JP2005194123A - Heat-insulating vessel structure - Google Patents

Heat-insulating vessel structure Download PDF

Info

Publication number
JP2005194123A
JP2005194123A JP2004000924A JP2004000924A JP2005194123A JP 2005194123 A JP2005194123 A JP 2005194123A JP 2004000924 A JP2004000924 A JP 2004000924A JP 2004000924 A JP2004000924 A JP 2004000924A JP 2005194123 A JP2005194123 A JP 2005194123A
Authority
JP
Japan
Prior art keywords
reformer
insulating layer
heat insulating
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004000924A
Other languages
Japanese (ja)
Other versions
JP4479237B2 (en
Inventor
Minoru Mizusawa
実 水澤
Sakae Chijiiwa
榮 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004000924A priority Critical patent/JP4479237B2/en
Publication of JP2005194123A publication Critical patent/JP2005194123A/en
Application granted granted Critical
Publication of JP4479237B2 publication Critical patent/JP4479237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-insulating vessel structure which can decrease the volume of a heat-insulating layer and the heat dissipation loss without using a high-cost vacuum heat-insulating vessel or the like, enables the miniaturizing of a device and the improvement in thermal efficiency, can greatly reduce the time and labor in the application of a heat-insulating layer, and allows maintenance to be easily performed. <P>SOLUTION: The structure is characterized as follows: a vessel 15 is provided with a double-layer structure composed of an inner heat-insulating layer 15a and an outer heat-insulating layer 15b; the inside of the inner heat-insulating layer 15a is used as a channel 17 of a combustion gas generated by burning a fuel with air for combustion; and the space between the inner heat-insulating layer 15a and the outer heat-insulating layer 15b is used as a supply channel 18 of the air for combustion. The air for combustion introduced into the supply channel 18 is preheated by the combustion gas present in the channel 17 and then supplied to the inside of the inner heat-insulating layer 15a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、断熱容器構造に関するものであって、特に、燃料電池の燃料となる水素を製造するための燃料改質装置の改質器等に適用すると有効な断熱容器構造に関するものである。   The present invention relates to a heat insulating container structure, and more particularly to a heat insulating container structure that is effective when applied to a reformer of a fuel reformer for producing hydrogen as fuel for a fuel cell.

一般に、燃料電池は、水の電気分解とは逆に水素と酸素を結合させて、その時に発生する電気と熱を取り出すものであり、その発電効率の高さや環境への適合性から、家庭用燃料電池コージェネレーションシステムや燃料電池自動車としての開発が盛んに行われているが、そうした燃料電池の燃料となる水素は、ナフサ、灯油等の石油系燃料や都市ガス等を改質器で改質して製造される。   In general, a fuel cell is one that combines hydrogen and oxygen in reverse to the electrolysis of water to extract the electricity and heat generated at that time. Because of its high power generation efficiency and environmental compatibility, Although fuel cell cogeneration systems and fuel cell vehicles are being actively developed, the hydrogen used as fuel for such fuel cells is reformed from petroleum-based fuels such as naphtha and kerosene, city gas, etc., with a reformer. Manufactured.

図2は改質器が設けられる設備の一例として、定置式の固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)の全体系統を表わすものであって、1は改質器、2は改質器1から排出される排ガスの熱により水を蒸発させて水蒸気を発生させる水蒸発器、3は前記排ガスの熱によりナフサ等の原燃料を気化させる原燃料気化器、4は改質器1へ供給する原料ガスの脱硫を行う脱硫器、5は改質器1で改質した改質ガスを冷却水で所要温度(およそ200〜250[℃]前後)に温度降下させCOとH2OをCO2とH2に変換する低温シフトコンバータ、6は低温シフトコンバータ5を通過した改質ガスを冷却水で冷却し酸化反応によってCOを除去する選択酸化CO除去器、7は選択酸化CO除去器6を通過した改質ガスを加湿する加湿器、8はカソード8aとアノード8bを有する固体高分子型燃料電池である。 FIG. 2 shows an entire system of a stationary polymer electrolyte fuel cell (PEFC) as an example of equipment provided with a reformer. 1 is a reformer, 2 is a modified A water evaporator that evaporates water by the heat of exhaust gas discharged from the gasifier 1 and generates water vapor, 3 is a raw fuel vaporizer that vaporizes raw fuel such as naphtha by the heat of the exhaust gas, and 4 is a reformer 1 Desulfurizer for desulfurizing the raw material gas to be supplied to 5, CO and H 2 O by reducing the temperature of the reformed gas reformed by the reformer 1 to the required temperature (about 200 to 250 [° C.]) with cooling water Is a low-temperature shift converter that converts CO into CO 2 and H 2 , 6 is a selective oxidation CO remover that cools the reformed gas that has passed through the low-temperature shift converter 5 with cooling water and removes CO by an oxidation reaction, and 7 is a selective oxidation CO removal vessel A humidifier for humidifying the reformed gas that has passed through 6, a solid polymer fuel cell having a cathode 8a and an anode 8b.

図2に示される設備においては、水が水蒸発器2で水蒸気とされ、且つナフサ等の燃料が原燃料気化器3で気化されて原料ガスとされ、前記水蒸気を混合した原料ガスが脱硫器4へ導かれ、該脱硫器4で脱硫された原料ガスが改質器1へ導かれ、該改質器1で改質された改質ガスが低温シフトコンバータ5と選択酸化CO除去器6と加湿器7とを介して固体高分子型燃料電池8のアノード8bへ導かれると共に、空気が加湿器7を介して固体高分子型燃料電池8のカソード8aへ導かれ、発電が行われるようになっており、又、前記アノード8bから排出されるアノードオフガスは、改質器1における燃料ガスとして再利用される一方、前記カソード8aから排出される水は、固体高分子型燃料電池8と選択酸化CO除去器6と低温シフトコンバータ5それぞれの冷却水、並びに原料ガスに混合される水蒸気の一部として用いられるようになっている。   In the facility shown in FIG. 2, water is converted into steam by the water evaporator 2, and fuel such as naphtha is vaporized by the raw fuel vaporizer 3 as raw material gas, and the raw material gas mixed with the steam is desulfurized. 4, the raw gas desulfurized by the desulfurizer 4 is guided to the reformer 1, and the reformed gas reformed by the reformer 1 is converted into the low temperature shift converter 5, the selective oxidation CO remover 6, The air is led to the anode 8b of the polymer electrolyte fuel cell 8 through the humidifier 7, and the air is led to the cathode 8a of the polymer electrolyte fuel cell 8 through the humidifier 7 so that power generation is performed. The anode off-gas discharged from the anode 8b is reused as fuel gas in the reformer 1, while the water discharged from the cathode 8a is selected with the polymer electrolyte fuel cell 8. Oxidation CO remover 6 and low temperature shift co Converter 5 is adapted to be used as part of the steam to be mixed each cooling water, and the raw material gas.

従来、前記改質器1と、その関連機器としての水蒸発器2、原燃料気化器3、脱硫器4、低温シフトコンバータ5、及び選択酸化CO除去器6は、図3に示される如く、燃料改質装置として一つのユニットにまとめられており、該燃料改質装置における改質器1は、アノードオフガスが燃料ガスとして供給され且つ空気が導入される改質容器本体9内に、燃料ガスを燃焼させて温度上昇させる第一触媒燃焼器10を設けると共に、該第一触媒燃焼器10の下流側における改質容器本体9内に、内部に改質触媒(図示せず)が装填され且つ原料ガスを流通させてその改質を行うための改質筒体12を改質容器本体9と同芯状に配設し、該改質筒体12の外周側所要箇所における改質容器本体9内に、改質筒体12内を流通する原料ガスとの熱交換により温度降下した燃焼排ガスを再度燃焼させて温度上昇させるための第二触媒燃焼器11を設けてなる構成を有している。   Conventionally, the reformer 1 and the water evaporator 2, the raw fuel vaporizer 3, the desulfurizer 4, the low temperature shift converter 5, and the selective oxidation CO remover 6 as the related equipment are as shown in FIG. The reformer 1 in the fuel reformer is integrated into one unit as a fuel reformer. The reformer 1 in the fuel reformer is supplied with fuel gas in a reforming vessel body 9 to which anode off-gas is supplied as fuel gas and air is introduced. Is provided with a first catalyst combustor 10 that raises the temperature by combustion, and a reforming catalyst (not shown) is loaded inside the reforming vessel body 9 on the downstream side of the first catalytic combustor 10 and A reforming cylinder 12 for performing reforming by circulating a raw material gas is disposed concentrically with the reforming container main body 9, and the reforming container main body 9 at a required position on the outer peripheral side of the reforming cylinder 12. And heat exchange with the raw material gas flowing through the reforming cylinder 12 And a second catalytic combustor 11 is provided comprising configuration for temperature increase was again combustion temperature drop and flue gas by.

前記改質器1に燃料ガスとして供給されるアノードオフガスはカロリーが低く着火しにくいが、図3に示されるような燃料改質装置における改質器1においては、前記燃料ガスと空気が改質容器本体9内に供給されると、第一触媒燃焼器10で酸化反応が強制的に行われて発熱し、これを熱源として原料ガスが改質筒体12内の改質触媒(図示せず)を通過する際に改質が行われ、改質ガスが生成され、低温シフトコンバータ5と選択酸化CO除去器6とを経由しCOが除去された改質ガスとして排出されると共に、前記原料ガスの改質反応のために熱を奪われて温度降下した燃焼排ガスは、第二触媒燃焼器11で再度燃焼が行われて温度上昇し、水蒸発器2と原燃料気化器3でそれぞれ改質用の水並びにナフサ等の原燃料と熱交換を行った後、排出されるようになっている。   The anode off-gas supplied as fuel gas to the reformer 1 is low in calories and difficult to ignite. However, in the reformer 1 in the fuel reformer as shown in FIG. 3, the fuel gas and air are reformed. When supplied into the container body 9, the first catalytic combustor 10 forcibly performs an oxidation reaction to generate heat, and the raw material gas is used as a heat source for the reforming catalyst (not shown) in the reforming cylinder 12. ), A reformed gas is generated, and is discharged as a reformed gas from which CO has been removed via the low temperature shift converter 5 and the selective oxidation CO remover 6, and the raw material The combustion exhaust gas whose temperature has dropped due to the gas reforming reaction is again combusted by the second catalytic combustor 11 and rises in temperature, and is reformed by the water evaporator 2 and the raw fuel vaporizer 3, respectively. Heat exchange with quality water and raw fuel such as naphtha , And is discharged.

ここで、改質器1は燃料から水素を生成する燃料電池発電システムの主要構成機器であって、その反応は700〜800[℃]程度の非常に高温で進行する吸熱反応であり、しかも、改質器1における反応の温度レベルと、低温シフトコンバータ5や選択酸化CO除去器6における反応の温度レベルとが異なっているため、各機器の間には、セラミックファイバ等の断熱材13を充填すると共に、全体を断熱材13で被覆して断熱層14を形成するようになっている。   Here, the reformer 1 is a main component of a fuel cell power generation system that generates hydrogen from fuel, and the reaction is an endothermic reaction that proceeds at a very high temperature of about 700 to 800 [° C.], and Since the temperature level of the reaction in the reformer 1 is different from the temperature level of the reaction in the low temperature shift converter 5 and the selective oxidation CO remover 6, a heat insulating material 13 such as ceramic fiber is filled between the devices. In addition, the heat insulating layer 14 is formed by covering the whole with the heat insulating material 13.

尚、真空断熱容器の内部に改質器を収容した断熱容器構造を示すものとしては、例えば、特許文献1がある。
特開2003−89503号公報
As an example of a heat insulating container structure in which a reformer is housed inside a vacuum heat insulating container, there is Patent Document 1, for example.
JP 2003-89503 A

しかしながら、図3に示されるような燃料改質装置の如く、各機器の間に、セラミックファイバ等の断熱材13を充填すると共に、全体を断熱材13で被覆して断熱層14を形成するのでは、燃料改質装置に占める断熱層14の容積が非常に大きくなると共に、その施工に手間がかかり、しかも、改質器1内の触媒交換や点検等のメンテナンスの都度、断熱材13を除去し、その上に改質容器本体9を切断しなければならず、非常に手間がかかるという欠点を有していた。   However, as in the fuel reformer as shown in FIG. 3, the heat insulating material 13 such as ceramic fiber is filled between the devices, and the whole is covered with the heat insulating material 13 to form the heat insulating layer 14. Then, while the volume of the heat insulation layer 14 occupying the fuel reformer becomes very large, it takes a lot of work, and the heat insulation material 13 is removed every time maintenance such as catalyst replacement or inspection in the reformer 1 is performed. However, the reforming container main body 9 has to be cut thereon, which has the disadvantage that it takes much time.

特に、近年、実用化が期待されている固体高分子型燃料電池は規模が小さいため、とりわけ断熱層14の容積が相対的に大きくなる。   Particularly, since the polymer electrolyte fuel cell expected to be put into practical use in recent years is small in scale, the volume of the heat insulating layer 14 becomes relatively large.

例えば、直径が200[mm]の円筒状に製作した改質器1に150[mm]の厚さの断熱材13を施工する場合、全容積のおよそ80[%]以上が断熱層14となってしまう。   For example, when the heat insulating material 13 having a thickness of 150 [mm] is applied to the reformer 1 manufactured in a cylindrical shape having a diameter of 200 [mm], approximately 80 [%] or more of the total volume becomes the heat insulating layer 14. End up.

改質器1は小型化を期待されている機器であるため、断熱層14の容積の削減と放熱損失の低減を両立させることは大きな課題であると言える。   Since the reformer 1 is a device that is expected to be downsized, it can be said that it is a big problem to achieve both reduction in the volume of the heat insulating layer 14 and reduction in heat dissipation loss.

尚、特許文献1に示されるような断熱容器構造では、真空断熱容器を使用するため、高い断熱性能は得られるものの、コスト面で不利となる欠点を有していた。   In addition, in the heat insulation container structure as shown by patent document 1, since the heat insulation performance was obtained since the vacuum heat insulation container was used, there existed a fault which becomes disadvantageous in terms of cost.

本発明は、斯かる実情に鑑み、高価となる真空断熱容器等を用いることなく、断熱層の容積を削減でき且つ放熱損失を低減でき、装置の小型化並びに熱効率向上を図ることができ、更に、断熱層の施工の手間を大幅に軽減し得、メンテナンスも容易に行い得る断熱容器構造を提供しようとするものである。   In view of such circumstances, the present invention can reduce the volume of the heat insulating layer and reduce heat dissipation loss without using an expensive vacuum heat insulating container or the like, and can reduce the size of the apparatus and improve the thermal efficiency. The purpose of the present invention is to provide a heat insulating container structure that can greatly reduce the labor of construction of the heat insulating layer and can be easily maintained.

本発明は、容器を内側断熱層と外側断熱層とからなる二重構造とし、内側断熱層の内部を、燃料を燃焼用空気により燃焼させた燃焼ガスの流路とすると共に、内側断熱層と外側断熱層との間を燃焼用空気の供給流路とし、該供給流路に導入される燃焼用空気を前記流路内の燃焼ガスにより予熱して内側断熱層の内部に供給するよう構成したことを特徴とする断熱容器構造にかかるものである。   The present invention has a container having a double structure composed of an inner heat insulating layer and an outer heat insulating layer, the inside of the inner heat insulating layer is a flow path of combustion gas obtained by burning fuel with combustion air, A combustion air supply channel is formed between the outer heat insulation layer and the combustion air introduced into the supply channel is preheated by the combustion gas in the flow channel and supplied to the inside of the inner heat insulation layer. The present invention relates to a heat insulating container structure.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

内側断熱層の内部での燃焼に伴って外部へ逃げようとする熱は、供給流路に導入される燃焼用空気を予熱することに利用され、内側断熱層の内部に還流される形となり、更に、外部への最終的な放熱を防ぐ外側断熱層は、燃焼用空気と外気との温度差が小さいため、薄い厚さのもので良くなり、トータルの断熱層の厚さを従来に比べ大幅に薄くすることが可能になると共に、放熱損失を低減することが可能となる。   The heat that escapes to the outside along with the combustion inside the inner heat insulating layer is used to preheat the combustion air introduced into the supply flow path, and is recirculated into the inner heat insulating layer. In addition, the outer heat insulation layer that prevents the final heat dissipation to the outside has a small temperature difference between the combustion air and the outside air, so a thinner one is sufficient, and the total heat insulation layer thickness is significantly larger than before. In addition, it is possible to reduce the heat dissipation loss.

前記断熱容器構造においては、燃料を燃焼用空気により燃焼させた燃焼ガスを噴射する燃焼器と、内部に改質触媒が装填され原料ガスを流通させてその改質を行う改質管とを内側断熱層の内部に配設し、改質器を形成することができ、このようにすると、改質器のコンパクト化と放熱損失の低減が可能になることに加え、内側断熱層と外側断熱層とからなる二重構造の容器を改質器に被せるだけで断熱層の施工が行われるため、従来のように、改質器の周囲にセラミックファイバ等の断熱材を充填したりする必要がなくなり、断熱層の施工の手間が大幅に軽減され、しかも、改質器内の触媒交換や点検等のメンテナンスの際には、容器を開放するだけで済み、その都度、断熱材を除去したり、改質器を切断したりする必要もない。   In the heat insulating container structure, a combustor that injects a combustion gas obtained by combusting fuel with combustion air, and a reforming pipe that is loaded with a reforming catalyst and circulates a raw material gas to perform reforming are disposed inside. A reformer can be formed by disposing inside the heat insulation layer. In this way, the reformer can be made compact and heat dissipation loss can be reduced, and the inner heat insulation layer and the outer heat insulation layer can be reduced. Since the insulation layer is constructed simply by covering the reformer with a double-structured container consisting of the above, there is no need to fill the periphery of the reformer with a heat insulating material such as ceramic fiber. In addition, the labor of installing the heat insulation layer is greatly reduced, and it is only necessary to open the container at the time of maintenance such as catalyst replacement and inspection in the reformer. There is no need to cut the reformer.

又、前記断熱容器構造においては、改質器の関連機器を内側断熱層の内部に配設することもできる。   Moreover, in the said heat insulation container structure, the related apparatus of a reformer can also be arrange | positioned inside an inner side heat insulation layer.

前記改質器の関連機器としては、
改質器で改質した改質ガスを所要温度に温度降下させCOとH2OをCO2とH2に変換する低温シフトコンバータと、
該低温シフトコンバータを通過した改質ガスを冷却しCOを除去するCO除去器と
を挙げることができる。
As related equipment of the reformer,
A low-temperature shift converter that lowers the reformed gas reformed by the reformer to a required temperature and converts CO and H 2 O into CO 2 and H 2 ;
And a CO remover that cools the reformed gas that has passed through the low-temperature shift converter and removes CO.

前記改質器の関連機器としては、燃焼ガスの熱により水を蒸発させて水蒸気を発生させる水蒸発器や、燃焼ガスの熱により原燃料を気化させる原燃料気化器や、改質器へ供給する原料ガスの脱硫を行う脱硫器を挙げることもできる。   The equipment related to the reformer is a water evaporator that evaporates water by the heat of combustion gas to generate water vapor, a raw fuel vaporizer that vaporizes raw fuel by the heat of combustion gas, or a reformer Examples thereof include a desulfurizer that performs desulfurization of the raw material gas.

前記CO除去器としては、選択酸化CO除去器もしくはメタネータを用いることができる。   As the CO remover, a selective oxidation CO remover or a methanator can be used.

本発明の請求項1記載の断熱容器構造によれば、高価となる真空断熱容器等を用いることなく、断熱層の容積を削減でき且つ放熱損失を低減でき、装置の小型化並びに熱効率向上を図ることができ、更に、断熱層の施工の手間を大幅に軽減し得、メンテナンスも容易に行い得るという優れた効果を奏し得る。   According to the heat insulating container structure of the first aspect of the present invention, the volume of the heat insulating layer can be reduced and the heat dissipation loss can be reduced without using an expensive vacuum heat insulating container or the like, and the apparatus can be downsized and the thermal efficiency can be improved. In addition, it is possible to greatly reduce the time and labor required for the construction of the heat insulating layer and to achieve an excellent effect that maintenance can be easily performed.

本発明の請求項2〜8記載の断熱容器構造によれば、高価となる真空断熱容器等を用いることなく、改質器、或いは該改質器とその関連機器を含む燃料改質装置における断熱層の容積を削減でき且つ放熱損失を低減でき、改質器、或いは該改質器とその関連機器を含む燃料改質装置の小型化並びに熱効率向上を図ることができ、更に、改質器、或いは該改質器とその関連機器を含む燃料改質装置における断熱層の施工の手間を大幅に軽減し得、メンテナンスも容易に行い得るという優れた効果を奏し得る。   According to the heat insulation container structure of claims 2 to 8 of the present invention, heat insulation in a fuel reformer including a reformer or the reformer and its related equipment without using an expensive vacuum heat insulation container or the like. The volume of the layer can be reduced and the heat dissipation loss can be reduced, the reformer or the fuel reformer including the reformer and its related equipment can be downsized and the thermal efficiency can be improved. Alternatively, it is possible to greatly reduce the labor of construction of the heat insulation layer in the fuel reformer including the reformer and related equipment, and to achieve an excellent effect that maintenance can be easily performed.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であって、図中、図2及び図3と同一の符号を付した部分は同一物を表わしており、容器15を内側断熱層15aと外側断熱層15bとからなる二重構造とし、内側断熱層15aの内部を、燃料を燃焼用空気により燃焼させた燃焼ガスの流路17とすると共に、内側断熱層15aと外側断熱層15bとの間を燃焼用空気の供給流路18とし、該供給流路18に導入される燃焼用空気を前記流路17内の燃焼ガスにより予熱して内側断熱層15aの内部に供給するよう構成したものである。   FIG. 1 is an example of an embodiment for carrying out the present invention. In the figure, the parts denoted by the same reference numerals as those in FIGS. 2 and 3 represent the same thing, and the container 15 includes an inner heat insulating layer 15a and an outer heat insulating layer. The inner heat insulating layer 15a has a combustion gas flow path 17 in which fuel is combusted by combustion air, and the inner heat insulating layer 15a and the outer heat insulating layer 15b are combusted. A combustion air introduced into the supply flow path 18 is preheated by the combustion gas in the flow path 17 and supplied to the inside of the inner heat insulating layer 15a.

本図示例の場合、燃料ガス(アノードオフガス)を燃焼用空気により燃焼させた燃焼ガスを噴射するバーナ等の燃焼器16と、内部に改質触媒(図示せず)が装填され原料ガスを流通させてその改質を行う改質管19とを内側断熱層15aの内部に配設し、改質器1を形成してある。尚、前記改質管19は、内管19aと外管19bとからなる二重管構造としてあり、原料ガスを内管19aと外管19bとの間に形成される外側の空間内を上昇させて前記燃焼ガスと熱交換させた後、その上端で折り返して内管19aの内側の空間内を下降させるようにしてある。   In the case of the illustrated example, a combustor 16 such as a burner that injects a combustion gas obtained by burning fuel gas (anode off gas) with combustion air, and a reforming catalyst (not shown) are loaded therein to circulate the raw material gas. The reformer 1 is formed by arranging the reforming tube 19 for reforming the inner heat insulating layer 15a. The reforming pipe 19 has a double pipe structure composed of an inner pipe 19a and an outer pipe 19b, and raises the source gas in an outer space formed between the inner pipe 19a and the outer pipe 19b. After exchanging heat with the combustion gas, it is folded back at the upper end thereof to lower the space inside the inner pipe 19a.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

内側断熱層15aの内部での燃焼に伴って外部へ逃げようとする熱は、供給流路18に導入される燃焼用空気を予熱することに利用され、内側断熱層15aの内部に還流される形となり、更に、外部への最終的な放熱を防ぐ外側断熱層15bは、燃焼用空気と外気との温度差が小さいため、薄い厚さのもので良くなり、トータルの断熱層の厚さを従来に比べ大幅に薄くすることが可能になると共に、放熱損失を低減することが可能となる。   The heat that escapes to the outside with combustion inside the inner heat insulation layer 15a is used to preheat the combustion air introduced into the supply flow path 18, and is returned to the inside of the inner heat insulation layer 15a. Further, the outer heat insulating layer 15b that prevents the final heat dissipation to the outside is small in thickness because the temperature difference between the combustion air and the outside air is small, and the total heat insulating layer thickness is reduced. It becomes possible to make it much thinner than before and to reduce heat dissipation loss.

本図示例に示す如く、燃料ガス(アノードオフガス)を燃焼用空気により燃焼させた燃焼ガスを噴射する燃焼器16と、内部に改質触媒が装填され原料ガスを流通させてその改質を行う改質管19とを内側断熱層15aの内部に配設し、改質器1を形成すると、改質器1のコンパクト化と放熱損失の低減が可能になることに加え、内側断熱層15aと外側断熱層15bとからなる二重構造の容器15を改質器1に被せるだけで断熱層の施工が行われるため、従来のように、改質器1の周囲にセラミックファイバ等の断熱材を充填したりする必要がなくなり、断熱層の施工の手間が大幅に軽減され、しかも、改質器1内の触媒交換や点検等のメンテナンスの際には、容器15を開放するだけで済み、その都度、断熱材を除去したり、改質器1を切断したりする必要もない。   As shown in the illustrated example, a combustor 16 that injects a combustion gas obtained by burning a fuel gas (anode off gas) with combustion air, and a reforming catalyst is loaded therein and a raw material gas is circulated for reforming. When the reformer pipe 19 is disposed inside the inner heat insulating layer 15a and the reformer 1 is formed, the reformer 1 can be made compact and the heat dissipation loss can be reduced. Since the heat insulating layer is applied only by covering the reformer 1 with the double-structured container 15 composed of the outer heat insulating layer 15b, a heat insulating material such as ceramic fiber is provided around the reformer 1 as in the prior art. It is no longer necessary to fill, and the labor required for the construction of the heat insulation layer is greatly reduced, and it is only necessary to open the container 15 for maintenance such as catalyst replacement or inspection in the reformer 1, Remove the heat insulating material each time or change the reformer 1 There is no need or cross-sectional.

因みに、本発明者等の試算では、直径D1=φ200[mm]、高さH=1300[mm]の改質器1を断熱し、放散熱量Q=250[W]を達成しようとした場合、単層容器では、最高の断熱性能を有する断熱材を使用しても、容器の外径は、φ362[mm]必要となるのに対し、本図示例に示すような二重構造の容器15では、同じ断熱材の使用で、
内側断熱層15aの外径D2=φ280[mm]
外側断熱層15bの内径D3=φ286[mm]
外側断熱層15bの外径D4=φ298[mm]
となり、およそ32[%]の容積削減が可能となる。
By the way, in the trial calculation by the present inventors, when the reformer 1 having a diameter D1 = φ200 [mm] and a height H = 1300 [mm] is insulated to achieve a heat dissipation amount Q = 250 [W], In the single-layer container, the outer diameter of the container needs to be φ362 [mm] even if the heat insulating material having the highest heat insulating performance is used, whereas in the double structure container 15 as shown in the illustrated example, Using the same insulation,
Outer diameter D2 of inner heat insulation layer 15a = φ280 [mm]
Inner diameter D3 of outer heat insulating layer 15b = φ286 [mm]
Outer diameter D4 = φ298 [mm] of the outer heat insulating layer 15b
Thus, the volume can be reduced by about 32%.

又、特許文献1に示されるものでは、真空断熱容器に収容されている改質器が容器構造になっているため、一見すると、本図示例と類似した二重容器構造となっているが、特許文献1に示されるものの場合、断熱はあくまでも外側の真空断熱容器が単独で担うようになっており、改質器と真空断熱容器との間の空間には、空気のような流体を流しておらず、その空間は断熱には全く寄与していないと言うことができ、特許文献1に示されるものは、真空断熱容器の内壁と外壁との熱伸び差を吸収することに主眼を置いているものに過ぎない。   Moreover, in what is shown by patent document 1, since the reformer accommodated in the vacuum heat insulation container has a container structure, at first glance, it has a double container structure similar to the illustrated example, In the case of what is shown in Patent Document 1, the outer vacuum insulation container is solely responsible for heat insulation, and a fluid such as air is allowed to flow in the space between the reformer and the vacuum insulation container. It can be said that the space does not contribute to the heat insulation at all, and what is shown in Patent Document 1 focuses on absorbing the difference in thermal expansion between the inner wall and the outer wall of the vacuum heat insulating container. It is just what you have.

更に又、本図示例に示すような二重構造の容器15では、外側断熱層15bの内壁温度は、最高でも120[℃]程度にしかならないが、特許文献1に示されるような断熱容器構造では、真空断熱容器の内壁温度をおよそ600[℃]と想定しており、この点も両者の大きな相違となっている。   Furthermore, in the container 15 having a double structure as shown in the illustrated example, the inner wall temperature of the outer heat insulating layer 15b is only about 120 [° C.] at the maximum, but the heat insulating container structure as shown in Patent Document 1 is used. Therefore, the inner wall temperature of the vacuum heat insulating container is assumed to be about 600 [° C.], which is also a big difference between the two.

一方、本図示例においては、改質器1のみを内側断熱層15aの内部に配設しているが、改質器1だけではなく、改質器1の関連機器として挙げられる、図2及び図3に示されるような、改質器1で改質した改質ガスを所要温度に温度降下させCOとH2OをCO2とH2に変換する低温シフトコンバータ5と、該低温シフトコンバータ5を通過した改質ガスを冷却しCOを除去する選択酸化CO除去器6とを内側断熱層15aの内部に配設することができる。 On the other hand, in the illustrated example, only the reformer 1 is disposed inside the inner heat insulating layer 15a, but not only the reformer 1 but also related equipment of the reformer 1, FIG. As shown in FIG. 3, the low-temperature shift converter 5 converts the CO and H 2 O into CO 2 and H 2 by lowering the reformed gas reformed by the reformer 1 to a required temperature, and the low-temperature shift converter. A selective oxidation CO remover 6 that cools the reformed gas that has passed through 5 and removes CO can be disposed inside the inner heat insulating layer 15a.

又、前記改質器1の関連機器としては、燃焼ガスの熱により水を蒸発させて水蒸気を発生させる水蒸発器2や、燃焼ガスの熱により原燃料を気化させる原燃料気化器3や、改質器1へ供給する原料ガスの脱硫を行う脱硫器4を挙げることもでき、これらの機器を内側断熱層15aの内部に配設することもできる。   Further, as the related equipment of the reformer 1, the water evaporator 2 that generates water vapor by evaporating water by the heat of the combustion gas, the raw fuel vaporizer 3 that vaporizes the raw fuel by the heat of the combustion gas, The desulfurizer 4 which desulfurizes the raw material gas supplied to the reformer 1 can also be mentioned, and these devices can also be disposed inside the inner heat insulating layer 15a.

尚、一般に、固体高分子型燃料電池8(PEFC)用のプロセスでは、改質ガス中に含まれる微量のCOは固体高分子型燃料電池8の被毒物質であって数ppmレベルまで除去する必要があるため、低温シフトコンバータ5を通過した改質ガスを冷却水で冷却し酸化反応によってCOを除去する選択酸化CO除去器6を用いているのであるが、該選択酸化CO除去器6の代りに、メタネーション反応、即ち、
CO+3H2→CH4+H2
という反応式で示されるメタンの改質の逆反応を用いるメタネータを、CO除去器として使用することも可能である。該メタネータにおいては、触媒としてNi系のものが用いられ、およそ250[℃]程度で反応を進めるようにすれば、
4H2+CO2→CH4+2H2
という反応式で示されるような反応が起こってしまうことはなく、暴走する心配もない。
In general, in the process for the polymer electrolyte fuel cell 8 (PEFC), a small amount of CO contained in the reformed gas is a poisoning substance of the polymer electrolyte fuel cell 8 and is removed to a level of several ppm. Therefore, the selective oxidation CO remover 6 that cools the reformed gas that has passed through the low-temperature shift converter 5 with cooling water and removes CO by an oxidation reaction is used. Instead, the methanation reaction,
CO + 3H 2 → CH 4 + H 2 O
It is also possible to use a methanator that uses the reverse reaction of the reforming of methane represented by the following reaction formula as a CO remover. In the methanator, a Ni-based catalyst is used, and if the reaction proceeds at about 250 [° C.],
4H 2 + CO 2 → CH 4 + 2H 2 O
The reaction shown in the reaction formula does not occur and there is no worry of runaway.

こうして、高価となる真空断熱容器等を用いることなく、改質器1、或いは該改質器1とその関連機器を含む燃料改質装置における断熱層の容積を削減でき且つ放熱損失を低減でき、改質器1、或いは該改質器1とその関連機器を含む燃料改質装置の小型化並びに熱効率向上を図ることができ、更に、改質器1、或いは該改質器1とその関連機器を含む燃料改質装置における断熱層の施工の手間を大幅に軽減し得、メンテナンスも容易に行い得る。   Thus, without using an expensive vacuum heat insulation container or the like, the volume of the heat insulating layer in the reformer 1 or the fuel reformer including the reformer 1 and related equipment can be reduced and the heat dissipation loss can be reduced. The reformer 1 or the fuel reformer including the reformer 1 and related devices can be downsized and the thermal efficiency can be improved. Further, the reformer 1 or the reformer 1 and related devices can be improved. Thus, it is possible to greatly reduce the time and labor required for the construction of the heat insulating layer in the fuel reformer including the fuel reforming apparatus.

尚、本発明の断熱容器構造は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the heat insulation container structure of this invention is not limited only to the above-mentioned illustration example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

本発明を実施する形態の一例の側断面図である。It is side sectional drawing of an example of the form which implements this invention. 改質器が設けられる設備の一例を表わす全体系統図である。It is a whole system diagram showing an example of the equipment provided with a reformer. 従来の燃料改質装置の一例を表わす側断面図である。It is a sectional side view showing an example of the conventional fuel reformer.

符号の説明Explanation of symbols

1 改質器
2 水蒸発器(関連機器)
3 原燃料気化器(関連機器)
4 脱硫器(関連機器)
5 低温シフトコンバータ(関連機器)
6 選択酸化CO除去器(関連機器)
15 容器
15a 内側断熱層
15b 外側断熱層
16 燃焼器
17 流路
18 供給流路
19 改質管
1 Reformer 2 Water evaporator (related equipment)
3 Raw fuel vaporizer (related equipment)
4 Desulfurizer (related equipment)
5 Low temperature shift converter (related equipment)
6 Selective oxidation CO remover (related equipment)
DESCRIPTION OF SYMBOLS 15 Container 15a Inner heat insulation layer 15b Outer heat insulation layer 16 Combustor 17 Flow path 18 Supply flow path 19 Reformation pipe

Claims (8)

容器を内側断熱層と外側断熱層とからなる二重構造とし、内側断熱層の内部を、燃料を燃焼用空気により燃焼させた燃焼ガスの流路とすると共に、内側断熱層と外側断熱層との間を燃焼用空気の供給流路とし、該供給流路に導入される燃焼用空気を前記流路内の燃焼ガスにより予熱して内側断熱層の内部に供給するよう構成したことを特徴とする断熱容器構造。   The container has a double structure composed of an inner heat insulating layer and an outer heat insulating layer, and the inside of the inner heat insulating layer is a flow path of combustion gas obtained by burning fuel with combustion air, and the inner heat insulating layer and the outer heat insulating layer A combustion air supply channel is formed between the two, and the combustion air introduced into the supply channel is preheated by the combustion gas in the flow channel and supplied to the inside of the inner heat insulating layer. Insulated container structure. 燃料を燃焼用空気により燃焼させた燃焼ガスを噴射する燃焼器と、内部に改質触媒が装填され原料ガスを流通させてその改質を行う改質管とを内側断熱層の内部に配設し、改質器を形成するようにした請求項1記載の断熱容器構造。   A combustor that injects a combustion gas obtained by burning fuel with combustion air, and a reforming pipe that is loaded with a reforming catalyst and circulates the raw material gas to reform the fuel are disposed inside the inner heat insulating layer. The insulated container structure according to claim 1, wherein a reformer is formed. 改質器の関連機器を内側断熱層の内部に配設するようにした請求項2記載の断熱容器構造。   The insulated container structure according to claim 2, wherein the equipment related to the reformer is disposed inside the inner heat insulating layer. 改質器の関連機器が、
改質器で改質した改質ガスを所要温度に温度降下させCOとH2OをCO2とH2に変換する低温シフトコンバータと、
該低温シフトコンバータを通過した改質ガスを冷却しCOを除去するCO除去器と
である請求項3記載の断熱容器構造。
Reformer related equipment
A low-temperature shift converter that lowers the reformed gas reformed by the reformer to a required temperature and converts CO and H 2 O into CO 2 and H 2 ;
The heat insulating container structure according to claim 3, wherein the reformed gas that has passed through the low temperature shift converter is cooled to remove CO.
改質器の関連機器が、燃焼ガスの熱により水を蒸発させて水蒸気を発生させる水蒸発器を有する請求項4記載の断熱容器構造。   The insulated container structure according to claim 4, wherein the equipment related to the reformer includes a water evaporator that generates water vapor by evaporating water by heat of the combustion gas. 改質器の関連機器が、燃焼ガスの熱により原燃料を気化させる原燃料気化器を有する請求項4又は5記載の断熱容器構造。   The insulated container structure according to claim 4 or 5, wherein the equipment related to the reformer includes a raw fuel vaporizer that vaporizes the raw fuel by heat of the combustion gas. 改質器の関連機器が、改質器へ供給する原料ガスの脱硫を行う脱硫器を有する請求項4〜6いずれかに記載の断熱容器構造。   The heat insulation container structure in any one of Claims 4-6 in which the apparatus relevant to a reformer has a desulfurizer which desulfurizes the raw material gas supplied to a reformer. CO除去器が、選択酸化CO除去器もしくはメタネータである請求項4〜7いずれかに記載の断熱容器構造。   The heat insulating container structure according to any one of claims 4 to 7, wherein the CO remover is a selective oxidation CO remover or a methanator.
JP2004000924A 2004-01-06 2004-01-06 Insulated container structure Expired - Fee Related JP4479237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000924A JP4479237B2 (en) 2004-01-06 2004-01-06 Insulated container structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000924A JP4479237B2 (en) 2004-01-06 2004-01-06 Insulated container structure

Publications (2)

Publication Number Publication Date
JP2005194123A true JP2005194123A (en) 2005-07-21
JP4479237B2 JP4479237B2 (en) 2010-06-09

Family

ID=34816579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000924A Expired - Fee Related JP4479237B2 (en) 2004-01-06 2004-01-06 Insulated container structure

Country Status (1)

Country Link
JP (1) JP4479237B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243709A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Reforming device for fuel cell
US8597842B2 (en) 2007-10-18 2013-12-03 Honda Motor Co., Ltd. Fuel cell module
DE102016206157B4 (en) * 2015-04-17 2020-01-23 Honda Motor Co., Ltd. fuel cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243709A (en) * 2007-03-28 2008-10-09 Aisin Seiki Co Ltd Reforming device for fuel cell
US8597842B2 (en) 2007-10-18 2013-12-03 Honda Motor Co., Ltd. Fuel cell module
DE102016206157B4 (en) * 2015-04-17 2020-01-23 Honda Motor Co., Ltd. fuel cell module

Also Published As

Publication number Publication date
JP4479237B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4161612B2 (en) Starting method of fuel reformer
JP5693854B2 (en) Fuel reformer for polymer electrolyte fuel cell
JP2002124289A (en) Solid electrolyte fuel cell system
JP2007055892A (en) Fuel reforming apparatus
JP5476392B2 (en) Fuel cell system
WO2013190851A1 (en) Hydrogen generation device and fuel cell system
JP5272183B2 (en) Fuel cell reformer
CA2521698A1 (en) Selective oxidation reactor
JP2007157407A (en) Fuel reforming system
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
WO2011081094A1 (en) Reforming unit and fuel cell system
JP4479237B2 (en) Insulated container structure
CA2521702C (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2007031185A (en) Fuel reforming apparatus
JP2008159373A (en) Hydrogen manufacturing device and fuel cell electric power generation system
JP2006286280A (en) Polymer electrolyte fuel cell system
JP2004075435A (en) Fuel reforming device
JP2009221082A (en) Reformer
WO2011081092A1 (en) Reformer, reforming unit, and fuel cell system
JP2014107186A (en) Solid oxide fuel cell system
JP2008204662A (en) Fuel cell power generation system
JP2012138265A (en) Fuel cell system and desulfurizer
JP5369327B2 (en) Fuel reformer and its pretreatment method, fuel cell power generation system and its operation pretreatment method
JP2011136869A (en) Apparatus for producing reformed gas, operation control method thereof, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees