JP2005191086A - Radio-wave acoustic-wave absorber - Google Patents

Radio-wave acoustic-wave absorber Download PDF

Info

Publication number
JP2005191086A
JP2005191086A JP2003427750A JP2003427750A JP2005191086A JP 2005191086 A JP2005191086 A JP 2005191086A JP 2003427750 A JP2003427750 A JP 2003427750A JP 2003427750 A JP2003427750 A JP 2003427750A JP 2005191086 A JP2005191086 A JP 2005191086A
Authority
JP
Japan
Prior art keywords
fibers
fiber
radio wave
weight
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003427750A
Other languages
Japanese (ja)
Other versions
JP2005191086A5 (en
JP4357955B2 (en
Inventor
Kazuo Kodera
和男 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Original Assignee
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON GLASSFIBER INDUSTRIAL CO Ltd filed Critical NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority to JP2003427750A priority Critical patent/JP4357955B2/en
Publication of JP2005191086A publication Critical patent/JP2005191086A/en
Publication of JP2005191086A5 publication Critical patent/JP2005191086A5/ja
Application granted granted Critical
Publication of JP4357955B2 publication Critical patent/JP4357955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light weight radio-wave acoustic-wave absorber having a flexibility and self fire-extinguishing properties, being easily constructed and being capable of efficiently absorbing a radio wave and an acoustic wave in a GHz band while using a resin material, from which a poisonous gas is not generated in the case of a fire. <P>SOLUTION: A nonwoven fabric bonded by entwining sections among fibers by a needle punch in a cotton-shaped fiber web containing carbon fibers 1 of 20 wt.% or more having a mean fiber length of 25 to 200 mm, and containing at least one kind of polyolefin resin fibers 2 of 1 to 30 wt.% is used as the radio-wave acoustic-wave absorber 20. In the absorber 20, sections among residual fibers are bonded by melting and re-curing the polyolefin resin fibers in maximally 15 wt.%. The ratio of the carbon fibers 1 is increased on one surface, and the gradient of a volume resistivity by the carbon fibers 1 is formed in a layer so as to be gradually reduced from one surface. The ratio of basalt fibers 3 is increased on the other surface, and the basalt fibers 3 on the other surface are made noncombustible or quasi-noncombustible. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電波と音波とを吸収する吸収体に関するものであり、例えば電波暗室、建築物、車両等の屋根材、天井材、壁材、床材等に好適なものである。   The present invention relates to an absorber that absorbs radio waves and sound waves, and is suitable for, for example, an anechoic chamber, a building, a roof material such as a vehicle, a ceiling material, a wall material, and a floor material.

電波は、正確に言えば電磁波であり、電界と磁界が相伴い、必ず同時に存在し進行する波である。電波の電界、磁界のどちらか一方を無くしてしまうと、電波として存在できない。この電波を吸収する電波吸収材として、一般には、低周波領域において磁性材としてのフェライトが、GHz帯以上の高周波波領域において導電材としてのカーボンが、それぞれ使用されている。磁性体は、電磁波の磁界成分に作用し、電磁波のエネルギーを吸収し熱に変換する。導電体は、電磁波の電界成分に作用し、そのエネルギーを熱エネルギーに変換する。具体的には、フェライトタイルが単体タイプとして、また、フェライト粉やカーボンブラックをウレタン、ポリエチレンその他の樹脂やゴム或いはそれらの発泡体に担持させたものが複合タイプとして、それぞれ使用されている。特に天井材には、電波吸収体とは別に、ガラス繊維等の音波吸収体を設けている。これらの他にも、例えば次の特許文献1〜4に記載の電波吸収体が知られている。   To be precise, a radio wave is an electromagnetic wave, which is a wave that always exists and travels simultaneously with an electric field and a magnetic field. If either the electric field or magnetic field of a radio wave is lost, it cannot exist as a radio wave. As a radio wave absorbing material that absorbs the radio waves, generally, ferrite as a magnetic material is used in a low frequency region, and carbon as a conductive material is used in a high frequency wave region of a GHz band or higher. The magnetic substance acts on the magnetic field component of the electromagnetic wave, absorbs the energy of the electromagnetic wave, and converts it into heat. The conductor acts on the electric field component of the electromagnetic wave and converts the energy into heat energy. Specifically, ferrite tiles are used as a single type, and ferrite powder or carbon black supported on urethane, polyethylene or other resins or rubbers or foams thereof are used as composite types. In particular, the ceiling material is provided with a sound wave absorber such as glass fiber separately from the radio wave absorber. Besides these, for example, the radio wave absorbers described in the following Patent Documents 1 to 4 are known.

特許文献1には、難燃性材料と電磁波遮蔽材料とを含み、かつハロゲン元素を含まない電磁波遮蔽シート(例えば、ガラスと炭素繊維)が記載されている。
特許文献2には、導電性繊維を含有する鉱物質繊維ボードとガラス繊維の層とそれらの境界部の樹脂とからなる無機質ボード(例えば、炭素繊維含有のロックウールとガラス繊維不織布と樹脂)が記載されている。
特許文献3には、導電性繊維および非導電性繊維が混繊された布帛であり、その表面抵抗が1〜200Ω/cm2 である電磁波抑制布帛(例えば、炭素繊維とポリプロピレン樹脂繊維)が記載されている。
特許文献4には、無機質繊維に対し2〜40重量%の導電性繊維を、その含有量が前記無機質繊維の堆積方向に連続勾配を有するように含有させた導電性繊維含有未硬化無機質繊維ウェブを加圧・加熱成形した電磁波吸収体が記載されている。
特開2003−115695公報 特開2003−11259公報 特開2002−299877公報 特開2001−77586公報
Patent Document 1 describes an electromagnetic wave shielding sheet (for example, glass and carbon fiber) that contains a flame retardant material and an electromagnetic wave shielding material and does not contain a halogen element.
Patent Document 2 discloses an inorganic board (for example, carbon fiber-containing rock wool, glass fiber nonwoven fabric, and resin) composed of a mineral fiber board containing conductive fibers, a glass fiber layer, and a resin at the boundary between them. Has been described.
Patent Document 3 describes an electromagnetic wave suppressing fabric (for example, carbon fiber and polypropylene resin fiber) that is a fabric in which conductive fibers and non-conductive fibers are mixed, and has a surface resistance of 1 to 200 Ω / cm 2. Has been.
Patent Document 4 discloses that a conductive fiber-containing uncured inorganic fiber web containing 2 to 40% by weight of conductive fibers with respect to the inorganic fibers so that the content thereof has a continuous gradient in the deposition direction of the inorganic fibers. An electromagnetic wave absorber obtained by pressurizing and thermoforming is described.
JP 2003-115695 A JP 2003-11259 A JP 2002-299877 A JP 2001-77586 A

ところが、フェライトタイルや、フェライト粉体又はカーボンブラックを混ぜたゴムシートは、特に軽量面で問題がある。
また、特許文献1の電磁波遮断シートは、難燃性という特長はあるが、難燃性材料がポリイミド樹脂、アラミド樹脂、ガラス等の電気絶縁材料であり、それ自体は電波吸収効果に寄与しているものでなく、また一般に高価である。
特許文献2の無機質ボードは、柔軟性がない。また、繊維長が短い抄造成形法の例である。また、ガラス繊維は電気絶縁材料であり、それ自体は電波吸収効果に寄与しているものでなく、一般に高価である。
特許文献3の電磁波抑制布帛は、混繊された布帛であるが、非導電性繊維の融着により繊維間を結合していない。融着しないと、炭素繊維がほつれやすく飛散しやすいため、耐久性と強度が劣る。
特許文献4の電磁波吸収体は、無機質繊維又はその外周部に電磁波損失材料粉体を分散保持したものであり、無機質繊維自体が電波吸収効果に寄与しているものでなく、また粉体飛散のおそれもある。
However, a rubber sheet mixed with ferrite tile, ferrite powder or carbon black has a problem particularly in light weight.
Moreover, although the electromagnetic wave shielding sheet of Patent Document 1 has a feature of flame retardancy, the flame retardant material is an electrically insulating material such as polyimide resin, aramid resin, glass, etc., which itself contributes to the radio wave absorption effect. In general, it is expensive.
The inorganic board of Patent Document 2 is not flexible. Moreover, it is an example of the papermaking method with a short fiber length. Further, glass fiber is an electrically insulating material, which itself does not contribute to the radio wave absorption effect and is generally expensive.
The electromagnetic wave suppressing fabric of Patent Document 3 is a mixed fiber, but the fibers are not bonded by fusion of non-conductive fibers. If not fused, the carbon fibers are easily frayed and scattered, resulting in poor durability and strength.
The electromagnetic wave absorber of Patent Document 4 is obtained by dispersing and holding the electromagnetic wave loss material powder on the inorganic fiber or on the outer periphery thereof, and the inorganic fiber itself does not contribute to the radio wave absorption effect, and the powder scattering There is also a fear.

本発明の目的は、軽量で、柔軟性と自己消火性があり、施工が容易で、GHz帯の電波と音波とを効率的に吸収できるとともに、火災時の有毒ガスが発生しない樹脂材料を用いた電波音波吸収体及びその製造方法を提供することにある。   An object of the present invention is to use a resin material that is lightweight, flexible and self-extinguishing, easy to construct, can efficiently absorb GHz-band radio waves and sound waves, and does not generate toxic gas during a fire. An object of the present invention is to provide a radio wave absorber and a manufacturing method thereof.

上記目的を達成するために、本発明は、次の手段(1)(2)を採った。
(1)平均繊維長25〜200mmの炭素繊維を20重量%以上含み、少なくとも1種のポリオレフィン系樹脂繊維を1〜30重量%含む綿状の繊維ウェブを、ニードルパンチにて繊維間を絡めることにより結合してなる不織布であって、前記ポリオレフィン系樹脂繊維が最大15重量%溶融し再硬化したことにより残留繊維間が接着していることを特徴とする電波音波吸収体。
In order to achieve the above object, the present invention employs the following means (1) and (2).
(1) A cotton-like fiber web containing 20% by weight or more of carbon fibers having an average fiber length of 25 to 200 mm and containing 1 to 30% by weight of at least one polyolefin resin fiber is entangled between the fibers with a needle punch. A radio wave absorber, wherein the residual fibers are bonded together by melting and re-curing up to 15% by weight of the polyolefin resin fibers.

(2)平均繊維長25〜200mmの炭素繊維を20重量%以上含み、少なくとも1種のポリオレフィン系樹脂繊維を1〜30重量%含む綿状の繊維ウェブを、ニードルパンチにて繊維間を絡めることにより結合して不織布にする工程と、前記ニードルパンチ後に前記ポリオレフィン系樹脂繊維を最大15重量%溶融させ再硬化させることにより残留繊維間を接着させる工程とを含む電波音波吸収体の製造方法。 (2) A cotton-like fiber web containing 20% by weight or more of carbon fibers having an average fiber length of 25 to 200 mm and containing 1 to 30% by weight of at least one polyolefin-based resin fiber is entangled between the fibers with a needle punch. A method of manufacturing a radio wave absorber comprising the steps of bonding to a non-woven fabric and bonding the residual fibers by melting and re-curing the polyolefin resin fibers up to 15% by weight after the needle punching.

上記の各手段における各重量%は、繊維ウェブ(又は不織布)100重量%に対する値である。前記ニードルパンチにより、繊維ウェブの繊維の形態は直線状に近い状態から曲線状に絡められ、繊維同志の接触交点が増加する。   Each weight% in each of the above means is a value relative to 100 weight% of the fibrous web (or non-woven fabric). By the needle punch, the fiber form of the fiber web is entangled in a curved line from a state close to a straight line, and the contact intersection of the fibers increases.

上記の各手段において、一方の面で炭素繊維の比率を高めることができる。また、層内に炭素繊維による体積抵抗率の勾配を設けることができる。そして、一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設けることが好ましい。「層内に炭素繊維による体積抵抗率の勾配」とは、厚さ方向に段階的又は連続的に炭素繊維の含有量を増減することで生じる体積抵抗率の段階的又は連続的な変化をいう。この勾配は、例えば、複数のローラーカード機で炭素繊維の配合の異なる複数の繊維ウェブを積層し、その積層した繊維ウェブをニードルパンチにて一体化することで、乾式一貫ラインにより、容易に成形することができる。   In each of the above means, the ratio of carbon fibers can be increased on one side. Moreover, the gradient of the volume resistivity by a carbon fiber can be provided in a layer. And it is preferable to raise the ratio of the carbon fiber in one surface, and to provide the volume resistivity gradient by the carbon fiber in the layer so as to gradually decrease from the surface. “The gradient of volume resistivity due to carbon fiber in the layer” means a stepwise or continuous change in volume resistivity caused by increasing or decreasing the content of carbon fiber stepwise or continuously in the thickness direction. . This gradient can be easily formed by a dry consistent line by laminating a plurality of fiber webs with different carbon fiber blends with a plurality of roller card machines and integrating the laminated fiber webs with a needle punch. can do.

また、繊維ウェブは、少なくとも一部にバサルト繊維を含むものであることが好ましい。バサルト繊維もまた前記ニードルパンチにて繊維間を絡めて結合される。この場合、一方の面でバサルト繊維の比率を高めることにより該面を不燃化又は準不燃化することが好ましい。   Moreover, it is preferable that a fiber web contains a basalt fiber in part at least. The basalt fiber is also entangled between the fibers by the needle punch. In this case, it is preferable to make the surface incombustible or semi-incombustible by increasing the ratio of the basalt fiber on one surface.

さらに好ましくは、一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設け、他方の面でバサルト繊維の比率を高めることにより該面を不燃化又は準不燃化することである。   More preferably, the ratio of the carbon fibers is increased on one side, a volume resistivity gradient due to the carbon fibers is provided in the layer so as to gradually decrease from the side, and the ratio of the basalt fibers is increased on the other side. Is made incombustible or semi-incombustible.

なお、繊維ウェブは、上記の3種(炭素繊維、ポリオレフィン系樹脂繊維及びバサルト繊維)以外の繊維を含んでいてもよいが、バサルト繊維を含まない場合には、炭素繊維とポリオレフィン系樹脂繊維とで80重量%以上を占めるよう、他の繊維を20重量%未満に制限することが好ましく、また、バサルト繊維を含む場合には、上記の3種で80重量%以上を占めるよう、他の繊維を20重量%未満に制限することが好ましい。   The fiber web may contain fibers other than the above three types (carbon fiber, polyolefin resin fiber, and basalt fiber). When the fiber web does not contain basalt fiber, the carbon web and the polyolefin resin fiber It is preferable to limit other fibers to less than 20% by weight so as to occupy 80% by weight or more, and when basalt fiber is included, the other three fibers occupy 80% by weight or more. Is preferably limited to less than 20% by weight.

上記の各構成要素の態様を、以下に例示する。
「炭素繊維」には、製法により、ピッチ系、PAN系等があるが、特に限定されない。なお、低温処理によるいわゆる耐炎繊維は電波吸収効果が少ないため好ましくない。炭素繊維の繊維径は、容易に曲線状に絡めるためにも、4〜8μmが望ましい。炭素繊維は、特に限定されないが、電波音波吸収体の単位面積当たりで表して45〜174g/m2 含まれることが好ましい。
The aspect of each component described above is exemplified below.
“Carbon fiber” includes, but is not particularly limited to, pitch type and PAN type depending on the production method. Note that so-called flame resistant fibers by low temperature treatment are not preferable because they have a small radio wave absorption effect. The fiber diameter of the carbon fiber is preferably 4 to 8 μm in order to easily entangle it in a curved shape. Although carbon fiber is not specifically limited, It is preferable that 45-174 g / m < 2 > is contained per unit area of a radio wave absorber.

「ポリオレフィン系樹脂繊維」としては、ポリエチレン樹脂繊維、ポリプロピレン樹脂繊維、ポリエステル樹脂繊維を例示できる。柔軟性と繊維の絡みの保持から、芯鞘構造の低融点ポリエステル樹脂繊維が望ましい。ポリオレフィン系樹脂を利用することで、火災発生時の加熱による塩素ガスや塩化水素ガス等の有毒ガスの発生を抑制でき、環境ホルモンとの関連性もなくなる。また、ポリオレフィン系樹脂繊維を炭素繊維に対して1〜30重量%としたのは、30重量%を超えると、自己消火性が著しく低下するためであり、1重量%未満では、繊維の均一分散と、高弾性の炭素繊維を絡め捕集する作用が低い。   Examples of the “polyolefin resin fibers” include polyethylene resin fibers, polypropylene resin fibers, and polyester resin fibers. From the viewpoint of flexibility and fiber entanglement, a low melting point polyester resin fiber having a core-sheath structure is desirable. By using polyolefin resin, generation of toxic gases such as chlorine gas and hydrogen chloride gas due to heating in the event of a fire can be suppressed, and there is no relevance to environmental hormones. In addition, the reason why the polyolefin resin fiber is 1 to 30% by weight with respect to the carbon fiber is that when it exceeds 30% by weight, the self-extinguishing property is remarkably lowered. And, the action of entwining and collecting highly elastic carbon fibers is low.

「前記ポリオレフィン系樹脂繊維を最大15重量%」溶融させ再硬化させるとしたのは、15重量%を超えると、柔軟性が著しく低下するためであり、最大10重量%溶融させ再硬化させることが好ましい。ポリオレフィン系樹脂繊維を15〜30重量%含む場合には、最大でも15重量%溶融・再硬化させ、残りは溶融させないで繊維状態を保つ。ポリオレフィン系樹脂繊維を15重量%未満しか含まない場合には、全量溶融・再硬化させる場合と、一部溶解・再硬化させ、残りは溶融させないで繊維状態を保つ場合とがある。いずれにしても、ポリオレフィン系樹脂繊維が全く溶融・再硬化しない場合は、本発明に含まれない。   “Up to 15% by weight of the polyolefin-based resin fiber” is melted and re-cured because, if the amount exceeds 15% by weight, the flexibility is remarkably lowered. Up to 10% by weight can be melted and re-cured. preferable. When the polyolefin resin fiber is contained in an amount of 15 to 30% by weight, the fiber state is maintained by melting and re-curing 15% by weight at the maximum and not melting the rest. When less than 15% by weight of the polyolefin resin fiber is contained, there are a case where the entire amount is melted and recured, and a case where a part is dissolved and recured, and the remainder is not melted and the fiber state is maintained. In any case, when the polyolefin resin fiber does not melt or recur at all, it is not included in the present invention.

「バサルト繊維」は、鉱物である玄武岩を繊維化したもので、一般に鉄の化合物であるFeO又はFeO2 を9〜25%、チタンの化合物であるTiO又はTiO2 を1〜6%含有する。溶融状態でこれらの成分を増量することも可能である。これらの金属化合物を含有するバサルト繊維を用いることで、従来の磁性体電波吸収体に比べ安価であり、特に高周波であるGHz帯の吸収特性が存在することを見出した。従来のフェライトは人体に有害な成分を含む場合もあり、GHz帯の吸収性能に劣る。これに対しバサルト繊維は、無公害で環境にやさしい天然鉱物である点でも、理想的な材料である。   The “basalt fiber” is a fiber made of basalt, which is a mineral, and generally contains 9 to 25% of FeO or FeO2, which is an iron compound, and 1 to 6% of TiO or TiO2 which is a titanium compound. It is also possible to increase these components in the molten state. It has been found that the use of basalt fibers containing these metal compounds is cheaper than conventional magnetic wave absorbers, and in particular has a high-frequency GHz band absorption characteristic. Conventional ferrite may contain components harmful to the human body, and is inferior in absorption performance in the GHz band. In contrast, basalt fiber is an ideal material because it is a pollution-free and environmentally friendly natural mineral.

上記3種以外に含ませ得る繊維としては、特に限定されないが、ケナフ、麻、竹繊維等の天然繊維、アクリル、ビニロン、レーヨン、アラミド、フェノール系繊維等の化学繊維(これらに難燃加工剤を付与した難燃性有機繊維や、難燃加工した耐炎繊維を含む)、ガラス繊維、シリカ繊維、ロックウール、スラグウール、金属繊維等の無機繊維を例示することができる。   Fibers that can be included in addition to the above three types are not particularly limited, but natural fibers such as kenaf, hemp and bamboo fibers, and chemical fibers such as acrylic, vinylon, rayon, aramid, phenolic fibers (in addition to these, flame retardant agents) Inorganic fibers such as glass fibers, silica fibers, rock wool, slag wool, and metal fibers can be exemplified.

電波音波吸収体の全体の厚みは、吸収性能から6〜20mmあることが望ましいが、特に限定されない。全体の嵩密度は、50〜100kg/m3 が望ましいが、特に限定されない。圧着すると嵩密度が高くなり、繊維の接触交点が増加し、導電性が向上する。体積抵抗率が0.1Ω・m以下となると、電波遮蔽率が著しく向上し、吸収性が低下する。 The total thickness of the radio wave absorber is preferably 6 to 20 mm from the viewpoint of absorption performance, but is not particularly limited. The overall bulk density is preferably 50 to 100 kg / m 3, but is not particularly limited. When the pressure bonding is performed, the bulk density is increased, the contact intersection of the fibers is increased, and the conductivity is improved. When the volume resistivity is 0.1 Ω · m or less, the radio wave shielding rate is remarkably improved and the absorbability is lowered.

電波音波吸収体の形状は、基本的に平板状のマットであるが、ピラミッド状、くさび状、ツイスト形、ウェッジ形、格子形、グリッド形等に成形してもよく、特に限定されない。大きさは、特に限定されないが、(例えば1m巾の)ロール巻き品にしておいて、設置場所の広さ等に応じて切断、配列又は積層し使用すればよい。   The shape of the radio wave absorber is basically a flat mat, but may be formed into a pyramid shape, a wedge shape, a twist shape, a wedge shape, a lattice shape, a grid shape, or the like, and is not particularly limited. The size is not particularly limited, but it may be used after being rolled (for example, 1 m wide), cut, arranged, or laminated according to the size of the installation location.

本発明によれば、軽量で、柔軟性と自己消火性があり、施工が容易で、電波と音波を効率的に吸収できるとともに、火災時に有毒ガスが発生しない電波音波吸収体が得られるという優れた効果を奏する。   According to the present invention, it is lightweight, flexible and self-extinguishing, easy to construct, can efficiently absorb radio waves and sound waves, and can obtain a radio wave acoustic wave absorber that does not generate toxic gas during a fire. Has an effect.

平均繊維長25〜200mmの炭素繊維を20重量%以上含み、少なくとも1種のポリオレフィン系樹脂繊維を1〜30重量%含む綿状の繊維ウェブを、ニードルパンチにて繊維間を絡めることにより結合してなる不織布であって、前記ポリオレフィン系樹脂繊維を最大15重量%溶融し再硬化したことにより残留繊維間が接着していることを特徴とする電波音波吸収体である。一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設け、他方の面でバサルト繊維の比率を高め、該面のバサルト繊維を不燃化又は準不燃化したものが好ましい。   A cotton-like fiber web containing 20% by weight or more of carbon fibers having an average fiber length of 25 to 200 mm and containing 1 to 30% by weight of at least one polyolefin resin fiber is bonded by interlacing the fibers with a needle punch. A radio wave absorber characterized in that a residual fiber is adhered by melting and re-curing up to 15% by weight of the polyolefin-based resin fiber. Increase the ratio of carbon fiber on one side, and provide a gradient of volume resistivity due to carbon fiber in the layer so that it gradually decreases from the side, increase the ratio of basalt fiber on the other side, and make the basalt fiber on the side non-combustible Those that have been made non-combustible or semi-incombustible are preferred.

以下、本発明を具体化した実施例について、下記の表1及び図面に基づいて説明する。なお、実施例で記す材料、構成、数値は例示であって、適宜変更できる。   Hereinafter, embodiments embodying the present invention will be described with reference to the following Table 1 and drawings. Note that the materials, configurations, and numerical values described in the examples are examples and can be changed as appropriate.

表1に示すように実施例1〜5の電波音波吸収体と、比較例1のガラス繊維マットとを作成した。ここで用いた炭素繊維1は、繊維長が50mm、平均繊維径が6μmのPAN系繊維である。また、ポリオレフィン系樹脂繊維として用いたポリエステル樹脂繊維2は、図1(c)に示すように芯鞘構造で、繊維長が38mm、繊度が2デニール、芯2aの融点が253℃、鞘2bの融点が85℃、芯2aと鞘2bの重量が同量のものである。また、バサルト繊維3は、繊維長50mm、平均繊維径8μm、真比重2.85のものである。   As shown in Table 1, the radio wave absorbers of Examples 1 to 5 and the glass fiber mat of Comparative Example 1 were prepared. The carbon fiber 1 used here is a PAN-based fiber having a fiber length of 50 mm and an average fiber diameter of 6 μm. Further, the polyester resin fiber 2 used as the polyolefin resin fiber has a core-sheath structure as shown in FIG. 1C, the fiber length is 38 mm, the fineness is 2 denier, the melting point of the core 2a is 253 ° C., and the sheath 2b. The melting point is 85 ° C., and the weight of the core 2a and the sheath 2b is the same. The basalt fiber 3 has a fiber length of 50 mm, an average fiber diameter of 8 μm, and a true specific gravity of 2.85.

Figure 2005191086
Figure 2005191086

実施例1は、層内に炭素繊維による体積抵抗率の勾配がないものであり、まず、ローラーカード機(図示略)で炭素繊維とポリエステル樹脂繊維とを均一に混合した単層の繊維ウェブ10を作成し、ニードルパンチ3にて繊維間を絡めることにより結合して不織布にした。   In Example 1, there is no volume resistivity gradient due to carbon fibers in the layer. First, a single-layer fiber web 10 in which carbon fibers and polyester resin fibers are uniformly mixed by a roller card machine (not shown). Was formed by entanglement between the fibers with a needle punch 3 to form a nonwoven fabric.

実施例2は、層内に炭素繊維による体積抵抗率の勾配がないものであり、まず、各ローラーカード機(図示略)で炭素繊維とポリエステル樹脂繊維とを均一に混合した繊維ウェブ11と、バサルト繊維よりなる繊維ウェブ12とを作成し、これらの繊維ウェブをコンベア31上で積層し、その積層した繊維ウェブ10をニードルパンチ32にて繊維間を絡めることにより結合して不織布にした。   Example 2 has no volume resistivity gradient due to carbon fibers in the layer. First, a fiber web 11 in which carbon fibers and polyester resin fibers are uniformly mixed in each roller card machine (not shown); The fiber webs 12 made of basalt fibers were prepared, these fiber webs were laminated on the conveyor 31, and the laminated fiber webs 10 were joined by entanglement between the fibers with a needle punch 32 to form a nonwoven fabric.

実施例3は、一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設けたものであり、まず、各ローラーカード機(図示略)で炭素繊維の配合の高い異なる繊維ウェブ13と、炭素繊維の配合の低い繊維ウェブ14と、バサルト繊維よりなる繊維ウェブ12とを作成し、これらの繊維ウェブをコンベア31上で積層し、その積層した繊維ウェブ10をニードルパンチ32にて繊維間を絡めることにより結合して不織布にした。   In Example 3, the ratio of carbon fibers is increased on one surface, and a gradient of volume resistivity due to carbon fibers is provided in the layer so as to gradually decrease from the surface. First, each roller card machine (not shown) ), A fiber web 13 having a different carbon fiber content, a fiber web 14 having a low carbon fiber content, and a fiber web 12 made of basalt fiber are laminated on the conveyor 31, The laminated fiber webs 10 were joined by interlacing the fibers with a needle punch 32 to form a nonwoven fabric.

実施例4は、層内に炭素繊維による体積抵抗率の勾配がないものであり、まず、各ローラーカード機(図示略)で炭素繊維とポリエステル樹脂繊維とを均一に混合した繊維ウェブ11と、Eガラス繊維よりなる繊維ウェブ15とを作成し、これらの繊維ウェブをコンベア31上で積層し、その積層した繊維ウェブ10をニードルパンチ32にて繊維間を絡めることにより結合して不織布にした。   Example 4 has no gradient of volume resistivity due to carbon fibers in the layer. First, a fiber web 11 in which carbon fibers and polyester resin fibers are uniformly mixed in each roller card machine (not shown); A fiber web 15 made of E glass fiber was prepared, these fiber webs were laminated on the conveyor 31, and the laminated fiber web 10 was joined by interlacing the fibers with a needle punch 32 to form a nonwoven fabric.

実施例5は、一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設けたものであり、まず、各ローラーカード機(図示略)で炭素繊維の配合の高い異なる繊維ウェブ13と、炭素繊維の配合の低い繊維ウェブ14と、Eガラス繊維よりなる繊維ウェブ15とを作成し、これらの繊維ウェブをコンベア31上で積層し、その積層した繊維ウェブ1をニードルパンチ32にて繊維間を絡めることにより結合して不織布にした。   In Example 5, the ratio of carbon fibers is increased on one surface, and a gradient of volume resistivity due to carbon fibers is provided in the layer so as to gradually decrease from the surface. First, each roller card machine (not shown) ), A different fiber web 13 having a high carbon fiber content, a fiber web 14 having a low carbon fiber content, and a fiber web 15 made of E glass fiber, and laminating these fiber webs on the conveyor 31. The laminated fiber web 1 was bonded by entanglement between fibers with a needle punch 32 to form a nonwoven fabric.

そして、いずれの実施例1〜5についても、前記ニードルパンチ32にて混繊された不織布を、温度170℃の加熱炉33に1分連続的に通すことで、ポリエステル樹脂繊維2の低融点層である鞘2bを溶融した後、冷間ローラー34にて軽く圧着し、冷却により溶融樹脂を再硬化させ、もって製造された電波音波吸収体20を巻き取った。全ポリエステル樹脂繊維2の半分の重量を占めるため、繊維ウェブ10(又は不織布)に対しては実施例1では10重量%を占め、実施例2〜4では3重量%を占める鞘2aが、溶融し再硬化してなる溶着樹脂2cは、図1(b)に示すように、残留繊維間を接着した。   And also about any Examples 1-5, the low melting-point layer of the polyester resin fiber 2 is continuously passed through the heating furnace 33 with a temperature of 170 degreeC for the nonwoven fabric mixed with the needle punch 32 for 1 minute. After the sheath 2b was melted, it was lightly pressure-bonded by the cold roller 34, the molten resin was re-cured by cooling, and the radio wave absorber 20 thus manufactured was wound up. Since it occupies half the weight of all polyester resin fibers 2, the sheath 2a occupies 10% by weight in Example 1 and 3% by weight in Examples 2 to 4 with respect to the fiber web 10 (or non-woven fabric). Then, the re-cured welding resin 2c was bonded between the remaining fibers as shown in FIG. 1 (b).

吸音性能は、実施例1〜5の電波音波吸収体20及び比較例1のガラス繊維マットからJIS−A−1405に規定される円板形状の試験片に刃物で打ち抜き、管内法による垂直入射吸音率測定法に従って各周波数における吸音率を測定した。また、電波吸収特性は、フリースペース法により電磁波を試料に入射し、その周波数を変化させ反射損失を測定した。15dBは吸収率97%となり、7.5dB(吸収率82%)を特に好ましい結果として判断目安にした。   The sound absorbing performance is obtained by punching out a disk-shaped test piece defined in JIS-A-1405 from the radio wave acoustic absorber 20 of Examples 1 to 5 and the glass fiber mat of Comparative Example 1 with a blade, and performing normal incident sound absorption by an in-tube method. The sound absorption rate at each frequency was measured according to the rate measurement method. As for the radio wave absorption characteristics, electromagnetic waves were incident on the sample by the free space method, and the reflection loss was measured by changing the frequency. 15 dB was an absorptivity of 97%, and 7.5 dB (absorption rate of 82%) was used as a judgment criterion as a particularly preferable result.

各実施例の電波音波吸収体20の用途例として、図2(a)に示すように、下に内装用仕上板21を、上に遮蔽版22をそれぞれ重ねて、留め具23で止めることにより、板建築用内装材として適用することができる。また、図2(b)に示すように、自動車の天井内装材に適用することもできる。   As an application example of the radio wave absorber 20 of each embodiment, as shown in FIG. 2 (a), an interior finishing plate 21 is placed underneath, and a shielding plate 22 is overlaid thereon, and fastened with a fastener 23. It can be applied as an interior material for plate construction. Moreover, as shown in FIG.2 (b), it can also apply to the ceiling interior material of a motor vehicle.

本発明に係る実施例の電波音波吸収体を示す説明図である。It is explanatory drawing which shows the electromagnetic wave absorber of the Example which concerns on this invention. (a)は同電波音波吸収体を建築用天井材に適用した例を示す部分断面図であり、(b)は同電波音波吸収体を自動車の天井内装材に適用した例を示す概略図である。(A) is the fragmentary sectional view which shows the example which applied the radio wave acoustic absorber to the ceiling material for construction, (b) is the schematic which shows the example which applied the radio wave acoustic absorber to the ceiling interior material of a motor vehicle is there. 同電波音波吸収体の製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the same radio wave absorber.

符号の説明Explanation of symbols

1 炭素繊維
2 ポリエステル樹脂繊維
2a 鞘
2b 芯
2c 溶着樹脂
3 バサルト繊維
10 繊維ウェブ
11 繊維ウェブ
12 繊維ウェブ
13 繊維ウェブ
14 繊維ウェブ
15 繊維ウェブ
20 電波音波吸収体
31 コンベア
32 ニードルパンチ
33 加熱炉
34 冷間ローラー
DESCRIPTION OF SYMBOLS 1 Carbon fiber 2 Polyester resin fiber 2a Sheath 2b Core 2c Welding resin 3 Basalt fiber 10 Fiber web 11 Fiber web 12 Fiber web 13 Fiber web 14 Fiber web 15 Fiber web 20 Radio wave absorber 31 Conveyor 32 Needle punch 33 Heating furnace 34 Cooling Roller between

Claims (6)

平均繊維長25〜200mmの炭素繊維を20重量%以上含み、少なくとも1種のポリオレフィン系樹脂繊維を1〜30重量%含む綿状の繊維ウェブを、ニードルパンチにて繊維間を絡めることにより結合してなる不織布であって、前記ポリオレフィン系樹脂繊維が最大15重量%溶融し再硬化したことにより残留繊維間が接着していることを特徴とする電波音波吸収体。   A cotton-like fiber web containing 20% by weight or more of carbon fibers having an average fiber length of 25 to 200 mm and containing 1 to 30% by weight of at least one polyolefin resin fiber is bonded by interlacing the fibers with a needle punch. A radio wave absorber, wherein the polyolefin resin fibers are melted and re-cured up to 15% by weight, and the residual fibers are bonded to each other. 平均繊維長25〜200mmの炭素繊維を20重量%以上含み、少なくとも1種のポリオレフィン系樹脂繊維を1〜30重量%含む綿状の繊維ウェブを、ニードルパンチにて繊維間を絡めることにより結合して不織布にする工程と、前記ニードルパンチ後に前記ポリオレフィン系樹脂繊維を最大15重量%溶融させ再硬化させることにより残留繊維間を接着させる工程とを含む電波音波吸収体の製造方法。   A cotton-like fiber web containing 20% by weight or more of carbon fibers having an average fiber length of 25 to 200 mm and containing 1 to 30% by weight of at least one polyolefin resin fiber is bonded by interlacing the fibers with a needle punch. A method of manufacturing a radio wave absorber, comprising: a step of forming a nonwoven fabric and a step of adhering residual fibers by melting and re-curing the polyolefin-based resin fibers up to 15% by weight after the needle punching. 一方の面で炭素繊維の比率を高め、該面から漸減するように層内に炭素繊維による体積抵抗率の勾配を設けた請求項1記載の電波音波吸収体又は請求項2記載の電波音波吸収体の製造方法。   The radio wave acoustic absorber according to claim 1 or the radio wave acoustic wave absorption according to claim 2, wherein the ratio of the carbon fiber is increased on one side, and a gradient of volume resistivity by the carbon fiber is provided in the layer so as to gradually decrease from the side. Body manufacturing method. 前記繊維ウェブが少なくとも一部にバサルト繊維を含む請求項1記載の電波音波吸収体又は請求項2記載の電波音波吸収体の製造方法。   The method of manufacturing a radio wave absorber according to claim 1 or claim 2, wherein the fiber web contains at least a portion of basalt fiber. 一方の面でバサルト繊維の比率を高めることにより該面を不燃化又は準不燃化した請求項4記載の電波音波吸収体又は電波音波吸収体の製造方法。   The method for manufacturing a radio wave absorber or radio wave absorber according to claim 4, wherein the surface is made non-combustible or semi-incombustible by increasing the ratio of basalt fibers on one side. 一方の面で炭素繊維の比率を高め、層内に炭素繊維による体積抵抗率の勾配を設け、他方の面でバサルト繊維の比率を高めることにより該面を不燃化又は準不燃化した請求項1記載の電波音波吸収体又は請求項2記載の電波音波吸収体の製造方法。   The ratio of carbon fibers is increased on one side, the volume resistivity gradient due to carbon fibers is provided in the layer, and the ratio of basalt fibers is increased on the other side to make the plane incombustible or quasi-incombustible. A method for producing a radio wave absorber according to claim 2 or a radio wave absorber according to claim 2.
JP2003427750A 2003-12-24 2003-12-24 Radio wave absorber Expired - Lifetime JP4357955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427750A JP4357955B2 (en) 2003-12-24 2003-12-24 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427750A JP4357955B2 (en) 2003-12-24 2003-12-24 Radio wave absorber

Publications (3)

Publication Number Publication Date
JP2005191086A true JP2005191086A (en) 2005-07-14
JP2005191086A5 JP2005191086A5 (en) 2006-05-25
JP4357955B2 JP4357955B2 (en) 2009-11-04

Family

ID=34786938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427750A Expired - Lifetime JP4357955B2 (en) 2003-12-24 2003-12-24 Radio wave absorber

Country Status (1)

Country Link
JP (1) JP4357955B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113148A (en) * 2005-10-21 2007-05-10 Nihon Glassfiber Industrial Co Ltd Conductive nonwoven fabric
JP2009088025A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Electromagnetic wave absorbing material and its manufacturing method
JP2017069369A (en) * 2015-09-30 2017-04-06 日本グラスファイバー工業株式会社 Partition plate for ic tag erroneous recognition prevention, and manufacturing method thereof
JP2017072995A (en) * 2015-10-07 2017-04-13 東海電気株式会社 Ic-tag reader
JP2017112133A (en) * 2015-12-14 2017-06-22 三菱電線工業株式会社 Radio wave absorber and manufacturing method therefor
CN113818103A (en) * 2015-03-31 2021-12-21 帝人株式会社 Carbon fiber and method for producing carbon fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113148A (en) * 2005-10-21 2007-05-10 Nihon Glassfiber Industrial Co Ltd Conductive nonwoven fabric
JP2009088025A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Electromagnetic wave absorbing material and its manufacturing method
CN113818103A (en) * 2015-03-31 2021-12-21 帝人株式会社 Carbon fiber and method for producing carbon fiber
CN113818103B (en) * 2015-03-31 2024-02-13 帝人株式会社 Carbon fiber and method for producing carbon fiber
JP2017069369A (en) * 2015-09-30 2017-04-06 日本グラスファイバー工業株式会社 Partition plate for ic tag erroneous recognition prevention, and manufacturing method thereof
JP2017072995A (en) * 2015-10-07 2017-04-13 東海電気株式会社 Ic-tag reader
JP2017112133A (en) * 2015-12-14 2017-06-22 三菱電線工業株式会社 Radio wave absorber and manufacturing method therefor

Also Published As

Publication number Publication date
JP4357955B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
CA2315335C (en) High performance insulations and methods of manufacturing the same
CN108778664B (en) Acoustic prepregs, cores, and composite articles and methods of use thereof
KR101780649B1 (en) Heat insulating pad having excellent effect for sound absorption and electromagnetic wave shield
KR102400778B1 (en) electromagnetic wave suppression sheet
US6061011A (en) Nonflammable radio wave absorber
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
JP4357955B2 (en) Radio wave absorber
US20030049488A1 (en) Insulation containing separate layers of textile fibers and of rotary and/or flame attenuated fibers
CN108995329B (en) Sound absorption felt
JP2003309395A (en) Radio wave absorption material
JP4918204B2 (en) Porous media for dissipating charge
JP2006002429A (en) Radio wave-sound wave absorbing thermal insulation body
JP6235773B2 (en) Composite nonwoven fabric for sound absorbing material
JP2001316961A (en) Sound-absorbing structural body
JP4011096B2 (en) Radio wave absorbing nonwoven fabric
JP4226140B2 (en) Non-combustible radio wave absorbing felt and felt with composite panel and metal foil
CN114290761B (en) Multifunctional automobile roof fiber covering piece and preparation method thereof
JP3869147B2 (en) Electromagnetic wave absorbing sheet
EP3990274B1 (en) Nonwoven fibrous web
CN115699163A (en) Sound absorbing material, sound absorbing panel using same, and method for producing sound absorbing material
KR101863514B1 (en) Nonflammable interior material of building
KR20100064841A (en) Composite sheet having noise, vibration and thermal insulation function
JP7097781B2 (en) Laminated sheet
JP2000006115A (en) Plate-like material or molding and manufacture thereof
EP3990278B1 (en) Nonwoven fibrous web

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term