JP2005181172A - Residual stress measuring method and apparatus - Google Patents

Residual stress measuring method and apparatus Download PDF

Info

Publication number
JP2005181172A
JP2005181172A JP2003424213A JP2003424213A JP2005181172A JP 2005181172 A JP2005181172 A JP 2005181172A JP 2003424213 A JP2003424213 A JP 2003424213A JP 2003424213 A JP2003424213 A JP 2003424213A JP 2005181172 A JP2005181172 A JP 2005181172A
Authority
JP
Japan
Prior art keywords
strain
piece
residual stress
measuring
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424213A
Other languages
Japanese (ja)
Other versions
JP4533621B2 (en
Inventor
Naoteru Ogawa
直輝 小川
Yoichi Iwamoto
洋一 岩本
Takahiro Ota
高裕 太田
Keiji Nakanaga
啓治 中長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003424213A priority Critical patent/JP4533621B2/en
Publication of JP2005181172A publication Critical patent/JP2005181172A/en
Application granted granted Critical
Publication of JP4533621B2 publication Critical patent/JP4533621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly versatile residual stress measuring method capable of being widely used for measuring the residual stress of structures. <P>SOLUTION: A first group of strain gauges 21 is pasted to the surface of a test piece 40 of an axisymmetric joint to measure initial strain values and released strains when a thin slice T-piece 51 and an L-piece 52 perpendicular to this are cut out from the test piece 40. A second group of strain gauges is pasted to the cross sections of the T-piece 51 and the L-piece 52 to measure initial strain values and released strains when small pieces are cut out from the T-piece 51 and the L-piece 52. Specific strains are determined on the basis of the released strains measured in three directions to determine a matrix of elastic strains/eigen strains by the finite element method. Through the use of the matrix [H] of elastic strains/eigen strains and a matrix [D] of stresses/strains, the most probable value äσ} of residual stresses is output. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は構造物、特に溶接構造物に生じた残留応力を測定する方法及び装置に関する。     The present invention relates to a method and apparatus for measuring residual stresses produced in structures, particularly welded structures.

構造物に生じた残留応力は構造物の寿命に大きく影響する。溶接構造物の場合はそれが溶接部に発生する割れにつながりやすい。従って、残留応力を知ることは設計の良否を検証するうえで重要な意味を持つ。     Residual stress generated in the structure greatly affects the life of the structure. In the case of a welded structure, it tends to lead to cracks occurring in the weld. Therefore, knowing the residual stress is important for verifying the quality of the design.

しかしながら、実際の構造物で残留応力を測定することはきわめて困難である。そのため、仮想データから計算によって残留応力を予測したり、試験片による残留応力測定結果から実際の構造物における残留応力を予測するといった方法が採用される。前者の例を特許文献1に、また後者の例を特許文献2に見ることができる。
特開2003−121273号公報(第3頁、図3) 特開平5−223661号公報(第5−6頁、図1)
However, it is very difficult to measure the residual stress in an actual structure. Therefore, a method of predicting the residual stress by calculation from the virtual data or predicting the residual stress in the actual structure from the residual stress measurement result by the test piece is adopted. The former example can be seen in Patent Document 1 and the latter example in Patent Document 2.
Japanese Patent Laying-Open No. 2003-121273 (page 3, FIG. 3) Japanese Patent Laid-Open No. 5-223661 (page 5-6, FIG. 1)

試験片など、現実の被測定物から残留応力を測定するに際し、一般的には次の2種類の方法のいずれかが用いられる。その1は弛緩法、その2は非破壊法である。弛緩法は、被測定物を切断又は切削したときに生じる解放ひずみをもとに、切断や切削を行う前の初期状態の残留応力を推測するものであって、いわゆる逆解析手法に位置づけられる。この逆解析手法に有限要素法(finite element method:FEM)を取り入れたのが固有ひずみ法である。固有ひずみ法によれば、残留応力の最確値だけでなく、最確値の精度も算出することができる。     When measuring the residual stress from an actual object to be measured such as a test piece, generally one of the following two methods is used. Part 1 is a relaxation method and Part 2 is a nondestructive method. The relaxation method estimates the residual stress in the initial state before cutting or cutting based on the release strain generated when the object to be measured is cut or cut, and is positioned as a so-called inverse analysis method. The inherent strain method incorporates a finite element method (FEM) in this inverse analysis method. According to the inherent strain method, not only the most probable value of the residual stress but also the accuracy of the most probable value can be calculated.

固有ひずみ法の原理は、上田、福田、中長、円道「残留応力の有限要素法に基づく測定原理と推定値の信頼性」(日本造船学会論文集第138号(1975)P.499−507)、上田、福田、谷川「固有ひずみ論に基づく3次元残留応力測定法」(日本造船学会論文集第145号(1979)P.203−211)、上田、福田、福田「長い溶接継手の3次元残留応力測定理論」(溶接学会誌第49巻(1980)第12号P.845−853)などに示されている。     The principle of the inherent strain method is Ueda, Fukuda, Naka-nagane, and Yonemichi “Measurement Principle Based on Finite Element Method of Residual Stress and Reliability of Estimated Values” (The Shipbuilding Society of Japan No. 138 (1975) P. 499- 507), Ueda, Fukuda, Tanikawa “3D Residual Stress Measurement Method Based on Intrinsic Strain Theory” (Japan Shipbuilding Society Proceedings No. 145 (1979) P. 203-211), Ueda, Fukuda, Fukuda “ 3D Residual Stress Measurement Theory "(Journal of the Japan Welding Society Vol. 49 (1980) No. 12, P. 845-853) and the like.

固有ひずみ法による残留応力測定法を図1〜3に基づき説明する。図1は厚板平板突合せ継手の試験片の斜視図、図2は図1の試験片からT片とL片を切り出す状況を示す斜視図、図3はT片とL片からさらに小片を切り出す状況を示す斜視図である。     A method for measuring residual stress by the inherent strain method will be described with reference to FIGS. 1 is a perspective view of a test piece of a flat plate butt joint, FIG. 2 is a perspective view showing a situation where a T piece and an L piece are cut out from the test piece of FIG. 1, and FIG. 3 is a cut out piece from the T piece and the L piece. It is a perspective view which shows a condition.

図1には、いずれも厚板である第1の平板11と第2の平板12を突合せ溶接した厚板平板突合せ継手の試験片10が示されている。第1の平板11と第2の平板12の間を溶接線13が走る。力学的考察を行うため、空間内に3軸の方向を設定する。方向1は溶接線13の方向であり、方向2は板厚の方向であり、方向3は方向1及び方向2に垂直な方向である。     FIG. 1 shows a test piece 10 of a thick plate flat butt joint in which a first flat plate 11 and a second flat plate 12 which are both thick plates are butt welded. A welding line 13 runs between the first flat plate 11 and the second flat plate 12. In order to consider mechanically, the direction of three axes is set in the space. The direction 1 is the direction of the weld line 13, the direction 2 is the thickness direction, and the direction 3 is a direction perpendicular to the directions 1 and 2.

(ステップa)
試験片10の表裏の計測位置に第1群のひずみゲージ21を貼り付ける(図2参照)。ひずみゲージ21は2軸であり、図2では点により表現されている。ここでひずみの初期値を計測する。
(Step a)
A first group of strain gauges 21 is attached to the measurement positions on the front and back of the test piece 10 (see FIG. 2). The strain gauge 21 has two axes and is represented by dots in FIG. Here, the initial value of strain is measured.

(ステップb)
次に、試験片10から短冊状の薄い切断片を切り出す。切断片には2種類ある。1種類は方向1に垂直な方向に延びるT片31であり、他の1種類は方向1に平行に延びるL片32である。T片31の切断面では方向2と方向3が面内方向となり、L片32の切断面では方向1と方向2が面内方向となる。
(Step b)
Next, a strip-shaped thin cut piece is cut out from the test piece 10. There are two types of cut pieces. One type is a T piece 31 extending in a direction perpendicular to the direction 1, and the other type is an L piece 32 extending in parallel to the direction 1. On the cut surface of the T piece 31, directions 2 and 3 are in-plane directions, and on the cut surface of the L piece 32, directions 1 and 2 are in-plane directions.

ひずみゲージ21を含むようにT片31とL片32を切り出し、試験片10の表裏の解放ひずみを計測する。     The T piece 31 and the L piece 32 are cut out so as to include the strain gauge 21, and the release strain on the front and back of the test piece 10 is measured.

(ステップc)
続いて、T片31とL片の断面の計測位置に第2群のひずみゲージ22を貼り付ける(図3参照)。計測位置は格子状に設定され、ひずみゲージ22は各計測位置に対応するように格子状に配置される。ひずみゲージ22は2軸であり、図3ではL字形の図形により表現されている。ここでひずみの初期値を計測する。
(Step c)
Subsequently, the strain gauge 22 of the second group is attached to the measurement position of the cross section of the T piece 31 and the L piece (see FIG. 3). The measurement positions are set in a grid pattern, and the strain gauges 22 are arranged in a grid pattern so as to correspond to the measurement positions. The strain gauge 22 has two axes, and is represented by an L-shaped figure in FIG. Here, the initial value of strain is measured.

(ステップd)
その後、T片31とL片32からダイス状の小片31a、32aを切り出す。各小片31a、32aに1個ずつのひずみゲージ22が含まれるようにする。そして各小片31a、32aについての解放ひずみを計測する。
(Step d)
Thereafter, dice-shaped small pieces 31 a and 32 a are cut out from the T piece 31 and the L piece 32. One small strain gauge 22 is included in each of the small pieces 31a and 32a. And the release strain about each small piece 31a and 32a is measured.

(ステップe)
計測された解放ひずみから、有限要素法に基づくデータ処理ソフトウェアを使用して、各計測位置の固有ひずみを求める。
(Step e)
From the measured released strain, data processing software based on the finite element method is used to determine the inherent strain at each measurement position.

固有ひずみの求め方は次のようになる。自己平衡している物体各点の弾性ひずみεijは一般に下記の式7のような関数で与えられる。
εij(χ)=Rij *(χ;e*,V) (式7)
ここに、χ:物体の任意の点を表す位置ベクトル、e*:固有ひずみベクトル、V:物体形状ベクトルである。
The method for obtaining the intrinsic strain is as follows. The elastic strain ε ij at each point of the self-equilibrium object is generally given by a function as shown in Equation 7 below.
ε ij (χ) = R ij * (χ; e * , V) (Expression 7)
Here, χ: a position vector representing an arbitrary point of the object, e * : an inherent strain vector, and V: an object shape vector.

未知の固有ひずみ分布をq個のパラメータ{ε*}によって関数表示すると下記の式8のようになる。
e*(χ)=f*(χ;ε1 *,ε2 *,・・・・,εq *) (式8)
When the unknown inherent strain distribution is expressed as a function by q parameters {ε * }, the following equation 8 is obtained.
e * (χ) = f * (χ; ε 1 * , ε 2 * ,..., ε q * ) (Equation 8)

式8を式7に代入すると、弾性ひずみは座標χ、パラメータ{ε*}、物体形状Vの関数である。これをhij *なる関数で表すことにすると、下記の式9が得られる。
εij(χ)=hij *(χ;ε1 *,ε2 *,・・・・,εq *,V ) (式9)
Substituting Equation 8 into Equation 7, the elastic strain is a function of the coordinate χ, the parameter {ε * }, and the object shape V. If this is expressed by a function h ij * , the following Expression 9 is obtained.
ε ij (χ) = h ij * (χ; ε 1 * , ε 2 * ,..., ε q * , V) (Equation 9)

計測ひずみmεがq個あり、かつ逆関数gi *が定まれば下記の式10が得られる。
εi *=gi *(mε IJ(χ1)・・・・,mε IJ(χq),V ) (式10)
Strain measurement m epsilon There are q number, and the inverse function g i * the expression 10 below is obtained if Sadamare.
ε i * = g i * (m ε IJ1 )..., m ε IJq ), V) (Equation 10)

式10により固有ひずみ分布のパラメータ{ε*}を決定できる。したがって、式9により未計測点のひずみ、更には応力も求めることができる。 The parameter {ε * } of the inherent strain distribution can be determined by Equation 10. Therefore, the strain of unmeasured points and further the stress can be obtained from Equation 9.

(ステップf)
下記の式1により、試験片10の任意の位置に発生する弾性ひずみ{εe fem}を求める。そして有限要素法を用いて弾性ひずみ・固有ひずみマトリックス[H]を求める。式1の右辺の{ε* u}は単位固有ひずみである。
{εe fem}=[H]{ε* u} (式1)
(Step f)
The elastic strain {ε e fem } generated at an arbitrary position of the test piece 10 is obtained by the following formula 1. Then, an elastic strain / intrinsic strain matrix [H] is obtained using a finite element method. {Ε * u } on the right side of Equation 1 is a unit inherent strain.
e fem } = [H] {ε * u } (Formula 1)

弾性ひずみ・固有ひずみマトリックス[H]の求め方を図7を用いて説明する。物体をマトリックス(i,j)で表現される要素群に区画し、ある要素(i,j)に単位固有ひずみ{ε* u(i,j)}を与えたときの弾性ひずみ{εe fem}を有限要素法で算出し、各要素の弾性ひずみ・固有ひずみマトリックス[Hij](i=1−6,j=1−3)を求める。弾性ひずみ・固有ひずみマトリックス[H]は下記の式11のように表現される。

Figure 2005181172
A method of obtaining the elastic strain / intrinsic strain matrix [H] will be described with reference to FIG. An elastic strain {ε e fem when an object is partitioned into element groups represented by a matrix (i, j) and a unit inherent strain {ε * u (i, j) } is given to an element (i, j) } Is calculated by the finite element method, and an elastic strain / intrinsic strain matrix [H ij ] (i = 1-6, j = 1-3) of each element is obtained. The elastic strain / intrinsic strain matrix [H] is expressed as the following Expression 11.
Figure 2005181172

(ステップg)
計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス[H]を用いて、下記の式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値{ε*}を求める。
{εe m}−[H]{ε*}={v} (式2)
S={v}T{v}→ min (式3)
(Step g)
Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the maximum of the inherent strain that minimizes the square sum S of the residual {v} is obtained by the following equations 2 and 3. An exact value {ε * } is obtained.
e m } − [H] {ε * } = {v} (Formula 2)
S = {v} T {v} → min (Formula 3)

(ステップh)
固有ひずみの最確値{ε*}を入力とし、弾性ひずみ・固有ひずみマトリックス[H]と、応力・ひずみマトリックス[D]を用いて、下記の式4´により残留応力の最確値
{σ}を出力する。
{σ}=[D][H]{ε*} (式4´)
(Step h)
Using the elastic strain / intrinsic matrix [H] and the stress / strain matrix [D] as the input, the most probable value {ε * } of the inherent strain is used to obtain the most probable value {σ} of the residual stress using the following equation 4 ′. Output.
{Σ} = [D] [H] {ε * } (Formula 4 ′)

上記ステップa〜hからなる固有ひずみ法による残留応力測定法(T−L法)は、次の条件を前提としている。
(1)方向1の弾性ひずみは方向1の固有ひずみのみによって生じている。
(2)方向3の固有ひずみの方向2に対する線形変化成分は無効固有ひずみである。
(3)T片及びL片は十分薄く切り取り、それぞれ、その面に垂直方向の固有ひずみは、その面内の弾性ひずみを生じさせていないと考える。
The residual stress measurement method (TL method) based on the inherent strain method including the above steps a to h is based on the following conditions.
(1) The elastic strain in direction 1 is generated only by the inherent strain in direction 1.
(2) The linear variation component of direction 3 with respect to direction 2 of the inherent strain is the reactive inherent strain.
(3) The T piece and the L piece are cut sufficiently thin, and it is considered that the inherent strain in the direction perpendicular to the surface does not cause in-plane elastic strain.

以上の結果、次のことが言える。
(a)方向1の固有ひずみは、L片を使用して、方向1の弾性ひずみの計測値のみから解析できる。但し、全体からL片を切断する時の同ひずみの計測値も必要である。
(b)方向2及び方向3の固有ひずみは、T片を使用して、T片の面内(方向2及び方向3)の弾性ひずみの計測値のみから解析できる。
As a result, the following can be said.
(A) The inherent strain in direction 1 can be analyzed only from the measured value of elastic strain in direction 1 using L pieces. However, the measured value of the same strain when the L piece is cut from the whole is also required.
(B) Intrinsic strains in directions 2 and 3 can be analyzed from the measured values of elastic strain in the plane of the T piece (directions 2 and 3) using the T piece.

上記T−L法の残留応力測定法において、固有ひずみと計測ひずみの関係を示す測定式は下記の式12、13のようになる。

Figure 2005181172
Figure 2005181172
In the residual stress measurement method of the TL method, the measurement formulas showing the relationship between the inherent strain and the measured strain are as shown in the following formulas 12 and 13.
Figure 2005181172
Figure 2005181172

残留応力の最確値と偏差を求めることができるようにするためには、式12、13を下記の式14のように一体化すればよい。

Figure 2005181172
In order to obtain the most probable value and deviation of the residual stress, the equations 12 and 13 may be integrated as the following equation 14.
Figure 2005181172

上記T−L法の残留応力測定法を厚板軸対称継手に適用するケースを図4〜6に基づき説明する。図4は厚板軸対称継手の試験片の斜視図、図5は図4の試験片からT片とL片を切り出す状況を示す斜視図、図6はL片からさらに小片を切り出す状況を示す斜視図である。     A case in which the residual stress measurement method of the TL method is applied to a thick plate axisymmetric joint will be described with reference to FIGS. 4 is a perspective view of a test piece of a thick plate axisymmetric joint, FIG. 5 is a perspective view showing a situation in which a T piece and an L piece are cut out from the test piece in FIG. 4, and FIG. 6 is a situation in which a small piece is further cut out from the L piece. It is a perspective view.

図4には、いずれも肉厚のパイプである第1のパイプ41と第2のパイプ42を突合せ溶接した軸対称継手の試験片40が示されている。第1のパイプ41と第2のパイプ42の間を溶接線43が走る。方向1は溶接線13の方向、すなわち円周方向であり、方向2は板厚の方向であり、方向3は方向1及び方向2に垂直な方向である。     FIG. 4 shows a specimen 40 of an axially symmetric joint in which a first pipe 41 and a second pipe 42, both of which are thick pipes, are butt welded. A welding line 43 runs between the first pipe 41 and the second pipe 42. The direction 1 is the direction of the weld line 13, that is, the circumferential direction, the direction 2 is the thickness direction, and the direction 3 is a direction perpendicular to the directions 1 and 2.

試験片40から、図5のようにT片51とL片52が切り出される。T片51とL片52からは、図6に示すように、ひずみゲージ22を貼り付けた状態のダイス状の小片51a、52aが切り出される。     A T piece 51 and an L piece 52 are cut out from the test piece 40 as shown in FIG. As shown in FIG. 6, dice-shaped small pieces 51 a and 52 a with the strain gauge 22 attached thereto are cut out from the T piece 51 and the L piece 52.

このような軸対称継手の場合、上記T−L法による残留応力測定法の前提条件は次のようになる。
(1´)方向1の弾性ひずみは全方向の固有ひずみによって生じている。
(2´)方向3の固有ひずみの方向2に対する線形変化成分は有効固有ひずみである。
(3)T片及びL片は十分薄く切り取り、それぞれ、その面に垂直方向の固有ひずみは、その面内の弾性ひずみを生じさせていないと考える。
In the case of such an axially symmetric joint, the preconditions for the residual stress measurement method by the TL method are as follows.
The elastic strain in (1 ′) direction 1 is caused by the inherent strain in all directions.
(2 ′) The linear variation component of direction 3 with respect to direction 2 is the effective inherent strain.
(3) The T piece and the L piece are cut sufficiently thin, and it is considered that the inherent strain in the direction perpendicular to the surface does not cause in-plane elastic strain.

軸対称継手の前提条件(1´)(2´)は平板継手の前提条件(1)(2)と異なっている。その理由は次の通りである。平板継手の場合、図1に示すように、固有ひずみによる、方向1を軸とする回転変形が自由に生じ得る。これに対し軸対称継手では、方向1を軸とする回転は内的に拘束され、自由な回転変形が生じないからである。     The preconditions (1 ′) and (2 ′) for the axisymmetric joint are different from the preconditions (1) and (2) for the plate joint. The reason is as follows. In the case of a flat joint, as shown in FIG. 1, rotational deformation about the direction 1 due to inherent strain can occur freely. On the other hand, in the axially symmetric joint, the rotation about the direction 1 is restricted internally, and free rotational deformation does not occur.

このように前提条件が異なるため、上記式4´を用いた残留応力測定法は軸対称継手には適用できない。     Since the preconditions are different as described above, the residual stress measurement method using the above equation 4 ′ cannot be applied to the axisymmetric joint.

本発明はこのような状況に鑑みてなされたものであり、その目的とするところは、広く構造物の残留応力測定に用いることのできる、汎用性の高い残留応力測定方法を提供することにある。また、その残留応力測定方法を実行することのできる装置を提供することにある。     This invention is made | formed in view of such a condition, The place made into the objective is to provide the highly versatile residual stress measuring method which can be widely used for the residual stress measurement of a structure. . Another object of the present invention is to provide an apparatus capable of executing the residual stress measurement method.

(1)上記目的の達成のため、本発明では以下のステップを順次遂行して残留応力を測定する。
(a)試験片表面の計測位置に第1群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(b)前記試験片から、前記第1群のひずみゲージを含むように、薄い切断片であるT片と、前記T片に垂直な方向(方向1)に延びる薄い切断片であるL片を切り出し、解放ひずみを計測するステップ
(c)前記T片及びL片の断面の計測位置に第2群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(d)前記T片及びL片から、前記第2群のひずみゲージを含むように小片を切り出し、試験片の肉厚方向(方向2)のひずみと、前記方向1及び方向2に垂直な方向(方向3)のひずみの解放ひずみを計測するステップ
(e)計測された解放ひずみから、各計測位置の固有ひずみを求めるステップ
(f)単位固有ひずみ{ε* u}を使用して、下記の式1により試験片の任意の場所に発生する弾性ひずみ{εe fem}を求め、弾性ひずみ・固有ひずみマトリックス[H]を有限要素法で求めるステップ
{εe fem}=[H]{ε* u} (式1)
(g)計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス[H]を用いて、下記の式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値{ε*}を求めるステップ
{εe m}−[H]{ε*}={v} (式2)
S={v}T{v}→ min (式3)
(h)前記固有ひずみの最確値{ε*}を入力とし、前記弾性ひずみ・固有ひずみマトリックス[H]と、応力・ひずみマトリックス[D]を用いて、下記の式4により残留応力の最確値{σ}を出力するステップ。

Figure 2005181172
(1) In order to achieve the above object, the present invention measures the residual stress by sequentially performing the following steps.
(A) A step of attaching a first group strain gauge to a measurement position on the surface of the test piece and measuring an initial value of strain (b) A thin cut from the test piece so as to include the first group strain gauge. A step of cutting out a T piece that is a piece and an L piece that is a thin cut piece extending in a direction perpendicular to the T piece (direction 1), and measuring a release strain (c) a measurement position of a cross section of the T piece and the L piece A step (d) of measuring a strain initial value by attaching a second group strain gauge to the T piece and the L piece, and cutting out a small piece so as to include the second group strain gauge. Step (e) of measuring the strain in the direction (direction 2) and the strain in the direction perpendicular to the direction 1 and direction 2 (direction 3) (e) The inherent strain at each measurement position is obtained from the measured strain. Step (f) Unit inherent strain Use epsilon * u}, elastic strain occurs anywhere specimen by Equation 1 below seek {epsilon e fem}, obtaining elastic strain-specific strain matrix [H] in the finite element method step { ε e fem } = [H] {ε * u } (Formula 1)
(G) Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the eigenvalue with which the square sum S of the residual {v} is minimized by the following equations 2 and 3 Step of obtaining the most probable value {ε * } of strain {ε e m } − [H] {ε * } = {v} (Formula 2)
S = {v} T {v} → min (Formula 3)
(H) The most probable value of residual stress using the elastic strain / inherent strain matrix [H] and the stress / strain matrix [D] using the most probable value {ε * } of the inherent strain as input. Outputting {σ}.
Figure 2005181172

(2)前述のような残留応力測定方法において、前記試験片が、軸方向に垂直に溶接線を有する軸対称継手であり、前記方向1は前記溶接線の方向であるものとする。     (2) In the residual stress measurement method as described above, the test piece is an axisymmetric joint having a weld line perpendicular to the axial direction, and the direction 1 is the direction of the weld line.

(3)前述のような残留応力測定方法において、前記試験片が、平板同士を溶接した平板継手であり、前記方向1は溶接線の方向であるものとする。     (3) In the residual stress measurement method as described above, the test piece is a flat joint obtained by welding flat plates, and the direction 1 is the direction of the weld line.

(4)また本発明では、以下のステップを順次遂行して残留応力を測定する。
(a)試験片表面の計測位置に第1群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(b)前記試験片から、前記第1群のひずみゲージを含むように、薄い切断片であるT片と、前記T片に垂直な方向(方向1)に延びる薄い切断片であるL片を切り出し、解放ひずみを計測するステップ
(c)前記T片及びL片の断面の計測位置に第2群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(d)前記T片及びL片から、前記第2群のひずみゲージを含むように小片を切り出し、試験片の肉厚方向(方向2)のひずみと、前記方向1及び方向2に垂直な方向(方向3)のひずみの解放ひずみを計測するステップ
(e)計測された解放ひずみから、各計測位置の固有ひずみを求めるステップ
(f)単位固有ひずみ{ε* u}を使用して、請求項1の式1により試験片の任意の場所に発生する弾性ひずみ{εe fem}を求め、弾性ひずみ・固有ひずみマトリックス[H]を有限要素法で求めるステップ
(g)計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス
[H]を用いて、請求項1の式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値{ε*}を求めるステップ
(h´)ステップgで得られた残差の二乗和Sから、残差・分散変換係数Gを用いて、下記の式5により分散Vを求めるステップ
V=G・S (式5)
(i)前記分散Vを用いて、下記の式6により偏差aを求めるステップ。
a=√V (式6)
(4) In the present invention, the residual stress is measured by sequentially performing the following steps.
(A) A step of attaching a first group strain gauge to a measurement position on the surface of the test piece and measuring an initial value of strain (b) A thin cut from the test piece so as to include the first group strain gauge. A step of cutting out a T piece that is a piece and an L piece that is a thin cut piece extending in a direction perpendicular to the T piece (direction 1), and measuring a release strain (c) a measurement position of a cross section of the T piece and the L piece A step (d) of measuring a strain initial value by attaching a second group strain gauge to the T piece and the L piece, and cutting out a small piece so as to include the second group strain gauge. Step (e) of measuring the strain in the direction (direction 2) and the strain in the direction perpendicular to the direction 1 and direction 2 (direction 3) (e) The inherent strain at each measurement position is obtained from the measured strain. Step (f) Unit inherent strain Use epsilon * u}, elastic strain occurs anywhere specimen by formula 1 of claim 1 seek {ε e fem}, obtaining elastic strain-specific strain matrix [H] in the finite element method Step (g) Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the sum of squares S of the residual {v} is minimized according to Equations 2 and 3 of claim 1. Step (h ′) for determining the most probable value {ε * } of the inherent strain to be obtained from the square sum S of the residual obtained in step g, using the residual / dispersion conversion coefficient G, the variance V Step V = G · S (Formula 5)
(I) A step of obtaining a deviation a by the following equation 6 using the variance V.
a = √V (Formula 6)

(5)前述のような残留応力測定方法において、前記試験片が、軸方向に垂直に溶接線を有する軸対称継手であり、前記方向1は前記溶接線の方向であるものとする。     (5) In the residual stress measurement method as described above, the test piece is an axisymmetric joint having a weld line perpendicular to the axial direction, and the direction 1 is the direction of the weld line.

(6)前述のような残留応力測定方法において、前記試験片が、平板同士を溶接した平板継手であり、前記方向1は前記溶接線の方向であるものとする。     (6) In the residual stress measuring method as described above, the test piece is a flat plate joint obtained by welding flat plates, and the direction 1 is a direction of the weld line.

(7)また本発明では、前述のような残留応力測定方法を実行する残留応力測定装置において、前記第1群と第2群のひずみゲージから収集したデータに基づきひずみを計測する静ひずみ計と、構造物の設計データを保有するCADシステムと、前記静ひずみ計とCADシステムからデータを収集し、実際の構造物における残留応力を計算する演算装置と、その計算結果を表示する表示装置とを備えるものとする。     (7) According to the present invention, in the residual stress measurement device that executes the residual stress measurement method as described above, a static strain meter that measures strain based on data collected from the strain gauges of the first group and the second group; A CAD system that holds design data of the structure, an arithmetic unit that collects data from the static strain meter and the CAD system, calculates a residual stress in the actual structure, and a display unit that displays the calculation result Shall be provided.

(1)残留応力の最確値を式4で出力することにより、構造物を平板継手に限定することなく残留応力の測定を行うことが可能となる。     (1) By outputting the most probable value of the residual stress using Equation 4, it is possible to measure the residual stress without limiting the structure to a flat joint.

(2)構造物が軸対称継手である場合、その残留応力を精度良く解析できる。     (2) When the structure is an axisymmetric joint, the residual stress can be analyzed with high accuracy.

(3)構造物が平板継手である場合、その残留応力を精度良く解析できる。     (3) When the structure is a flat joint, the residual stress can be analyzed with high accuracy.

(4)構造物を平板継手に限定することなく残留応力の偏差を求めることができる。     (4) The residual stress deviation can be obtained without limiting the structure to a flat plate joint.

(5)構造物が軸対称継手である場合、その残留応力の偏差を精度良く求めることができる。     (5) When the structure is an axisymmetric joint, the deviation of the residual stress can be obtained with high accuracy.

(6)構造物が平板継手である場合、その残留応力の偏差を精度良く求めることができる。     (6) When the structure is a flat joint, the deviation of the residual stress can be obtained with high accuracy.

(7)試験片で求めた残留応力から、実際の構造物における残留応力を求めることができる。     (7) The residual stress in the actual structure can be obtained from the residual stress obtained from the test piece.

図4に示す厚板軸対称継手の試験片の場合、前記(1´)の前提条件(方向1の弾性ひずみは全方向の固有ひずみによって生じている)が存在するため、方向1の弾性ひずみと全方向の固有ひずみの関係を考慮する必要が生じる。そこで、式14に弾性ひずみ・固有ひずみマトリックス[H1・2]と[H1・3]を追加する。 In the case of the specimen of the thick plate axisymmetric joint shown in FIG. 4, since the precondition (1 ′) (the elastic strain in the direction 1 is caused by the inherent strain in all directions) exists, the elastic strain in the direction 1 And the relationship between the inherent strain in all directions must be considered. Therefore, an elastic strain / intrinsic strain matrix [H 1 · 2 ] and [H 1 · 3 ] are added to Equation 14.

また、前記(2´)の前提条件(方向3の固有ひずみの方向2に対する線形変化成分は有効固有ひずみである)が存在するため、有効固定ひずみを求めるために、T片への切断時に解放される弾性ひずみの計測が必要となる。そこで、感度が良いと考えられる、同じ方向3の弾性ひずみを計測することにする。この弾性ひずみは下記の式15で表される。

Figure 2005181172
Also, since the precondition (2 ′) (the linear variation component of the direction 3 with respect to the direction 2 of the inherent strain is the effective inherent strain) exists, it is released when cutting into the T piece in order to obtain the effective fixed strain. It is necessary to measure the elastic strain. Therefore, the elastic strain in the same direction 3 considered to have good sensitivity is measured. This elastic strain is expressed by Equation 15 below.
Figure 2005181172

加えて、前記の式15と全方向の固有ひずみとの関係を考慮する必要が生じる。そこで、式14にさらに弾性ひずみ・固有ひずみマトリックス[H3・1]、[H3・2]、[H3・3]を追加する。 In addition, it is necessary to consider the relationship between Equation 15 and the inherent strain in all directions. Therefore, an elastic strain / intrinsic strain matrix [H 3 · 1 ], [H 3 · 2 ], and [H 3 · 3 ] are further added to Expression 14.

上記の新しい関係を追加し、全体を1つの測定方程式に一体化すると、下記の式16が得られる。

Figure 2005181172
When the above new relationship is added and the whole is integrated into one measurement equation, the following equation 16 is obtained.
Figure 2005181172

式16を(式4´)の右辺の[H]{ε*}の部分に代入すると、下記の式4が得られる。

Figure 2005181172
Substituting Equation 16 into the [H] {ε * } portion on the right side of (Equation 4 ′), the following Equation 4 is obtained.
Figure 2005181172

これにより、軸対称継手を対象とした残留応力の測定が可能になり、また、残留応力の最確値と偏差を求めることができる。     As a result, the residual stress can be measured for the axisymmetric joint, and the most probable value and deviation of the residual stress can be obtained.

偏差は次のようにして求める。前記ステップfに続き、次のステップを遂行する。     The deviation is obtained as follows. Following the step f, the following steps are performed.

(ステップg)
計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス[H]を用いて、前記式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値
{ε*}を求める。
(Step g)
Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the most probable value of the inherent strain that minimizes the sum of squares S of the residual {v} according to Equations 2 and 3 above. {Ε * } is obtained.

(ステップh´)
ステップgで得られた残差の二乗和Sから、残差・分散変換係数Gを用いて、下記の式5により分散Vを求める。
V=G・S (式5)
(Step h ')
From the residual sum of squares S obtained in step g, the variance V is obtained by the following equation 5 using the residual / dispersion conversion coefficient G.
V = GS (Formula 5)

(ステップi)
前記分散Vを用いて、下記の式6により偏差aを求める。
a=√V (式6)
(Step i)
Using the variance V, the deviation a is obtained by the following formula 6.
a = √V (Formula 6)

本発明の残留応力測定方法を適用できる構造モデルの例をいくつか紹介する。     Some examples of structural models to which the residual stress measurement method of the present invention can be applied will be introduced.

〈円筒モデル〉
図8は「円筒モデル」に係る円筒110の斜視図である。円筒110は継手構造ではないが、熱処理や機械加工により残留応力が生じている場合がある。そのような場合、本発明残留応力測定方法を用いて残留応力やその偏差を測定・解析できる。
<Cylindrical model>
FIG. 8 is a perspective view of the cylinder 110 according to the “cylinder model”. Although the cylinder 110 is not a joint structure, residual stress may be generated by heat treatment or machining. In such a case, the residual stress and its deviation can be measured and analyzed using the residual stress measurement method of the present invention.

〈円筒モデル・同材継手〉
図9は「円筒モデル・同材継手」に係る厚板軸対称継手120の斜視図であって、同材料のパイプ同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Cylindrical model / same material joint>
FIG. 9 is a perspective view of a thick plate axisymmetric joint 120 according to “cylindrical model / same material joint”, in which pipes of the same material are welded together to form a joint. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈円筒モデル・異材継手〉
図10は「円筒モデル・異材継手」に係る厚板軸対称継手130の斜視図であって、異材料のパイプ同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Cylindrical model / dissimilar material joint>
FIG. 10 is a perspective view of a thick plate axisymmetric joint 130 according to “cylindrical model / dissimilar material joint”, in which pipes of different materials are welded together to form a joint. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈円筒モデル・異厚継手〉
図11は「円筒モデル・異厚継手」に係る厚板軸対称継手140の半断面図である。これは肉厚の異なるパイプ同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Cylindrical model / different thickness joint>
FIG. 11 is a half sectional view of the thick plate axisymmetric joint 140 according to the “cylindrical model / different thickness joint”. In this case, pipes having different thicknesses are welded to form a joint. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈球殻モデル〉
図12は「球殻モデル」に係る球殻150の半断面図である。熱処理や機械加工により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Spherical shell model>
FIG. 12 is a half sectional view of a spherical shell 150 according to the “spherical shell model”. Residual stress generated by heat treatment or machining can be measured and analyzed using the residual stress measurement method of the present invention.

〈球殻モデル・同材継手〉
図13は「球殻モデル・同材継手」に係る厚板軸対称継手160の半断面図である。これは同材料の球殻同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Spherical shell model / same material joint>
FIG. 13 is a half cross-sectional view of the thick plate axisymmetric joint 160 according to the “spherical shell model / same material joint”. This is a joint formed by welding spherical shells of the same material. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈球殻モデル・異材継手〉
図14は「球殻モデル・異材継手」に係る厚板軸対称継手170の半断面図である。これは異材料の球殻同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Spherical shell model / dissimilar material joint>
FIG. 14 is a half cross-sectional view of the thick plate axisymmetric joint 170 according to the “spherical shell model / dissimilar material joint”. This is a joint formed by welding spherical shells of different materials. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈平板モデル・異材継手〉
図15は「平板モデル・異材継手」に係る厚板平板突合せ継手180の斜視図であって、異材料の平板同士を溶接して継手を形成したものである。溶接により生じた残留応力を、本発明残留応力測定方法を用いて測定・解析できる。
<Flat plate model / Dissimilar material joint>
FIG. 15 is a perspective view of a thick plate flat butt joint 180 according to the “flat plate model / dissimilar material joint”, in which flat plates of different materials are welded to form a joint. Residual stress generated by welding can be measured and analyzed using the residual stress measurement method of the present invention.

〈異方性材料モデル〉
形状は特定しないが、異方性材料からなる構造物の残留応力の測定・解析も本発明残留応力測定方法により可能となる。
<Anisotropic material model>
Although the shape is not specified, the residual stress measurement / analysis of a structure made of an anisotropic material can be performed by the residual stress measurement method of the present invention.

これまでに述べてきた残留応力測定方法を実行する残留応力測定装置の構造例を図16に示す。図16は回路ブロック図である。     FIG. 16 shows an example of the structure of a residual stress measuring apparatus that executes the residual stress measuring method described so far. FIG. 16 is a circuit block diagram.

残留応力測定装置200は、第1群のひずみゲージ21及び第2群のひずみゲージ22から順次データを収集するスキャナー201と、スキャナー201の収集したデータから収集したデータに基づきひずみを計測する静ひずみ計202と、構造物の設計データを保有するCADシステム203と、静ひずみ計202及びCADシステム203からデータを収集し、実際の構造物における残留応力を計算する演算装置204と、その計算結果を表示する表示装置205とを備える。     The residual stress measuring apparatus 200 includes a scanner 201 that sequentially collects data from the first group of strain gauges 21 and the second group of strain gauges 22, and static strain that measures strain based on data collected from the data collected by the scanner 201. 202, a CAD system 203 that holds the design data of the structure, an arithmetic unit 204 that collects data from the static strain meter 202 and the CAD system 203 and calculates the residual stress in the actual structure, and the calculation result And a display device 205 for displaying.

上記残留応力測定装置200により、試験片から得たひずみデータを用いて、実際の構造物における残留応力を容易に予測できる。     The residual stress measuring apparatus 200 can easily predict the residual stress in an actual structure using strain data obtained from a test piece.

本発明は、構造物の残留応力測定、またその解析に広く利用可能である。     The present invention can be widely used for residual stress measurement and analysis of structures.

厚板平板突合せ継手の試験片の斜視図Perspective view of test piece of thick plate butt joint 図1の試験片からT片とL片を切り出す状況を示す斜視図The perspective view which shows the condition which cuts out T piece and L piece from the test piece of FIG. T片とL片からさらに小片を切り出す状況を示す斜視図The perspective view which shows the condition which further cuts out a small piece from T piece and L piece 厚板軸対称継手の試験片の斜視図Perspective view of specimen of thick plate axisymmetric joint 図4の試験片からT片とL片を切り出す状況を示す斜視図The perspective view which shows the condition which cuts out T piece and L piece from the test piece of FIG. T片とL片からさらに小片を切り出す状況を示す斜視図The perspective view which shows the condition which further cuts out a small piece from T piece and L piece 弾性ひずみ・固有ひずみマトリックスの求め方を説明する図Diagram explaining how to obtain elastic strain and intrinsic strain matrix 「円筒モデル」に係る円筒の斜視図Perspective view of cylinder according to "Cylinder model" 「円筒モデル・同材継手」に係る厚板軸対称継手の斜視図Perspective view of thick plate axisymmetric joint related to "Cylinder model / Same joint" 「円筒モデル・異材継手」に係る厚板軸対称継手の斜視図Perspective view of thick plate axisymmetric joint related to "Cylinder model / dissimilar material joint" 「円筒モデル・異厚継手」に係る厚板軸対称継手の半断面図Half-sectional view of thick plate axisymmetric joint related to "Cylinder model / different thickness joint" 「球殻モデル」に係る球殻の半断面図Half-sectional view of a spherical shell related to the “spherical shell model” 「球殻モデル・同材継手」に係る厚板軸対称継手の半断面図Half sectional view of thick plate axisymmetric joint related to “Spherical shell model / same material joint” 「球殻モデル・異材継手」に係る厚板軸対称継手の半断面図Half-sectional view of thick-plate axisymmetric joint related to “spherical shell model / dissimilar material joint” 「平板モデル・異材継手」に係る厚板平板突合せ継手の斜視図Perspective view of a flat plate butt joint according to "Flat plate model / dissimilar material joint" 残留応力測定装置の回路ブロック図Residual stress measuring device circuit block diagram

符号の説明Explanation of symbols

10 厚板平板突合せ継手の試験片
11 第1の平板
12 第2の平板
13 溶接線
21 第1群のひずみゲージ
22 第2群のひずみゲージ
31 T片
32 L片
40 軸対称継手の試験片
41 第1のパイプ
42 第2のパイプ
43 溶接線
51 T片
52 L片
200 残留応力測定装置
DESCRIPTION OF SYMBOLS 10 Thick plate butt joint test piece 11 1st flat plate 12 2nd flat plate 13 Weld line 21 1st group strain gauge 22 2nd group strain gauge 31 T piece 32 L piece 40 Axisymmetric joint test piece 41 First pipe 42 Second pipe 43 Welding line 51 T piece 52 L piece 200 Residual stress measuring device

Claims (7)

以下のステップを順次遂行することを特徴とする残留応力測定方法:
(a)試験片表面の計測位置に第1群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(b)前記試験片から、前記第1群のひずみゲージを含むように、薄い切断片であるT片と、前記T片に垂直な方向(方向1)に延びる薄い切断片であるL片を切り出し、解放ひずみを計測するステップ
(c)前記T片及びL片の断面の計測位置に第2群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(d)前記T片及びL片から、前記第2群のひずみゲージを含むように小片を切り出し、試験片の肉厚方向(方向2)のひずみと、前記方向1及び方向2に垂直な方向(方向3)のひずみの解放ひずみを計測するステップ
(e)計測された解放ひずみから、各計測位置の固有ひずみを求めるステップ
(f)単位固有ひずみ{ε* u}を使用して、下記の式1により試験片の任意の場所に発生する弾性ひずみ{εe fem}を求め、弾性ひずみ・固有ひずみマトリックス[H]を有限要素法で求めるステップ
{εe fem}=[H]{ε* u} (式1)
(g)計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス[H]を用いて、下記の式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値{ε*}を求めるステップ
{εe m}−[H]{ε*}={v} (式2)
S={v}T{v}→ min (式3)
(h)前記固有ひずみの最確値{ε*}を入力とし、前記弾性ひずみ・固有ひずみマトリックス[H]と、応力・ひずみマトリックス[D]を用いて、下記の式4により残留応力の最確値{σ}を出力するステップ。
Figure 2005181172
Residual stress measurement method characterized by sequentially performing the following steps:
(A) A step of attaching a first group strain gauge to a measurement position on the surface of the test piece and measuring an initial value of strain (b) A thin cut from the test piece so as to include the first group strain gauge. A step of cutting out a T piece that is a piece and an L piece that is a thin cut piece extending in a direction perpendicular to the T piece (direction 1), and measuring a release strain (c) a measurement position of a cross section of the T piece and the L piece A step (d) of measuring a strain initial value by attaching a second group strain gauge to the T piece and the L piece, and cutting out a small piece so as to include the second group strain gauge. Step (e) of measuring the strain in the direction (direction 2) and the strain in the direction perpendicular to the direction 1 and direction 2 (direction 3) (e) The inherent strain at each measurement position is obtained from the measured strain. Step (f) Unit inherent strain Use epsilon * u}, elastic strain occurs anywhere specimen by Equation 1 below seek {epsilon e fem}, obtaining elastic strain-specific strain matrix [H] in the finite element method step { ε e fem } = [H] {ε * u } (Formula 1)
(G) Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the eigenvalue with which the square sum S of the residual {v} is minimized by the following equations 2 and 3 Step of obtaining the most probable value {ε * } of strain {ε e m } − [H] {ε * } = {v} (Formula 2)
S = {v} T {v} → min (Formula 3)
(H) The most probable value of residual stress using the elastic strain / inherent strain matrix [H] and the stress / strain matrix [D] using the most probable value {ε * } of the inherent strain as input. Outputting {σ}.
Figure 2005181172
前記試験片が軸方向に垂直に溶接線を有する軸対称継手であり、前記方向1は前記溶接線の方向であることを特徴とする請求項1に記載の残留応力測定方法。   The residual stress measuring method according to claim 1, wherein the test piece is an axisymmetric joint having a weld line perpendicular to the axial direction, and the direction 1 is a direction of the weld line. 前記試験片が平板同士を溶接した平板継手であり、前記方向1は溶接線の方向であることを特徴とする請求項1に記載の残留応力測定方法。   The residual stress measurement method according to claim 1, wherein the test piece is a flat plate joint obtained by welding flat plates, and the direction 1 is a direction of a weld line. 以下のステップを順次遂行することを特徴とする残留応力測定方法:
(a)試験片表面の計測位置に第1群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(b)前記試験片から、前記第1群のひずみゲージを含むように、薄い切断片であるT片と、前記T片に垂直な方向(方向1)に延びる薄い切断片であるL片を切り出し、解放ひずみを計測するステップ
(c)前記T片及びL片の断面の計測位置に第2群のひずみゲージを貼り付け、ひずみの初期値を計測するステップ
(d)前記T片及びL片から、前記第2群のひずみゲージを含むように小片を切り出し、試験片の肉厚方向(方向2)のひずみと、前記方向1及び方向2に垂直な方向(方向3)のひずみの解放ひずみを計測するステップ
(e)計測された解放ひずみから、各計測位置の固有ひずみを求めるステップ
(f)単位固有ひずみ{ε* u}を使用して、請求項1の式1により試験片の任意の場所に発生する弾性ひずみ{εe fem}を求め、弾性ひずみ・固有ひずみマトリックス[H]を有限要素法で求めるステップ
(g)計測した弾性ひずみ{εe m}と、前記弾性ひずみ・固有ひずみマトリックス
[H]を用いて、請求項1の式2、3により、残差{v}の二乗和Sが最小となる固有ひずみの最確値{ε*}を求めるステップ
(h´)ステップgで得られた残差の二乗和Sから、残差・分散変換係数Gを用いて、下記の式5により分散Vを求めるステップ
V=G・S (式5)
(i)前記分散Vを用いて、下記の式6により偏差aを求めるステップ。
a=√V (式6)
Residual stress measurement method characterized by sequentially performing the following steps:
(A) A step of attaching a first group strain gauge to a measurement position on the surface of the test piece and measuring an initial value of strain (b) A thin cut from the test piece so as to include the first group strain gauge. A step of cutting out a T piece that is a piece and an L piece that is a thin cut piece extending in a direction perpendicular to the T piece (direction 1), and measuring a release strain (c) a measurement position of a cross section of the T piece and the L piece A step (d) of measuring a strain initial value by attaching a second group strain gauge to the T piece and the L piece, and cutting out a small piece so as to include the second group strain gauge. Step (e) of measuring the strain in the direction (direction 2) and the strain in the direction perpendicular to the direction 1 and direction 2 (direction 3) (e) The inherent strain at each measurement position is obtained from the measured strain. Step (f) Unit inherent strain Use epsilon * u}, elastic strain occurs anywhere specimen by formula 1 of claim 1 seek {ε e fem}, obtaining elastic strain-specific strain matrix [H] in the finite element method Step (g) Using the measured elastic strain {ε e m } and the elastic strain / intrinsic strain matrix [H], the sum of squares S of the residual {v} is minimized according to Equations 2 and 3 of claim 1. Step (h ′) for determining the most probable value {ε * } of the inherent strain to be obtained from the square sum S of the residual obtained in step g, using the residual / dispersion conversion coefficient G, the variance V Step V = G · S (Formula 5)
(I) A step of obtaining a deviation a by the following equation 6 using the variance V.
a = √V (Formula 6)
前記試験片が軸方向に垂直に溶接線を有する軸対称継手であり、前記方向1は前記溶接線の方向であることを特徴とする請求項4に記載の残留応力測定方法。   The residual stress measurement method according to claim 4, wherein the test piece is an axially symmetric joint having a weld line perpendicular to the axial direction, and the direction 1 is the direction of the weld line. 前記試験片が平板同士を溶接した平板継手であり、前記方向1は溶接線の方向であることを特徴とする請求項4に記載の残留応力測定方法。   The residual stress measurement method according to claim 4, wherein the test piece is a flat plate joint obtained by welding flat plates, and the direction 1 is a direction of a weld line. 請求項1〜6のいずれか1項に記載された残留応力測定方法を実行する残留応力測定装置において、
前記第1群と第2群のひずみゲージから収集したデータに基づきひずみを計測する静ひずみ計と、構造物の設計データを保有するCADシステムと、前記静ひずみ計とCADシステムからデータを収集し、実際の構造物における残留応力を計算する演算装置と、その計算結果を表示する表示装置とを備えることを特徴とする残留応力測定装置。
In the residual-stress measuring apparatus which performs the residual-stress measuring method described in any one of Claims 1-6,
Data is collected from a static strain meter that measures strain based on data collected from the strain gauges of the first group and the second group, a CAD system that holds design data of the structure, and the static strain meter and the CAD system. A residual stress measuring device comprising: an arithmetic device for calculating residual stress in an actual structure; and a display device for displaying the calculation result.
JP2003424213A 2003-12-22 2003-12-22 Residual stress measurement method and apparatus Expired - Fee Related JP4533621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424213A JP4533621B2 (en) 2003-12-22 2003-12-22 Residual stress measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424213A JP4533621B2 (en) 2003-12-22 2003-12-22 Residual stress measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2005181172A true JP2005181172A (en) 2005-07-07
JP4533621B2 JP4533621B2 (en) 2010-09-01

Family

ID=34784474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424213A Expired - Fee Related JP4533621B2 (en) 2003-12-22 2003-12-22 Residual stress measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4533621B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309923A (en) * 2006-04-21 2007-11-29 Jfe Steel Kk Method for measuring residual stress of rolling roll
JP2008058179A (en) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology Method of evaluating residual stress
CN100429033C (en) * 2005-07-19 2008-10-29 中国石油天然气股份有限公司 Method for repairing single-disc deformation of single-disc floating roof oil tank
JP2008268123A (en) * 2007-04-24 2008-11-06 Oriental Shiraishi Corp System and method for measuring stress of reinforced concrete member
CN103278443A (en) * 2013-04-26 2013-09-04 内蒙古包钢钢联股份有限公司 Technology for testing seamless tube residual stress by pasting method
JP2014215290A (en) * 2013-04-30 2014-11-17 国立大学法人横浜国立大学 Residual stress estimation method, strain estimation method, residual stress estimation system, strain estimation system, and program
CN104406718A (en) * 2014-12-23 2015-03-11 内蒙古包钢钢联股份有限公司 Method for detecting transverse residual stress on H-shaped steel
JP2015094758A (en) * 2013-11-14 2015-05-18 株式会社神戸製鋼所 Residual stress calculation method
CN105426660A (en) * 2015-10-30 2016-03-23 华中科技大学 Method for predicting residual stress field of surface plane of mechanical part
JP2016161524A (en) * 2015-03-05 2016-09-05 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
JP2016161523A (en) * 2015-03-05 2016-09-05 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
KR20170110126A (en) 2015-03-05 2017-10-10 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
CN109783968A (en) * 2019-01-25 2019-05-21 山东大学 The threedimensional FEM method of metal cutting process based on Simulation Based On Multi-step
WO2019208061A1 (en) 2018-04-25 2019-10-31 株式会社神戸製鋼所 Method for computing residual stress

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194429A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Method for measuring residual stress
JPH05223661A (en) * 1992-02-17 1993-08-31 Babcock Hitachi Kk Method for measuring residual stress
JP2003121273A (en) * 2001-10-19 2003-04-23 Hitachi Ltd Residual stress estimation method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194429A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Method for measuring residual stress
JPH05223661A (en) * 1992-02-17 1993-08-31 Babcock Hitachi Kk Method for measuring residual stress
JP2003121273A (en) * 2001-10-19 2003-04-23 Hitachi Ltd Residual stress estimation method and device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429033C (en) * 2005-07-19 2008-10-29 中国石油天然气股份有限公司 Method for repairing single-disc deformation of single-disc floating roof oil tank
JP2007309923A (en) * 2006-04-21 2007-11-29 Jfe Steel Kk Method for measuring residual stress of rolling roll
JP2008058179A (en) * 2006-08-31 2008-03-13 Tokyo Institute Of Technology Method of evaluating residual stress
JP2008268123A (en) * 2007-04-24 2008-11-06 Oriental Shiraishi Corp System and method for measuring stress of reinforced concrete member
CN103278443A (en) * 2013-04-26 2013-09-04 内蒙古包钢钢联股份有限公司 Technology for testing seamless tube residual stress by pasting method
JP2014215290A (en) * 2013-04-30 2014-11-17 国立大学法人横浜国立大学 Residual stress estimation method, strain estimation method, residual stress estimation system, strain estimation system, and program
EP3070447A4 (en) * 2013-11-14 2017-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Residual stress measuring method
WO2015072391A1 (en) 2013-11-14 2015-05-21 株式会社神戸製鋼所 Residual stress measuring method
US10018522B2 (en) 2013-11-14 2018-07-10 Kobe Steel, Ltd. Residual stress measuring method
CN105705925A (en) * 2013-11-14 2016-06-22 株式会社神户制钢所 Residual stress measuring method
KR20160086898A (en) 2013-11-14 2016-07-20 가부시키가이샤 고베 세이코쇼 Residual stress measuring method
JP2015094758A (en) * 2013-11-14 2015-05-18 株式会社神戸製鋼所 Residual stress calculation method
CN104406718A (en) * 2014-12-23 2015-03-11 内蒙古包钢钢联股份有限公司 Method for detecting transverse residual stress on H-shaped steel
KR20170110126A (en) 2015-03-05 2017-10-10 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
US10551258B2 (en) 2015-03-05 2020-02-04 Kobe Steel, Ltd. Residual stress estimation method and residual stress estimation device
WO2016140093A1 (en) * 2015-03-05 2016-09-09 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
JP2016161523A (en) * 2015-03-05 2016-09-05 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
KR20170109666A (en) 2015-03-05 2017-09-29 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
KR20170109657A (en) 2015-03-05 2017-09-29 가부시키가이샤 고베 세이코쇼 Residual stress estimation method and residual stress estimation apparatus
JP2016161524A (en) * 2015-03-05 2016-09-05 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
CN107430637A (en) * 2015-03-05 2017-12-01 株式会社神户制钢所 Residual stress estimates method and residual stress estimating device
US11125634B2 (en) 2015-03-05 2021-09-21 Kobe Steel, Ltd. Residual stress estimation method and residual stress estimation device
WO2016140091A1 (en) * 2015-03-05 2016-09-09 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
US10156506B2 (en) 2015-03-05 2018-12-18 Kobe Steel, Ltd. Residual stress estimation method and residual stress estimation device
CN105426660A (en) * 2015-10-30 2016-03-23 华中科技大学 Method for predicting residual stress field of surface plane of mechanical part
JP2018112430A (en) * 2017-01-10 2018-07-19 中国電力株式会社 Device and system for strain detection
WO2019208061A1 (en) 2018-04-25 2019-10-31 株式会社神戸製鋼所 Method for computing residual stress
CN112005088A (en) * 2018-04-25 2020-11-27 株式会社神户制钢所 Residual stress calculation method
KR20210002595A (en) 2018-04-25 2021-01-08 가부시키가이샤 고베 세이코쇼 How to calculate residual stress
CN112005088B (en) * 2018-04-25 2021-11-26 株式会社神户制钢所 Residual stress calculation method
CN109783968A (en) * 2019-01-25 2019-05-21 山东大学 The threedimensional FEM method of metal cutting process based on Simulation Based On Multi-step
CN109783968B (en) * 2019-01-25 2021-02-12 山东大学 Three-dimensional finite element simulation method of metal cutting process based on multiple process steps

Also Published As

Publication number Publication date
JP4533621B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4533621B2 (en) Residual stress measurement method and apparatus
Seguel et al. Damage assessment in a sandwich panel based on full-field vibration measurements
CN107957319B (en) The simply supported beam Crack Damage recognition methods of uniform load face curvature
US20200408657A1 (en) Method to Determine Mixed-Mode (I/III) Dynamic Fracture Toughness of Materials
Sinha et al. Simplified models for the location of cracks in beam structures using measured vibration data
Ratcliffe Damage detection using a modified Laplacian operator on mode shape data
Xu et al. Experimental and numerical investigation of structural damage detection using changes in natural frequencies
JP6516323B2 (en) Residual stress estimation method and residual stress estimation device
JP7158609B2 (en) Crack estimation device, fault diagnosis device, crack estimation method, and fault diagnosis method for rotating electric machine
Kim Vibration-based damage identification using reconstructed FRFs in composite structures
Ganjdoust et al. A novel delamination damage detection strategy based on inverse finite element method for structural health monitoring of composite structures
Alavi et al. On the applicability of digital image correlation method in extracting the higher order terms in stress field around blunt notches
Tlaisi et al. Crack detection in shaft using lateral and torsional vibration measurements and analyses
JP2008256474A (en) Method and system for estimating internal residual stress
Christian et al. Real-time quantification of damage in structural materials during mechanical testing
Gopalakrishnan et al. Computational techniques for damage detection, classification and quantification
WO2021149170A1 (en) Crack estimation device, crack estimation method, crack inspection method, and failure diagnosis method
JP2015222207A (en) Evaluation method and evaluation apparatus of structure
JP3612293B2 (en) Method and apparatus for measuring residual stress in object
Flansbjer et al. Using digital image correlation techniques and finite element models for strain-field analysis of a welded aluminium structure
Haswell et al. A review of fracture mechanics models of tubular joints
Pereyra et al. Damage detection in a stiffened plate using modal strain energy differences
Carr Application of dynamic expansion from limited measurements for full-field stress/strain on wind turbine blades
Swann et al. Characterization of delamination by using damage indices
Adediran et al. Application of FE model updating for damage assessment of FRP composite beam structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4533621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees