunable Yb-doped fiber laser (wavelength tunable range: 1.03 μm to 1.11 μm) is one of the optimum laser light sources because the laser itself is made of glass fiber. If the pump light source and signal light source are not fiber coupled, they are introduced into the fiber using a lens. The polarization directions of the pump light and the signal light are usually perpendicular to each other. Using a fiber input / output type polarization beam combiner, two fiber outputs are converted into one fiber output and introduced into a terahertz wave generating irradiation portion, that is, a terahertz probe.

ポンプ光及び信号光はファイバ先端から放出し直径5mm以下の小型レンズで平行ビームに変換される。直径1mm程度の平行ビームに変換されたポンプ光と信号光はビーム径に見合う小型のテラヘルツ電磁波発生用結晶に導かれほぼ前方方向にテラヘルツ波を発生する。発生したテラヘルツ電磁波は方物面鏡を使わずに直ちにテーパ型金属導波管に導きプローブの先端からテラヘルツ電磁波を放出する。  Pump light and signal light are emitted from the fiber tip and converted into parallel beams by a small lens having a diameter of 5 mm or less. The pump light and the signal light converted into a parallel beam having a diameter of about 1 mm are guided to a small terahertz electromagnetic wave generating crystal corresponding to the beam diameter to generate a terahertz wave in a substantially forward direction. The generated terahertz electromagnetic wave is immediately guided to the tapered metal waveguide without using a plane mirror, and the terahertz electromagnetic wave is emitted from the tip of the probe.

金属導波管の代わりに、ポリエチレンやシリコンでできたレンズを使ってもよい。上記の光学コンポネントである、平行ビーム形成用のレンズ、テラヘルツ電磁波発生用結晶、金属導波管はテラヘルツプローブの軸線から20度以内に配置されているためプローブは携帯に適当な細長い形状を有している。これらのコンポネントは通常のマウントを用いず、一個の金属あるいはプラスティック架台に固着してあり、堅牢であり、携帯移動によって位置ずれを生じない。  A lens made of polyethylene or silicon may be used instead of the metal waveguide. The above-mentioned optical components such as a parallel beam forming lens, a terahertz electromagnetic wave generating crystal, and a metal waveguide are disposed within 20 degrees from the axis of the terahertz probe, so that the probe has an elongated shape suitable for carrying. ing. These components do not use a normal mount, are fixed to a single metal or plastic mount, are robust, and do not shift in position due to mobile movement.

テラヘルツ電磁波を対象とする検体にテラヘルツ電磁波を照射するにはこのプローブを検体に近づけ、検体からの反射テラヘルツ波をおなじ金属導波管へと導き、ビームスプリッタを介して室温で動作するテラヘルツ波検知器に導き反射波強度を計測する。テラヘルツプローブはファイバ結合でポンプ光源、信号光源に接続されているのでポンプ光源、信号光源に対して自由に動かすことが可能である。  In order to irradiate a terahertz electromagnetic wave to a specimen that targets terahertz electromagnetic waves, this probe is brought close to the specimen, the reflected terahertz wave from the specimen is guided to the same metal waveguide, and the terahertz wave that operates at room temperature via a beam splitter is detected. Measure the intensity of the reflected wave. Since the terahertz probe is connected to the pump light source and the signal light source by fiber coupling, the terahertz probe can be freely moved with respect to the pump light source and the signal light source.

本発明によればテラヘルツ波を発生照射検知する部分、すなわちテラヘルツプローブは自由に動かすことができるので、これを携帯して店舗などで食品類に近づけ、あるいは病院において人の皮膚や眼球、口内患部に近づけて、テラヘルツ波を照射し、その反射波強度をおなじプローブで室温で検出できる。これによって、食品の腐敗や、不純物の添加状態、人体皮膚その他の異常を検出することができる。  According to the present invention, the terahertz wave generating and detecting part, that is, the terahertz probe can be moved freely, so that it can be carried close to foods at a store or the like, or a human skin, eyeball, or affected area in the mouth in a hospital The terahertz wave is irradiated close to, and the reflected wave intensity can be detected at room temperature with the same probe. As a result, it is possible to detect food spoilage, the state of added impurities, human skin and other abnormalities.

発明を実施するための最良の形態、実施例1Best Mode for Carrying Out the Invention, Example 1

図1において、二つのファイバ1,2内をそれぞれ伝送されてきたポンプ光と信号光の互いに直交する偏波方向を持つビームを、ファイバ入出力型偏光ビームコンバイナ3を使って1本のファイバ内ビーム4に結合し、細長いテラヘルツプローブ筐体5の末端にある入力端から導入し、直径5mm以下の小型レンズ6によって直径1mm程度の平行ビー厶に変換される。立体状の偏光子7によって互いに垂直な偏光に分離させ、直角プリズム7、偏光子8によって再び二つのビームを結合する。そのビームをテラヘルツ波発生用GaP結晶10に導入する。GaP結晶においてはポンプ光が1.0μmより長波長の場合微小な角度整合が必要である。二つのビームのなす角はテラヘルツ波周波数に比例的に増大するがいずれにしろ微小であり、3THzで35min.程度である。この微小角度を発生させるために偏光子8を所定の微小角度回転させる。偏光子8を極めて小型の回転ステージに乗せれば任意のテラヘルツ周波数で測定できるが、測定周波数があらかじめ分かつている場合はステージを使わないで固定角度を与えることでもよい。他の光学素子及び結晶は全てプローブ筐体に接着あるいはネジ締めにより固定されており、ミラホルダのような大型とならざるを得ないホルダ類は使用していない。  In FIG. 1, a beam having a polarization direction orthogonal to each other of pump light and signal light transmitted through two fibers 1 and 2 is transmitted into one fiber using a fiber input / output polarization beam combiner 3. It is coupled to the beam 4, introduced from the input end at the end of the elongated terahertz probe housing 5, and converted into a parallel beak having a diameter of about 1 mm by a small lens 6 having a diameter of 5 mm or less. The beams are separated into mutually perpendicular polarized light by a three-dimensional polarizer 7, and the two beams are combined again by a right-angle prism 7 and a polarizer 8. The beam is introduced into the GaP crystal 10 for generating terahertz waves. In the GaP crystal, minute angle matching is required when the pump light has a wavelength longer than 1.0 μm. The angle formed by the two beams increases in proportion to the terahertz wave frequency, but is extremely small anyway, and is 35 min. Degree. In order to generate this minute angle, the polarizer 8 is rotated by a predetermined minute angle. If the polarizer 8 is placed on an extremely small rotating stage, measurement can be performed at an arbitrary terahertz frequency. However, if the measurement frequency is divided in advance, a fixed angle may be given without using the stage. All other optical elements and crystals are fixed to the probe housing by bonding or screwing, and no holders that must be large like a mirror holder are used.

一方、位相整合されたテラヘルツ波の発生方向は結晶内で10−20度程度であり、周波数に大きく依存しない。この角度は結晶外に出ると屈折率比だけ大きくなるから、40−60度にも達する。その結果、テラヘルツ波用方物面鏡が複数個必要となり、小型化の障害となる、そこで、これを避けるため、結晶の入力面を図1に示したように出力面にたいして10−20度あらかじめ傾け、その方向から結晶に入射すると、テラヘルツ波ビームは出力面に垂直に近い方向に平行に近いビーム状に出射する。これを図1のように金属導波管11で伝送し、先端の細くしたプローブ先端部分12を検体部分17に近づけてテラヘルツ波を照射する。検体から反射した、テラヘルツ波は再びプローブ先端からビームスプリッタ13を介して室温検知素子DTGSに入射する。発生した電気信号は信号線を通って外部に取り出されるがこの部分は図1では省略してある。筐体は長さ10−20cm,幅5cm、高さ1cm程度であり、携帯することが可能である。  On the other hand, the generation direction of the phase-matched terahertz wave is about 10 to 20 degrees in the crystal and does not greatly depend on the frequency. Since this angle increases by the refractive index ratio when it goes out of the crystal, it reaches 40-60 degrees. As a result, a plurality of terahertz wave plane mirrors are required, which is an obstacle to miniaturization. Therefore, in order to avoid this, the crystal input surface is 10-20 degrees in advance with respect to the output surface as shown in FIG. When tilted and incident on the crystal from that direction, the terahertz wave beam is emitted in a beam shape that is nearly parallel to a direction that is nearly perpendicular to the output surface. This is transmitted through the metal waveguide 11 as shown in FIG. 1, and the probe tip portion 12 having a narrow tip is brought close to the sample portion 17 to irradiate terahertz waves. The terahertz wave reflected from the specimen is incident on the room temperature detection element DTGS via the beam splitter 13 again from the probe tip. The generated electric signal is taken out through a signal line, but this portion is omitted in FIG. The casing has a length of 10-20 cm, a width of 5 cm, and a height of about 1 cm, and can be carried.

テラヘルツ波発生用結晶として複屈折性結晶GaSeを使うと図2のようにポンプ光と信号光、及び発生するテラヘウルツ波は互いに平行となる、この場合、位相整合はGaSe結晶12の複屈折性を利用しておこなわれ、図2ように結晶を垂直入射から傾けることによって行われる。この角度はテラヘルツ周波数によってきまり、最大40度程度である。測定する周波数があらかじめ決まっているときは所定の角度に固定するが周波数をチューニングする必要があるときは小型の回転ステージ上に乗せなければならない。結晶から出たポンプ光と信号光は金属導波管の途中または入り口に設けられたGeやブラックポリエチレンでできた近赤外線フィルタで除去される。出力側の構成は、その他については実施例1と同じである。  When the birefringent crystal GaSe is used as the terahertz wave generating crystal, the pump light and the signal light and the generated terahertz wave are parallel to each other as shown in FIG. 2. In this case, the phase matching causes the birefringence of the GaSe crystal 12 to be increased. This is done by tilting the crystal from normal incidence as shown in FIG. This angle is determined by the terahertz frequency and is about 40 degrees at the maximum. When the frequency to be measured is predetermined, it is fixed at a predetermined angle, but when the frequency needs to be tuned, it must be placed on a small rotary stage. Pump light and signal light emitted from the crystal are removed by a near-infrared filter made of Ge or black polyethylene provided in the middle or at the entrance of the metal waveguide. The configuration on the output side is the same as that of the first embodiment in the other respects.

実施例2は実施例1よりコンポネントの数が少ないのでより小型であるが、GaPを使った実施例1に比べてGaSeを使うと出力が充分高くない、また、周波数範囲がGaPの場合最大0.3THz−7THzに対して、GaSeの場合0.3THz−5THzと、より狭い範囲になるという欠点があるので目的によって両者を使い分ける。  The second embodiment is smaller than the first embodiment because the number of components is smaller, but the output is not sufficiently high when using GaSe compared to the first embodiment using GaP, and the maximum is 0 when the frequency range is GaP. In contrast to 3 THz-7 THz, GaSe has a defect of 0.3 THz-5 THz, which is a narrower range.

実施例1の構成を示す図である。  1 is a diagram illustrating a configuration of Example 1. FIG. 実施例2の構成を示す図である。  6 is a diagram illustrating a configuration of Example 2. FIG.

符号の説明Explanation of symbols

1…ポンプ光を伝送するファイバ
2…信号光を伝送するファイバ
3…ビームコンバイナ
4…ポンプ光と信号光を伝送するファイバ
5…テラヘルツプローブ筐体
6…小型レンズ
7、8…キュービック偏光子
9…直角プリズム
10…GaP結晶
11…金属導波管
12…金属導波管テーパ部
13…ビームスプリッタ
14…反射テラヘルツ波ビーム
15…金属導波管
16…検知器
17…検体
18…GaSe結晶
19…近赤外線カットフィルタ
DESCRIPTION OF SYMBOLS 1 ... Fiber which transmits pump light 2 ... Fiber which transmits signal light 3 ... Beam combiner 4 ... Fiber which transmits pump light and signal light 5 ... Terahertz probe housing 6 ... Small lens 7, 8 ... Cubic polarizer 9 ... Right angle prism 10 ... GaP crystal 11 ... Metal waveguide 12 ... Metal waveguide taper 13 ... Beam splitter 14 ... Reflective terahertz wave beam 15 ... Metal waveguide 16 ... Detector 17 ... Specimen 18 ... GaSe crystal 19 ... Near Infrared cut filter

Claims (3)

二つのレーザ光の出力をビームコンバイナによって一つのファイバのビームとなし、ファイバの出力を携帯可能なテラヘルツ電磁波プローブに導入し、小型レンズによって前記レーザ光を所定の直径を有する平行ビームとなし、これをテラヘルツ電磁波発生用結晶に導入し該結晶の出力面にほぼ垂直に近づけた導波管あるいはレンズによって細く絞られたテラヘルツ電磁波ビームを形成し、任意の位置にある検体に、上記携帯可能なテラヘルツ電磁波プローブを近づけることにより、反射したテラヘルツ電磁波を前記プローブ内に配置した検知器によって検出することを特徴とするテラヘルツ電磁波発生照射方法及び装置。  The output of the two laser beams is made into one fiber beam by a beam combiner, the output of the fiber is introduced into a portable terahertz electromagnetic wave probe, and the laser beam is made into a parallel beam having a predetermined diameter by a small lens. Is introduced into a crystal for generating terahertz electromagnetic waves, and a terahertz electromagnetic wave beam narrowed by a waveguide or a lens that is nearly perpendicular to the output surface of the crystal is formed, and the portable terahertz is applied to a specimen at an arbitrary position. A terahertz electromagnetic wave generating and irradiating method and apparatus, wherein a reflected terahertz electromagnetic wave is detected by a detector arranged in the probe by bringing an electromagnetic wave probe closer. 前記テラヘルツ電磁波波発生用結晶がGaPであり、二つのレーザ光ビームに微小な角度を与え、かつ、テラヘルツ波出力の方向がプローブ軸に近い方向になるよう結晶の入射面が所定の角度を有することを特徴とする請求項1に記載のテラヘルツ電磁波発生照射方法及び装置。  The terahertz electromagnetic wave generating crystal is GaP, gives a small angle to the two laser light beams, and the incident surface of the crystal has a predetermined angle so that the terahertz wave output direction is close to the probe axis. The terahertz electromagnetic wave generating and irradiating method and apparatus according to claim 1. 前記テラヘルツ電磁波波発生用結晶が複屈折性を有することを特徴とする請求項1に記載のテラヘルツ電磁波発生照射方法及び装置。  The terahertz electromagnetic wave generation irradiation method and apparatus according to claim 1, wherein the terahertz electromagnetic wave generation crystal has birefringence.
JP2003437003A 2003-12-26 2003-12-26 Terahertz electromagnetic wave reflection measuring device Expired - Fee Related JP4209766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003437003A JP4209766B2 (en) 2003-12-26 2003-12-26 Terahertz electromagnetic wave reflection measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003437003A JP4209766B2 (en) 2003-12-26 2003-12-26 Terahertz electromagnetic wave reflection measuring device

Publications (2)

Publication Number Publication Date
JP2005195382A true JP2005195382A (en) 2005-07-21
JP4209766B2 JP4209766B2 (en) 2009-01-14

Family

ID=34815956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003437003A Expired - Fee Related JP4209766B2 (en) 2003-12-26 2003-12-26 Terahertz electromagnetic wave reflection measuring device

Country Status (1)

Country Link
JP (1) JP4209766B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178414A (en) * 2005-12-28 2007-07-12 Semiconductor Res Found Method and system for testing sugar content
JP2007198854A (en) * 2006-01-25 2007-08-09 Si Seiko Co Ltd Method of inspecting fruit and vegetable, and device therefor
KR100848317B1 (en) 2006-12-07 2008-07-24 한국전자통신연구원 Apparatus and method for generating THz-wave by heterodyning optical and electrical waves
JP2010523961A (en) * 2007-03-30 2010-07-15 イー2ヴイ テクノロジーズ (ユーケイ) リミテッド Detection device
CN110057776A (en) * 2019-05-10 2019-07-26 南开大学 A kind of integrated form Terahertz confocal imaging device and imaging method based on waveguiding structure
CN110743104A (en) * 2019-10-28 2020-02-04 鲍玉珍 Terahertz wave physiotherapy terminal and terahertz wave physiotherapy system for cervical cancer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292458A (en) * 1995-04-24 1996-11-05 Anritsu Corp Four-light-wave mixed light generating device and semiconductor unpolarized light source used for the device
JP2003505130A (en) * 1999-07-23 2003-02-12 テラビュー リミテッド Radiation probe and caries detection
WO2003069318A2 (en) * 2002-02-15 2003-08-21 Teraview Limited An analysis apparatus and method
JP2003529760A (en) * 2000-03-31 2003-10-07 テラビュー リミテッド Apparatus and method for investigating a sample
JP2003302666A (en) * 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res Terahertz wave generating device and tuning method thereof
JP2004219967A (en) * 2003-01-13 2004-08-05 Tetsuo Yanai Terahertz wave generator and measuring apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292458A (en) * 1995-04-24 1996-11-05 Anritsu Corp Four-light-wave mixed light generating device and semiconductor unpolarized light source used for the device
JP2003505130A (en) * 1999-07-23 2003-02-12 テラビュー リミテッド Radiation probe and caries detection
JP2003529760A (en) * 2000-03-31 2003-10-07 テラビュー リミテッド Apparatus and method for investigating a sample
WO2003069318A2 (en) * 2002-02-15 2003-08-21 Teraview Limited An analysis apparatus and method
JP2003302666A (en) * 2002-04-09 2003-10-24 Inst Of Physical & Chemical Res Terahertz wave generating device and tuning method thereof
JP2004219967A (en) * 2003-01-13 2004-08-05 Tetsuo Yanai Terahertz wave generator and measuring apparatus thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178414A (en) * 2005-12-28 2007-07-12 Semiconductor Res Found Method and system for testing sugar content
JP2007198854A (en) * 2006-01-25 2007-08-09 Si Seiko Co Ltd Method of inspecting fruit and vegetable, and device therefor
KR100848317B1 (en) 2006-12-07 2008-07-24 한국전자통신연구원 Apparatus and method for generating THz-wave by heterodyning optical and electrical waves
US7684023B2 (en) 2006-12-07 2010-03-23 Electronics And Telecommunications Research Institute Apparatus and method for generating THz wave by heterodyning optical and electrical waves
JP2010523961A (en) * 2007-03-30 2010-07-15 イー2ヴイ テクノロジーズ (ユーケイ) リミテッド Detection device
CN110057776A (en) * 2019-05-10 2019-07-26 南开大学 A kind of integrated form Terahertz confocal imaging device and imaging method based on waveguiding structure
CN110743104A (en) * 2019-10-28 2020-02-04 鲍玉珍 Terahertz wave physiotherapy terminal and terahertz wave physiotherapy system for cervical cancer
CN110743104B (en) * 2019-10-28 2023-03-17 鲍玉珍 Terahertz wave physiotherapy terminal and terahertz wave physiotherapy system for cervical cancer

Also Published As

Publication number Publication date
JP4209766B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP6220128B2 (en) Terahertz wave generator and terahertz wave measuring method
US6839496B1 (en) Optical fibre probe for photoacoustic material analysis
JP6692103B2 (en) System and method for high contrast / near real time acquisition of terahertz images
TWI665840B (en) Laser assembly and inspection system using monolithic bandwidth narrowing apparatus
US10094766B2 (en) Device and method for remote polarimetric characterization
JP2016057138A (en) Film thickness measurement device and film thickness measurement method
JP2009511175A (en) Anti-Stokes Raman scattering endoscopy system and method
JP2003015050A (en) Laser microscope
US8759779B2 (en) Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectral device
WO2017013759A1 (en) Far-infrared spectroscopy device
US20190094133A1 (en) Observation apparatus and observation method
JP4209766B2 (en) Terahertz electromagnetic wave reflection measuring device
US6522402B1 (en) Apparatus and method for analyzing microscopic samples based on optical parametric oscillation
CN110567927B (en) Two-photon microscopic imaging system
WO2021131014A1 (en) Far-infrared spectroscopy device and far-infrared spectroscopy method
JP7012045B2 (en) Far infrared spectroscope
JP4091193B2 (en) Nonlinear optical response measuring device for medium
JP4209765B2 (en) Terahertz wave imaging device
JP3567234B2 (en) Spectrometry method and spectrometer
JP2015137980A (en) observation device
JP4666619B2 (en) Terahertz wave imaging device
JP2004055695A (en) Laser apparatus, image-reading apparatus having same, and image-inspecting apparatus
JP4401682B2 (en) Phonon polariton waveguide coupled terahertz wave generator
JP2008058918A (en) Terahertz electromagnetic wave generation method and spectroscopy/imaging measuring device
JP3440273B2 (en) Nonlinear susceptibility spectrum measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees