JP2005180530A - Electrostatic drive type semiconductor micro-valve - Google Patents

Electrostatic drive type semiconductor micro-valve Download PDF

Info

Publication number
JP2005180530A
JP2005180530A JP2003420380A JP2003420380A JP2005180530A JP 2005180530 A JP2005180530 A JP 2005180530A JP 2003420380 A JP2003420380 A JP 2003420380A JP 2003420380 A JP2003420380 A JP 2003420380A JP 2005180530 A JP2005180530 A JP 2005180530A
Authority
JP
Japan
Prior art keywords
substrate
valve body
valve
layer
movable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003420380A
Other languages
Japanese (ja)
Other versions
JP4572534B2 (en
Inventor
Masanao Kamakura
將有 鎌倉
Hiroshi Kawada
裕志 河田
Takuo Ishida
拓郎 石田
Kimiaki Saito
公昭 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003420380A priority Critical patent/JP4572534B2/en
Publication of JP2005180530A publication Critical patent/JP2005180530A/en
Application granted granted Critical
Publication of JP4572534B2 publication Critical patent/JP4572534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic drive type semiconductor micro-valve, favorably controlling the flow rate of fluid. <P>SOLUTION: This electrostatic drive type semiconductor micro-valve includes: a valve element base plate 1 formed of a semiconductor substrate having a frame 11, a valve element part 12 and a beam 13; a valve seat base plate 2 having a valve hole 21 and loaded with the valve element base plate 1; and a first base plate 3 mounted on the top face of the valve element base plate 1, wherein the valve element base plate 1 has a movable electrode 4 on an opposite surface to the first base plate 3 in the valve element part 12, the first base plate 3 has a fixed electrode 5 on the surface opposite to the movable electrode 4, at least one surface of the movable electrode 4 and the fixed electrode 5 has an insulating layer 6 for preventing continuity between both electrodes 4, 5, a predetermined gap is provided between the movable electrode 4 and the fixed electrode 5, and when the valve element part 12 is in the state of not applying voltage to the movable electrode 4 and the fixed electrode 5, the valve hole 21 is blocked up by the contact pressure so that the valve element part come into contact with the area in the periphery of an opening of the valve hole 21. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体基板をマイクロマシンニング加工して形成した弁体基板を使用し、流体の流れを制御するマイクロバルブに関し、詳しくは静電気力により流体の流れる弁孔の開閉動作を行う静電駆動型半導体マイクロバルブに関するものである。   The present invention relates to a microvalve that uses a valve substrate formed by micromachining a semiconductor substrate to control the flow of fluid, and more specifically, an electrostatic drive type that opens and closes a valve hole through which fluid flows by electrostatic force. The present invention relates to a semiconductor microvalve.

従来から、マイクロエレクトロニクス分野や医療機器用途等における流体制御部品として、シリコン等の半導体基板をマイクロマシンニング技術により微細構造加工してバルブ部材としてのマイクロ構造体を形成し、これを用いて流体の流通制御をできるようにしたマイクロバルブが各所で研究開発されている。一般にこの半導体マイクロバルブでは、バルブ部材に弁孔を開閉するための弁体が形成されており、前記弁孔を有する弁座基板部材と前記バルブ部材とを一体に組合せて構成し、前記バルブ部材に形成した弁体を前記弁座基板部材に対し変位動作させることにより前記弁孔を開閉して当該弁孔を流れる流体の流通を制御できるようになっている。この半導体マイクロバルブの弁開閉動作の駆動方式としては、いわゆるバイメタル原理を応用した熱駆動型と対向電極間に生じる静電気力を利用した静電駆動型がある。そのうち後者方式のものの一例として、例えば特許文献1に開示されたような半導体マイクロバルブである弁素子を挙げることができる。   Conventionally, as a fluid control component in the field of microelectronics and medical equipment, a semiconductor substrate such as silicon is finely processed by micromachining technology to form a micro structure as a valve member, which is used to distribute fluid Microvalves that can be controlled are being researched and developed in various places. Generally, in this semiconductor microvalve, a valve body for opening and closing a valve hole is formed in the valve member, and the valve seat substrate member having the valve hole and the valve member are integrally combined to form the valve member. The valve body formed in this manner is displaced with respect to the valve seat substrate member, so that the valve hole can be opened and closed to control the flow of fluid flowing through the valve hole. As a driving method of the valve opening / closing operation of the semiconductor microvalve, there are a thermal driving type applying a so-called bimetal principle and an electrostatic driving type using an electrostatic force generated between the counter electrodes. Among them, as an example of the latter method, for example, a valve element which is a semiconductor microvalve as disclosed in Patent Document 1 can be cited.

この静電駆動型半導体マイクロバルブは、流体が通過するノズルが形成されたノズルプレートと、電極板と、この電極板を被覆する絶縁層と、前記ノズルを開閉するバルブ屈撓部分に一体的に形成されている可撓性で導電性のあるバルブビームから構成されている。前記電極板とこの電極板を被覆する絶縁層は、前記ノズルプレートに積層配置されており、前記バルブビームの屈撓部分は、前記電極板上の絶縁層に対して所定の間隔を保持した配置となっており、前記電極板と前記バルブビームとの間に電圧を印加することにより、静電気力に基づく吸引力によって前記電極板が前記バルブビームを吸引して、前記バルブが前記ノズルを閉止するようになっている(つまり、ノーマリーオープン型である)。
特開昭63−307959号公報
The electrostatic drive type semiconductor microvalve is integrally formed with a nozzle plate on which a nozzle through which a fluid passes is formed, an electrode plate, an insulating layer covering the electrode plate, and a valve bending portion that opens and closes the nozzle. It consists of a flexible and conductive bulb beam that is formed. The electrode plate and the insulating layer covering the electrode plate are stacked on the nozzle plate, and the bent portion of the bulb beam is disposed at a predetermined distance from the insulating layer on the electrode plate. By applying a voltage between the electrode plate and the valve beam, the electrode plate attracts the valve beam by an attractive force based on electrostatic force, and the valve closes the nozzle. (That is, it is normally open type).
JP-A 63-307959

ところが、上述のような従来の静電駆動型半導体マイクロバルブにおいては、バルブビームの剛性のばらつきや、ノズルを通過する流体の圧力の変動によりバルブの浮上量が変化するため、流量ばらつきが発生するという問題点があった。   However, in the conventional electrostatically driven semiconductor microvalve as described above, the amount of floating of the valve changes due to the variation in the rigidity of the valve beam and the variation in the pressure of the fluid passing through the nozzle. There was a problem.

本発明は、上記従来技術の問題に鑑み、流体流量の良好な制御が可能な静電駆動型半導体マイクロバルブを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an electrostatically driven semiconductor microvalve capable of controlling the fluid flow rate satisfactorily.

上述の目的を達成するために、本発明の請求項1に係る静電駆動型半導体マイクロバルブは、半導体基板からなり、中央領域に開口を有するフレームと、該フレームの開口内に配置された弁体部と、該弁体部と前記フレームとを連結し、前記弁体部が前記フレームに対し基板厚み方向に変位可能となる撓み性を有する薄肉のビームと、を備える弁体基板と、表面に開口する弁孔を有し、該弁孔に前記弁体部が一致するようにして前記フレームを表面に固定することにより前記弁体基板が搭載される弁座基板と、前記弁体基板の上面に搭載される第1基板と、を具備し、前記弁体基板は、前記弁体部における前記第1基板への対向面に可動電極層を有し、前記第1基板は、前記可動電極層に対向する表面に固定電極層を有し、前記可動電極層及び前記固定電極層の少なくとも一方の表面は、これら両電極層間の導通を防止するための絶縁層を有し、前記可動電極層と前記固定電極層との間には、所定量のギャップを有し、前記弁体部は、前記可動電極層及び前記固定電極層に電圧を印加しない状態では、前記弁孔をその接触圧により塞ぐようにして前記弁孔の開口周辺領域に接触している。   To achieve the above object, an electrostatically driven semiconductor microvalve according to claim 1 of the present invention comprises a frame made of a semiconductor substrate and having an opening in a central region, and a valve disposed in the opening of the frame. A valve body substrate comprising: a body portion; and a thin-walled beam that connects the valve body portion and the frame and has a flexibility that allows the valve body portion to be displaced in the substrate thickness direction with respect to the frame; A valve seat substrate on which the valve body substrate is mounted by fixing the frame to the surface so that the valve body portion coincides with the valve hole, and the valve body substrate A first substrate mounted on an upper surface, wherein the valve body substrate has a movable electrode layer on a surface of the valve body portion facing the first substrate, and the first substrate includes the movable electrode. A fixed electrode layer on the surface facing the layer, the movable electrode layer and At least one surface of the fixed electrode layer has an insulating layer for preventing conduction between the two electrode layers, and a predetermined amount of gap is provided between the movable electrode layer and the fixed electrode layer. In the state where no voltage is applied to the movable electrode layer and the fixed electrode layer, the valve body portion is in contact with the opening peripheral region of the valve hole so as to close the valve hole with the contact pressure.

なお、「前記可動電極層及び前記固定電極層に電圧を印加しない状態では、前記弁孔をその接触圧によって塞ぐようにして前記弁孔の開口周辺領域に接触して」とは、電圧が印加されず且つ前記弁孔に流体圧がかかっていない状況下(以下、初期状態と称する。)にあるときに前記弁体部が前記弁孔の開口周辺領域に接触していることを意味している。 また前記「接触圧」とは、この初期状態において前記弁体部が前記弁孔の開口周辺領域への接触する状態を保持するよう前記ビームの支持力でもって前記弁体部が前記弁孔の開口周辺領域に押付けられる比較的微小な圧力のことである。   Note that “when no voltage is applied to the movable electrode layer and the fixed electrode layer, the valve hole is closed by the contact pressure so as to contact the area around the opening of the valve hole”. This means that the valve body part is in contact with the area around the opening of the valve hole when the valve hole is not under fluid pressure (hereinafter referred to as the initial state). Yes. In addition, the “contact pressure” means that in the initial state, the valve body portion has a support force of the beam so that the valve body portion maintains a contact state with a region around the opening of the valve hole. It is a relatively small pressure that is pressed against the area around the opening.

また、本発明の請求項2に係る静電駆動型半導体マイクロバルブは、請求項1に記載の静電駆動型半導体マイクロバルブにおいて、前記ギャップを、前記第1基板と前記フレームとの間に設けた接合層で形成している。   An electrostatically driven semiconductor microvalve according to claim 2 of the present invention is the electrostatically driven semiconductor microvalve according to claim 1, wherein the gap is provided between the first substrate and the frame. It is formed with a bonding layer.

また、本発明の請求項3に係る静電駆動型半導体マイクロバルブは、請求項1に記載の静電駆動型半導体マイクロバルブにおいて、前記ギャップを、前記弁体部における前記第1基板への対向面を前記フレームに比べて薄肉にして形成している。   An electrostatically driven semiconductor microvalve according to a third aspect of the present invention is the electrostatically driven semiconductor microvalve according to the first aspect, wherein the gap faces the first substrate in the valve body portion. The surface is formed thinner than the frame.

また、本発明の請求項4に係る静電駆動型半導体マイクロバルブは、請求項1に記載の静電駆動型半導体マイクロバルブにおいて、前記ギャップを、前記第1基板における前記弁体部への対向面に凹所を設けて形成している。   An electrostatically driven semiconductor microvalve according to a fourth aspect of the present invention is the electrostatically driven semiconductor microvalve according to the first aspect, wherein the gap is opposed to the valve body portion in the first substrate. The surface is formed with a recess.

また、本発明の請求項5に係る静電駆動型半導体マイクロバルブは、請求項1乃至請求項4のいずれかに記載の静電駆動型半導体マイクロバルブにおいて、前記第1基板が少なくとも前記フレームの開口部全面を覆うサイズである場合、前記第1基板、前記接合層、前記フレーム、前記弁座基板の少なくともいずれかに流入孔を備えている。   An electrostatically driven semiconductor microvalve according to claim 5 of the present invention is the electrostatically driven semiconductor microvalve according to any one of claims 1 to 4, wherein the first substrate is at least of the frame. When the size covers the entire surface of the opening, an inflow hole is provided in at least one of the first substrate, the bonding layer, the frame, and the valve seat substrate.

また、本発明の請求項6に係る静電駆動型半導体マイクロバルブは、請求項1乃至請求項5のいずれかに記載の静電駆動型半導体マイクロバルブにおいて、前記弁体部と前記弁座基板の対向面の少なくとも一方の接触部位の表面には、前記弁体部と前記弁座基板とが接触界面で固着するのを防止する微小突起を設けている。   An electrostatically driven semiconductor microvalve according to a sixth aspect of the present invention is the electrostatically driven semiconductor microvalve according to any one of the first to fifth aspects, wherein the valve body portion and the valve seat substrate. On the surface of at least one contact portion of the opposing surface, a minute projection is provided to prevent the valve body portion and the valve seat substrate from sticking at the contact interface.

また、本発明の請求項7に係る静電駆動型半導体マイクロバルブは、請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブにおいて、前記可動電極層と電気的に接続する可動電極層用電極パッドを、前記フレームと前記弁座基板との接合面に設けている。   An electrostatically driven semiconductor microvalve according to claim 7 of the present invention is the electrostatically driven semiconductor microvalve according to any one of claims 1 to 6, which is electrically connected to the movable electrode layer. An electrode pad for the movable electrode layer is provided on the joint surface between the frame and the valve seat substrate.

また、本発明の請求項8に係る静電駆動型半導体マイクロバルブは、請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブにおいて、前記可動電極層と電気的に接続する可動電極層用電極パッドを、前記弁体基板と前記弁座基板の間に設けている。   An electrostatically driven semiconductor microvalve according to an eighth aspect of the present invention is the electrostatically driven semiconductor microvalve according to any one of the first to sixth aspects, which is electrically connected to the movable electrode layer. An electrode pad for the movable electrode layer is provided between the valve body substrate and the valve seat substrate.

また、本発明の請求項9に係る静電駆動型半導体マイクロバルブは、請求項8に記載の静電駆動型半導体マイクロバルブにおいて、前記弁体基板が支持層、中間酸化膜、活性層からなるSOI基板で構成され、前記弁体基板における前記第1基板との対向面に前記活性層を配置する場合に、前記活性層から前記支持層まで貫通する凹状導電層を設け、該凹状導電層にて、前記活性層と前記支持層と前記可動電極層側電極パッドとを電気的に接続している。   An electrostatically driven semiconductor microvalve according to claim 9 of the present invention is the electrostatically driven semiconductor microvalve according to claim 8, wherein the valve body substrate comprises a support layer, an intermediate oxide film, and an active layer. When the active layer is arranged on the surface of the valve body substrate facing the first substrate, a concave conductive layer penetrating from the active layer to the support layer is provided, and the concave conductive layer is formed on the valve substrate. The active layer, the support layer, and the movable electrode layer side electrode pad are electrically connected.

また、本発明の請求項10に係る静電駆動型半導体マイクロバルブは、請求項8に記載の静電駆動型半導体マイクロバルブにおいて、前記弁体基板が支持層、中間酸化膜、活性層からなるSOI基板で構成され、前記弁体基板における前記第1基板との対向面に前記活性層を配置する場合に、前記フレームにおける前記弁体部への対向面には、前記活性層と前記支持層とを電気的に接続する導電層を設け、該導電層にて前記活性層と前記支持層とを電気的に接続している。   An electrostatically driven semiconductor microvalve according to claim 10 of the present invention is the electrostatically driven semiconductor microvalve according to claim 8, wherein the valve body substrate comprises a support layer, an intermediate oxide film, and an active layer. In the case where the active layer is disposed on the surface of the valve body substrate facing the first substrate, the active layer and the support layer are disposed on the surface facing the valve body portion of the frame. Are provided, and the active layer and the support layer are electrically connected by the conductive layer.

また、本発明の請求項11に係る静電駆動型半導体マイクロバルブは、請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブにおいて、前記固定電極層と電気的に接続する固定電極層用電極パッドを、前記弁体基板と前記第1基板の間に設けている。   An electrostatically driven semiconductor microvalve according to an eleventh aspect of the present invention is the electrostatically driven semiconductor microvalve according to any one of the first to sixth aspects, wherein the electrostatically driven semiconductor microvalve is electrically connected to the fixed electrode layer. An electrode pad for a fixed electrode layer is provided between the valve body substrate and the first substrate.

また、本発明の請求項12に係る静電駆動型半導体マイクロバルブは、請求項5に記載の静電駆動型半導体マイクロバルブにおいて、前記第1基板が厚み方向に貫通する前記流入孔を備える場合、前記第1基板における前記弁体基板の非対向面に、前記可動電極層と電気的に接続する可動電極層用パッドと前記固定電極層と電気的に接続された固定電極層用パッドの少なくとも一方の電極層用パッドを備えている。   An electrostatically driven semiconductor microvalve according to claim 12 of the present invention is the electrostatically driven semiconductor microvalve according to claim 5, wherein the first substrate includes the inflow hole penetrating in the thickness direction. A movable electrode layer pad electrically connected to the movable electrode layer and a fixed electrode layer pad electrically connected to the fixed electrode layer on the non-facing surface of the valve body substrate in the first substrate. One electrode layer pad is provided.

このような構成の静電駆動型半導体マイクロバルブは、中央領域に開口を有するフレームとフレームの開口内に配置された弁体部と弁体部とフレームとを連結し、弁体部がフレームに対し基板厚み方向に変位可能となる撓み性を有する薄肉のビームを備える弁体基板と、表面に開口する弁孔を有し弁孔に弁体部が一致するようにしてフレームを表面に固定することにより弁体基板が搭載される弁座基板と、弁体基板の上面に搭載される第1基板を備え、弁体部における第1基板への対向面に可動電極層を設け、第1基板における可動電極層に対向する表面に固定電極層を設け、可動電極層及び固定電極層の少なくとも一方の表面には、これら両電極層間の導通を防止するための絶縁層を設けるとともに、可動電極層と固定電極層との間には、所定量のギャップを設けて、可動電極層及び固定電極層に電圧を印加しない状態では、弁体部が弁孔をその接触圧により塞ぐようにして弁孔の開口周辺領域に接触させるようにすることで、流体流量の良好な制御が可能なノーマリークローズ型の構成を実現することができる。   The electrostatic drive type semiconductor microvalve having such a configuration connects a frame having an opening in a central region, a valve body portion disposed in the opening of the frame, the valve body portion, and the frame, and the valve body portion is connected to the frame. On the other hand, the valve body substrate provided with a thin beam having flexibility that can be displaced in the substrate thickness direction, and a valve hole that opens on the surface, and the valve body portion is aligned with the valve hole, and the frame is fixed to the surface. A valve seat substrate on which the valve body substrate is mounted, and a first substrate mounted on the upper surface of the valve body substrate, and a movable electrode layer is provided on a surface of the valve body portion facing the first substrate. A fixed electrode layer is provided on the surface facing the movable electrode layer in the substrate, and an insulating layer for preventing conduction between the two electrode layers is provided on at least one surface of the movable electrode layer and the fixed electrode layer. And the fixed electrode layer In a state where a fixed gap is provided and no voltage is applied to the movable electrode layer and the fixed electrode layer, the valve body part should close the valve hole with the contact pressure so as to contact the area around the opening of the valve hole. Thus, it is possible to realize a normally closed type configuration in which the fluid flow rate can be satisfactorily controlled.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において、同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, in each figure, the structure which attached | subjected the same code | symbol shows that it is the same structure, The description is abbreviate | omitted.

(第1実施形態)
本発明の第1実施形態を図1及び図2に基づいて説明する。図1(a)は、静電駆動型半導体マイクロバルブを示すA−A断面(図1(c)参照)における断面図であり、図1(b)は、概略斜視図であり、図1(c)は、概略上面図(第1基板、接合層、絶縁層、可動電極を除いた状態)である。また、図2は、本実施形態の静電駆動型半導体マイクロバルブの変形形態を示す断面図である。
(First embodiment)
1st Embodiment of this invention is described based on FIG.1 and FIG.2. FIG. 1A is a cross-sectional view taken along a line AA (see FIG. 1C) showing an electrostatically driven semiconductor microvalve, and FIG. 1B is a schematic perspective view. c) is a schematic top view (a state in which a first substrate, a bonding layer, an insulating layer, and a movable electrode are removed). FIG. 2 is a cross-sectional view showing a modification of the electrostatically driven semiconductor microvalve of the present embodiment.

本実施形態における静電駆動型半導体マイクロバルブは、図1に示すように、半導体基板よりなる弁体基板1と、弁座基板2と、第1基板3とを備えた構成である。なお、静電駆動型半導体マイクロバルブの上下方向は、実際の使用状態での方位性に依存するため一義的に規定できないが、本実施形態の記述では説明の便宜上、図1(a)に示すように、弁座基板2の配置側を下側、第1基板3の配置側を上側というように上下方向を規定するものとする。   As shown in FIG. 1, the electrostatically driven semiconductor microvalve in the present embodiment has a configuration including a valve body substrate 1 made of a semiconductor substrate, a valve seat substrate 2, and a first substrate 3. Note that the vertical direction of the electrostatically driven semiconductor microvalve depends on the orientation in the actual use state and cannot be uniquely defined, but in the description of this embodiment, for convenience of explanation, it is shown in FIG. Thus, the vertical direction is defined such that the arrangement side of the valve seat substrate 2 is the lower side and the arrangement side of the first substrate 3 is the upper side.

弁体基板1は、シリコン基板をマイクロマシンニング加工することにより形成されたいわゆるMEMS構造体であって、例えば、基板主面の中央領域に略正方形に開口を有するとともに上下方向(基板厚み方向)から見た外形の平面視も矩形状に形成されたフレーム11と、フレーム11の開口内に配置された弁体部12と、弁体部12とフレーム11を連結し弁体部12がフレーム11に対し上下方向に変位可能となる撓み性を有する薄肉のビーム13とを備えた構成である。なお、本実施形態においては、弁体基板1は、例えば、4本のビーム13を有し、各ビーム13は、フレーム11内の各辺から延出して略卍状をなすよう配置されている。   The valve body substrate 1 is a so-called MEMS structure formed by micromachining a silicon substrate. For example, the valve body substrate 1 has a substantially square opening in the central region of the main surface of the substrate and from the vertical direction (substrate thickness direction). The frame 11 is also formed in a rectangular shape in plan view, the valve body 12 disposed in the opening of the frame 11, the valve body 12 and the frame 11, and the valve body 12 is connected to the frame 11. On the other hand, it is the structure provided with the thin beam 13 which has the flexibility which can be displaced to an up-down direction. In the present embodiment, the valve body substrate 1 has, for example, four beams 13, and each beam 13 extends from each side in the frame 11 and is arranged so as to have a substantially bowl shape. .

弁座基板2は、例えば、ガラス基板で構成され、上(表)面に開口する弁孔21を有し、弁孔21に弁体部12が一致するようにしてフレーム11を表面に固定することによって弁体基板1が搭載される構成である。また、第1基板3は、例えば、ガラス基板で構成され、弁体基板1の上面に搭載される。なお、本実施形態においては、図1(b)に示すように、第1基板3は、流体の流れを確保するために、フレーム11上面を全面覆う必要はない。また、弁座基板2の上表面には、図1(a)に示すように、弁孔21の開口周縁部を囲むように例えば、凹溝22が形成されている。   The valve seat substrate 2 is made of, for example, a glass substrate, has a valve hole 21 that opens on the upper (front) surface, and fixes the frame 11 to the surface so that the valve body portion 12 coincides with the valve hole 21. Thus, the valve body substrate 1 is mounted. Moreover, the 1st board | substrate 3 is comprised by the glass substrate, for example, and is mounted in the upper surface of the valve body board | substrate 1. FIG. In the present embodiment, as shown in FIG. 1B, the first substrate 3 does not need to cover the entire upper surface of the frame 11 in order to ensure the flow of fluid. Further, as shown in FIG. 1A, for example, a concave groove 22 is formed on the upper surface of the valve seat substrate 2 so as to surround the opening peripheral edge of the valve hole 21.

ここで、弁体基板1は、弁体部12における第1基板3への対向面に可動電極4を有しており、第1基板3は、可動電極4に対向する表面に固定電極5を有している。また、本実施形態においては、可動電極4における固定電極5との対向面は、絶縁層6を備えており、可動電極4と固定電極5との間には勿論、絶縁層6と固定電極5との間にも、所定量のギャップを設けている。なお、可動電極4及び固定電極5の少なくとも一方の表面に、これら両電極4、5間の導通を防止するための絶縁層が形成されていればよい。   Here, the valve body substrate 1 has the movable electrode 4 on the surface facing the first substrate 3 in the valve body portion 12, and the first substrate 3 has the fixed electrode 5 on the surface facing the movable electrode 4. Have. In the present embodiment, the surface of the movable electrode 4 facing the fixed electrode 5 is provided with an insulating layer 6. Of course, the insulating layer 6 and the fixed electrode 5 are provided between the movable electrode 4 and the fixed electrode 5. A predetermined amount of gap is also provided between the two. Note that an insulating layer for preventing conduction between the electrodes 4 and 5 may be formed on at least one surface of the movable electrode 4 and the fixed electrode 5.

フレーム11と弁座基板2との接合は、例えば、陽極接合にて行い、フレーム11と第1基板3との接合は、接合層7を介して行う。この場合、接合層7を設けることで、絶縁層6と固定電極5との間のギャップが形成されている。なお、弁体基板1と第1基板3との接合を陽極接合にて行う場合、陽極接合用の電極がそのまま接合層7になる。なお、接合層7がシリコンペースト等の接着剤であってもよく、この場合、接着剤の量を加減して接合層7の厚みを決定することができる。   The frame 11 and the valve seat substrate 2 are bonded by, for example, anodic bonding, and the frame 11 and the first substrate 3 are bonded through the bonding layer 7. In this case, the gap between the insulating layer 6 and the fixed electrode 5 is formed by providing the bonding layer 7. When the valve body substrate 1 and the first substrate 3 are bonded by anodic bonding, the anodic bonding electrode becomes the bonding layer 7 as it is. The bonding layer 7 may be an adhesive such as silicon paste. In this case, the thickness of the bonding layer 7 can be determined by adjusting the amount of the adhesive.

可動電極4、固定電極5の材料は、例えばAlやCrの薄膜を用いる。また、絶縁層6の材料は、シリコン酸化膜、シリコン窒化膜、高誘電体薄膜であるチタン酸ストロンチウム(STO)やチタン酸バリウム(BTO)を用いる。また、シリコン基板からなる弁体基板1に可動電極4を形成する方法の一例として、イオン注入等によって基板表面を高濃度状態(例えば、約1020cm-3程度)にし、そのまま電極として用いる方法を挙げることができる。 As the material of the movable electrode 4 and the fixed electrode 5, for example, a thin film of Al or Cr is used. The insulating layer 6 is made of a silicon oxide film, a silicon nitride film, or a high dielectric thin film such as strontium titanate (STO) or barium titanate (BTO). Further, as an example of a method for forming the movable electrode 4 on the valve body substrate 1 made of a silicon substrate, a method of using the substrate surface as it is by making the substrate surface in a high concentration state (for example, about 10 20 cm −3 ) by ion implantation or the like. Can be mentioned.

ここで、静電駆動型半導体マイクロバルブの動作について以下に説明する。静電駆動型半導体マイクロバルブは、可動電極4と固定電極5間に電圧を印加しない初期状態では、弁体部12が弁孔21をその接触圧によって塞ぐように弁孔21の開口周辺領域に接触、つまり非接着状態にて接触させるような構成であり、バルブを開状態にするには、可動電極4と固定電極5と間に電圧を印加し、弁体部12に働く流体の圧力に打ち勝つだけの静電引力を発生させて、弁体部12を固定電極5側に引寄せる構成である。   Here, the operation of the electrostatically driven semiconductor microvalve will be described below. In the initial state where no voltage is applied between the movable electrode 4 and the fixed electrode 5, the electrostatically driven semiconductor microvalve is arranged in a region around the opening of the valve hole 21 so that the valve body portion 12 closes the valve hole 21 with its contact pressure. In order to bring the valve into an open state, a voltage is applied between the movable electrode 4 and the fixed electrode 5 to adjust the pressure of the fluid acting on the valve body 12. In this configuration, the valve body 12 is attracted toward the fixed electrode 5 by generating an electrostatic attractive force that can be overcome.

なお、静電駆動型半導体マイクロバルブは、弁孔21が閉じている状態において弁体部12の下面と弁座基板2とが広い面積で密着するような構成になっていると、弁体部12の下面と弁体部12との界面でのエア抜きができなくなりやすく、例えばダンパー効果によりバルブの開閉応答性が悪くなる恐れがある。しかしながら、弁座基板2に上述の凹溝22を設けることで、弁孔21を閉じる瞬間及び開放する瞬間における前述の界面でのエア逃がしが行えるため、静電駆動型半導体マイクロバルブの開閉応答性が比較的良好に確保される。   The electrostatic drive type semiconductor microvalve has a configuration in which the lower surface of the valve body 12 and the valve seat substrate 2 are in close contact with each other in a wide area in a state where the valve hole 21 is closed. It is difficult to remove air at the interface between the lower surface of the valve 12 and the valve body 12, and for example, the opening / closing response of the valve may be deteriorated due to a damper effect. However, by providing the concave groove 22 in the valve seat substrate 2, air can be released at the interface at the moment of closing and opening the valve hole 21, so that the open / close response of the electrostatically driven semiconductor microvalve is possible. Is ensured relatively well.

本実施形態に係る静電駆動型半導体マイクロバルブは、弁体部12における第1基板3への対向面に可動電極4を設け、第1基板3における可動電極4に対向する表面に固定電極5を設け、可動電極4及び固定電極5の少なくとも一方の表面には、これら両電極4、5間の導通を防止するための絶縁層6を設けるとともに、絶縁層6と固定電極5との間には、所定量のギャップを設けて、可動電極4及び固定電極5の間に電圧を印加しない状態では、弁体部12が弁孔21をその接触圧により塞ぐようにして弁孔21の開口周辺領域に接触させるようにすることで、流体流量の良好な制御が可能なノーマリークローズ型の構成を実現することができる。   In the electrostatic drive type semiconductor microvalve according to the present embodiment, the movable electrode 4 is provided on the surface of the valve body 12 facing the first substrate 3, and the fixed electrode 5 is provided on the surface of the first substrate 3 facing the movable electrode 4. An insulating layer 6 is provided on at least one surface of the movable electrode 4 and the fixed electrode 5 to prevent conduction between the electrodes 4 and 5, and between the insulating layer 6 and the fixed electrode 5. In the state in which a predetermined amount of gap is provided and no voltage is applied between the movable electrode 4 and the fixed electrode 5, the valve body portion 12 closes the valve hole 21 with its contact pressure so as to surround the opening of the valve hole 21. By making it contact with an area | region, the normally closed type | mold structure which can perform favorable control of the fluid flow rate is realizable.

また、静電駆動型半導体マイクロバルブは、絶縁層6と固定電極5との間のギャップ内に弁体部12の変位する範囲を限定した構成にすることにより、過剰な変位による薄肉であるビーム13の破損を防ぐことができ、更に、バルブ開時のギャップ量も一律に規定できるため、流体流量のばらつきを低減することが可能となる。   In addition, the electrostatic drive type semiconductor microvalve has a configuration in which the range in which the valve body 12 is displaced is limited within the gap between the insulating layer 6 and the fixed electrode 5, so that the beam is thin due to excessive displacement. 13 can be prevented, and furthermore, the gap amount when the valve is opened can be uniformly defined, so that variations in fluid flow rate can be reduced.

なお、図2には、本実施形態における静電駆動型半導体マイクロバルブの変形形態を示している。第1の変形形態は、図2(a)に示すように、静電駆動型半導体マイクロバルブは、例えば、弁体部12の上面をエッチング加工し、フレーム11面よりも低い形状とすることで、弁体部12における第1基板3への対向面をフレーム11に比べて薄肉にし、可動電極4と固定電極5との間のギャップは勿論、絶縁層6と固定電極5との間のギャップを形成する構成である。この場合、図1に示すような構成の静電駆動型半導体マイクロバルブより接合層7を薄く設けるだけでよい。   FIG. 2 shows a modification of the electrostatic drive type semiconductor microvalve in the present embodiment. In the first modification, as shown in FIG. 2A, the electrostatically driven semiconductor microvalve is formed, for example, by etching the upper surface of the valve body portion 12 to have a shape lower than the surface of the frame 11. The surface of the valve body 12 facing the first substrate 3 is made thinner than the frame 11, and the gap between the movable electrode 4 and the fixed electrode 5 is of course the gap between the insulating layer 6 and the fixed electrode 5. It is the structure which forms. In this case, it is only necessary to provide the bonding layer 7 thinner than the electrostatically driven semiconductor microvalve configured as shown in FIG.

また、第2の変形形態は、図2(b)に示すように、静電駆動型半導体マイクロバルブは、第1基板3における弁体部12への対向面に凹部31を設けて、絶縁層6と固定電極5との間のギャップを形成する構成である。この場合、図1に示すような構成の静電駆動型半導体マイクロバルブより接合層7を薄く設けるだけでよい。なお、凹部31は、弁体部12の変位にともない弁体部12が接触することのないような、例えば図2(b)に示すように弁体部12の形状にあわせた所望の凹形状であればよい。   In addition, as shown in FIG. 2B, the second variation is that the electrostatic drive type semiconductor microvalve is provided with a recess 31 on the surface facing the valve body 12 in the first substrate 3, and an insulating layer. 6 and a fixed electrode 5 are formed. In this case, it is only necessary to provide the bonding layer 7 thinner than the electrostatically driven semiconductor microvalve configured as shown in FIG. In addition, the recessed part 31 does not contact the valve body part 12 with the displacement of the valve body part 12, for example, as shown in FIG.2 (b), the desired concave shape according to the shape of the valve body part 12 is shown. If it is.

また、第3の変形形態は、図2(c)に示すように、図1に示す静電駆動型半導体マイクロバルブが弁体部12と弁座基板2の対向面の弁体部12側における接触部位の表面に弁体部12と弁座基板2とが接触界面で固着するのを防止する微小突起8を備えた構成である。弁体部12と弁孔21との相対面は、通常いずれも鏡面若しくはそれに近い状態となり、スティッキング(つまり、固着)現象が発生し易くなるが、微小突起8により、弁体部12と弁座基板2との接触界面中に介在するような、水分に起因する固着力を低減させ、スティッキング現象の発生を抑制することで信頼性の高いバルブの動作が実現できる。なお、微小突起8の突出高は、余り大きすぎると接触界面から流体の好ましくないリークを生じるので、接触界面からの流体リーク量が許容範囲に納まるように高さ設計する必要がある。   Further, as shown in FIG. 2C, the third variation is that the electrostatic drive type semiconductor microvalve shown in FIG. 1 is located on the valve body 12 side of the opposed surface of the valve body 12 and the valve seat substrate 2. It is the structure provided with the microprotrusion 8 which prevents that the valve body part 12 and the valve-seat board | substrate 2 adhere to the surface of a contact site | part at a contact interface. The relative surfaces of the valve body portion 12 and the valve hole 21 are usually mirror surfaces or close to each other, and a sticking (that is, sticking) phenomenon is likely to occur. A highly reliable valve operation can be realized by reducing the sticking force caused by moisture, which is present in the contact interface with the substrate 2, and suppressing the occurrence of the sticking phenomenon. If the protrusion height of the microprotrusions 8 is too large, an undesirable fluid leak occurs from the contact interface. Therefore, it is necessary to design the height so that the amount of fluid leak from the contact interface falls within an allowable range.

なお、微小突起8の形成方法は、例えば、弁体部12のウエハ全面を酸化しておき、フォト工程によって微小突起形成部分以外の酸化膜を選択的にエッチング除去する方法等により行う。微小突起8は、弁体部12と一体化していなくても、別途形成して後、所望箇所に接着するような構成であっても勿論よい。なお、微小突起8は、弁体部12と弁座基板2の対向面の少なくとも一方の接触部位の表面に形成されていればよい。   The method for forming the microprojections 8 is performed by, for example, a method in which the entire wafer surface of the valve body 12 is oxidized and an oxide film other than the microprojection formation portion is selectively etched away by a photo process. Of course, the microprotrusions 8 may not be integrated with the valve body 12 but may be separately formed and then bonded to a desired location. In addition, the microprotrusion 8 should just be formed in the surface of the contact part of at least one of the opposing surface of the valve body part 12 and the valve seat board | substrate 2. FIG.

(第2実施形態)
次に、第1実施形態において第1基板3が少なくともフレーム11の開口部全面を覆うサイズであるような実施形態を、本発明の第2実施形態として図3乃至図5に基づいて説明する。図3(a)は、静電駆動型半導体マイクロバルブを示す断面図であり、図3(b)は、概略斜視図である。また、図4(a)〜(d)は、本実施形態の静電駆動型半導体マイクロバルブの変形形態を示す断面図である。また、図5は、静電駆動型半導体マイクロバルブの実装形態を示す断面図の例(図5(a)は、図4(c)に対応する一例であり、図5(b)は、図4(d)に対応する一例)である。
(Second Embodiment)
Next, an embodiment in which the first substrate 3 has a size covering at least the entire opening of the frame 11 in the first embodiment will be described as a second embodiment of the present invention with reference to FIGS. FIG. 3A is a cross-sectional view showing an electrostatically driven semiconductor microvalve, and FIG. 3B is a schematic perspective view. 4A to 4D are cross-sectional views showing modifications of the electrostatic drive type semiconductor microvalve of the present embodiment. FIG. 5 is an example of a cross-sectional view showing a mounting form of an electrostatically driven semiconductor microvalve (FIG. 5A is an example corresponding to FIG. 4C, and FIG. 4 (d)).

図3に示すように、本実施形態において第1実施形態との相違点は、図1において第1基板3がフレーム11上面の全面覆い、静電駆動型半導体マイクロバルブが第1基板3とフレーム11との間に接合層7を備え、その接合層7の一部を除去して流体が出入りする微小な流入孔9(9a)を備えた点である。つまり、本実施形態においては、流体の出入りが可能な箇所は、流入孔9(9a)と弁孔21のみである。   As shown in FIG. 3, the present embodiment is different from the first embodiment in that the first substrate 3 covers the entire upper surface of the frame 11 in FIG. 1, and the electrostatic drive type semiconductor microvalve has the first substrate 3 and the frame. 11 is provided with a bonding layer 7 and a small inflow hole 9 (9a) through which a part of the bonding layer 7 is removed to allow fluid to enter and exit. In other words, in the present embodiment, only the inflow hole 9 (9a) and the valve hole 21 are allowed to enter and exit the fluid.

また、本実施形態の静電駆動型半導体マイクロバルブの第1の変形形態は、図4(a)に示すように、図2(a)において第1基板3がフレーム11の開口部全面を覆い、接合層7の一部を除去し、フレーム11の一部をエッチング等により除去して微小な流入孔9(9b)を備えた点が、第2の変形形態は、図4(b)に示すように、図2(b)において第1基板3がフレーム11の開口部全面を覆い、第1基板3に設けた凹部31を基板の周辺部まで延設して微小な流入孔9(9c)を備えた点が、第3の変形形態は、図4(c)に示すように、図1において第1基板3がフレーム11の開口部全面を覆い、第1基板3に対して上下方向(厚み方向)に貫通する微小な流入孔9(9d)を備えた点が、第4の変形形態は、図4(d)に示すように、図1において第1基板3がフレーム11の開口部全面を覆い、弁座基板2に対して上下方向(厚み方向)に貫通する微小な流入孔9(9e)を備えた点が第1実施形態と相違する点である。   Further, in the first variation of the electrostatically driven semiconductor microvalve of the present embodiment, as shown in FIG. 4A, the first substrate 3 covers the entire opening of the frame 11 in FIG. The second modification is shown in FIG. 4B in that a part of the bonding layer 7 is removed and a part of the frame 11 is removed by etching or the like to provide a minute inflow hole 9 (9b). As shown in FIG. 2B, the first substrate 3 covers the entire opening of the frame 11, and a recess 31 provided in the first substrate 3 is extended to the peripheral portion of the substrate so that a minute inflow hole 9 (9c) is formed. 4), the third modification is that, as shown in FIG. 4C, the first substrate 3 covers the entire opening of the frame 11 in FIG. The point of having the minute inflow hole 9 (9d) penetrating in the (thickness direction) is that the fourth modification is shown in FIG. As shown in FIG. 1, the first substrate 3 covers the entire opening of the frame 11 and has a small inflow hole 9 (9e) that penetrates the valve seat substrate 2 in the vertical direction (thickness direction). This is a difference from the first embodiment.

本実施形態に係る静電駆動型半導体マイクロバルブは、第1基板3が少なくともフレーム11の開口部全面を覆うサイズである場合、第1基板3、接合層7、フレーム11、弁座基板2の少なくともいずれかに微小な流入孔9を設けることで、弁体部12の変位する領域が略閉空間となる。これにより入力(流入)側の圧力と略閉空間の圧力に差が生じ、結果として略閉空間と流出側との圧力差が縮小されることになり、バルブの駆動に必要な発生力が小さくて済むので、駆動電圧の低減がはかれる。   In the electrostatically driven semiconductor microvalve according to the present embodiment, when the first substrate 3 has a size that covers at least the entire opening of the frame 11, the first substrate 3, the bonding layer 7, the frame 11, and the valve seat substrate 2. By providing the minute inflow hole 9 in at least one of the regions, the region in which the valve body 12 is displaced becomes a substantially closed space. As a result, a difference occurs between the pressure on the input (inflow) side and the pressure in the substantially closed space. As a result, the pressure difference between the substantially closed space and the outflow side is reduced, and the generated force required for driving the valve is small. Therefore, the drive voltage can be reduced.

ここで、静電駆動型半導体マイクロバルブの実装形態は、例えば、図5(a)に示すように、弁孔21に連通する導通孔51を備えた実装用基板50a(例えば、パッケージ)に図4(c)に示した静電駆動型半導体マイクロバルブの弁座基板2側を接着し、第1基板3側から静電駆動型半導体マイクロバルブを覆いかぶせるような例えば蓋50bを設けた構成を例示することができる。なお、蓋50bは、導通孔52を備えている。この場合、静電駆動型半導体マイクロバルブは、導通孔52から流入孔9dへ流体を導入し、弁孔21から導通孔51へ流体を流出させる。   Here, the mounting form of the electrostatic drive type semiconductor microvalve is illustrated on a mounting substrate 50a (for example, a package) provided with a conduction hole 51 communicating with the valve hole 21, as shown in FIG. For example, a lid 50b is provided so that the electrostatic drive semiconductor microvalve shown in 4 (c) is bonded to the valve seat substrate 2 side, and the electrostatic drive semiconductor microvalve is covered from the first substrate 3 side. It can be illustrated. The lid 50 b includes a conduction hole 52. In this case, the electrostatically driven semiconductor microvalve introduces fluid from the conduction hole 52 to the inflow hole 9 d and causes the fluid to flow out from the valve hole 21 to the conduction hole 51.

この場合、静電駆動型半導体マイクロバルブは、平常時で弁体部12と弁座基板2とが接触した状態であるため、入力側である流入孔9dから流体導入よる圧力が印加された場合でも、圧力が弁体部12を弁座基板に押し付ける方向に働き、逆止弁的な動作をするため、ノーマリクローズ(つまり、常時閉)型のバルブとして機能する。なお、バルブを開状態にするには、可動電極4と固定電極5と間に電圧を印加し、弁体部12に働く圧力に打ち勝つだけの静電引力を発生させて、弁体部12を固定電極5側に引寄せることにより実現できる。第1実施形態において示した静電駆動型半導体マイクロバルブに対しても勿論同様の効果を奏する。   In this case, the electrostatically driven semiconductor microvalve is in a state where the valve body 12 and the valve seat substrate 2 are in contact with each other at normal times, and therefore, when pressure due to fluid introduction is applied from the inflow hole 9d on the input side. However, since the pressure acts in a direction to press the valve body 12 against the valve seat substrate and operates as a check valve, it functions as a normally closed (that is, normally closed) type valve. In order to open the valve, a voltage is applied between the movable electrode 4 and the fixed electrode 5 to generate an electrostatic attractive force that overcomes the pressure acting on the valve body 12, This can be realized by drawing toward the fixed electrode 5 side. Of course, the same effect can be obtained with the electrostatically driven semiconductor microvalve shown in the first embodiment.

また、静電駆動型半導体マイクロバルブの他の実装形態としては、例えば、図5(b)に示すように、弁孔21に連通する導通孔53と弁座基板2に設けた流通孔9eに連通する導通孔54を備えた実装用基板50c(例えば、パッケージ)に図4(d)に示した静電駆動型半導体マイクロバルブの弁座基板2側を接着した構成を例示することができる。   Further, as another mounting form of the electrostatic drive type semiconductor microvalve, for example, as shown in FIG. 5B, a conduction hole 53 communicating with the valve hole 21 and a flow hole 9e provided in the valve seat substrate 2 are provided. A configuration in which the valve seat substrate 2 side of the electrostatically driven semiconductor microvalve shown in FIG. 4D is bonded to a mounting substrate 50c (for example, a package) provided with a conduction hole 54 that communicates can be exemplified.

この場合、静電駆動型半導体マイクロバルブは、流体の滞留空間がバルブの内部、つまり弁体基板1と第1基板3との間の空間だけに略限定されるので、デッドボリュームを低減する構成となる。   In this case, the electrostatically driven semiconductor microvalve has a configuration in which the fluid retention space is substantially limited only to the interior of the valve, that is, the space between the valve body substrate 1 and the first substrate 3, thereby reducing dead volume. It becomes.

ここで、更に、可動電極4及び固定電極5の取り出し構造に対する実施形態を、第3実施形態乃至第8実施形態として以下に示す。図6乃至図11は、静電駆動型半導体マイクロバルブを示す断面図である。   Here, further, embodiments for the structure for taking out the movable electrode 4 and the fixed electrode 5 will be described below as third to eighth embodiments. 6 to 11 are cross-sectional views showing an electrostatically driven semiconductor microvalve.

(第3実施形態)
まず、弁体基板1と第1基板3の間に可動電極用電極パッド40と固定電極用電極パッド50を設けた実施形態を、本発明の第3実施形態として図6に基づいて説明する。
(Third embodiment)
First, an embodiment in which a movable electrode pad 40 and a fixed electrode pad 50 are provided between the valve body substrate 1 and the first substrate 3 will be described as a third embodiment of the present invention with reference to FIG.

本実施形態においては、第1実施形態に示した静電駆動型半導体マイクロバルブを基本構成にして、図6(a)に示すように、接合層7をAl等の電極で構成し、固定電極5を可動電極4に対向する表面部分だけから更にフレーム11の一端部まで延設し、弁体基板1における第1基板3の対向面に絶縁層6を設けた構成である。なお、この絶縁層6は、図6(a)に示すように、弁体基板1表面と電気的接続させるためにフレーム11の一部には設けていない。   In the present embodiment, the electrostatic drive semiconductor microvalve shown in the first embodiment is used as a basic configuration, and as shown in FIG. 6A, the bonding layer 7 is formed of an electrode such as Al, and a fixed electrode. 5 is extended from only the surface portion facing the movable electrode 4 to one end of the frame 11, and the insulating layer 6 is provided on the opposing surface of the first substrate 3 in the valve body substrate 1. As shown in FIG. 6A, the insulating layer 6 is not provided on a part of the frame 11 so as to be electrically connected to the surface of the valve body substrate 1.

可動電極4と電気的に接続する可動電極用電極パッド40は、前述した絶縁層6を設けていない箇所を含む接合層7を用いて構成する。また、固定電極5と電気的に接続する固定電極用電極パッド50は、可動電極用電極パッド40と電気的に分離された接合層7の他の部分を用いて固定電極5と電気的に接続して構成する。ここで、第1基板3は、可動電極用電極パッド40、可動電極用電極パッド50を上面に露出させるために、図6(a)に示すように、フレーム11部分の全面を覆うような構成ではない。   The movable electrode electrode pad 40 that is electrically connected to the movable electrode 4 is configured using the bonding layer 7 including the portion where the insulating layer 6 is not provided. Further, the fixed electrode electrode pad 50 electrically connected to the fixed electrode 5 is electrically connected to the fixed electrode 5 by using another part of the bonding layer 7 electrically separated from the movable electrode pad 40. And configure. Here, the first substrate 3 is configured to cover the entire surface of the frame 11 portion as shown in FIG. 6A in order to expose the movable electrode pad 40 and the movable electrode pad 50 on the upper surface. is not.

本実施形態に係る静電駆動型半導体マイクロバルブは、弁体基板1と第1基板3との間の接合層7を可動電極用電極パッド40、固定電極用電極パッド50と兼ねる構成とすることで、工数減により製造コストの削減をはかることができる。   The electrostatically driven semiconductor microvalve according to the present embodiment has a configuration in which the bonding layer 7 between the valve element substrate 1 and the first substrate 3 also serves as the movable electrode pad 40 and the fixed electrode pad 50. Thus, manufacturing costs can be reduced by reducing the number of man-hours.

なお、静電駆動型半導体マイクロバルブは、図6(b)に示すように、図6(a)とは弁体基板1の上下方向を逆転させて構成であってもよい。この場合、可動電極4の面積をより大きくとることができるので、静電駆動型半導体マイクロバルブは、低電圧での駆動には有利な構成である。   As shown in FIG. 6B, the electrostatic drive type semiconductor microvalve may be configured by reversing the vertical direction of the valve body substrate 1 from FIG. 6A. In this case, since the area of the movable electrode 4 can be made larger, the electrostatic drive type semiconductor microvalve is an advantageous configuration for driving at a low voltage.

(第4実施形態)
また、図6(b)に示した静電駆動型半導体マイクロバルブの変形形態でとして、弁体基板1と弁座基板2の間に可動電極用電極パッド40を設けた実施形態を、本発明の第4実施形態として図7に基づいて説明する。
(Fourth embodiment)
In addition, as a modification of the electrostatically driven semiconductor microvalve shown in FIG. 6B, an embodiment in which a movable electrode electrode pad 40 is provided between the valve body substrate 1 and the valve seat substrate 2 is described in the present invention. A fourth embodiment will be described with reference to FIG.

本実施形態においては、Al等の金属からなる導電性の接合層71を弁座基板2におけるフレーム11の対向面に形成し、図7に示すように、この接合層71の一部上面が露出するようにフレーム11と接合することで、静電駆動型半導体マイクロバルブが、この接合層71を可動電極用電極パッド40を兼用する構成である。なお、固定電極用電極パッド50の構成は、第3実施形態にて説明した構成と同様のため説明は省略する。   In the present embodiment, a conductive bonding layer 71 made of a metal such as Al is formed on the face of the valve seat substrate 2 facing the frame 11, and as shown in FIG. 7, a part of the upper surface of the bonding layer 71 is exposed. By joining to the frame 11 as described above, the electrostatic drive type semiconductor microvalve has a configuration in which the joining layer 71 is also used as the movable electrode pad 40. The configuration of the fixed electrode pad 50 is the same as the configuration described in the third embodiment, and a description thereof will be omitted.

本実施形態に係る静電駆動型半導体マイクロバルブは、弁体基板1と弁座基板2の間の接合層71を可動電極用電極パッド40と兼ね、弁体基板1と第1基板3との間の接合層7を固定電極用電極パッド50と兼ねる構成とすることで、工数減により製造コストの削減をはかることができる。   In the electrostatic drive type semiconductor microvalve according to the present embodiment, the bonding layer 71 between the valve body substrate 1 and the valve seat substrate 2 also serves as the movable electrode pad 40, and the valve body substrate 1 and the first substrate 3 By adopting a configuration in which the intervening bonding layer 7 also serves as the electrode pad 50 for fixed electrodes, the manufacturing cost can be reduced by reducing the number of steps.

(第5実施形態)
また、第4実施形態の更なる変形形態である実施形態を、本発明の第5実施形態として図8に基づいて説明する。
(Fifth embodiment)
Further, an embodiment which is a further modification of the fourth embodiment will be described as a fifth embodiment of the present invention with reference to FIG.

本実施形態においては、静電駆動型半導体マイクロバルブは、図8に示すように、フレーム11と弁座基板2との間に設けたAl等の金属からなる導電性の接合層71と、弁孔21を介して弁座基板2の上下(表裏)が電気的に導通するAl、Au、Cr等の材料からなる金属配線72を備え、接合層71と金属配線72とを電気的に接続することにより、この金属配線72の弁座基板2下面(裏面)の箇所を可動電極用電極パッド40として用い、弁座基板2の弁体基板1との接合面とは反対面に可動電極用電極パッド40を取り出す構成である。なお、金属配線72と可動電極用電極パッド40とは各々別途形成しそれらを電気的に接続するようにした構成であってもよい。   In the present embodiment, as shown in FIG. 8, the electrostatically driven semiconductor microvalve includes a conductive bonding layer 71 made of a metal such as Al provided between the frame 11 and the valve seat substrate 2, and a valve. A metal wiring 72 made of a material such as Al, Au, Cr or the like that electrically connects the upper and lower sides (front and back) of the valve seat substrate 2 through the hole 21 is electrically connected to the bonding layer 71 and the metal wiring 72. Thus, the position of the lower surface (back surface) of the valve seat substrate 2 of the metal wiring 72 is used as the movable electrode pad 40, and the movable electrode electrode is disposed on the opposite surface of the valve seat substrate 2 from the joint surface with the valve body substrate 1. The pad 40 is taken out. The metal wiring 72 and the movable electrode pad 40 may be separately formed and electrically connected to each other.

本実施形態に係る静電駆動型半導体マイクロバルブは、可動電極用電極パッド40をバルブチップの下面(裏面)側に取り出すことができるので、表面実装によりパッケージの小型化や低背化が可能とする。また、可動電極用電極パッド40のためにチップの面積を割く必要がないため、チップの小型化及び製造コストの削減をはかることができる。   In the electrostatic drive type semiconductor microvalve according to the present embodiment, the movable electrode pad 40 can be taken out to the lower surface (rear surface) side of the valve chip, so that the package can be reduced in size and height by surface mounting. To do. Further, since it is not necessary to divide the chip area for the movable electrode pad 40, it is possible to reduce the chip size and the manufacturing cost.

(第6実施形態)
また、第5実施形態において弁体基板にSOI(Silicon On Insulator)基板を用いた構成の実施形態を、本発明の第6実施形態として図9に基づいて説明する。
(Sixth embodiment)
Further, an embodiment in which an SOI (Silicon On Insulator) substrate is used as a valve body substrate in the fifth embodiment will be described as a sixth embodiment of the present invention with reference to FIG.

本実施形態と第5実施形態と異なる点は、弁体基板1が活性層101、中間酸化膜102、支持層103からなるSOI基板であり、弁体基板1における第1基板3との対向面に活性層101を配置して、活性層101から支持層103まで貫通し導電性を有する例えば凹状導電層73を設けた点である。   The difference between the present embodiment and the fifth embodiment is that the valve body substrate 1 is an SOI substrate including the active layer 101, the intermediate oxide film 102, and the support layer 103, and the surface of the valve body substrate 1 that faces the first substrate 3. For example, the active layer 101 is disposed on the active layer 101, and a conductive layer such as a concave conductive layer 73 that penetrates from the active layer 101 to the support layer 103 and has conductivity is provided.

本実施形態において、静電駆動型半導体マイクロバルブは、凹状導電層73が例えば導電性の膜であり、凹状導電層73にて活性層101と支持層103とを電気的に接続し活性層101、支持層103を導通させ、弁体基板1内を通じて可動電極4を可動電極用電極パッド40まで引き出した構成である。   In the present embodiment, in the electrostatic drive type semiconductor microvalve, the concave conductive layer 73 is a conductive film, for example, and the active layer 101 and the support layer 103 are electrically connected by the concave conductive layer 73. The support layer 103 is made conductive, and the movable electrode 4 is drawn out to the movable electrode pad 40 through the valve body substrate 1.

本実施形態に係る静電駆動型半導体マイクロバルブは、弁体基板1にSOI基板を採用することができ、薄肉のビーム13厚を精度よく均一に作ることができる。また、このことにより、サンプル間ばらつきを低減させる効果や、チップ内のビーム13厚の不均一性に起因する弁体部12、ビーム13の傾きを低減してバルブ動作を安定化させる等の効果が生まれる。   The electrostatic drive type semiconductor microvalve which concerns on this embodiment can employ | adopt an SOI substrate for the valve body board | substrate 1, and can produce the thin beam 13 thickness accurately and uniformly. This also reduces the variation between samples, and reduces the inclination of the valve body 12 and the beam 13 due to the unevenness of the thickness of the beam 13 in the chip, thereby stabilizing the valve operation. Is born.

(第7実施形態)
また、第5実施形態において弁体基板1にSOI基板を用いた他の構成の実施形態を、本発明の第7実施形態として図10に基づいて説明する。
(Seventh embodiment)
In addition, an embodiment of another configuration in which an SOI substrate is used as the valve body substrate 1 in the fifth embodiment will be described as a seventh embodiment of the present invention with reference to FIG.

本実施形態と第6実施形態と異なる点は、弁体基板1が活性層101、中間酸化膜102、支持層103からなるSOI基板であり、弁体基板1における第1基板3との対向面に活性層101を配置して、フレーム11における弁体部12への対向面には、活性層101と支持層103とを電気的に接続する導電性を有する導電層74を設けた点である。なお、図10に示すように、本実施形態においては、ビーム13にもAl、Au、Cr等の導電層75を設け、弁体部12にも導電層を設けてこの導電層の第1基板に面する側を用いて可動電極4を形成する。なお、導電層74、75、弁体部12に設ける導電層は、同一の導電層として弁体基板1に一括して同時に形成してもよい。   The difference between the present embodiment and the sixth embodiment is that the valve body substrate 1 is an SOI substrate including the active layer 101, the intermediate oxide film 102, and the support layer 103, and the surface of the valve body substrate 1 that faces the first substrate 3. The active layer 101 is arranged on the surface of the frame 11 facing the valve body 12, and a conductive layer 74 having conductivity is provided to electrically connect the active layer 101 and the support layer 103. . As shown in FIG. 10, in this embodiment, the beam 13 is also provided with a conductive layer 75 such as Al, Au, Cr, etc., and the valve body 12 is also provided with a conductive layer. The movable electrode 4 is formed using the side facing the surface. The conductive layers 74 and 75 and the conductive layer provided on the valve body 12 may be simultaneously formed on the valve body substrate 1 as the same conductive layer.

本実施形態において、静電駆動型半導体マイクロバルブは、導電層74が例えば導電性の膜であり、導電層74にて活性層101と支持層103とを電気的に接続し活性層101、支持層103を導通させ、フレーム11の壁面を通じて可動電極4を可動電極用電極パッド40まで引き出した構成である。   In the present embodiment, in the electrostatic drive type semiconductor microvalve, the conductive layer 74 is, for example, a conductive film, and the active layer 101 and the support layer 103 are electrically connected by the conductive layer 74 to support the active layer 101. The layer 103 is conducted, and the movable electrode 4 is drawn out to the movable electrode pad 40 through the wall surface of the frame 11.

本実施形態に係る静電駆動型半導体マイクロバルブは、弁体基板1にSOI基板を採用することができ、薄肉のビーム13厚を精度よく均一に作ることができる。また、このことにより、サンプル間ばらつきを低減させる効果や、チップ内のビーム13厚の不均一性に起因する弁体部12、ビーム13の傾きを低減してバルブ動作を安定化させる等の効果が生まれる。また、活性層101と支持層103との接続部の面積を大きく取ることができるので、接続部の断線の危険性を低減し、信頼性を高めることができる。   The electrostatic drive type semiconductor microvalve which concerns on this embodiment can employ | adopt an SOI substrate for the valve body board | substrate 1, and can produce the thin beam 13 thickness accurately and uniformly. This also reduces the variation between samples, and reduces the inclination of the valve body 12 and the beam 13 due to the unevenness of the thickness of the beam 13 in the chip, thereby stabilizing the valve operation. Is born. Further, since the area of the connection portion between the active layer 101 and the support layer 103 can be increased, the risk of disconnection of the connection portion can be reduced and the reliability can be increased.

(第8実施形態)
最後に、その他の実施形態を、本発明の第8実施形態として図11に基づいて説明する。
(Eighth embodiment)
Finally, another embodiment will be described with reference to FIG. 11 as an eighth embodiment of the present invention.

本実施形態においては、静電駆動型半導体マイクロバルブは、第1基板3が図4(c)に示したような厚み方向に貫通する流入孔9dを備えており、第1基板3における弁体基板1の非対向面、つまり、第1基板3の上面に、可動電極用電極パッド40と固定電極用電極パッド50を備えた構成である。   In the present embodiment, the electrostatic drive type semiconductor microvalve includes an inflow hole 9d through which the first substrate 3 penetrates in the thickness direction as shown in FIG. The movable electrode pad 40 and the fixed electrode pad 50 are provided on the non-facing surface of the substrate 1, that is, on the upper surface of the first substrate 3.

静電駆動型半導体マイクロバルブは、フレーム11と弁座基板2との間には第3実施形態等に示したAl等の電極等の接合層7を備え、第1基板の上下(表裏)には、流入孔9dを介して電気的に導通するようにAl等の材料からなる金属配線76が形成されており、金属配線76と接合層7とを電気的に接続することにより可動電極用電極パッド40を第1基板3における弁体基板1の非対向面、つまり、第1基板3の上面に取り出した構成となっている。   The electrostatic drive type semiconductor microvalve includes a bonding layer 7 such as an electrode made of Al or the like shown in the third embodiment between the frame 11 and the valve seat substrate 2, and is provided above and below (front and back) the first substrate. Is formed with a metal wiring 76 made of a material such as Al so as to be electrically conducted through the inflow hole 9d, and the movable wiring electrode is formed by electrically connecting the metal wiring 76 and the bonding layer 7. The pad 40 is taken out from the non-facing surface of the valve body substrate 1 in the first substrate 3, that is, the upper surface of the first substrate 3.

また、固定電極5についても、可動電極4と同様に、第1基板3の上下には流入孔9dを介して電気的に導通するようにAl等の材料からなる金属配線77を形成し、固定電極5と金属配線77とを電気的に接続することにより、静電駆動型半導体マイクロバルブが固定電極用電極パッド50を第1基板3の上面に取り出した構成となっている。   As for the fixed electrode 5, similarly to the movable electrode 4, metal wiring 77 made of a material such as Al is formed on the top and bottom of the first substrate 3 so as to be electrically connected via the inflow hole 9 d, and fixed. By electrically connecting the electrode 5 and the metal wiring 77, the electrostatic drive type semiconductor microvalve has a configuration in which the fixed electrode pad 50 is taken out from the upper surface of the first substrate 3.

本実施形態に係る静電駆動型半導体マイクロバルブは、可動電極用電極パッド40、固定電極用電極パッド50を第1基板3の上面(表面)側に取り出すことができるので、チップ表面側を下にしてパッケージに表面実装することにより、パッケージの小型化、低背化、及びチップの小型化及び製造コスト削減をはかることができる。   In the electrostatic driving type semiconductor microvalve according to the present embodiment, the movable electrode pad 40 and the fixed electrode pad 50 can be taken out to the upper surface (front surface) side of the first substrate 3, so that the chip surface side is lowered. Thus, by surface mounting on the package, it is possible to reduce the size and height of the package, reduce the size of the chip, and reduce the manufacturing cost.

ここで、第2実施形態乃至第8実施形態において、静電駆動型半導体マイクロバルブが弁体部12と弁座基板2の対向面の少なくとも一方の接触部位の表面に、弁体部12と弁座基板2とが接触界面で固着するのを防止する微小突起を備えた構成であっても勿論よい。   Here, in the second to eighth embodiments, the electrostatically driven semiconductor microvalve is disposed on the surface of at least one of the contact surfaces of the valve body portion 12 and the valve seat substrate 2 on the valve body portion 12 and the valve body. Of course, it may be a configuration provided with minute protrusions that prevent the seat substrate 2 from adhering at the contact interface.

なお、図2乃至図11に示す静電駆動型半導体マイクロバルブの断面図は、図1でのA-A断面に相当する箇所における断面図である。   Note that the cross-sectional views of the electrostatically driven semiconductor microvalve shown in FIGS. 2 to 11 are cross-sectional views taken along the line AA in FIG.

本発明の第1実施形態に係る静電駆動型半導体マイクロバルブを示す説明図である。It is explanatory drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る静電駆動型半導体マイクロバルブの変形形態を示す断面図である。It is sectional drawing which shows the deformation | transformation form of the electrostatic drive type semiconductor microvalve which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る静電駆動型半導体マイクロバルブを示す説明図である。It is explanatory drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る静電駆動型半導体マイクロバルブの変形形態を示す断面図である。It is sectional drawing which shows the deformation | transformation form of the electrostatic drive type semiconductor microvalve which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る静電駆動型半導体マイクロバルブの実装形態を示す断面図である。It is sectional drawing which shows the mounting form of the electrostatic drive type semiconductor microvalve which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る静電駆動型半導体マイクロバルブを示す断面図である。It is sectional drawing which shows the electrostatic drive type semiconductor microvalve which concerns on 8th Embodiment of this invention.

符号の説明Explanation of symbols

1 弁体基板
2 弁座基板
3 第1基板
4 可動電極
5 固定電極
6 絶縁層
7、71 接合層
8 微小突起
9 流入孔
11 フレーム
12 弁体部
13 ビーム
21 弁孔
22 凹溝
31 凹部
40 可動電極用電極パッド
50 固定電極用電極パッド
72 金属配線
73 凹状導電層
74 導電層
75 導電層
76、77 金属配線
77 金属配線
DESCRIPTION OF SYMBOLS 1 Valve body board | substrate 2 Valve seat board | substrate 3 1st board | substrate 4 Movable electrode 5 Fixed electrode 6 Insulating layer 7, 71 Joining layer 8 Microprotrusion 9 Inflow hole 11 Frame 12 Valve body part 13 Beam 21 Valve hole 22 Concave groove 31 Concave 40 Movable Electrode pad 50 Electrode pad for fixed electrode 72 Metal wiring 73 Concave conductive layer 74 Conductive layer 75 Conductive layer 76, 77 Metal wiring 77 Metal wiring

Claims (12)

半導体基板からなり、中央領域に開口を有するフレームと、該フレームの開口内に配置された弁体部と、該弁体部と前記フレームとを連結し、前記弁体部が前記フレームに対し基板厚み方向に変位可能となる撓み性を有する薄肉のビームと、を備える弁体基板と、
表面に開口する弁孔を有し、該弁孔に前記弁体部が一致するようにして前記フレームを表面に固定することにより前記弁体基板が搭載される弁座基板と、
前記弁体基板の上面に搭載される第1基板と、
を具備し、
前記弁体基板は、前記弁体部における前記第1基板への対向面に可動電極層を有し、
前記第1基板は、前記可動電極層に対向する表面に固定電極層を有し、
前記可動電極層及び前記固定電極層の少なくとも一方の表面は、これら両電極層間の導通を防止するための絶縁層を有し、
前記可動電極層と前記固定電極層との間には、所定量のギャップを有し、
前記弁体部は、
前記可動電極層及び前記固定電極層に電圧を印加しない状態では、前記弁孔をその接触圧により塞ぐようにして前記弁孔の開口周辺領域に接触していることを特徴とする静電駆動型半導体マイクロバルブ。
A frame made of a semiconductor substrate and having an opening in a central region, a valve body portion disposed in the opening of the frame, the valve body portion and the frame are connected, and the valve body portion is a substrate with respect to the frame A valve body substrate comprising: a thin beam having flexibility that is displaceable in the thickness direction;
A valve seat substrate on which the valve body substrate is mounted by fixing the frame to the surface so that the valve body portion coincides with the valve hole,
A first substrate mounted on the upper surface of the valve body substrate;
Comprising
The valve body substrate has a movable electrode layer on a surface facing the first substrate in the valve body portion,
The first substrate has a fixed electrode layer on a surface facing the movable electrode layer,
At least one surface of the movable electrode layer and the fixed electrode layer has an insulating layer for preventing conduction between the two electrode layers,
Between the movable electrode layer and the fixed electrode layer, there is a predetermined amount of gap,
The valve body is
An electrostatic drive type characterized in that, in the state where no voltage is applied to the movable electrode layer and the fixed electrode layer, the valve hole is in contact with the peripheral region of the opening of the valve hole so as to be closed by the contact pressure. Semiconductor micro valve.
前記ギャップを、前記第1基板と前記フレームとの間に設けた接合層で形成した請求項1に記載の静電駆動型半導体マイクロバルブ。   The electrostatic drive semiconductor microvalve according to claim 1, wherein the gap is formed by a bonding layer provided between the first substrate and the frame. 前記ギャップを、前記弁体部における前記第1基板への対向面を前記フレームに比べて薄肉にして形成した請求項1に記載の静電駆動型半導体マイクロバルブ。   2. The electrostatic drive type semiconductor microvalve according to claim 1, wherein the gap is formed such that a surface of the valve body facing the first substrate is thinner than the frame. 前記ギャップを、前記第1基板における前記弁体部への対向面に凹所を設けて形成した請求項1に記載の静電駆動型半導体マイクロバルブ。   The electrostatic drive semiconductor microvalve according to claim 1, wherein the gap is formed by providing a recess in a surface of the first substrate facing the valve body portion. 前記第1基板が少なくとも前記フレームの開口部全面を覆うサイズである場合、
前記第1基板、前記接合層、前記フレーム、前記弁座基板の少なくともいずれかに流入孔を備えた請求項1乃至請求項4のいずれかに記載の静電駆動型半導体マイクロバルブ。
When the first substrate is a size that covers at least the entire opening of the frame,
5. The electrostatic drive type semiconductor microvalve according to claim 1, wherein an inflow hole is provided in at least one of the first substrate, the bonding layer, the frame, and the valve seat substrate.
前記弁体部と前記弁座基板の対向面の少なくとも一方の接触部位の表面には、前記弁体部と前記弁座基板とが接触界面で固着するのを防止する微小突起を設けた請求項1乃至請求項5のいずれかに記載の静電駆動型半導体マイクロバルブ。   The surface of at least one contact part of the opposing surface of the said valve body part and the said valve seat board | substrate provided the microprotrusion which prevents that the said valve body part and the said valve seat board | substrate adhere at a contact interface. The electrostatic drive type semiconductor microvalve according to any one of claims 1 to 5. 前記可動電極層と電気的に接続する可動電極層用電極パッドを、前記フレームと前記弁座基板との接合面に設けた請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブ。   The electrostatic drive semiconductor according to claim 1, wherein an electrode pad for a movable electrode layer electrically connected to the movable electrode layer is provided on a joint surface between the frame and the valve seat substrate. Micro valve. 前記可動電極層と電気的に接続する可動電極層用電極パッドを、前記弁体基板と前記弁座基板の間に設けた請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブ。   The electrostatic drive type semiconductor according to claim 1, wherein an electrode pad for a movable electrode layer that is electrically connected to the movable electrode layer is provided between the valve body substrate and the valve seat substrate. Micro valve. 前記弁体基板が支持層、中間酸化膜、活性層からなるSOI基板で構成され、前記弁体基板における前記第1基板との対向面に前記活性層を配置する場合に、前記活性層から前記支持層まで貫通する凹状導電層を設け、該凹状導電層にて、前記活性層と前記支持層と前記可動電極層側電極パッドとを電気的に接続した請求項8に記載の静電駆動型半導体マイクロバルブ。   When the valve body substrate is composed of an SOI substrate including a support layer, an intermediate oxide film, and an active layer, and the active layer is disposed on a surface of the valve body substrate facing the first substrate, The electrostatic drive type according to claim 8, wherein a concave conductive layer penetrating to the support layer is provided, and the active layer, the support layer, and the movable electrode layer side electrode pad are electrically connected by the concave conductive layer. Semiconductor micro valve. 前記弁体基板が支持層、中間酸化膜、活性層からなるSOI基板で構成され、前記弁体基板における前記第1基板との対向面に前記活性層を配置する場合に、前記フレームにおける前記弁体部への対向面には、前記活性層と前記支持層とを電気的に接続する導電層を設け、該導電層にて前記活性層と前記支持層とを電気的に接続した請求項8に記載の静電駆動型半導体マイクロバルブ。   When the valve body substrate is composed of an SOI substrate including a support layer, an intermediate oxide film, and an active layer, and the active layer is disposed on the surface of the valve body substrate facing the first substrate, the valve in the frame 9. A conductive layer for electrically connecting the active layer and the support layer is provided on a surface facing the body part, and the active layer and the support layer are electrically connected by the conductive layer. The electrostatic drive type semiconductor microvalve described in 1. 前記固定電極層と電気的に接続する固定電極層用電極パッドを、前記弁体基板と前記第1基板の間に設けた請求項1乃至請求項6のいずれかに記載の静電駆動型半導体マイクロバルブ。   The electrostatic drive type semiconductor according to claim 1, wherein an electrode pad for a fixed electrode layer electrically connected to the fixed electrode layer is provided between the valve body substrate and the first substrate. Micro valve. 前記第1基板が厚み方向に貫通する前記流入孔を備える場合、前記第1基板における前記弁体基板の非対向面に、前記可動電極層と電気的に接続する可動電極層用パッドと前記固定電極層と電気的に接続された固定電極層用パッドの少なくとも一方の電極層用パッドを備えた請求項5に記載の静電駆動型半導体マイクロバルブ。   When the first substrate includes the inflow hole penetrating in the thickness direction, the movable electrode layer pad and the fixed electrode electrically connected to the movable electrode layer are provided on the non-facing surface of the valve body substrate in the first substrate. 6. The electrostatic drive type semiconductor microvalve according to claim 5, further comprising at least one electrode layer pad of a fixed electrode layer pad electrically connected to the electrode layer.
JP2003420380A 2003-12-18 2003-12-18 Electrostatic drive type semiconductor micro valve Expired - Fee Related JP4572534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420380A JP4572534B2 (en) 2003-12-18 2003-12-18 Electrostatic drive type semiconductor micro valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420380A JP4572534B2 (en) 2003-12-18 2003-12-18 Electrostatic drive type semiconductor micro valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009127033A Division JP4951027B2 (en) 2009-05-26 2009-05-26 Micro valve

Publications (2)

Publication Number Publication Date
JP2005180530A true JP2005180530A (en) 2005-07-07
JP4572534B2 JP4572534B2 (en) 2010-11-04

Family

ID=34781924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420380A Expired - Fee Related JP4572534B2 (en) 2003-12-18 2003-12-18 Electrostatic drive type semiconductor micro valve

Country Status (1)

Country Link
JP (1) JP4572534B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508485A (en) * 2004-07-27 2008-03-21 ケルシ・ヘイズ、カムパニ Microvalve actuator control method
JP2009535549A (en) * 2006-04-28 2009-10-01 トロニクス・マイクロシステムズ A method for collectively producing small-volume, high-precision membranes and cavities
JP2010014131A (en) * 2008-06-30 2010-01-21 Ulvac Seimaku Kk Micro valve, its manufacturing method, and opening/closing detecting method of micro valve
JP2018517576A (en) * 2015-05-13 2018-07-05 ベルキン ビーブイBerkin B.V. Fluid flow device provided with valve unit, and manufacturing method thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307959A (en) * 1987-01-22 1988-12-15 Tokyo Electric Co Ltd Valve element and manufacture thereof
JPH03234982A (en) * 1989-12-27 1991-10-18 Honeywell Inc Electronic micro valve device and manufacture thereof
JPH0415377A (en) * 1990-04-30 1992-01-20 Toyota Central Res & Dev Lab Inc Electrostatic drive type microvalve
JPH04501303A (en) * 1989-08-11 1992-03-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of micro valve
JPH04506105A (en) * 1989-06-19 1992-10-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング micro valve
JPH06341556A (en) * 1993-05-31 1994-12-13 Shimadzu Corp Micro-bulb
JPH07229579A (en) * 1994-02-21 1995-08-29 Nippondenso Co Ltd Microvalve device
JPH07508085A (en) * 1992-06-26 1995-09-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング micro valve
JPH07286258A (en) * 1994-04-19 1995-10-31 Hitachi Ltd Electrostatic driving type microactuator and production of valve as well as electrostatic driving type pump
JPH08210519A (en) * 1994-10-20 1996-08-20 Hewlett Packard Co <Hp> Microminiature device
JP2000505180A (en) * 1995-12-11 2000-04-25 ヒグラマ アクツィエンゲゼルシャフト Micro valve
JP2001515183A (en) * 1997-08-20 2001-09-18 ウエストンブリッジ インターナショナル リミティド Micropump with inlet control member enabling self-sufficiency
JP2001310300A (en) * 2000-04-26 2001-11-06 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the same, and ink jet recording device
JP2002219694A (en) * 2001-01-22 2002-08-06 Matsushita Electric Works Ltd Semiconductor micro actuator, and manufacturing method therefor
JP2003156509A (en) * 2001-11-22 2003-05-30 Matsushita Electric Works Ltd Semiconductor accelerometer and method of manufacturing the same
JP2003166998A (en) * 2001-12-03 2003-06-13 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2003344444A (en) * 2002-05-28 2003-12-03 Matsushita Electric Works Ltd Semiconductor acceleration sensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307959A (en) * 1987-01-22 1988-12-15 Tokyo Electric Co Ltd Valve element and manufacture thereof
JPH04506105A (en) * 1989-06-19 1992-10-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング micro valve
JPH04501303A (en) * 1989-08-11 1992-03-05 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of micro valve
JPH03234982A (en) * 1989-12-27 1991-10-18 Honeywell Inc Electronic micro valve device and manufacture thereof
JPH0415377A (en) * 1990-04-30 1992-01-20 Toyota Central Res & Dev Lab Inc Electrostatic drive type microvalve
JPH07508085A (en) * 1992-06-26 1995-09-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング micro valve
JPH06341556A (en) * 1993-05-31 1994-12-13 Shimadzu Corp Micro-bulb
JPH07229579A (en) * 1994-02-21 1995-08-29 Nippondenso Co Ltd Microvalve device
JPH07286258A (en) * 1994-04-19 1995-10-31 Hitachi Ltd Electrostatic driving type microactuator and production of valve as well as electrostatic driving type pump
JPH08210519A (en) * 1994-10-20 1996-08-20 Hewlett Packard Co <Hp> Microminiature device
JP2000505180A (en) * 1995-12-11 2000-04-25 ヒグラマ アクツィエンゲゼルシャフト Micro valve
JP2001515183A (en) * 1997-08-20 2001-09-18 ウエストンブリッジ インターナショナル リミティド Micropump with inlet control member enabling self-sufficiency
JP2001310300A (en) * 2000-04-26 2001-11-06 Ricoh Co Ltd Electrostatic actuator, method of manufacturing the same, and ink jet recording device
JP2002219694A (en) * 2001-01-22 2002-08-06 Matsushita Electric Works Ltd Semiconductor micro actuator, and manufacturing method therefor
JP2003156509A (en) * 2001-11-22 2003-05-30 Matsushita Electric Works Ltd Semiconductor accelerometer and method of manufacturing the same
JP2003166998A (en) * 2001-12-03 2003-06-13 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2003344444A (en) * 2002-05-28 2003-12-03 Matsushita Electric Works Ltd Semiconductor acceleration sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508485A (en) * 2004-07-27 2008-03-21 ケルシ・ヘイズ、カムパニ Microvalve actuator control method
JP2009535549A (en) * 2006-04-28 2009-10-01 トロニクス・マイクロシステムズ A method for collectively producing small-volume, high-precision membranes and cavities
JP2010014131A (en) * 2008-06-30 2010-01-21 Ulvac Seimaku Kk Micro valve, its manufacturing method, and opening/closing detecting method of micro valve
JP2018517576A (en) * 2015-05-13 2018-07-05 ベルキン ビーブイBerkin B.V. Fluid flow device provided with valve unit, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4572534B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5196422B2 (en) Selective bonding for microvalve formation
US6247908B1 (en) Micropump
EP0322093A2 (en) Rectilinearly deflectable element fabricated from a single wafer
JP4572534B2 (en) Electrostatic drive type semiconductor micro valve
JP3130483B2 (en) Micro pump
JP4951027B2 (en) Micro valve
EP1921648A1 (en) Relay device using conductive fluid
CA2668957A1 (en) Method and apparatus for localized bonding
JP2013167468A (en) Pressure sensor and method for manufacturing the same
JP4529814B2 (en) Micro valve
JP4352760B2 (en) Electrostatic drive type semiconductor micro valve
JP5073382B2 (en) Microvalve and manufacturing method thereof
JPH11257231A (en) Micro-pump and manufacture thereof
JP4472919B2 (en) Micro valve
JP4835726B2 (en) Electrostatic drive type semiconductor micro valve
JP2995400B2 (en) Micropump and method of manufacturing micropump
JP4529619B2 (en) Micro valve
JP2010048177A (en) Microvalve, micropump, and method of manufacturing the microvalve
JP2003275999A (en) Microvalve and manufacturing method of the same
JP3669131B2 (en) Electrostatic microrelay and manufacturing method thereof
JP4386013B2 (en) Contact switchgear
JPH05619Y2 (en)
KR100396664B1 (en) micro mirror and method for fabricating micro mirror
JP4386014B2 (en) Contact switchgear
JP2004130458A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees