JP2005193013A - Medical freezing bag - Google Patents

Medical freezing bag Download PDF

Info

Publication number
JP2005193013A
JP2005193013A JP2004358616A JP2004358616A JP2005193013A JP 2005193013 A JP2005193013 A JP 2005193013A JP 2004358616 A JP2004358616 A JP 2004358616A JP 2004358616 A JP2004358616 A JP 2004358616A JP 2005193013 A JP2005193013 A JP 2005193013A
Authority
JP
Japan
Prior art keywords
molecular weight
film
weight polyethylene
freezing bag
ultrahigh molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004358616A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yoshikawa
義洋 吉川
Akio Shirasu
昭雄 白数
Seiichi Wada
誠一 和田
Yoshiyuki Akimoto
美之 秋本
Hiroshi Sasaki
裕志 佐々木
Kazuyuki Takeda
和之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Original Assignee
Nipro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp filed Critical Nipro Corp
Priority to JP2004358616A priority Critical patent/JP2005193013A/en
Publication of JP2005193013A publication Critical patent/JP2005193013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical freezing bag having a sufficient strength which is not damaged at -196 °C, the temperature of liquid nitrogen, and is excellent in low temperature resistance and molding processability. <P>SOLUTION: The medical freezing bag having a sufficient strength, which is not damaged at -196 °C, the temperature of liquid nitrogen, and is excellent in low temperature resistance and molding processability and in which whole blood, body fluids, and cell suspensions can be aseptically or nontoxically preserved at extremely low temperatures, is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超高分子量ポリエチレンフィルムの両面を該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムで溶着した3層フィルムからなる医療用凍結バッグに関する。   The present invention relates to a medical freezing bag comprising a three-layer film in which both sides of an ultrahigh molecular weight polyethylene film are welded with a thermoplastic resin film having a melting point lower than that of the ultrahigh molecular weight polyethylene and compatible with the ultrahigh molecular weight polyethylene. About.

血液成分を凍結保存する方法としてジメチルスルホキシド等の凍害保護剤を添加し−80〜−196℃程度の超低温で保存する方法が知られている。このような極低温下保存の場合、極低温下でも使用でき、更に滅菌処理が可能で使用上簡便な凍結バッグが必要となる。血液保存用に使用されている軟質塩化ビニル製バッグは−40℃では脆化してしまい、極低温下では外部からのごくわずかな衝撃によっても破損してしまう。   As a method for cryopreserving blood components, a method is known in which a frost damage protective agent such as dimethyl sulfoxide is added and stored at an ultralow temperature of about −80 to −196 ° C. In the case of such storage at a cryogenic temperature, a freezing bag that can be used even at a cryogenic temperature, can be sterilized, and is easy to use is required. A soft vinyl chloride bag used for blood storage becomes brittle at -40 ° C. and breaks even at a very low temperature by a slight impact from the outside.

そのため、−80〜−196℃の極低温下で血液成分を保存するバッグとしては、従来、ポリイミド樹脂フィルムとフッ素化エチレンプロピレン重合体フィルムとの積層フィルムからなるもの(特許文献1)や、テトラフルオロエチレンとエチレンの共重合体フィルムからなるものや、内層をフッ素エチレンプロピレン重合体、外層をポリイミド樹脂とした二層積層したもの(特許文献2)等が提案されている。しかし、ポリイミドは、高分子材料中最も熱伝導率が低いもののひとつであるため、凍結スピードが遅く、内容物の品質に影響する。また、ポリイミド樹脂やフッ素系樹脂は融点が非常に高く、成型加工性に乏しい。上記積層フィルムはポリエステル、ポリウレタン、エポキシ系等の接着剤により接着されているため、低温保存中に接着層が硬化し、積層フィルムが剥離してくることがあり、凍結バッグとしては適さない。   Therefore, as a bag for storing blood components at an extremely low temperature of −80 to −196 ° C., conventionally, a bag made of a laminated film of a polyimide resin film and a fluorinated ethylene propylene polymer film (Patent Document 1), tetra There have been proposed a film composed of a copolymer film of fluoroethylene and ethylene, a film obtained by laminating two layers using a fluoroethylenepropylene polymer as an inner layer and a polyimide resin as an outer layer (Patent Document 2). However, since polyimide is one of the lowest thermal conductivity among polymer materials, the freezing speed is slow and affects the quality of the contents. In addition, polyimide resins and fluororesins have a very high melting point and poor moldability. Since the laminated film is bonded with an adhesive such as polyester, polyurethane, and epoxy, the adhesive layer is cured during low-temperature storage, and the laminated film may be peeled off, which is not suitable as a freezing bag.

ポリイミド樹脂やフッ素系樹脂以外の樹脂を用いた冷凍バッグとしては、電子線照射し2軸延伸されたエチレン−酢酸ビニール共重合体のフィルムを用いたもの(特許文献3)、2軸延伸された架橋ポリエチレンフィルムを用いたもの(特許文献4)、内側の超高分子量ポリエチレンの層と、該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある外側の熱可塑性樹脂の層が加熱溶着された2層フィルムからなるもの(特許文献5)等が提案されている。
しかしながら、上記エチレン−酢酸ビニール共重合体のフィルムは、一般のフィルムよりも低温下の破損は低いものの、−196℃の超低温下では、弾性を失いバッグが破損し、凍結バックとして十分な性能を有しているとはいえない。
上記2軸延伸フィルムではヒートシール操作によってシール部分及びその周辺でフィルムが収縮してしわになり、実際の使用においては手荒な取扱いをするとしばしば破損し、内容物の安全な保存ができないという欠点を有している。
上記の超高分子量ポリエチレンと相溶性のある外側の熱可塑性樹脂の層が加熱溶着された2層フィルムからなるバッグは、超低温下では強度を有するものの、超高分子量ポリエチレンの分子鎖が長いことから超高分子量ポリエチレン同士のシールが困難である。
As a frozen bag using a resin other than a polyimide resin or a fluorine-based resin, an electron beam irradiated biaxially stretched ethylene-vinyl acetate copolymer film (Patent Document 3), biaxially stretched A cross-linked polyethylene film (Patent Document 4), an inner ultrahigh molecular weight polyethylene layer, an outer thermoplastic resin having a melting point lower than that of the ultrahigh molecular weight polyethylene and compatible with the ultrahigh molecular weight polyethylene. A layer composed of a two-layer film in which layers are heat-welded (Patent Document 5) has been proposed.
However, although the film of the ethylene-vinyl acetate copolymer is less damaged at a low temperature than a general film, it loses elasticity and breaks the bag at an ultra-low temperature of -196 ° C., and has sufficient performance as a freeze bag. It cannot be said that it has.
In the above biaxially stretched film, the film shrinks and wrinkles at the seal part and its periphery by heat sealing operation, and in actual use, it is often damaged by rough handling, and the content cannot be safely stored. Have.
A bag made of a two-layer film in which an outer thermoplastic resin layer compatible with the above ultrahigh molecular weight polyethylene is heat-sealed has strength at ultra-low temperatures, but the molecular chain of ultrahigh molecular weight polyethylene is long. It is difficult to seal between ultra-high molecular weight polyethylenes.

超高分子量ポリエチレンは、耐衝撃性、耐摩耗性、自己膨潤性、耐薬品性、耐寒性および無毒性である点で非常に優れているものの、極めて高い溶融粘度を有しているため、フィルムの製造方法は通常、粉末の原料レジンを圧縮成形等でブロック状成形品とした後、切削加工によって作製している。上記のように製造されたフィルムでは、その表面状態が粗面となっているので成形加工は決して容易ではない。また、バリがあるとフィルム表面のポリエチレンが脱落・剥離する可能性があり、医療用バッグとして用いた場合、異物混入の原因となる。また、圧縮加工成形は成形時にエアが取り込まれた状態になりやすく、次の工程で切削されたフィルムにピンホールが生じる可能性がある。
またシート同士あるいはシートとポート部品をヒートシールする場合、超高分子量ポリエチレンは重量平均分子量(粘度法)が100万以上と高いため、ポリエチレン分子鎖の流動性が悪く分子鎖同士が絡み合いにくい。そのため超高分子量ポリエチレンのヒートシールが難しく、バッグの安定した製造ができないという問題があった。
Although ultra-high molecular weight polyethylene is very excellent in terms of impact resistance, abrasion resistance, self-swelling property, chemical resistance, cold resistance and non-toxicity, it has an extremely high melt viscosity, so a film In this manufacturing method, a powder raw material resin is usually made into a block-shaped product by compression molding or the like and then manufactured by cutting. In the film produced as described above, the surface state is rough, so that the forming process is not easy. Further, if there is a burr, the polyethylene on the film surface may fall off and peel off, and if used as a medical bag, it may cause contamination of foreign matter. Further, in compression molding, air is easily taken in at the time of molding, and there is a possibility that pinholes are generated in the film cut in the next step.
When heat-sealing between sheets or between a sheet and a port part, the ultra-high molecular weight polyethylene has a high weight average molecular weight (viscosity method) of 1 million or more. Therefore, heat sealing of ultra high molecular weight polyethylene is difficult, and there is a problem that a bag cannot be stably manufactured.

特公昭49−8079号公報Japanese Patent Publication No.49-8079 実公昭55−55069号公報Japanese Utility Model Publication No. 55-55069 特公昭55−44977号公報Japanese Patent Publication No. 55-44977 特公昭62−57351号公報Japanese Patent Publication No. 62-57351 特開平08−173505号公報Japanese Patent Laid-Open No. 08-173505

耐寒性、成形加工性に優れた医療用凍結バッグの開発が求められている。具体的には、液体窒素の温度である−196℃でも破損することなく、十分な強度を有する医療用凍結バッグが求められている。   Development of a medical freezing bag excellent in cold resistance and molding processability is demanded. Specifically, there is a need for a medical freezing bag having sufficient strength without being damaged even at −196 ° C. which is the temperature of liquid nitrogen.

本発明は、前記従来技術に鑑みてなされたものであり、極低温下で血液、体液及び細胞浮遊溶液を保存する際に、バッグが破損することなく保存することを可能にし、成形加工性に優れた医療用凍結バッグに関する。
即ち本発明は、
(1)超高分子量ポリエチレンフィルムの両面を該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムで溶着した3層フィルムからなる医療用凍結バッグ、
(2)熱可塑性樹脂が、エチレン−酢酸ビニル共重合体、エチレン−メタクリル酸エステル共重合体または直鎖状低密度ポリエチレンである上記(1)項に記載の医療用凍結バッグ、
(3)超高分子量ポリエチレンの粘度法で測定された重量平均分子量が100万以上、または光散乱法で測定された重量平均分子量が300万以上である上記(1)項に記載の医療用凍結バッグ、
(4)3層フィルムの厚さが約50〜500μmである上記(1)項に記載の医療用凍結バッグ、
(5)3層フィルムの厚さが約100〜250μmである上記(4)項に記載の医療用凍結バッグ、
(6)超高分子量ポリエチレンフィルムの両面に該超高分子量ポリエチレンよりも融点が低く、かつ該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムを溶着して得られる3層フィルムとポート部分とを成形することを特徴とする医療用凍結バッグの成形方法、および
(7)超高分子量ポリエチレンフィルムの両面を該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムで溶着した3層フィルムからなる医療凍結バッグに血液、体液または細胞浮遊溶液を充填し、約−80〜−196℃で保存することを特徴とする医療用凍結バッグの保存方法に関する。
The present invention has been made in view of the above-described prior art, and enables storage without damaging the bag when storing blood, body fluids, and cell suspensions at extremely low temperatures, thereby improving molding processability. It relates to an excellent medical freezing bag.
That is, the present invention
(1) A medical freezing bag comprising a three-layer film in which both surfaces of an ultrahigh molecular weight polyethylene film are welded with a thermoplastic resin film having a melting point lower than that of the ultrahigh molecular weight polyethylene and compatible with the ultrahigh molecular weight polyethylene;
(2) The medical freezing bag according to (1), wherein the thermoplastic resin is an ethylene-vinyl acetate copolymer, an ethylene-methacrylic acid ester copolymer, or a linear low-density polyethylene,
(3) The medical freezing as described in the above item (1), wherein the weight average molecular weight measured by the viscosity method of ultra high molecular weight polyethylene is 1,000,000 or more, or the weight average molecular weight measured by the light scattering method is 3 million or more. bag,
(4) The medical freezing bag according to (1), wherein the thickness of the three-layer film is about 50 to 500 μm,
(5) The medical freezing bag according to (4), wherein the thickness of the three-layer film is about 100 to 250 μm,
(6) A three-layer film and a port portion obtained by welding a film of a thermoplastic resin having a melting point lower than that of the ultrahigh molecular weight polyethylene and compatible with the ultrahigh molecular weight polyethylene on both surfaces of the ultrahigh molecular weight polyethylene film. And (7) an ultra-high molecular weight polyethylene film having a melting point lower than that of the ultra-high molecular weight polyethylene and compatible with the ultra-high molecular weight polyethylene. A medical freezing bag storage method comprising filling a medical freezing bag composed of a three-layer film welded with a thermoplastic resin film with blood, body fluid or cell suspension solution and storing at about -80 to -196 ° C. About.

本発明の医療用凍結バッグは、成形加工性が優れ、しかも極低温環境下で血液、体液及び細胞浮遊溶液を保存する際に、バッグが破損することなく保存することができる。   The medical freezing bag of the present invention is excellent in moldability and can be stored without damaging the bag when storing blood, body fluid and cell suspension in a cryogenic environment.

本発明における医療用凍結バッグは、血液、体液及び細胞浮遊溶液を極低温下で保存するためのバッグであり、超高分子量ポリエチレンフィルムと、該超高分子量ポリエチレンフィルムの両面に積層された該超高分子量ポリエチレンよりも融点が低く、該高分子量ポリエチレンと相溶性のある熱可塑性樹脂(以下、単に熱可塑性樹脂と略記)のフィルムからなる3層フィルムから形成されたことを特徴としている。上記3層フィルム合計の厚さは、約50〜500μm、好ましくは約100〜250μmである。本発明の医療用凍結バッグのフィルムは、少なくとも上記3層からなっていればよく、必要に応じさらにフィルムの両面または片面に熱可塑性樹脂のフィルムを積層させてもよい。   The medical freezing bag according to the present invention is a bag for storing blood, body fluid, and cell suspension at an extremely low temperature. The ultrahigh molecular weight polyethylene film and the ultrahigh molecular weight polyethylene film laminated on both sides of the ultrahigh molecular weight polyethylene film. It has a lower melting point than that of high molecular weight polyethylene, and is characterized by being formed from a three-layer film made of a film of a thermoplastic resin (hereinafter simply referred to as a thermoplastic resin) compatible with the high molecular weight polyethylene. The total thickness of the three-layer film is about 50 to 500 μm, preferably about 100 to 250 μm. The film of the medical freezing bag of the present invention may be composed of at least the above three layers, and a thermoplastic resin film may be further laminated on both sides or one side of the film as necessary.

本発明における超高分子量ポリエチレンとは、低圧法により重合されたポリエチレンであり、重量平均分子量が粘度法で100万以上、または光散乱法で300万以上のどちらかを満たすものであり、上限は特にないが、現時点では約600万程度(粘度法)が当業者の製造しうる限界である。超高分子量ポリエチレンは、汎用の低密度ポリエチレンなどとは異なり、耐衝撃性、耐摩耗性、自己膨潤性、耐薬品性、耐寒性および無毒性である点で非常に優れた性質を示す。   The ultra-high molecular weight polyethylene in the present invention is polyethylene polymerized by a low pressure method, and the weight average molecular weight satisfies either 1 million or more by the viscosity method or 3 million or more by the light scattering method, and the upper limit is At present, about 6 million (viscosity method) is the limit that can be produced by those skilled in the art, although not particularly. Unlike general-purpose low-density polyethylene, ultrahigh molecular weight polyethylene exhibits very excellent properties in that it is impact resistant, abrasion resistant, self-swelling, chemical resistant, cold resistant and non-toxic.

さらに、超高分子量ポリエチレンフィルムは、高分子量であるために粘度が高く、粉末の原料樹脂を圧縮成形等でブロック状成形品とした後、切削加工によってフィルム状に成形される。フィルムの厚みは、ピンホールの発生を抑え、シール強度を有し、急速な冷凍及び解凍に耐えうる厚さであることが好ましい。さらに具体的にはフィルムの厚みは、好ましくは約25〜250μm、より好ましくは約50〜150μmである。   Furthermore, since the ultra-high molecular weight polyethylene film has a high molecular weight, it has a high viscosity, and is formed into a film by cutting after the powdery raw resin is made into a block-shaped product by compression molding or the like. The thickness of the film is preferably a thickness that suppresses the generation of pinholes, has a sealing strength, and can withstand rapid freezing and thawing. More specifically, the thickness of the film is preferably about 25 to 250 μm, more preferably about 50 to 150 μm.

本発明における熱可塑性樹脂のフィルムとは、該超高分子量ポリエチレンフィルムに剥離されない程度に接着可能であり、成形加工性に優れたものが選択される。したがって、該超高分子量ポリエチレンの融点(約134〜138℃)よりも低く、該高分子量ポリエチレンと相溶するものが選択される。相溶とは、2種類以上の樹脂が不都合な分離をおこさず、また化学反応も起こさずに均質に混ざり合う能力を意味する。相溶は、実験上上記超高分子量ポリエチレンと上記熱可塑性樹脂を混合した組成物を、示差走査熱量計(DSC)測定で測定した時、上記超高分子量ポリエチレンと上記熱可塑性樹脂のガラス転移温度(T)が単一のピークとして観測される状態を言う。相溶でない場合、樹脂に対応するガラス転移温度(T)のピークがそれぞれ観測される。該熱可塑性樹脂のフィルムの厚さは、約12.5〜125μm、好ましくは約25〜75μmである。 The film of the thermoplastic resin in the present invention is selected so that it can be adhered to such an extent that it is not peeled off from the ultrahigh molecular weight polyethylene film and has excellent moldability. Accordingly, a material that is lower than the melting point (about 134 to 138 ° C.) of the ultrahigh molecular weight polyethylene and is compatible with the high molecular weight polyethylene is selected. Compatibilization means the ability of two or more resins to mix homogeneously without causing inconvenient separation and without causing a chemical reaction. Compatibility is experimentally determined by measuring the composition obtained by mixing the ultrahigh molecular weight polyethylene and the thermoplastic resin by differential scanning calorimetry (DSC), and the glass transition temperature of the ultrahigh molecular weight polyethylene and the thermoplastic resin. A state in which (T g ) is observed as a single peak. When they are not compatible, a peak of glass transition temperature (T g ) corresponding to the resin is observed. The thickness of the thermoplastic resin film is about 12.5 to 125 μm, preferably about 25 to 75 μm.

上記熱可塑性樹脂の好適な例としては、低密度ポリエチレン、中密度ポリエチレンの他にも、エチレン−酢酸ビニル共重合体、エチレン−メタクリル酸エステル共重合体などのエチレン系共重合体、スチレンブタジエンゴムの水素添加物とポリエチレンとの熱可塑性樹脂組成物、スチレンブタジエンゴムの水素添加物とポリプロピレンとの熱可塑性樹脂組成物などが挙げられる。なかでも好ましくは低密度ポリエチレンもしくはエチレン−酢酸ビニル共重合体が挙げられる。さらに好ましくは直鎖状低密度ポリエチレンである。ここで、低密度ポリエチレンの密度範囲は、約0.910〜0.925g/cmが好適に用いられる。 Preferred examples of the thermoplastic resin include low-density polyethylene and medium-density polyethylene, ethylene-based copolymers such as ethylene-vinyl acetate copolymer and ethylene-methacrylate copolymer, and styrene-butadiene rubber. And a hydrogenated product of polyethylene and a thermoplastic resin composition of polyethylene, a hydrogenated product of styrene butadiene rubber and a thermoplastic resin composition of polypropylene, and the like. Of these, low density polyethylene or ethylene-vinyl acetate copolymer is preferable. More preferably, it is a linear low density polyethylene. Here, the density range of the low density polyethylene is preferably about 0.910 to 0.925 g / cm 3 .

直鎖状低密度ポリエチレンは、チーグラー・ナッタ触媒やメタロセン触媒などの触媒を用いて穏和な条件下で重合する。直鎖状低密度ポリエチレンは、一般の低密度ポリエチレンの枝分かれ構造が抑えられている分子構造であるために、その成型品はヒートシール強度、耐寒性、耐ストレスクラッキング性(長期間外部環境にさらしても劣化が起こりにくい性質)に優れている。上記触媒は、重合後に除去もしくは少量だけ使用しそのまま含有された状態でフィルム状に加工されるが、本発明の凍結バッグは医療用であるために、触媒はなるべく残存しないものを用いることが好ましい。   Linear low density polyethylene is polymerized under mild conditions using a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst. Since linear low density polyethylene has a molecular structure in which the branch structure of general low density polyethylene is suppressed, the molded product has heat seal strength, cold resistance, and stress cracking resistance (exposed to the external environment for a long period of time). However, it is excellent in the property that deterioration does not easily occur. The above catalyst is removed after polymerization or processed into a film in a state of being used in a small amount, but since the freezing bag of the present invention is for medical use, it is preferable to use a catalyst that does not remain as much as possible. .

3層フィルムの製造方法は、熱溶着法にて行われる。具体的には、超高分子量ポリエチレンフィルムの両面に上記熱可塑性樹脂を熱ローラなどで加熱溶融しながら押し出し、加圧して接合させることにより行われる。熱ローラの温度は、約150〜250℃が好ましく、より好ましくは約170〜200℃である。   The manufacturing method of a three-layer film is performed by a heat welding method. Specifically, it is carried out by extruding the thermoplastic resin on both sides of an ultrahigh molecular weight polyethylene film while heating and melting it with a heat roller or the like, and pressurizing and joining them. The temperature of the heat roller is preferably about 150 to 250 ° C, more preferably about 170 to 200 ° C.

上記3層フィルムによる医療用凍結バッグの成形方法は、同じ寸法にカットされた2枚の3層フィルムを、血液、体液及び細胞浮遊溶液を流入出するためのポートを間に挟んだ状態で重ね合わせ、縁部をヒートシールにより溶着させることによりバッグ状に成形させる。この時、ポート部分は角部に設けると貴重な血液、体液及び細胞浮遊溶液の浪費を極力少なくすることができて好ましい。ポート部分は、内層の熱可塑性樹脂のフィルムと相溶であり、ある程度可撓性であることが好ましく、超低密度ポリエチレンなどで作製したものが挙げられる。ポート部分は必要に応じ複数個設けてもよい。   The method of forming a medical freezing bag using the above three-layer film is a method of stacking two three-layer films cut to the same size with a port for inflow and outflow of blood, body fluid and cell suspension solution in between. Together, the edges are welded by heat sealing to form a bag. At this time, it is preferable that the port portion is provided at the corner portion, because waste of precious blood, body fluid and cell suspension solution can be reduced as much as possible. The port portion is compatible with the thermoplastic resin film of the inner layer and is preferably flexible to some extent, and examples thereof include those made of ultra-low density polyethylene. A plurality of port portions may be provided as necessary.

本発明の医療用凍結バッグは、例えば、厚さ75μmの超高分子ポリエチレンフィルムの両面を厚さ50μm直鎖状低密度ポリエチレンフィルムで挟み、固着させた3層フィルムを寸法150×200mmになるようにカットした後、常法に従いシートを2枚重ね合わせてヒートシール法により縁部を熱溶着させることにより製造される。   The medical freezing bag of the present invention has, for example, a three-layer film in which both sides of an ultra-high molecular polyethylene film having a thickness of 75 μm are sandwiched between 50 μm-thick linear low-density polyethylene films and fixed to have a size of 150 × 200 mm. After the sheet is cut into two pieces, it is manufactured by superposing two sheets according to a conventional method and thermally welding the edge portion by a heat seal method.

さらに、本発明の医療用凍結バッグは、例えば、厚さ100μmの超高分子ポリエチレンフィルムの片面を厚さ75μmの直鎖状低密度ポリエチレンフィルム、もう一方の片面を75μmエチレン−酢酸ビニル共重合体フィルムで挟み、固着させた3層フィルムを寸法150×200mmになるようにカットした後、常法に従いシートを2枚重ね合わせてヒートシール法により縁部を熱溶着させることにより製造される。   Furthermore, the medical freezing bag of the present invention includes, for example, a 100 μm-thick ultrahigh-molecular polyethylene film having one side of a linear low-density polyethylene film having a thickness of 75 μm and the other side having a 75 μm ethylene-vinyl acetate copolymer. After the three-layer film sandwiched between films and fixed is cut so as to have a size of 150 × 200 mm, two sheets are overlapped according to a conventional method, and the edges are thermally welded by a heat seal method.

上記3層フィルムは、超高分子量ポリエチレンフィルムの両面に、なめらかな面を有する融点の低い熱可塑性樹脂が積層されているため、粗面である超高分子量ポリエチレンフィルムの剥離を防止できる。さらに、内層においては、ヒートシールなどで容易にかつ安定的にバッグ形状に加工でき、しかも超高分子量ポリエチレンフィルムの剥離による血液、体液および細胞浮遊液への異物の混入を防止することができ、また熱可塑性樹脂がなめらかな面であるために、赤血球または細胞などの生体組織を傷つけることもない。外層においては、ポリエチレン製ラベルなどをヒートシールにより、貼り付けることが容易であり、また外部からの異物の混入を防止することができる。   Since the three-layer film is formed by laminating a thermoplastic resin having a smooth surface and a low melting point on both sides of the ultrahigh molecular weight polyethylene film, the ultrahigh molecular weight polyethylene film having a rough surface can be prevented from peeling off. Furthermore, in the inner layer, it can be easily and stably processed into a bag shape by heat sealing or the like, and it is possible to prevent foreign substances from being mixed into blood, body fluid and cell suspension due to peeling of the ultra high molecular weight polyethylene film, In addition, since the thermoplastic resin has a smooth surface, it does not damage living tissue such as red blood cells or cells. In the outer layer, it is easy to affix a polyethylene label or the like by heat sealing, and foreign matters can be prevented from being mixed.

本発明の医療用凍結バッグは、例えば赤血球、血小板、血漿等の血液成分や、骨髄液、その他の体液、細胞浮遊液の保存に好適である。本発明の医療用凍結バッグは約−80〜−196℃の極低温下でも十分耐えうるものであるが、赤血球、血小板、血漿等の血液成分や、骨髄液、その他の体液、細胞浮遊液などを実際に保存する場合は、これらの組織を損傷させないために徐々に冷却することが好ましい。具体的には、一度ディープフリーザー(凍結機)などで約−80℃まで冷却した後、液体窒素内に移すことによって保存する。保存している血液、細胞などを使用する際は、例えば約37〜40℃の温浴などの加温手段によって解凍することができる。   The medical freezing bag of the present invention is suitable for storing blood components such as red blood cells, platelets and plasma, bone marrow fluid, other body fluids, and cell suspensions. The medical freezing bag of the present invention can be sufficiently tolerated even at an extremely low temperature of about −80 to −196 ° C., but blood components such as red blood cells, platelets and plasma, bone marrow fluid, other body fluids, cell suspensions, etc. When actually storing, it is preferable to gradually cool in order not to damage these tissues. Specifically, after cooling to about −80 ° C. with a deep freezer (freezer) or the like, it is stored by transferring into liquid nitrogen. When stored blood, cells, or the like are used, they can be thawed by a heating means such as a warm bath at about 37 to 40 ° C.

以下に本発明を、実施例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.

実施例1
厚み75μmの超高分子量ポリエチレン(粘度法による重量平均分子量が約150万)の切削フィルム(ニューライト、作新化学工業社製)の両面を、厚み50μmの直鎖状低密度ポリエチレンフィルム(モアテック3500Z、出光興産社製)にてはさみ、熱ラミネート法により3層フィルムを作製した。上記フィルムを寸法150×200mmになるようにカットしたシートを2枚重ね合わせてヒートシール法により縁部を熱溶着させることにより容量100mlの医療用凍結バッグを作成した。
Example 1
Both sides of a cutting film (New Light, Sakushin Chemical Co., Ltd.) of ultra high molecular weight polyethylene (weight average molecular weight of about 1.5 million by the viscosity method) with a thickness of 75 μm are linear low density polyethylene films (moretech 3500Z with a thickness of 50 μm). , Manufactured by Idemitsu Kosan Co., Ltd.), and a three-layer film was prepared by a heat laminating method. Two sheets of the film cut to a size of 150 × 200 mm were overlapped, and the edges were thermally welded by a heat sealing method to prepare a medical freezing bag with a capacity of 100 ml.

実施例2
厚み75μmの超高分子量ポリエチレン(粘度法による重量平均分子量が約100万)の切削フィルム(ニューライト、作新化学工業社製)の外表面を、厚み50μmの直鎖状低密度ポリエチレンフィルム(モアテック3500Z、出光興産社製)、内表面を厚み50、75または100μmの直鎖状低密度ポリエチレンフィルム(モアテック3500Z、出光興産社製)にてはさみ、熱ラミネート法により3層フィルムを作製した。上記フィルムを寸法150×200mmになるようにカットしたシートを2枚重ね合わせてヒートシール法により縁部を熱溶着させることにより容量100mlの医療用凍結バッグ3種類を作成した。
Example 2
The outer surface of a cutting film (Newlite, manufactured by Sakushin Chemical Co., Ltd.) of ultra high molecular weight polyethylene (weight average molecular weight of about 1 million by the viscosity method) with a thickness of 75 μm is a linear low density polyethylene film (moretech) 3500Z, manufactured by Idemitsu Kosan Co., Ltd.), and the inner surface was sandwiched with a linear low-density polyethylene film having a thickness of 50, 75, or 100 μm (Moretec 3500Z, manufactured by Idemitsu Kosan Co., Ltd.), and a three-layer film was prepared by a thermal lamination method. Three sheets of the medical freezing bag with a capacity of 100 ml were prepared by stacking two sheets of the above-mentioned film cut to a size of 150 × 200 mm and thermally bonding the edges by a heat sealing method.

実験例
実施例1で作製された医療用凍結バッグにジメチルスルホキシド(DMSO)5%(v/v)水溶液100mlを充填し、十分に空気をぬいた後、アルミ製のケースに収納した。アルミ製ケースに収納したバッグをディープフリーザー(凍結機)にて−80℃、4時間静置し、凍結させた。次にこの凍結したバッグを液体窒素内に移し、1週間保存した。保存したバッグを、アルミケースから取り出し、37〜40℃の温浴中でバッグを解凍し、バッグに破損、液体窒素の混入などに異常がないことを目視観察した。比較として容量100mlの市販されているエチレン−酢酸ビニル共重合体製バッグ(EVA、フィルムの厚み:375μm;ネクセル社製、米国)とポリエチレン製バッグ(PE、フィルムの厚み:70μm;チャーターメド社製、米国)のいずれも目視観察10回でそれぞれ同様な実験を行った。
Experimental Example The medical freezing bag produced in Example 1 was filled with 100 ml of a 5% (v / v) aqueous solution of dimethyl sulfoxide (DMSO), sufficiently air removed, and stored in an aluminum case. The bag stored in the aluminum case was allowed to stand at −80 ° C. for 4 hours in a deep freezer (freezer) and frozen. The frozen bag was then transferred into liquid nitrogen and stored for 1 week. The stored bag was taken out of the aluminum case, thawed in a 37-40 ° C. warm bath, and visually inspected that there was no abnormality in the bag, liquid nitrogen, or the like. For comparison, a commercially available ethylene-vinyl acetate copolymer bag (EVA, film thickness: 375 μm; manufactured by Nexel, USA) and a polyethylene bag (PE, film thickness: 70 μm; manufactured by Charter Med) having a capacity of 100 ml In the United States, the same experiment was performed with 10 visual observations.

その実験の結果を表1に示す。エチレン−酢酸ビニル共重合体製バッグ(EVA)は供試バッグの20%、ポリエチレン製バッグ(PE)は供試バッグの10%が破損したのに対して、本発明の医療用凍結バッグは、200個という膨大な試験数をこなしたにも関わらず、一つも破損が見られなかった。   The results of the experiment are shown in Table 1. While the ethylene-vinyl acetate copolymer bag (EVA) was damaged in 20% of the test bag and the polyethylene bag (PE) was damaged in 10% of the test bag, the medical freezing bag of the present invention was Despite the huge number of tests of 200, no damage was found.

Figure 2005193013
Figure 2005193013

本発明によれば、液体窒素の温度である−196℃でも破損することなく、十分な強度を有する耐寒性、成形加工性に優れた医療用凍結バッグを提供することでき、極低温下で血液、体液及び細胞浮遊溶液を無菌、無毒状態で保存することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the medical freezing bag excellent in cold resistance and molding processability which has sufficient intensity | strength, without damaging even if it is the temperature of liquid nitrogen -196 degreeC, and blood at cryogenic temperature. Body fluids and cell suspensions can be stored in a sterile, non-toxic state.

Claims (7)

超高分子量ポリエチレンフィルムの両面を該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムで溶着した3層フィルムからなる医療用凍結バッグ。   A medical freezing bag comprising a three-layer film in which both surfaces of an ultrahigh molecular weight polyethylene film are welded with a film of a thermoplastic resin having a melting point lower than that of the ultrahigh molecular weight polyethylene and compatible with the ultrahigh molecular weight polyethylene. 熱可塑性樹脂が、エチレン−酢酸ビニル共重合体、エチレン−メタクリル酸エステル共重合体または直鎖状低密度ポリエチレンである請求項1に記載の医療用凍結バッグ。   The medical freezing bag according to claim 1, wherein the thermoplastic resin is an ethylene-vinyl acetate copolymer, an ethylene-methacrylic acid ester copolymer, or a linear low-density polyethylene. 超高分子量ポリエチレンの粘度法で測定された重量平均分子量が100万以上、または光散乱法で測定された重量平均分子量が300万以上である請求項1に記載の医療用凍結バッグ。   The medical freezing bag according to claim 1, wherein the weight average molecular weight measured by a viscosity method of ultrahigh molecular weight polyethylene is 1,000,000 or more, or the weight average molecular weight measured by a light scattering method is 3 million or more. 3層フィルムの厚さが約50〜500μmである請求項1に記載の医療用凍結バッグ。   The medical freezing bag according to claim 1, wherein the thickness of the three-layer film is about 50 to 500 µm. 3層フィルムの厚さが約100〜250μmである請求項4に記載の医療用凍結バッグ。   The medical freezing bag according to claim 4, wherein the thickness of the three-layer film is about 100 to 250 µm. 超高分子量ポリエチレンフィルムの両面に該超高分子量ポリエチレンよりも融点が低く、かつ該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムを溶着して得られる3層フィルムとポート部分とを成形することを特徴とする医療用凍結バッグの成形方法。   A three-layer film and a port part obtained by welding a thermoplastic resin film having a melting point lower than that of the ultra high molecular weight polyethylene and compatible with the ultra high molecular weight polyethylene are formed on both sides of the ultra high molecular weight polyethylene film. A method for forming a medical freezing bag, comprising: 超高分子量ポリエチレンフィルムの両面を該超高分子量ポリエチレンよりも融点が低く、該超高分子量ポリエチレンと相溶性のある熱可塑性樹脂のフィルムで溶着した3層フィルムからなる医療凍結バッグに血液、体液または細胞浮遊溶液を充填し、約−80〜−196℃で保存することを特徴とする医療用凍結バッグの保存方法。   A medical freezing bag consisting of a three-layer film in which both surfaces of an ultrahigh molecular weight polyethylene film have a melting point lower than that of the ultrahigh molecular weight polyethylene and is compatible with the ultrahigh molecular weight polyethylene is added to blood, body fluid or A method for storing a medical freezing bag, which is filled with a cell suspension solution and stored at about -80 to -196 ° C.
JP2004358616A 2003-12-12 2004-12-10 Medical freezing bag Pending JP2005193013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358616A JP2005193013A (en) 2003-12-12 2004-12-10 Medical freezing bag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003414853 2003-12-12
JP2004358616A JP2005193013A (en) 2003-12-12 2004-12-10 Medical freezing bag

Publications (1)

Publication Number Publication Date
JP2005193013A true JP2005193013A (en) 2005-07-21

Family

ID=34829083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358616A Pending JP2005193013A (en) 2003-12-12 2004-12-10 Medical freezing bag

Country Status (1)

Country Link
JP (1) JP2005193013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136597A (en) * 2007-12-10 2009-06-25 Nipro Corp Freeze preservation bag and freeze preservation method
US8177123B2 (en) 2008-09-24 2012-05-15 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9161527B2 (en) 2007-12-21 2015-10-20 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108138A (en) * 1981-12-22 1983-06-28 大石産業株式会社 Film for stacked bag
JPS61143137A (en) * 1984-12-18 1986-06-30 日本石油化学株式会社 Laminate consisting of ultra-high-molecular-weight polyethylene
JPH08173505A (en) * 1994-12-21 1996-07-09 Nissho Corp Refrigerating bag
WO1998043812A1 (en) * 1997-03-31 1998-10-08 Mitsui Chemicals, Inc. Multilayered laminate containing ultrahigh-molecular polyolefin layer, process for producing the same, and apparatus for producing the multilayered laminate
JP2001322171A (en) * 2000-05-17 2001-11-20 Nipro Corp Refrigeration storage container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108138A (en) * 1981-12-22 1983-06-28 大石産業株式会社 Film for stacked bag
JPS61143137A (en) * 1984-12-18 1986-06-30 日本石油化学株式会社 Laminate consisting of ultra-high-molecular-weight polyethylene
JPH08173505A (en) * 1994-12-21 1996-07-09 Nissho Corp Refrigerating bag
WO1998043812A1 (en) * 1997-03-31 1998-10-08 Mitsui Chemicals, Inc. Multilayered laminate containing ultrahigh-molecular polyolefin layer, process for producing the same, and apparatus for producing the multilayered laminate
JP2001322171A (en) * 2000-05-17 2001-11-20 Nipro Corp Refrigeration storage container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136597A (en) * 2007-12-10 2009-06-25 Nipro Corp Freeze preservation bag and freeze preservation method
US9161527B2 (en) 2007-12-21 2015-10-20 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9301520B2 (en) 2007-12-21 2016-04-05 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US9933113B2 (en) 2007-12-21 2018-04-03 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US10088106B2 (en) 2007-12-21 2018-10-02 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials
US8177123B2 (en) 2008-09-24 2012-05-15 Sartorius Stedim North America Inc. Systems and methods for freezing, storing and thawing biopharmaceutical materials

Similar Documents

Publication Publication Date Title
US4482585A (en) Container resistant to extremely low temperatures
JP5548731B2 (en) Cryopreservation container package and manufacturing method thereof
JP4848755B2 (en) Cryopreservation container, its production method and biological sample cryopreservation method
JP6734656B2 (en) Impact resistant film and laminate using the same
BRPI0709225B1 (en) USE OF A LACRABLE AND RETRACTABLE COMPOSITION TO MAKE CONTAINERS FOR MEDICAL, PHARMACEUTICAL OR NUTRITIONAL APPLICATIONS
BRPI0406891B1 (en) detachable polymeric layer structure as well as an overbag container
AU761533B2 (en) Multi-chamber medical container
WO2013008780A1 (en) Plastic film and infusion solution bag
JP5548732B2 (en) Cryopreservation container and manufacturing method thereof
JP2008195443A (en) Frozen storage container
JP2005193013A (en) Medical freezing bag
JP2003267471A (en) Protecting external packaging bag for container for freezing and storing living tissue
US20050129887A1 (en) Medical freezer bag
WO2022054566A1 (en) Packaging layered-body
JP3941091B2 (en) Cryopreservation method
JP2876588B2 (en) Frozen bag
JPS5829465A (en) Platelet storage container
JPS6136941B2 (en)
JPH02136140A (en) Baglike container having extremely low temperature resistance
JP2004129968A (en) Medical care bag
JP3374383B2 (en) Frozen bag
JPS6049429B2 (en) Cryogenic containers
WO2007105601A1 (en) Infusion solution bag package and packing bag
JPS643500B2 (en)
JP2004113680A (en) Medical purpose bag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914