JP2005185319A - Superconductive magnetic device, and magnetic resonance imaging device - Google Patents

Superconductive magnetic device, and magnetic resonance imaging device Download PDF

Info

Publication number
JP2005185319A
JP2005185319A JP2003427122A JP2003427122A JP2005185319A JP 2005185319 A JP2005185319 A JP 2005185319A JP 2003427122 A JP2003427122 A JP 2003427122A JP 2003427122 A JP2003427122 A JP 2003427122A JP 2005185319 A JP2005185319 A JP 2005185319A
Authority
JP
Japan
Prior art keywords
vacuum
superconducting magnet
refrigerant
container
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427122A
Other languages
Japanese (ja)
Inventor
Shuichi Nakagawa
修一 中川
Kazuki Moritsu
一樹 森津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003427122A priority Critical patent/JP2005185319A/en
Publication of JP2005185319A publication Critical patent/JP2005185319A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive magnetic device for which the attaching positions of refrigerant containers can be adjusted from outside of vacuum containers at the time of assembly adjustment, and to provide a magnetic resonance imaging device using the superconductive magnetic device. <P>SOLUTION: This superconductive magnetic device is equipped with a pair of the vacuum containers 11 and 15 which are arranged to face each other across a specified space 9, the refrigerant containers 12 and 16 which are arranged in the vacuum containers 11 and 15, and main magnets 14 and 18 which are housed in the refrigerant containers together with a refrigerant, and generate a uniform static magnetic field spatial region 10 in a space 9. The superconductive magnetic device is also equipped with thermal shields 13 and 17 which enclose the refrigerant containers 12 and 16, and prevent heat from outside from entering, and a connection supporting section 3 which connects and supports both of the vacuum containers 11 and 15. Then, a position adjusting means which can adjust the supporting dimension from outside of the vacuum containers 11 and 15 under a vacuumized state is provided on a supporting member 34 which supports the refrigerant containers 12 and 16 to the vacuum containers 11 and 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、生体の画像診断に利用されるMRI(Magnetic Resonance Imaging)装置(通称「磁気共鳴イメージング装置」)に使用される超電導磁石装置、および磁気共鳴イメージング装置に関するものである。   The present invention relates to a superconducting magnet apparatus and a magnetic resonance imaging apparatus used in an MRI (Magnetic Resonance Imaging) apparatus (commonly referred to as “magnetic resonance imaging apparatus”) used for image diagnosis of a living body.

磁気共鳴イメージング装置は、磁石装置の形状により大別して円筒形と、一対の磁石部の間に球状の均一静磁場空間領域を形成する対向形とがあり、近年では、被検者に対する開放性や診断関係者の診断時の立ち回り等の利便性に優れた対向形が主流になりつつある。この対向形の磁気共鳴イメージング装置における計測空間である球状の均一静磁場空間領域の磁界強度は、一般的には10000ガウス前後であり、その許容誤差は通常は数ppmである。なお、対向形の磁気共鳴イメージング装置の大きさや重さは、例えば、高さ3m前後、平面における最大長2m前後、重さ40トン前後である。   Magnetic resonance imaging apparatuses are roughly classified according to the shape of the magnet apparatus, and are divided into a cylindrical form and an opposing form that forms a spherical uniform static magnetic field space region between a pair of magnet parts. Opposite type which is excellent in convenience such as turning around at the time of diagnosis is becoming mainstream. The magnetic field strength in the spherical uniform static magnetic field space region, which is the measurement space in the opposed magnetic resonance imaging apparatus, is generally around 10000 gauss, and its tolerance is usually several ppm. The size and weight of the opposed magnetic resonance imaging apparatus are, for example, about 3 m in height, about 2 m in the maximum length on the plane, and about 40 tons in weight.

前述のような対向形の磁気共鳴イメージング装置においては、球状の均一静磁場空間領域に磁界強度の均一性を確保するためには、一対の磁石装置間の距離を正確に保つことが重要である。磁石装置として超電導磁石装置を用いた場合は、真空容器の中に冷媒容器が配置され、冷媒容器の中に超電導コイルからなる主磁石が収納されて構成されているが、この冷媒容器を真空容器に固定する従来の技術として、例えば、超電導磁石装置の計測空間を挟んで上下に配置された超電導コイルを収容する上下の冷却容器(冷媒容器に同じ)が、上下の真空容器内に複数の支持部材によって支持され、かつ冷却容器全体としての重心を基準にして、各支持部材の前後、左右、上下方向の座標とばね定数との積の和がそれぞれ0となるように各支持部材が支持されている超電導磁石装置が開示されている(例えば、特許文献1参照)。   In the opposed magnetic resonance imaging apparatus as described above, it is important to keep the distance between the pair of magnet devices accurate in order to ensure the uniformity of the magnetic field strength in the spherical uniform static magnetic field space region. . When a superconducting magnet device is used as a magnet device, a refrigerant container is arranged in a vacuum container, and a main magnet composed of a superconducting coil is housed in the refrigerant container. As a conventional technique for fixing to the upper and lower vacuum containers, for example, an upper and lower cooling container (same as a refrigerant container) that accommodates superconducting coils arranged above and below the measurement space of the superconducting magnet device are supported. Each support member is supported such that the sum of the product of the coordinates of the front and rear, left and right, up and down directions of each support member and the spring constant is 0 based on the center of gravity of the entire cooling container. A superconducting magnet device is disclosed (see, for example, Patent Document 1).

特開2002−159466号公報(第2頁、図2)JP 2002-159466 (2nd page, FIG. 2)

従来の超電導磁石装置は以上のように構成されているので、冷却容器の支持系の支持剛性のバランスがとれ、上下の冷却容器は外部加振に対しほぼ同じ振動をするので、運転時に振動が加わっても計測空間の磁場はほとんど変化しないという効果はあるが、冷却容器は真空容器に固定支持されているので、現地での組立試験調整時において均一静磁場空間領域の磁場均一度を調整する際に、上下の冷却容器すなわち上下の超電導コイルの相対位置関係を真空容器の外部から調整することはできなかった。超電導コイルの相対位置のミリ単位のずれが均一静磁場空間領域の位置や磁場均一度に影響する。また、例えば、製作時に工場内で正確に調整されていても、現地に搬入して設置した場合、現地の設置環境、すなわち設置場所近傍の鉄体(例えば床面の鉄筋等)の影響で均一静磁場空間領域の中心がずれたり、均一度が乱れたりする場合がある。このため、磁場調整として、対向する真空容器の表面近傍に磁性体シム(取り外し可能な鉄片)を多数取り付けて調整する方法がとられており、この調整に多大の時間と労力を費やしているという問題点があった。   Since the conventional superconducting magnet device is configured as described above, the support rigidity of the cooling vessel support system is balanced, and the upper and lower cooling vessels vibrate substantially the same with respect to the external vibration, so that vibration does not occur during operation. Although there is an effect that the magnetic field in the measurement space hardly changes even if it is added, the cooling vessel is fixedly supported by the vacuum vessel, so the magnetic field homogeneity in the uniform static magnetic field space region is adjusted during assembly test adjustment on site In this case, the relative positional relationship between the upper and lower cooling containers, that is, the upper and lower superconducting coils, cannot be adjusted from the outside of the vacuum container. The deviation of the relative position of the superconducting coil in millimeters affects the position of the uniform static magnetic field space region and the magnetic field uniformity. Also, for example, even if it is precisely adjusted in the factory at the time of production, if it is brought into the site and installed, it is uniform due to the influence of the local installation environment, that is, the iron body in the vicinity of the installation location (for example, reinforcing bars on the floor) There are cases where the center of the static magnetic field space region is shifted or the uniformity is disturbed. For this reason, as a magnetic field adjustment, a method of adjusting a large number of magnetic shims (removable iron pieces) in the vicinity of the surface of the opposing vacuum vessel is taken, and it takes a lot of time and labor to make this adjustment. There was a problem.

この発明は、上記のような問題点を解消するためになされたもので、組立調整時に冷媒容器の取付位置を真空容器の外部から調整できる超電導磁石装置、およびそれを用いた磁気共鳴イメージング装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. A superconducting magnet device capable of adjusting the mounting position of the refrigerant container from the outside of the vacuum container during assembly adjustment, and a magnetic resonance imaging apparatus using the same. The purpose is to obtain.

この発明に係わる超電導磁石装置は、所定の空間を挟み対向して配置された一対の真空容器と、真空容器の内部に真空容器の内壁から離隔して配置された冷媒容器と、冷媒容器の内部に冷媒と共に収容され超電導特性を有する材料からなり前記空間内に均一静磁場空間領域を形成させる主磁石と、真空容器と冷媒容器との間に配置され外部からの熱侵入を阻止する熱シールドと、両真空容器を連結し支持する連結支持部とを備えた超電導磁石装置において、冷媒容器を真空容器に支持する支持部材に、真空容器内を真空にした状態で真空容器の外部から支持寸法の調整が可能な位置調整手段を設けたものである。   A superconducting magnet device according to the present invention includes a pair of vacuum containers disposed opposite to each other with a predetermined space interposed therebetween, a refrigerant container disposed inside the vacuum container away from the inner wall of the vacuum container, and the interior of the refrigerant container A main magnet which is made of a material having a superconducting characteristic and is accommodated together with a refrigerant, and forms a uniform static magnetic field space region in the space, and a heat shield which is disposed between the vacuum vessel and the refrigerant vessel and prevents heat from entering from the outside. In a superconducting magnet device having a connection support unit that connects and supports both vacuum containers, a support member that supports the refrigerant container on the vacuum container is supported from the outside of the vacuum container in a state where the vacuum container is evacuated. Position adjustment means capable of adjustment is provided.

また、この発明に係わる磁気共鳴イメージング装置は、超電導磁石装置と、均一静磁場空間領域を挟み対向して配置した一対の傾斜磁場発生装置および一対の高周波磁場発生装置とを備えた磁気共鳴イメージング装置において、超電導磁石装置として上記の超電導磁石装置を用いたものである。   A magnetic resonance imaging apparatus according to the present invention includes a superconducting magnet device, a pair of gradient magnetic field generators and a pair of high-frequency magnetic field generators arranged opposite to each other across a uniform static magnetic field space region. The above superconducting magnet device is used as the superconducting magnet device.

この発明の超電導磁石装置によれば、冷媒容器を真空容器に支持する支持部材に、真空容器内を真空にした状態で真空容器の外部から支持寸法の調整が可能な位置調整手段を設けたので、組立調整時に冷媒容器の取付位置を真空容器の外部から調整できるため、均一静磁場空間領域の磁場調整が容易となる。   According to the superconducting magnet apparatus of the present invention, the support member that supports the refrigerant container in the vacuum container is provided with the position adjusting means that can adjust the support dimension from the outside of the vacuum container in a state where the inside of the vacuum container is evacuated. Since the attachment position of the refrigerant container can be adjusted from the outside of the vacuum container during assembly adjustment, the magnetic field adjustment in the uniform static magnetic field space region is facilitated.

実施の形態1.
以下この発明の実施の形態1を図1〜図3により説明する。図1は対向形の磁気共鳴イメージング装置全体の主要部の構成の一例を示す平面図、図2は図1のII−II線における断面を矢印方向に見た断面図、図3は図2の要部の詳細断面図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 is a plan view showing an example of the configuration of the main part of the entire opposing magnetic resonance imaging apparatus, FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. It is detail sectional drawing of the principal part.

磁気共鳴イメージング装置は、まず全体の外観を説明すると、上下(または左右)方向に対向して配置され外観が円柱状をした第1のクライオスタット(極低温断熱容器)部1および第2のクライオスタット部2とこれら両クライオスタット部1,2を連結する連結支持部3とで主に構成される超電導磁石装置と、両クライオスタット部1,2の対向面側にそれぞれ設けた、後述の傾斜磁場コイル4,5および高周波コイル6,7とで、主に構成されている。   First, the overall appearance of the magnetic resonance imaging apparatus will be described. The first cryostat (cryogenic container) 1 and the second cryostat, which are arranged facing each other in the vertical (or left-right) direction and are cylindrical in appearance. 2 and a connecting and supporting portion 3 that connects these cryostat portions 1 and 2, and a gradient magnetic field coil 4, which will be described later, provided on the opposing surface side of both cryostat portions 1 and 2. 5 and high-frequency coils 6 and 7.

第1のクライオスタッ卜部1と第2のクライオスタット部2とは、図示のように軸線8の同軸上に配設され、両者の対向面間には所定の空間9が、連結支持部3によって保持されている。なお、空間9に、被検者の画像診断に必要な球状の均一静磁場空間領域10が存在する。   The first cryostat portion 1 and the second cryostat portion 2 are arranged on the same axis as the axis 8 as shown in the figure, and a predetermined space 9 is held between the opposing surfaces by the connection support portion 3. Has been. In the space 9, there is a spherical uniform static magnetic field space region 10 necessary for image diagnosis of the subject.

第1のクライオスタット部1は、内部を真空断熱するための、円筒状をした非磁性金属製の真空容器11と、この真空容器11の内壁から離隔して配設され、極低温を維持するための液体ヘリウム(He)等の冷媒を収容するための、高熱伝導性材料からなる冷媒容器12と、この冷媒容器12と真空容器11との間に冷媒容器12および真空容器11から離隔して冷媒容器12を包囲するように配設され、真空容器11から冷媒容器12ヘの幅射熱を遮る熱シールド13と、冷媒容器12の内部に冷媒に浸漬されて収容され、超電導特性を有する材料からなり空間9内に一方向の均一な静磁場を発生さて均一静磁場空間領域10を形成する主磁石14とで、主として構成されている。なお、熱シールド12は、後述の冷凍機に接続されて、通常、外側が70K(ケルビン)内側が20K程度の温度に保たれた2層の熱シールド層で構成されているが、図では代表して1層のみを示している。   The first cryostat unit 1 is disposed in a cylindrically-shaped nonmagnetic metal vacuum vessel 11 for heat-insulating the inside of the vacuum vessel 1 and spaced from the inner wall of the vacuum vessel 11 to maintain a cryogenic temperature. A refrigerant container 12 made of a highly heat-conductive material for containing a refrigerant such as liquid helium (He), and a refrigerant separated from the refrigerant container 12 and the vacuum container 11 between the refrigerant container 12 and the vacuum container 11. The heat shield 13 is disposed so as to surround the container 12 and shields the heat radiation from the vacuum container 11 to the refrigerant container 12, and the material is immersed in the refrigerant and accommodated in the refrigerant container 12 and has a superconducting property. It is mainly composed of a main magnet 14 that generates a uniform static magnetic field space region 10 by generating a uniform static magnetic field in one direction in the narrow space 9. The heat shield 12 is connected to a refrigerator, which will be described later, and is usually composed of two heat shield layers whose outer side is maintained at a temperature of about 70K on the inner side at 70K (Kelvin). Only one layer is shown.

同様に、第2のクライオスタット部2も、真空容器15と、この真空容器15内に配設された冷媒容器16と、真空容器15と冷媒容器16との間に配設された熱シールド17と、冷媒容器16に内蔵された主磁石18とで、主に構成されている。   Similarly, the second cryostat unit 2 includes a vacuum container 15, a refrigerant container 16 disposed in the vacuum container 15, and a heat shield 17 disposed between the vacuum container 15 and the refrigerant container 16. The main magnet 18 built in the refrigerant container 16 is mainly configured.

一対の冷媒容器12,16は冷媒容器接続管19により接続され、また、一対の真空容器11,15は、冷媒容器接続管を内包して設けられた真空容器接続管20により接続されている。冷媒容器接続管19と真空容器接続管20との間には、一対の熱シールド13,17に熱的に繋がった接続管熱シールド21が設けられている。   The pair of refrigerant containers 12 and 16 are connected by a refrigerant container connection pipe 19, and the pair of vacuum containers 11 and 15 are connected by a vacuum container connection pipe 20 provided so as to contain the refrigerant container connection pipe. A connecting pipe heat shield 21 that is thermally connected to the pair of heat shields 13 and 17 is provided between the refrigerant container connecting pipe 19 and the vacuum container connecting pipe 20.

第1のクライオスタット部1と第2のクライオスタット部2とを連結支持する連結支持部3は、両クライオスタット部1,2を支持固定すると共に上記の真空接続管20を内包し保護する垂直方向の連結柱部3aと、第2のクライオスタット部2を支持し磁気シールドの機能を持つ鋼鈑製の支持部3bとを有している。また、図示していないが、両クライオスタット部1,2の周辺には主磁石14,18によって発生した磁束によって装置の外部に広がる漏洩磁場を低減するために、強磁性体からなる磁気シールドやシールドコイル等が配置されている。また、冷媒容器12,16および熱シールド13,17を極低温に冷却するための冷凍機22が、連結支持部3の上部に設置されている。
なお、図では両クライオスタット部1,2を1本の垂直方向の連結柱部3aで支持した場合を示しているが、連結柱部3aは2本以上としても良い。以上が超電導磁石装置である。
The connection support portion 3 that connects and supports the first cryostat portion 1 and the second cryostat portion 2 supports and fixes both the cryostat portions 1 and 2 and includes and protects the vacuum connection pipe 20 in the vertical direction. It has a column portion 3a and a steel plate support portion 3b that supports the second cryostat portion 2 and has a magnetic shield function. Although not shown, a magnetic shield or shield made of a ferromagnetic material is provided around both cryostat portions 1 and 2 in order to reduce a leakage magnetic field spreading outside the apparatus by magnetic flux generated by the main magnets 14 and 18. Coils and the like are arranged. In addition, a refrigerator 22 for cooling the refrigerant containers 12 and 16 and the heat shields 13 and 17 to an extremely low temperature is installed on the upper portion of the connection support portion 3.
In addition, although the figure has shown the case where both cryostat parts 1 and 2 are supported by the one connection pillar part 3a of the orthogonal | vertical direction, two or more connection pillar parts 3a are good also. The above is the superconducting magnet device.

更に、MRI装置としての機能を発揮するためには、均一静磁場空間領域10を挟んで対向して、傾斜磁場を発生させる傾斜磁場発生装置としての傾斜磁場コイル4,5や、磁気共鳴を起こさせ共鳴の結果生体から発せられる信号を受信する高周波磁場発生装置としての高周波コイル6,7等が配置され、また、超電導磁石装置の外部には、被検者を寝載して均一静磁場空間領域に挿入するテーブル装置、超電導磁石装置や各コイルに電力を供給する電源装置、MRI装置全体を制御する制御装置、被検者から得たMR信号に基づきMR画像を生成する画像装置等が付加される。   Further, in order to exert the function as the MRI apparatus, the gradient magnetic field coils 4 and 5 as the gradient magnetic field generators that generate the gradient magnetic fields facing each other across the uniform static magnetic field space region 10 and magnetic resonance are generated. The high-frequency coils 6, 7 and the like as a high-frequency magnetic field generator for receiving a signal emitted from the living body as a result of resonance are placed, and the subject is placed on the outside of the superconducting magnet device so as to have a uniform static magnetic field space. A table device to be inserted into the area, a superconducting magnet device, a power supply device that supplies power to each coil, a control device that controls the entire MRI device, an image device that generates MR images based on MR signals obtained from the subject, etc. are added. Is done.

次に、本実施の形態の発明の特徴部である冷媒容器の支持部の構成について、図3を参照しながら説明する。図3はクライオスタット部1側の真空容器11に冷媒容器12を支持した場合を示している。冷媒容器12は真空容器11に複数の支持部材で支持されている。前述のように、冷媒容器12は極低温に維持することが必要なため、真空容器11内に収容されて外部からの熱が侵入しないように真空断熱されているが、支持部材からの伝導による伝熱も無視できない。そこで、伝熱を少しでも抑制するため、支持部材の本数や断面積、材質、寸法等が考慮されている。   Next, the structure of the support part of the refrigerant container, which is a characteristic part of the present invention, will be described with reference to FIG. FIG. 3 shows a case where the refrigerant container 12 is supported by the vacuum container 11 on the cryostat unit 1 side. The refrigerant container 12 is supported on the vacuum container 11 by a plurality of support members. As described above, since the refrigerant container 12 needs to be maintained at a very low temperature, the refrigerant container 12 is housed in the vacuum container 11 and insulated from the outside so that heat from the outside does not enter. Heat transfer cannot be ignored. Therefore, in order to suppress heat transfer as much as possible, the number, cross-sectional area, material, dimensions, and the like of the support members are considered.

図3において、冷媒容器12側の支持部には、支持部の伝熱距離を長くするために、有底円筒状の取付部材23を設けている。その底面に、例えばガラス繊維強化エポキシ樹脂等の低熱伝導率の材料からなる支持棒24の一端を固定している。支持棒24の他端側には雌ねじを設けている。一方、真空容器11側の支持部には取付座25を設け、この取付座25に、中央部にねじ穴加工した取り付けカバー26をOリング27を介しボルト28によって取り付けている。取付カバー26のねじ穴に調整ボルト29の大径ねじ部をねじ込み、その先端側の一段径が細くなった小径ねじ部(ねじ方向は同じ)を支持棒24に設けた雌ねじに螺合させている。調整ボルト29の大径ねじ部と小径ねじ部を異なるねじピッチとしているので、調整ボルト29を回せばねじピッチ差分だけ支持棒24が上下方向に移動する。調整ボルト29の頭部と取付カバー26との間にはロックナット30を挿入している。また、支持棒24にはベローズ31の一端を気密に固定しており、ベローズ31の他端には取付部31aを設けて、この取付部31aを取付カバー26にOリング32を介しビス33によって気密に固定する。
上記23〜33で支持部材34を構成し、24,29〜33で位置調整手段35を構成している。
In FIG. 3, a bottomed cylindrical mounting member 23 is provided on the support portion on the refrigerant container 12 side in order to increase the heat transfer distance of the support portion. One end of a support rod 24 made of a low thermal conductivity material such as glass fiber reinforced epoxy resin is fixed to the bottom surface. A female thread is provided on the other end of the support bar 24. On the other hand, a mounting seat 25 is provided on the support portion on the vacuum vessel 11 side, and a mounting cover 26 having a screw hole machined in the center is attached to the mounting seat 25 with an bolt 28 via an O-ring 27. A large-diameter threaded portion of the adjustment bolt 29 is screwed into the screw hole of the mounting cover 26, and a small-diameter threaded portion (the screw direction is the same) with a reduced step diameter on the tip side is screwed into a female screw provided on the support rod 24. Yes. Since the large-diameter screw portion and the small-diameter screw portion of the adjustment bolt 29 have different screw pitches, the support rod 24 moves in the vertical direction by the screw pitch difference when the adjustment bolt 29 is turned. A lock nut 30 is inserted between the head of the adjustment bolt 29 and the mounting cover 26. Further, one end of a bellows 31 is fixed to the support rod 24 in an airtight manner, and an attachment portion 31a is provided at the other end of the bellows 31, and this attachment portion 31a is attached to the attachment cover 26 with an O-ring 32 by a screw 33. Fix tightly.
The support members 34 are constituted by the above 23 to 33, and the position adjusting means 35 is constituted by 24 and 29 to 33.

また、支持棒24の温度を極低温に維持するため、支持棒24を熱シールド13に高熱伝導性材料からなるたわみ導体36で熱的に接続しサーマルアンカー37としている。なお、熱シールド13は、前述のように通常2層で構成されているが、図では1層のみを示している。   In addition, in order to maintain the temperature of the support rod 24 at a very low temperature, the support rod 24 is thermally connected to the heat shield 13 by a flexible conductor 36 made of a high thermal conductivity material to form a thermal anchor 37. The heat shield 13 is normally composed of two layers as described above, but only one layer is shown in the figure.

MRI装置において、超電導磁石装置によって形成される均一静磁場空間領域10は、ミリ単位の正確な位置調整が必要であり、工場組立調整時および現地組立調整時にはこの位置調整に多大の時間と労力を費やしている。一対のクライオスタット部1,2に対する均一静磁場空間領域10の相対位置や磁場の均一度の調整は、通常、両クライオスタット部1,2の対向面近傍に配置した図示しない磁性体シム(磁性体の小片)によって行われている。すなわち、着脱可能な磁性体シムをクライオスタット部1,2の対向面近傍に多数配置しその位置や個数を調整することによって、磁場の均一度や相対位置を調整している。この磁性体シムによる調整の煩わしさを軽減するため、本実施の形態による発明では、均一静磁場空間領域10の相対位置を冷媒容器12,16の位置移動(すなわち冷媒容器内に配設した主磁石の位置移動)によって実現するものである。   In the MRI apparatus, the uniform static magnetic field space region 10 formed by the superconducting magnet apparatus needs to be accurately adjusted in millimeter units, and a great deal of time and labor is required for this position adjustment during factory assembly adjustment and on-site assembly adjustment. Spending. Adjustment of the relative position of the uniform static magnetic field space region 10 with respect to the pair of cryostat portions 1 and 2 and the uniformity of the magnetic field is usually performed by a magnetic shim (not shown) disposed near the opposing surface of both cryostat portions 1 and 2. Small piece). That is, the magnetic field uniformity and relative position are adjusted by arranging a large number of detachable magnetic shims in the vicinity of the opposing surfaces of the cryostat portions 1 and 2 and adjusting their positions and number. In order to reduce the troublesome adjustment by the magnetic material shim, in the invention according to the present embodiment, the relative position of the uniform static magnetic field space region 10 is moved to the position of the refrigerant containers 12 and 16 (that is, the main position provided in the refrigerant container). This is realized by moving the position of the magnet).

次に支持部材34の寸法調整方法について説明する。支持部材34は図3のように組み立てられており、真空容器11は所定の真空度まで真空引きされ、冷媒容器12はヘリウム等の冷媒が封入されて内部に収納した主磁石14を超電導温度以下に冷却している。位置調整手段35に設けたベローズ31によって真空容器11内部は外部から真空遮断されている。
寸法調整作業に先立ち、均一磁場空間測定器具等によって均一磁場空間を測定し、その測定データから計算機シミュレーション等により冷媒容器12の移動方向と移動量を計算する。その計算結果により寸法調整を開始するが、先ず、ロックナット30を緩め、次に調整ボルト29を回転させて所定量だけ上または下に移動する。このとき、複数の支持箇所にある支持部材の寸法調整を並行して作業し、位置が確定すればロックナット30を締める。所定の均一磁場空間が得られるように、必要に応じてこれらの作業を繰り返し実施する。
Next, a method for adjusting the dimensions of the support member 34 will be described. The support member 34 is assembled as shown in FIG. 3, the vacuum vessel 11 is evacuated to a predetermined degree of vacuum, and the refrigerant vessel 12 encloses the main magnet 14 enclosed in a refrigerant such as helium and stored below the superconducting temperature. It has cooled down. The inside of the vacuum vessel 11 is vacuum-blocked from the outside by a bellows 31 provided in the position adjusting means 35.
Prior to the dimension adjustment operation, the uniform magnetic field space is measured by a uniform magnetic field space measuring instrument or the like, and the moving direction and moving amount of the refrigerant container 12 are calculated from the measured data by computer simulation or the like. The dimension adjustment is started according to the calculation result. First, the lock nut 30 is loosened, and then the adjustment bolt 29 is rotated to move up or down by a predetermined amount. At this time, the size adjustment of the support members at the plurality of support locations is performed in parallel, and the lock nut 30 is tightened when the position is determined. These operations are repeated as necessary so as to obtain a predetermined uniform magnetic field space.

なお、図3は支持部材および位置調整手段の構成の一例を示すもので、調整ボルトによる調整とベローズによる真空維持を行う構成であれば、細部の構成は図3に限定するものではなく、類似の別の構成にしても良い。例えば、図で大径ねじ部と小径ねじ部のいずれか片側を逆ねじにすれば、調整ボルト29を回転させることにより、同方向ねじの場合より大きく支持棒24側(すなわち冷媒容器12)が上下移動する。またこの場合は、両方のねじ径およびねじピッチを同じにしても良い。   FIG. 3 shows an example of the configuration of the support member and the position adjusting means, and the detailed configuration is not limited to that shown in FIG. Other configurations may be used. For example, if either one of the large-diameter screw portion and the small-diameter screw portion is a reverse screw in the figure, the support bolt 24 side (that is, the refrigerant container 12) is larger than the case of the same-direction screw by rotating the adjustment bolt 29. Move up and down. In this case, both screw diameters and screw pitches may be the same.

以上のように、本実施の形態の発明によれば、冷媒容器を真空容器に支持する支持部材に、真空容器内を真空にした状態で真空容器の外部から支持寸法の調整が可能な位置調整手段を設けたので、組立調整時に冷媒容器の相対位置を真空容器の外部から調整できる。このため、均一静磁場空間領域の磁場調整において、シム調整の作業が軽減され、均一磁場調整を容易に行うことができる。   As described above, according to the present embodiment, the support member that supports the refrigerant container in the vacuum container can be adjusted in position so that the support dimension can be adjusted from the outside of the vacuum container while the vacuum container is evacuated. Since the means is provided, the relative position of the refrigerant container can be adjusted from the outside of the vacuum container during assembly adjustment. For this reason, in the magnetic field adjustment in the uniform static magnetic field space region, the shim adjustment work is reduced, and the uniform magnetic field adjustment can be easily performed.

また、支持部材を熱シールドに連結して冷却しているので、支持部材を伝導して冷媒容器への熱が侵入するのを抑制することができる。   Further, since the support member is connected to the heat shield for cooling, it is possible to suppress the heat from entering the refrigerant container through the support member.

更に、支持部材の寸法調整手段に設けたベローズによって、真空容器の内部を外気から真空遮断しているので、確実に外気の侵入を遮断して冷媒容器の相対位置の調整を行うことができる。   Furthermore, since the inside of the vacuum vessel is vacuum-blocked from the outside air by the bellows provided in the dimension adjusting means of the support member, the relative position of the refrigerant vessel can be adjusted by reliably blocking the outside air from entering.

実施の形態2.
図4はこの発明の実施の形態2による超電導磁石装置の冷媒容器の支持部の詳細断面図である。MRI装置の全体の構成は、実施の形態1で説明した図1および図2と同等なので、詳細な説明を省略し、相違する部分についてのみ説明する。実施の形態1と相違する部分は、冷媒容器12を真空容器11へ支持する支持部材の構造である。図4において、11〜13,23,24,36,37は図3と同等なので符号の説明は省略する。
Embodiment 2. FIG.
FIG. 4 is a detailed cross-sectional view of the support portion of the refrigerant container of the superconducting magnet apparatus according to Embodiment 2 of the present invention. Since the overall configuration of the MRI apparatus is the same as that of FIG. 1 and FIG. 2 described in the first embodiment, detailed description will be omitted and only different parts will be described. The difference from the first embodiment is the structure of the support member that supports the refrigerant container 12 to the vacuum container 11. In FIG. 4, 11 to 13, 23, 24, 36, and 37 are the same as those in FIG.

本実施の形態による調整ボルト38は、先端部に支持棒24の雌ねじ部に係合する雄ねじが加工されており、中央部に先端部の雄ねじ部より大径の、機械加工されたスライド部38aを設け、頭部側にはそのスライド部38aより大径の雄ねじ部(ねじ方向は同じ)を設けている。大径ねじ部のねじピッチを小径ねじ部のねじピッチより大きくしているので、調整ボルト38を回転させればねじピッチ差分だけ支持棒24が上下方向に移動するようになっている。真空容器11に設けた取付座39には中央に調整ボルト38のスライド部38aが貫通する貫通穴を設け、Oリング40を挿着している。取付座39を塞ぐ取付カバー41の中央部には調整ボルト38の大径ねじ部が螺合するねじ穴が設けられており、ボルト42によって取付座39に締め付けられている。図のように調整ボルト38は真空容器11の外部から挿入できるようになっており、スライド部38aにおいてOリング40によって気密が保たれている。調整ボルト38の頭部と取付カバー41との間にはロックナット43が挿入されている。
上記23,24,38〜43で支持部材44を構成し、24,38,40,43で位置調整手段45を構成している。
The adjustment bolt 38 according to the present embodiment has a machined slide part 38a having a larger diameter than the male screw part of the tip part at the center part. And a male screw portion (the screw direction is the same) larger than the slide portion 38a. Since the screw pitch of the large-diameter screw portion is larger than the screw pitch of the small-diameter screw portion, if the adjustment bolt 38 is rotated, the support rod 24 moves in the vertical direction by the screw pitch difference. A through hole through which the slide portion 38a of the adjusting bolt 38 passes is provided in the center of the mounting seat 39 provided in the vacuum vessel 11, and an O-ring 40 is inserted. A screw hole into which the large-diameter screw portion of the adjustment bolt 38 is screwed is provided at the center of the mounting cover 41 that closes the mounting seat 39, and is fastened to the mounting seat 39 by a bolt 42. As shown in the figure, the adjusting bolt 38 can be inserted from the outside of the vacuum vessel 11, and airtightness is maintained by the O-ring 40 in the slide portion 38a. A lock nut 43 is inserted between the head of the adjustment bolt 38 and the mounting cover 41.
The above 23, 24, 38 to 43 constitute a support member 44, and 24, 38, 40, 43 constitute a position adjusting means 45.

真空容器11内を真空にした状態で冷媒容器12の取付寸法を調整するときは、ロックナット43を緩め調整ボルト38を回転させて上または下に移動させる。これにより、大径ねじ部と小径ねじ部とのねじピッチの差分だけ冷媒容器12が上下方向に移動する。移動量と移動方向は、実施の形態1と同様に、均一静磁場空間領域の磁場を測定し、その結果から計算機シミュレーション等により決定する。移動調整後にロックナット43を強固に締め付けて固定する。   When adjusting the mounting dimensions of the refrigerant container 12 in a state where the vacuum container 11 is evacuated, the lock nut 43 is loosened and the adjustment bolt 38 is rotated to move up or down. Thereby, the refrigerant | coolant container 12 moves to an up-down direction only the difference of the screw pitch of a large diameter thread part and a small diameter thread part. As in the first embodiment, the amount of movement and the direction of movement are determined by measuring the magnetic field in the uniform static magnetic field space region and calculating the result by computer simulation or the like. After the movement adjustment, the lock nut 43 is firmly tightened and fixed.

なお、図4は支持部材および位置調整手段の構成の一例を示すもので、調整ボルトによる調整と、その調整ボルトに設けたスライド部とOリングとにより真空維持を行う構成であれば、細部の構成は図4に限定するものではなく、類似の別の構成にしても良い。例えば、大径ねじ部と小径ねじ部の片方を逆ねじにすれば、調整ボルトの少しの回転で、同方向のねじの場合に比べ冷媒容器の移動を大きくすることができる。   FIG. 4 shows an example of the configuration of the support member and the position adjusting means. If the configuration is such that the adjustment by the adjusting bolt and the vacuum maintained by the slide portion and the O-ring provided on the adjusting bolt, The configuration is not limited to that shown in FIG. 4, and another similar configuration may be used. For example, if one of the large-diameter screw portion and the small-diameter screw portion is a reverse screw, the movement of the refrigerant container can be increased by a slight rotation of the adjusting bolt as compared with the screw in the same direction.

本実施の形態の発明によれば、冷媒容器の真空容器への支持部材に位置調整手段を設け、位置調整手段である調整ボルトのスライド部とOリングとによって真空容器の内部を外部から真空遮断するようにしたので、実施の形態1に比べて簡単な構成により組立調整時に確実に外気の侵入を遮断して、冷媒容器の相対位置を真空容器の外部から調整することができ、これにより磁場調整を容易に行うことができる。   According to the embodiment of the present invention, the position adjustment means is provided on the support member for the vacuum container of the refrigerant container, and the inside of the vacuum container is vacuum-cut from the outside by the slide portion of the adjustment bolt as the position adjustment means and the O-ring. As a result, it is possible to adjust the relative position of the refrigerant container from the outside of the vacuum container by using a simpler structure than that of the first embodiment, thereby reliably blocking the intrusion of outside air during assembly adjustment. Adjustment can be performed easily.

実施の形態3.
図5はこの発明の実施の形態3による超電導磁石装置のうち、上部クライオスタット部の側面断面図である。MRI装置の全体の構成は、実施の形態1で説明した図1および図2とほぼ同等なので、同等部分の説明を省略し、相違する部分についてのみ説明する。なお、図2と同等部分は同一符号で示している。本実施の形態では、位置調整手段をもつ支持部材を、真空容器11の側面に設けたものである。
Embodiment 3 FIG.
FIG. 5 is a side cross-sectional view of the upper cryostat portion in the superconducting magnet apparatus according to Embodiment 3 of the present invention. Since the overall configuration of the MRI apparatus is substantially the same as that of FIG. 1 and FIG. 2 described in the first embodiment, the description of the equivalent parts will be omitted and only the different parts will be described. The same parts as those in FIG. 2 are denoted by the same reference numerals. In the present embodiment, a support member having a position adjusting means is provided on the side surface of the vacuum vessel 11.

図示のように、真空容器11の側面に、寸法調整手段を有する水平支持部材46を設け、上面にはメインの支持部である垂直支持部材47を設けている。水平支持部材46の詳細な構造は、実施の形態1で説明した図3,または実施の形態2で説明した図4の支持部材、またはそれらの変形例と同等なので説明は省略する。垂直支持部材47は冷媒容器12の荷重の大半を支持できるものであればその構造は問わない。   As shown in the figure, a horizontal support member 46 having dimension adjusting means is provided on the side surface of the vacuum vessel 11, and a vertical support member 47, which is a main support portion, is provided on the upper surface. The detailed structure of the horizontal support member 46 is the same as the support member of FIG. 3 described in the first embodiment or the support member of FIG. The vertical support member 47 may have any structure as long as it can support most of the load of the refrigerant container 12.

寸法の調整は、実施の形態1と同様に、計算機シミュレーション等により得た移動方向と移動量に従って、調整ボルトを回転させて、調整後にロックナットを強固に締結し固定する。
なお、水平支持部材46の取付本数や取付位置は図に限定するものではなく、真空容器の周方向に複数箇所設けても良い。
As in the first embodiment, the dimensions are adjusted by rotating the adjusting bolt according to the moving direction and moving amount obtained by computer simulation or the like, and firmly fastening and fixing the lock nut after the adjustment.
The number and position of the horizontal support members 46 to be attached are not limited to those shown in the figure, and a plurality of places may be provided in the circumferential direction of the vacuum vessel.

本実施の形態の発明によれば、位置調整手段を有する支持部材を真空容器の側面に設け、真空引き状態で冷媒容器の相対位置を水平方向に調整できるようにしたので、均一静磁場空間領域の磁場調整が容易となる。   According to the invention of the present embodiment, the support member having the position adjusting means is provided on the side surface of the vacuum vessel so that the relative position of the refrigerant vessel can be adjusted in the horizontal direction in the vacuumed state. It is easy to adjust the magnetic field.

なお、上記では位置調整手段を有する支持部材を真空容器の側面のみに設けた場合について説明したが、垂直支持部材47も実施の形態1または2と同様な支持部材としても良い。そうすれば、調整範囲の自由度が増し、より容易に均一静磁場空間の磁場調整が可能となる。
また、図5はクライオスタット部を上下方向に対向配置した場合について説明したが、左右方向に対向配置した場合は、水平方向の支持部材を水平支持部材とする。
In the above description, the case where the support member having the position adjusting means is provided only on the side surface of the vacuum vessel has been described. However, the vertical support member 47 may be the same support member as in the first or second embodiment. If it does so, the freedom degree of an adjustment range will increase and the magnetic field adjustment of a uniform static magnetic field space will be attained more easily.
In addition, FIG. 5 illustrates the case where the cryostat portion is disposed so as to be opposed to each other in the vertical direction. However, when the cryostat portion is disposed so as to be opposed in the left-right direction, the horizontal support member is a horizontal support member.

一対の超電導磁石装置の間に球状の均一静磁場空間領域を形成する対向形の磁気共鳴イメージング装置に適用できる。   The present invention can be applied to an opposing magnetic resonance imaging apparatus in which a spherical uniform static magnetic field space region is formed between a pair of superconducting magnet devices.

この発明の実施の形態1による磁気共鳴イメージング装置の主要部の構成の一例を示す平面図である。It is a top view which shows an example of a structure of the principal part of the magnetic resonance imaging apparatus by Embodiment 1 of this invention. 図1のII−II線における断面を矢印方向に見た断面図である。It is sectional drawing which looked at the cross section in the II-II line | wire of FIG. 1 in the arrow direction. 図2の要部の詳細断面図である。FIG. 3 is a detailed cross-sectional view of a main part of FIG. 2. この発明の実施の形態2による超電導磁石装置の要部の詳細断面図である。It is detail sectional drawing of the principal part of the superconducting magnet apparatus by Embodiment 2 of this invention. この発明の実施の形態3による超電導磁石装置の上部クライオスタット部の側面断面図である。It is side surface sectional drawing of the upper cryostat part of the superconducting magnet apparatus by Embodiment 3 of this invention.

符号の説明Explanation of symbols

3 連結支持部 4,5 傾斜磁場コイル
6,7 高周波コイル 9 空間
10 均一静磁場空間領域 11,15 真空容器
12,16 冷媒容器 13,17 熱シールド
14,18 主磁石 29,38 調整ボルト
31 ベローズ 34,44 支持部材
35,45 位置調整手段 38a スライド部
40 Oリング 46 水平支持部材。
DESCRIPTION OF SYMBOLS 3 Connection support part 4,5 Gradient magnetic field coil 6,7 High frequency coil 9 Space 10 Uniform static magnetic field space area 11,15 Vacuum container 12,16 Refrigerant container 13,17 Heat shield 14,18 Main magnet 29,38 Adjustment bolt 31 Bellows 34,44 Support member 35,45 Position adjustment means 38a Slide part 40 O-ring 46 Horizontal support member.

Claims (6)

所定の空間を挟み対向して配置された一対の真空容器と、上記真空容器の内部に上記真空容器の内壁から離隔して配置された冷媒容器と、上記冷媒容器の内部に冷媒と共に収容され超電導特性を有する材料からなり上記所定の空間内に均一静磁場空間領域を形成させる主磁石と、上記真空容器と上記冷媒容器との間に配置され外部からの熱侵入を阻止する熱シールドと、上記両真空容器を連結し支持する連結支持部とを備えた超電導磁石装置において、上記冷媒容器を上記真空容器に支持する支持部材に、上記真空容器内を真空にした状態で上記真空容器の外部から支持寸法の調整が可能な位置調整手段を設けたことを特徴とする超電導磁石装置。   A pair of vacuum containers disposed opposite to each other with a predetermined space interposed therebetween, a refrigerant container disposed inside the vacuum container so as to be separated from the inner wall of the vacuum container, and a superconductivity accommodated together with the refrigerant in the refrigerant container A main magnet made of a material having characteristics, and forming a uniform static magnetic field space region in the predetermined space; a heat shield disposed between the vacuum container and the refrigerant container; In a superconducting magnet apparatus having a connection support unit that connects and supports both vacuum containers, the support member that supports the refrigerant container on the vacuum container is externally attached to the vacuum container while the vacuum container is evacuated. A superconducting magnet device comprising a position adjusting means capable of adjusting a supporting dimension. 請求項1記載の超電導磁石装置において、上記支持部材を上記熱シールドに熱的に連結したことを特徴とする超電導磁石装置。   2. The superconducting magnet device according to claim 1, wherein the support member is thermally connected to the heat shield. 請求項1または請求項2記載の超電導磁石装置において、上記位置調整手段は、上記真空容器の外部から寸法調整が可能な調整ボルトと、上記真空容器の内部を外気から真空遮断するためのベローズとを有することを特徴とする超電導磁石装置。   3. The superconducting magnet device according to claim 1, wherein the position adjusting means includes an adjustment bolt capable of adjusting a dimension from the outside of the vacuum vessel, and a bellows for vacuum-blocking the inside of the vacuum vessel from the outside air. A superconducting magnet device comprising: 請求項1または請求項2記載の超電導磁石装置において、上記位置調整手段は、上記真空容器の外部から寸法調整が可能な調整ボルトを有し、上記真空容器の内部を外気から真空遮断するために、Oリングを介して摺動可能なスライド部を上記調整ボルトに設けたことを特徴とする超電導磁石装置。   The superconducting magnet apparatus according to claim 1 or 2, wherein the position adjusting means includes an adjusting bolt capable of adjusting a dimension from the outside of the vacuum vessel, and for vacuum-blocking the inside of the vacuum vessel from outside air. A superconducting magnet device characterized in that a slide portion slidable through an O-ring is provided on the adjustment bolt. 請求項1〜請求項4のいずれか1項に記載の超電導磁石装置において、上記位置調整手段を有する支持部材は、上記冷媒容器の相対位置を水平方向に調整できる位置に設けたことを特徴とする超電導磁石装置。   5. The superconducting magnet device according to claim 1, wherein the support member having the position adjusting means is provided at a position where the relative position of the refrigerant container can be adjusted in the horizontal direction. Superconducting magnet device. 超電導磁石装置と、上記均一静磁場空間領域を挟み対向して配置した一対の傾斜磁場発生装置および一対の高周波磁場発生装置とを備えた磁気共鳴イメージング装置において、上記超電導磁石装置は請求項1〜請求項5のいずれか1項に記載の超電導磁石装置を用いたことを特徴とする磁気共鳴イメージング装置。   In a magnetic resonance imaging apparatus comprising a superconducting magnet device and a pair of gradient magnetic field generators and a pair of high-frequency magnetic field generators arranged to face each other across the uniform static magnetic field space region, the superconducting magnet device comprises: A magnetic resonance imaging apparatus using the superconducting magnet apparatus according to claim 5.
JP2003427122A 2003-12-24 2003-12-24 Superconductive magnetic device, and magnetic resonance imaging device Pending JP2005185319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427122A JP2005185319A (en) 2003-12-24 2003-12-24 Superconductive magnetic device, and magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427122A JP2005185319A (en) 2003-12-24 2003-12-24 Superconductive magnetic device, and magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JP2005185319A true JP2005185319A (en) 2005-07-14

Family

ID=34786480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427122A Pending JP2005185319A (en) 2003-12-24 2003-12-24 Superconductive magnetic device, and magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JP2005185319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111691B1 (en) * 2012-04-20 2013-01-09 三菱電機株式会社 Superconducting magnet and adjustment method thereof
JP2015128098A (en) * 2013-12-27 2015-07-09 株式会社日立メディコ Superconductivity magnet apparatus and superconduction-applied apparatus
JP2019009206A (en) * 2017-06-22 2019-01-17 株式会社東芝 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device
JP2020035958A (en) * 2018-08-31 2020-03-05 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111691B1 (en) * 2012-04-20 2013-01-09 三菱電機株式会社 Superconducting magnet and adjustment method thereof
WO2013157130A1 (en) 2012-04-20 2013-10-24 三菱電機株式会社 Superconductor magnet and method of adjusting same
US9177707B2 (en) 2012-04-20 2015-11-03 Mitsubishi Electric Corporation Superconducting magnet and method for adjusting the same
JP2015128098A (en) * 2013-12-27 2015-07-09 株式会社日立メディコ Superconductivity magnet apparatus and superconduction-applied apparatus
JP2019009206A (en) * 2017-06-22 2019-01-17 株式会社東芝 Superconducting coil support structure of superconducting magnet device, and superconducting magnet device
JP2020035958A (en) * 2018-08-31 2020-03-05 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP7022035B2 (en) 2018-08-31 2022-02-17 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device

Similar Documents

Publication Publication Date Title
US7961067B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US7852629B2 (en) Suspension device for a superconducting magnet heat shield enclosure
JP4934067B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US7126448B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2010272633A (en) Superconducting magnet
JP2007000254A (en) Superconduction electromagnet apparatus for mri
US9766312B2 (en) Easily accessible deep-frozen NMR shim arrangement
US20200411218A1 (en) Cryostat assembly having a resilient, heat-conducting connection element
JP4847236B2 (en) Magnetic resonance imaging system
US7112966B2 (en) Magnetic resonance imaging apparatus
JP2016168265A (en) Magnetic resonance imaging apparatus and operation method thereof
US6198371B1 (en) Open magnet with floor mount
JP4700999B2 (en) Magnetic resonance imaging system
JP2005185319A (en) Superconductive magnetic device, and magnetic resonance imaging device
JP4550375B2 (en) Beam ammeter
JP3737636B2 (en) Superconducting magnet device
JP4866213B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2002065631A (en) Magnet device and magnetic resonance imaging apparatus using the same
US7205767B2 (en) Magnetic apparatus, installation method for magnetic apparatus, and magnetic resonance imaging diagnosis system
JP4118015B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP4749699B2 (en) Magnetic resonance imaging system
JP2005185318A (en) Magnetic device, and magnetic resonance imaging device
JP4843469B2 (en) Magnetic resonance imaging system
JP2002017709A (en) Magnetic resonance imaging device
JP2005093464A (en) Magnet and nmr spectroscope, mri system or icr mass spectrograph