JP2005179155A - METHOD FOR PRODUCING SiC SINGLE CRYSTAL - Google Patents

METHOD FOR PRODUCING SiC SINGLE CRYSTAL Download PDF

Info

Publication number
JP2005179155A
JP2005179155A JP2003425643A JP2003425643A JP2005179155A JP 2005179155 A JP2005179155 A JP 2005179155A JP 2003425643 A JP2003425643 A JP 2003425643A JP 2003425643 A JP2003425643 A JP 2003425643A JP 2005179155 A JP2005179155 A JP 2005179155A
Authority
JP
Japan
Prior art keywords
sic
single crystal
seed crystal
growth
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003425643A
Other languages
Japanese (ja)
Other versions
JP4219800B2 (en
Inventor
Tsukuru Gunjishima
造 郡司島
Daisuke Nakamura
大輔 中村
Hiroyuki Kondo
宏行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2003425643A priority Critical patent/JP4219800B2/en
Publication of JP2005179155A publication Critical patent/JP2005179155A/en
Application granted granted Critical
Publication of JP4219800B2 publication Critical patent/JP4219800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a SiC single crystal by which a high-quality SiC single crystal having a large length and a large diameter can be produced in a short time. <P>SOLUTION: The method for producing a SiC single crystal is carried out by disposing a SiC seed crystal 3 in a growing chamber 4 and growing a bulk SiC single crystal on the growing surface 35. The growing chamber 4 used has a main body 41 where the SiC source material is supplied, an upper lid 42 disposed on the top of the body 41, and a seed housing part 425 formed in the upper lid 42 and recessed outward the growing chamber 4 is used. The SiC seed crystal 3 is embedded in the seed housing part 425 in such a manner that the growing surface 35 opposes to the production source 43 of the SiC source material while the back face 36 in the opposite side to the growing surface 35 is disposed as retreated from the inner surface 421 of the upper lid 42 in the direction away from the production source 43 of the SiC source material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、SiC種結晶上にSiC単結晶を成長させてなるSiC単結晶の製造方法に関する。   The present invention relates to a method for producing a SiC single crystal obtained by growing a SiC single crystal on a SiC seed crystal.

従来より、SiC単結晶を利用するSiC半導体は、Si半導体に代わる次世代パワーデバイスの候補材料として期待されている。高性能なSiCパワーデバイスを実現するためには、高品質かつ大口径で長尺のSiC単結晶が求められている。
上記SiC単結晶は、例えば昇華再析出法やCVD(Chemical Vapor Deposition)法等により、SiC種結晶上にSiC単結晶を成長させることにより得ることができる。
Conventionally, SiC semiconductors using SiC single crystals have been expected as candidate materials for next-generation power devices that replace Si semiconductors. In order to realize a high-performance SiC power device, a high-quality, large-diameter and long SiC single crystal is required.
The SiC single crystal can be obtained by growing a SiC single crystal on a SiC seed crystal by, for example, a sublimation reprecipitation method or a CVD (Chemical Vapor Deposition) method.

ここで、図19に、昇華再析出法によりSiC単結晶を作製する様子を示す。
同図に示すごとく、SiC単結晶80の作製は、例えば坩堝等の成長容器9内で行われる。この成長容器9は、一般に、SiC原料粉末93が供給される本体部91と、SiC種結晶8を保持するための台座925が一体的に形成された上蓋92とを有する。
このような成長容器9内において、SiC種結晶8は、SiC単結晶80を成長させるための成長面85をSiC原料粉末93側に向けた状態で上記台座925に固定される。そして、この状態で、SiC原料粉末93を加熱して昇華させると、SiC種結晶8上にSiCが結晶となって堆積する。このようにして、SiC種結晶8上にSiC単結晶80を得ることができる。また、このとき、SiC単結晶80の周辺においては、成長容器の内壁や上蓋92の内表面等から多結晶89が成長する。
Here, FIG. 19 shows a state in which a SiC single crystal is produced by a sublimation reprecipitation method.
As shown in the figure, the SiC single crystal 80 is produced in a growth vessel 9 such as a crucible. The growth vessel 9 generally has a main body portion 91 to which SiC raw material powder 93 is supplied and an upper lid 92 on which a pedestal 925 for holding the SiC seed crystal 8 is integrally formed.
In such a growth vessel 9, the SiC seed crystal 8 is fixed to the pedestal 925 with the growth surface 85 for growing the SiC single crystal 80 facing the SiC raw material powder 93 side. In this state, when SiC raw material powder 93 is heated and sublimated, SiC is deposited as crystals on SiC seed crystal 8. In this way, SiC single crystal 80 can be obtained on SiC seed crystal 8. At this time, in the vicinity of the SiC single crystal 80, the polycrystal 89 grows from the inner wall of the growth vessel, the inner surface of the upper lid 92, and the like.

ところが、上記のような方法により、SiC種結晶8上へのSiCの堆積をさらに続け、SiC単結晶の大口径化や長尺化を図ろうとすると、図19に示すごとく、成長結晶80の先端部が先細りしてしまう。
良好な成長を継続し、長尺のSiC単結晶80を得るためには、単結晶部分の周辺に成長する多結晶89に比べて単結晶80からの放熱性を相対的に高く保たなければならないが、SiC単結晶80の成長と共に成長容器9内の温度分布が変化するため、単結晶80からの放熱性は相対的に低下していく。その結果、単結晶80の成長速度が低下し、周辺多結晶89の成長による単結晶部分の先細りや品質劣化が発生するという問題があった。
However, if the SiC single crystal is further deposited on the SiC seed crystal 8 by the above-described method to increase the diameter or length of the SiC single crystal, as shown in FIG. The part will taper off.
In order to continue good growth and obtain a long SiC single crystal 80, the heat dissipation from the single crystal 80 must be kept relatively high compared to the polycrystal 89 grown around the single crystal portion. Although the temperature distribution in the growth vessel 9 changes with the growth of the SiC single crystal 80, the heat dissipation from the single crystal 80 is relatively lowered. As a result, there is a problem that the growth rate of the single crystal 80 is lowered, and the single crystal portion is tapered and the quality is deteriorated due to the growth of the peripheral polycrystal 89.

これまでに開発されている、SiC単結晶を長尺化させる方法としては、例えば下記の特許文献1〜3に開示されたものがある。
特許文献1においては、原料を収容する坩堝と種結晶を保持する支持部材とをそれぞれ独立に上下動かつ回転可能にして、原料の温度と単結晶の温度及びその温度差を単結晶の成長中に調整可能にした単結晶育成装置が提案されている。
また、特許文献2においては、種結晶の周りにガイドを設け、ガイド部と単結晶部が常に面一になるように、成長方向と逆方向に種結晶保持部を相対移動させることにより、周囲の多結晶の付着を防止できる単結晶製造装置が提案されている。
さらに、特許文献3においては、周辺に成長した多結晶を一旦除去し、再度成長行う方法が提案されている。
As a method for elongating a SiC single crystal that has been developed so far, for example, there are those disclosed in Patent Documents 1 to 3 below.
In Patent Document 1, a crucible for storing a raw material and a supporting member for holding a seed crystal can be moved up and down independently and rotated, and the temperature of the raw material, the temperature of the single crystal, and the temperature difference between them are being grown. There has been proposed a single crystal growth apparatus which can be adjusted to the above.
Further, in Patent Document 2, a guide is provided around the seed crystal, and by moving the seed crystal holding portion in a direction opposite to the growth direction so that the guide portion and the single crystal portion are always flush with each other, An apparatus for producing a single crystal capable of preventing the adhesion of polycrystals has been proposed.
Furthermore, Patent Document 3 proposes a method in which a polycrystal grown around is removed once and grown again.

しかしながら、特許文献1の方法においては、単結晶の周りに多結晶が生じることを実際上回避できず、単結晶の先細りが発生するおそれがある。また、支持部材の可動時に上記成長容器内に塵が発生し、成長結晶に悪影響を及ぼすおそれがある。また、特許文献2の方法においては、単結晶の周囲に可動部があるため、発生したカーボン微粒子などが成長中の結晶に混入しやすく、結晶品質を劣化させてしまうおそれがある。また、特許文献3の方法においては、周辺多結晶の成長による単結晶部の先細りに対してはある程度の効果があるが、単結晶部の放熱性は成長と共に悪くなり、成長速度が急激に低下するおそれがある。   However, in the method of Patent Document 1, it is practically impossible to avoid the formation of polycrystals around the single crystal, and the single crystal may be tapered. Further, when the support member is moved, dust is generated in the growth vessel, which may adversely affect the growth crystal. Further, in the method of Patent Document 2, since there is a movable part around the single crystal, the generated carbon fine particles and the like are likely to be mixed into the growing crystal, and the crystal quality may be deteriorated. Further, in the method of Patent Document 3, there is a certain effect on the taper of the single crystal part due to the growth of the peripheral polycrystal, but the heat dissipation of the single crystal part deteriorates with the growth, and the growth rate decreases rapidly. There is a risk.

特開平6−298594号公報JP-A-6-298594 特開2001−226197号公報JP 2001-226197 A 特開平6−48898号公報Japanese Patent Laid-Open No. 6-48898

本発明は、かかる従来の問題点に鑑みてなされたものであって、大口径及び長尺の、高品質なSiC単結晶を短時間で製造できるSiC単結晶の製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and intends to provide a method for producing a SiC single crystal capable of producing a large-diameter and long-sized high-quality SiC single crystal in a short time. It is.

本発明は、成長容器内にSiC種結晶を配置し、該SiC種結晶の成長面上にバルク状のSiC単結晶を成長させて、SiC単結晶を製造する方法において、
上記成長容器としては、SiC原料が供給される本体部とその上部に配置される上蓋とを有し、該上蓋に上記成長容器の外部に向けて凹んだ種収容部を形成したものを用い、
上記SiC種結晶としては、成長方向に20mm以上の厚さを有するものを用い、該SiC種結晶を、その上記成長面とSiC原料の発生源とが対向するよう上記種収容部に埋め込み、上記成長面と反対側の裏面を上記上蓋の内表面から上記SiC原料の発生源と離れる方向に後退させて配置することを特徴とするSiC単結晶の製造方法にある(請求項1)。
The present invention provides a method for producing a SiC single crystal by arranging a SiC seed crystal in a growth vessel and growing a bulk SiC single crystal on a growth surface of the SiC seed crystal.
The growth vessel has a main body portion to which SiC raw material is supplied and an upper lid disposed on the main body portion, and uses a seed storage portion that is recessed toward the outside of the growth vessel on the upper lid.
As the SiC seed crystal, one having a thickness of 20 mm or more in the growth direction is used, and the SiC seed crystal is embedded in the seed container so that the growth surface and the source of the SiC raw material face each other. The SiC single crystal manufacturing method is characterized in that the rear surface opposite to the growth surface is disposed so as to recede from the inner surface of the upper lid in a direction away from the source of the SiC raw material.

次に、本発明の作用効果につき説明する。
本発明の製造方法においては、上記SiC種結晶として成長方向に20mm以上の厚さを有する比較的長尺のものを用いる。そのため、上記SiC種結晶の上記成長面を上記成長容器内に露出させたまま、上記SiC種結晶を上蓋の上記種収容部に埋め込んだ配置構成を容易かつ確実に実現することができる。
Next, the effects of the present invention will be described.
In the manufacturing method of the present invention, a relatively long one having a thickness of 20 mm or more in the growth direction is used as the SiC seed crystal. Therefore, it is possible to easily and reliably realize an arrangement configuration in which the SiC seed crystal is embedded in the seed accommodating portion of the upper lid while the growth surface of the SiC seed crystal is exposed in the growth vessel.

また、上記の埋め込んだ配置構成の実現により、上記SiC種結晶は、その上記成長面と反対側の上記裏面を上記上蓋の内表面から後退させ、上記成長面の露出位置よりも低温となり易い位置に配置することができる。そのため、上記SiC種結晶上に成長するSiC単結晶の熱を上記裏面を介して効率的に放出することができる。それ故、上記SiC単結晶の成長中に上記SiC種結晶の周囲に成長する多結晶の放熱性よりも、上記SiC種結晶上に成長するSiC単結晶(以下、適宜成長結晶という)の放熱性を高くすることができる。したがって、上記SiC単結晶の成長速度の低下を防止することができ、また、上記SiC単結晶の先端に発生しうる先細りを防止することができる。
なお、上記SiC単結晶の放熱性は、上記種収容部を外部に連通する開口部とした場合に、より一層向上させることができる。
Further, by realizing the embedded arrangement configuration, the SiC seed crystal has a position where the back surface opposite to the growth surface is retreated from the inner surface of the upper lid, and is likely to be at a lower temperature than the exposed position of the growth surface. Can be arranged. Therefore, the heat of the SiC single crystal grown on the SiC seed crystal can be efficiently released through the back surface. Therefore, the heat dissipation of the SiC single crystal grown on the SiC seed crystal (hereinafter referred to as “growth crystal” as appropriate) rather than the heat dissipation of the polycrystalline growing around the SiC seed crystal during the growth of the SiC single crystal. Can be high. Therefore, it is possible to prevent a decrease in the growth rate of the SiC single crystal, and it is possible to prevent tapering that may occur at the tip of the SiC single crystal.
In addition, the heat dissipation of the SiC single crystal can be further improved when the seed accommodating portion is an opening communicating with the outside.

また、本発明の製造方法において、上記SiC種結晶は、その上記成長面と反対側の裏面を上記上蓋の内表面から上記SiC原料の発生源と離れる方向に後退させて配置する。
そのため、上記SiC種結晶の周囲に成長する多結晶が、上記SiC種結晶上に成長する成長結晶に悪影響を及ぼして、上記SiC単結晶の品質が劣化することを防止することができる。
特に、上記SiC種結晶上に繰り返しSiC単結晶を成長させてSiC単結晶の長尺化や大口径化を図る場合には、上記SiC種結晶上に成長した上記SiC単結晶を再び上記SiC種結晶として用い、該SiC種結晶の上記裏面を上記上蓋の内表面から後退させるように配置して成長させることができる。このとき、上記SiC種結晶は、その大部分を上記成長容器の内表面よりも後退させて配置することができるため、周囲にて成長する多結晶の影響をほとんど受けない。そのため、長尺又は大口径のSiC単結晶を高品質な状態で得ることができる。
Further, in the manufacturing method of the present invention, the SiC seed crystal is disposed with its back surface opposite to the growth surface retracted from the inner surface of the upper lid in a direction away from the SiC source generation source.
Therefore, it is possible to prevent the polycrystals grown around the SiC seed crystal from adversely affecting the grown crystals grown on the SiC seed crystal and deteriorating the quality of the SiC single crystal.
In particular, when a SiC single crystal is repeatedly grown on the SiC seed crystal to increase the length or diameter of the SiC single crystal, the SiC single crystal grown on the SiC seed crystal is again used as the SiC seed crystal. It can be used as a crystal and can be grown by arranging the back surface of the SiC seed crystal so as to recede from the inner surface of the upper lid. At this time, since most of the SiC seed crystal can be disposed so as to recede from the inner surface of the growth vessel, the SiC seed crystal is hardly affected by the polycrystals grown around. Therefore, a long or large diameter SiC single crystal can be obtained in a high quality state.

一般に、長尺化や大口径化を図ると、SiC単結晶は放熱性が低下し成長速度が遅くなったり、周囲の多結晶からの悪影響を受けやすく品質が劣化し易くなる。しかし、本発明においては、上記のごとく、上記SiC種結晶の上記裏面を上記上蓋の内表面から後退させるように上記SiC種結晶を配置しているため、上記SiC種結晶及び該SiC種結晶上に成長する上記SiC単結晶の熱を上記成長容器の外部へ効率的に排出することができ、成長速度の低下を防止できる。それ故、大口径で長尺のSiC単結晶を短時間で製造できる。   In general, when the length is increased or the diameter of the SiC is increased, the heat dissipation of the SiC single crystal is reduced, the growth rate is slowed down, and the quality is easily deteriorated due to the bad influence from the surrounding polycrystals. However, in the present invention, as described above, since the SiC seed crystal is disposed so that the back surface of the SiC seed crystal is retracted from the inner surface of the upper lid, the SiC seed crystal and the SiC seed crystal are arranged on the SiC seed crystal. Thus, the heat of the SiC single crystal grown on the substrate can be efficiently discharged to the outside of the growth vessel, and the growth rate can be prevented from decreasing. Therefore, a large-diameter and long SiC single crystal can be produced in a short time.

また、本発明の製造方法においては、従来のごとく、上記成長容器内に可動部等の装置を設ける必要がない。そのため、摩擦や振動によって上記成長容器内に塵が発生することがほとんどない。それ故、成長結晶中に異物などが混入することを防止でき、高品質のSiC単結晶を作製することができる。
以上のごとく、本発明によれば、大口径及び長尺の、高品質なSiC単結晶を短時間で製造できるSiC単結晶の製造方法を提供することができる。
Moreover, in the manufacturing method of this invention, it is not necessary to provide apparatuses, such as a movable part, in the said growth container like the past. Therefore, dust is hardly generated in the growth vessel due to friction or vibration. Therefore, it is possible to prevent foreign matters from being mixed into the grown crystal, and a high-quality SiC single crystal can be produced.
As described above, according to the present invention, it is possible to provide a method for producing a SiC single crystal capable of producing a large-diameter and long-sized high-quality SiC single crystal in a short time.

本発明(請求項1)において、上記SiC種結晶としては、その成長方向の厚みが20mm以上のものを用いる。上記SiC種結晶の厚みが20mm未満の場合には、上記種収容部に埋め込み、上記裏面を上記上蓋の内表面から後退させて配置することが困難になる。その結果、上述の作用効果が得られなくなるおそれがある。   In the present invention (Invention 1), the SiC seed crystal having a thickness in the growth direction of 20 mm or more is used. When the thickness of the SiC seed crystal is less than 20 mm, it is difficult to dispose the SiC seed crystal in the seed accommodating portion and to place the back surface backward from the inner surface of the upper lid. As a result, the above-described effects may not be obtained.

また、上記成長容器は、その上記上蓋に、上記成長容器の外部に向けて凹んだ上記種収容部を有しており、上記SiC種結晶をこの種収容部に埋め込んで配置する。上記SiC種結晶の形状は、例えば円柱状、角柱状、及び直方体状等があり、上記上蓋の上記種収容部は、このSiC種結晶の形状に合わせて形成することができる。   Moreover, the said growth container has the said seed accommodation part recessed toward the exterior of the said growth container in the said upper cover, The said SiC seed crystal is embedded and arrange | positioned in this seed accommodation part. The shape of the SiC seed crystal includes, for example, a cylindrical shape, a prismatic shape, a rectangular parallelepiped shape, and the like, and the seed accommodating portion of the upper lid can be formed according to the shape of the SiC seed crystal.

また、上記成長容器の上記本体部には、上記SiC原料が供給される。後述の昇華再析出法によりSiC単結晶を成長させる場合には、上記SiC原料として、例えばSiC粉末等を供給することができる。また、後述のCVD法によりSiC単結晶を成長させる場合には、上記SiC原料として、例えばケイ素を含有するケイ素含有ガスと炭素を含有する炭素含有ガスとを供給することができる。ケイ素含有ガスとしては例えばSiH4等があり、また炭素含有ガスとしては例えばC38等がある。 The SiC raw material is supplied to the main body of the growth vessel. When a SiC single crystal is grown by a sublimation reprecipitation method to be described later, for example, SiC powder or the like can be supplied as the SiC raw material. Moreover, when growing a SiC single crystal by the CVD method described later, for example, a silicon-containing gas containing silicon and a carbon-containing gas containing carbon can be supplied as the SiC raw material. Examples of the silicon-containing gas include SiH 4 , and examples of the carbon-containing gas include C 3 H 8 .

上記SiC種結晶上にバルク上のSiC単結晶を成長させる方法としては、例えば昇華再析出法や、CVD(Chemical Vapor Deposition)法などを利用することができる。
好ましくは、昇華再析出法がよい。この場合には、充分な成長高さが得られるため、より短時間で、大口径で長尺のSiC単結晶を得ることができる。
As a method for growing a SiC single crystal in bulk on the SiC seed crystal, for example, a sublimation reprecipitation method, a CVD (Chemical Vapor Deposition) method, or the like can be used.
The sublimation reprecipitation method is preferable. In this case, since a sufficient growth height can be obtained, a large-diameter and long SiC single crystal can be obtained in a shorter time.

また、本発明において、上記SiC種結晶としては、本発明の製造方法により作製したSiC単結晶を用いることができる。即ち、上記SiC種結晶の上記成長面上に上記SiC単結晶を成長させてSiC単結晶を作製し、該SiC単結晶を上記SiC種結晶として再び用いて、その上記成長面上に上記SiC単結晶を成長させることができる。このように繰り返してSiC単結晶を成長させることにより、上記SiC単結晶のさらなる大口径化及び長尺化が可能になる。   In the present invention, the SiC single crystal produced by the production method of the present invention can be used as the SiC seed crystal. That is, the SiC single crystal is produced by growing the SiC single crystal on the growth surface of the SiC seed crystal, the SiC single crystal is again used as the SiC seed crystal, and the SiC single crystal is formed on the growth surface. Crystals can be grown. By repeatedly growing the SiC single crystal in this manner, the SiC single crystal can be further increased in diameter and length.

上記SiC種結晶としては、例えば昇華再析出法等により成長したSiC単結晶から切断・成形・研磨して作製された単結晶基板等を用いることができる。
上記SiC種結晶において、上記SiC単結晶の成長に用いる上記成長面は、化学洗浄等により付着物を除去し、RIE(Reactive Ion Etching)及び犠牲酸化等により切断や研磨に伴う加工変質層を除去しておくことが好ましい。このように、付着物や加工変質層を除去しておくことにより、成長結晶内に上記種結晶から欠陥が継承されるのを防止することができ、高品質のSiC単結晶を作製することができる。
As the SiC seed crystal, for example, a single crystal substrate produced by cutting, shaping, and polishing from a SiC single crystal grown by a sublimation reprecipitation method or the like can be used.
In the SiC seed crystal, the growth surface used for the growth of the SiC single crystal removes deposits by chemical cleaning or the like, and removes a damaged layer due to cutting or polishing by RIE (Reactive Ion Etching) and sacrificial oxidation. It is preferable to keep it. Thus, by removing the deposits and the work-affected layer, it is possible to prevent defects from being inherited from the seed crystal in the grown crystal, and to produce a high-quality SiC single crystal. it can.

次に、上記SiC種結晶の側面部の少なくとも一部には、該側面部を覆う保護材が配設されていることが好ましい(請求項2)。
この場合には、上記成長容器の内側において、該成長容器の内表面から成長する多結晶が上記SiC種結晶に悪影響を及ぼして該SiC種結晶から成長するSiC単結晶に転位が発生することを防止できる。また、上記保護材が上記SiC種結晶の側面における上記成長容器の外側に位置する部分に配設されている場合には、上記成長容器の外側において、上記SiC種結晶からSiCが昇華してしまうことを防止することができる。
Next, it is preferable that a protective material covering the side surface portion is disposed on at least a part of the side surface portion of the SiC seed crystal.
In this case, inside the growth vessel, the polycrystal grown from the inner surface of the growth vessel has an adverse effect on the SiC seed crystal, and dislocation occurs in the SiC single crystal grown from the SiC seed crystal. Can be prevented. Moreover, when the said protective material is arrange | positioned in the part located in the outer side of the said growth container in the side surface of the said SiC seed crystal, SiC will sublime from the said SiC seed crystal in the outer side of the said growth container. This can be prevented.

また、上記保護材は、上記SiC種結晶の側面のみならず、上記SiC種結晶における上記成長面と反対側の上記裏面に配設することもできる。この場合には、上記SiC種結晶の裏面からSiCが昇華してしまうことを防止できる。   Moreover, the said protective material can also be arrange | positioned not only on the side surface of the said SiC seed crystal but on the said back surface on the opposite side to the said growth surface in the said SiC seed crystal. In this case, it is possible to prevent SiC from sublimating from the back surface of the SiC seed crystal.

また、上記保護材としては黒鉛よりなるものを用いることができる。この場合には、上記保護材は、上記SiC種結晶上にSiC単結晶を成長させるときの例えば1800℃〜2500℃という高い温度においても安定に存在できる。また、上記保護材としては、例えば黒鉛よりなる板を上記SiC種結晶に貼付することにより配設することができる。また、上記保護材としては、黒鉛粉末を分散させたフェノール樹脂等を上記SiC種結晶に塗布し焼成して、膜状の黒鉛を形成させることによっても配設することができる。   Moreover, what consists of graphite can be used as said protective material. In this case, the protective material can exist stably even at a high temperature of, for example, 1800 ° C. to 2500 ° C. when the SiC single crystal is grown on the SiC seed crystal. Moreover, as said protective material, it can arrange | position by sticking the board which consists of graphite, for example to the said SiC seed crystal. The protective material can also be disposed by applying a phenol resin or the like in which graphite powder is dispersed to the SiC seed crystal and baking it to form filmy graphite.

また、上記SiC種結晶と、上記保護材とは一体的に接合されていることが好ましい(請求項3)。
この場合には、上記SiC種結晶と上記保護材との接着性が高まり、上記SiC種結晶の放熱性を向上させることができる。また、上記SiC種結晶と上記保護材とが一体的に接合されていない場合には、上記SiC種結晶と上記保護材との間でSiCの昇華再析出が起き、上記SiC種結晶上に成長する上記SiC単結晶に欠陥が発生するおそれがある。上記SiC種結晶と上記保護材とは、例えば接着剤等を用いて一体的に接合させることができる。
また、上記SiC種結晶と上記保護材との間に、後述の応力緩衝材を配設する場合には、上記SiC種結晶と上記保護材とを、上記応力緩衝材を介して一体的に接合させることができる。
Further, it is preferable that the SiC seed crystal and the protective material are integrally joined.
In this case, the adhesion between the SiC seed crystal and the protective material is enhanced, and the heat dissipation of the SiC seed crystal can be improved. Further, when the SiC seed crystal and the protective material are not integrally joined, SiC sublimation reprecipitation occurs between the SiC seed crystal and the protective material, and grows on the SiC seed crystal. There is a risk of defects occurring in the SiC single crystal. The SiC seed crystal and the protective material can be integrally joined using, for example, an adhesive.
In addition, when a stress buffer material described later is disposed between the SiC seed crystal and the protective material, the SiC seed crystal and the protective material are integrally bonded via the stress buffer material. Can be made.

また、上記保護材と上記SiC種結晶との間には、両者の間にはたらく熱応力を緩和するための応力緩衝材が配設されていることが好ましい(請求項4)。
また、上記保護材と上記上蓋との間には、両者の間に働く熱応力を緩和するための応力緩衝材が配設されていることが好ましい(請求項5)。
この場合には、上記SiC種結晶と上記保護材との熱膨張差や、上記保護材と上記成長容器の上蓋との熱膨張差に起因した応力を緩衝することができる。即ち、上記応力緩衝材は、熱膨張差に起因した応力を歪みとして吸収することができる。そのため、上記SiC種結晶に応力がほとんどかからない状態でSiC単結晶を成長させることができ、格子面の反りやマクロ欠陥の発生を防止することができる。このような応力緩衝材としては、例えば一定の柔軟性を有するものを用いることができる。具体的には、後述するごとく、例えば一定の引張強度又は/及びヤング率を有するものを用いることができる。
Moreover, it is preferable that a stress buffering material for relaxing thermal stress acting between the protective material and the SiC seed crystal is disposed between the protective material and the SiC seed crystal.
Further, it is preferable that a stress buffer material for relaxing thermal stress acting between the protective material and the upper lid is disposed between the protective material and the upper lid.
In this case, it is possible to buffer the stress caused by the difference in thermal expansion between the SiC seed crystal and the protective material and the difference in thermal expansion between the protective material and the upper lid of the growth vessel. That is, the stress buffer material can absorb the stress caused by the difference in thermal expansion as strain. Therefore, a SiC single crystal can be grown in a state where stress is hardly applied to the SiC seed crystal, and lattice warpage and macro defects can be prevented. As such a stress buffer material, for example, a material having a certain flexibility can be used. Specifically, as described later, for example, a material having a certain tensile strength and / or Young's modulus can be used.

上記応力緩衝材は、その引張強度が10MPa以下であることが好ましい。上記応力緩衝材の引張強度が10MPaを越える場合には、上記応力緩衝材と、上記SiC種結晶や上記保護材との間の熱膨張差に起因して応力が発生し、この応力が成長中のSiC単結晶に加えられることにより、得られるSiC単結晶の品質が劣化するおそれがある。
また、上記応力緩衝材は、そのヤング率が5GPa以下であることが好ましい。上記応力緩衝材のヤング率が5GPaを越える場合には、上記応力緩衝材と、上記SiC種結晶や上記保護材との間の熱膨張差に起因して発生する応力により、得られるSiC単結晶の品質が劣化するおそれがある。
The stress buffer material preferably has a tensile strength of 10 MPa or less. When the tensile strength of the stress buffer material exceeds 10 MPa, stress is generated due to a difference in thermal expansion between the stress buffer material and the SiC seed crystal or the protective material. When added to the SiC single crystal, the quality of the obtained SiC single crystal may be deteriorated.
The stress buffer material preferably has a Young's modulus of 5 GPa or less. When the Young's modulus of the stress buffer material exceeds 5 GPa, the SiC single crystal obtained by the stress generated due to the difference in thermal expansion between the stress buffer material and the SiC seed crystal or the protective material The quality of the product may deteriorate.

また、上記応力緩衝材としては、柔軟性黒鉛シートを用いることができる。柔軟性黒鉛シートは、該柔軟性黒鉛シートを構成している結晶粒子のc軸が厚さ方向に配向しているため、1〜10MPaという低い引張強度を示すことができる。そのため、この場合には、上記SiC種結晶と上記保護材との間、又は上記保護材と上記上蓋との間に生じる熱応力を充分に緩衝することができる。
また、上記柔軟性黒鉛シートは、上記SiC単結晶を成長させる際の例えば1800℃〜2500℃という高い温度においても安定に存在できるため、上記応力緩衝材として適している。
Moreover, a flexible graphite sheet can be used as the stress buffer material. The flexible graphite sheet can exhibit a tensile strength as low as 1 to 10 MPa because the c-axis of the crystal particles constituting the flexible graphite sheet is oriented in the thickness direction. Therefore, in this case, the thermal stress generated between the SiC seed crystal and the protective material or between the protective material and the upper lid can be sufficiently buffered.
Further, the flexible graphite sheet is suitable as the stress buffer because it can exist stably even at a high temperature of, for example, 1800 ° C. to 2500 ° C. when the SiC single crystal is grown.

また、上記応力緩衝材は、その厚みが0.01〜3.0mmであることが好ましい。応力緩衝材の厚みが0.01mm未満の場合には、上記SiC種結晶と上記保護材との間、又は上記保護材と上記上蓋との間の熱膨張差に起因する応力を充分に緩衝することができないおそれがある。一方、3.0mm越える場合には、上記SiC種結晶の冷却効率が悪くなり、成長速度が遅くなるおそれがある。   Moreover, it is preferable that the thickness of the said stress buffer material is 0.01-3.0 mm. When the thickness of the stress buffer material is less than 0.01 mm, the stress due to the difference in thermal expansion between the SiC seed crystal and the protective material or between the protective material and the upper lid is sufficiently buffered. There is a risk that it will not be possible. On the other hand, if it exceeds 3.0 mm, the cooling efficiency of the SiC seed crystal is deteriorated, and the growth rate may be slow.

また、上記SiC種結晶として、c面よりオフセット角度60°以内の面を上記成長面として露出させたものを用いることが好ましい(請求項6)
この場合には、上記SiC種結晶は、略c軸方向(<0001>方向)に成長し、所謂c面成長を行うことができる。そして、このようにc面成長をおこなうことにより、積層欠陥の少ないSiC単結晶を作製することができる。
Further, it is preferable to use a SiC seed crystal in which a surface within an offset angle of 60 ° from the c-plane is exposed as the growth surface.
In this case, the SiC seed crystal grows substantially in the c-axis direction (<0001> direction) and can perform so-called c-plane growth. And by performing c-plane growth in this way, a SiC single crystal with few stacking faults can be produced.

また、上記SiC種結晶として、c面と略垂直な面を上記成長面として露出させたものを用いることが好ましい(請求項7)。
この場合には、上記SiC種結晶はc軸と略垂直な方向に成長し、所謂a面成長を行うことができる。そして、このようにa面成長をおこなうことにより、マイクロパイプ欠陥や螺旋転位の少ないSiC単結晶を作製することができる。また、本発明においては、上記のごとく、上記SiC種結晶を上記種収容部に埋め込んで配置するため、この場合には、略<1−100>軸又は略<11−20>軸方向に長尺なSiC単結晶を作製することができる。また、このようなSiC単結晶は、そのc面側から見るとc面が大口径化したものとなる。
Further, it is preferable to use a SiC seed crystal in which a plane substantially perpendicular to the c-plane is exposed as the growth plane.
In this case, the SiC seed crystal grows in a direction substantially perpendicular to the c-axis and can perform so-called a-plane growth. And by performing a-plane growth in this way, a SiC single crystal with few micropipe defects and screw dislocations can be produced. Further, in the present invention, as described above, the SiC seed crystal is embedded in the seed accommodating portion, and in this case, the SiC seed crystal is long in the direction of about <1-100> axis or about <11-20> axis. A long SiC single crystal can be produced. In addition, such a SiC single crystal has a larger c-plane diameter when viewed from the c-plane side.

具体的には、図22に示すごとく、SiC単結晶は、その主要な面方位として{0001}面(c面)と、{0001}面に垂直な{1−100}面(a面)及び{11−20}面(a面)とを有している。そして、一般的には、SiC種結晶上にSiC単結晶を成長させる際には、{0001}面(c面)又は{0001}面からオフセット角度10°以内の面を種結晶の成長面として露出するSiC種結晶を用いてSiC単結晶を成長させるという、所謂c面成長が行われる。ところが、このようなc面成長を行って得られる成長結晶(c面成長結晶)中には、<0001>方向と略平行な方向にマイクロパイプ欠陥や螺旋転位等の欠陥が非常に多く発生する。
上記のごとく、上記SiC種結晶をc軸(<0001>方向)と略垂直な方向に成長させるという、所謂a面成長を行うことにより、マイクロパイプ欠陥や螺旋転位が少なく、略<1−100>軸又は略<11−20>軸方向に長尺なSiC単結晶が得られる。このようなSiC単結晶は、上記のごとく、そのc面側から見るとc面が大口径化したものとなる。
Specifically, as shown in FIG. 22, the SiC single crystal has a {0001} plane (c plane) as a main plane orientation, a {1-100} plane (a plane) perpendicular to the {0001} plane, and And {11-20} plane (a-plane). In general, when a SiC single crystal is grown on a SiC seed crystal, the {0001} plane (c plane) or a plane within an offset angle of 10 ° from the {0001} plane is used as the seed crystal growth plane. So-called c-plane growth is performed in which a SiC single crystal is grown using the exposed SiC seed crystal. However, in a growth crystal (c-plane growth crystal) obtained by performing such c-plane growth, a very large number of defects such as micropipe defects and screw dislocations are generated in a direction substantially parallel to the <0001> direction. .
As described above, by performing so-called a-plane growth in which the SiC seed crystal is grown in a direction substantially perpendicular to the c-axis (<0001> direction), there are few micropipe defects and screw dislocations, and approximately <1-100. A SiC single crystal elongated in the> axis or substantially <11-20> axis direction is obtained. As described above, such a SiC single crystal has a larger c-plane diameter when viewed from the c-plane side.

また、上記a面成長を繰り返しおこなうことにより、SiC単結晶中の欠陥や転位を一層低減させることができる。また、上記a面成長を繰り返し行うことにより、c面({0001}面)をさらに大口径化させることができる。即ち、上記SiC種結晶を略<1−100>方向(又は略<11−20>方向)に成長させてSiC単結晶を作製し、該SiC単結晶を種結晶として用いて、略<11−20>方向(又は略<1−100>方向)に成長させることにより、{0001}面(c面)の大口径化を図ることができる。   Further, by repeating the a-plane growth, defects and dislocations in the SiC single crystal can be further reduced. Further, by repeatedly performing the a-plane growth, the c-plane ({0001} plane) can be further enlarged. That is, the SiC seed crystal is grown in a substantially <1-100> direction (or a substantially <11-20> direction) to produce a SiC single crystal, and the SiC single crystal is used as a seed crystal. By growing in the 20> direction (or substantially <1-100> direction), the {0001} plane (c plane) can be increased in diameter.

また、上記のごとく、c面と略垂直な面を上記成長面として露出させたSiC種結晶を成長させて得られるSiC単結晶、即ちa面成長を行って得られるSiC単結晶から、{0001}面又は{0001}面からオフセット角度60℃以内の面を成長面として露出させたSiC種結晶を作製し、該SiC種結晶上にさらにSiC単結晶を成長させることが好ましい。
この場合には、大口径化したc面を有し、かつ螺旋転位、マイクロパイプ欠陥、及び積層欠陥の少ない高品質のSiC単結晶を得ることができる。
即ち、a面成長においては、上記のごとく螺旋転位やマイクロパイプ欠陥を低減させることができるが、<1−100>方向(又は<11−20>方向)と略平行な向きに積層欠陥が発生する。上記のごとく、a面成長を行って螺旋転位やマイクロパイプ欠陥を低減させた後に、c面成長(略<0001>方向への成長)を行うことにより、螺旋転位及びマイクロパイプ欠陥がほとんどなく、さらに積層欠陥もほとんどない高品質なSiC単結晶を得ることができる。積層欠陥は、略<0001>方向への成長にはほとんど発生しないからである。
Further, as described above, from a SiC single crystal obtained by growing a SiC seed crystal having a plane substantially perpendicular to the c-plane exposed as the growth plane, that is, a SiC single crystal obtained by performing a-plane growth, {0001 } Surface or {0001} surface, it is preferable to produce a SiC seed crystal with a surface within an offset angle of 60 ° C. exposed as a growth surface, and to further grow a SiC single crystal on the SiC seed crystal.
In this case, a high-quality SiC single crystal having a large-diameter c-plane and having few screw dislocations, micropipe defects, and stacking faults can be obtained.
That is, in the a-plane growth, the screw dislocations and micropipe defects can be reduced as described above, but stacking faults are generated in a direction substantially parallel to the <1-100> direction (or <11-20> direction). To do. As described above, after performing a-plane growth to reduce screw dislocations and micropipe defects, by performing c-plane growth (growth in a substantially <0001> direction), there are almost no screw dislocations and micropipe defects. Furthermore, a high-quality SiC single crystal having almost no stacking faults can be obtained. This is because the stacking fault hardly occurs in the growth in the substantially <0001> direction.

なお、本明細書、特許請求の範囲、及び図面において、{0001}、{1−100}、及び{11−20}は、所謂結晶面の面指数を表している。上記面指数において、「−」記号は通常数字の上に付されるが、本明細書及び図面においては、書類作成の便宜のため数字の左側に付した。また、<0001>、<1−100>、及び<11−20>は、結晶内の方向を表し、「−」記号の取り扱いについては、上記面指数と同様である。   In the present specification, claims, and drawings, {0001}, {1-100}, and {11-20} represent plane indices of so-called crystal planes. In the above surface index, the “-” symbol is usually added on the number, but in the present specification and drawings, it is added on the left side of the number for the convenience of document preparation. Further, <0001>, <1-100>, and <11-20> represent directions in the crystal, and the handling of the “−” symbol is the same as the above-described plane index.

次に、上記SiC種結晶は、螺旋転位密度が100個/cm2以上の領域を少なくとも一部に有することが好ましい(請求項8)。
この場合には、螺旋転位密度が100個/cm2以上の領域を有する上記SiC種結晶を、c軸方向(<0001>方向)と略垂直な方向に成長させることにより、螺旋転位密度が100個/cm2以上の領域と螺旋転位密度が100個/cm2未満の領域とを有するSiC単結晶を作製することができる。螺旋転位はc軸方向と略垂直な方向にはほとんど継承されないからである。そして、このSiC単結晶から螺旋転位密度が100個/cm2以上の領域と、螺旋転位密度が100個/cm2未満の領域とを含み、かつc面からオフセット角度60°以内の面が露出するように新たにSiC種結晶を切り出すことにより、後述の転位制御種結晶を作製することができる。また、本発明においては、上記のごとく、上記SiC種結晶を上記成長容器の上記種収容部に埋め込み、成長容器の内表面から後退させて配置するため、上記のごとく、c軸方向(<0001>方向)と略垂直な方向に成長させることにより、<0001>方向と略垂直な方向に長尺なSiC単結晶を得ることができる。したがって、該SiC単結晶から切り出して得られる上記転位制御種結晶を大口径のものにすることができる。
Then, the SiC seed crystal, screw dislocation density is preferably has at least in part 100 / cm 2 or more regions (claim 8).
In this case, by growing the SiC seed crystal having a region with a screw dislocation density of 100 / cm 2 or more in a direction substantially perpendicular to the c-axis direction (<0001> direction), the screw dislocation density is 100. A SiC single crystal having a region of at least pieces / cm 2 and a region having a screw dislocation density of less than 100 pieces / cm 2 can be produced. This is because the screw dislocation is hardly inherited in the direction substantially perpendicular to the c-axis direction. The SiC single crystal includes a region having a screw dislocation density of 100 / cm 2 or more and a region having a screw dislocation density of less than 100 / cm 2 , and a surface within an offset angle of 60 ° from the c-plane is exposed. As described above, a dislocation control seed crystal described later can be produced by newly cutting a SiC seed crystal. Further, in the present invention, as described above, the SiC seed crystal is embedded in the seed container of the growth vessel and is disposed so as to recede from the inner surface of the growth vessel. Therefore, as described above, the c-axis direction (<0001 > Direction), a long SiC single crystal can be obtained in a direction substantially perpendicular to the <0001> direction. Therefore, the dislocation control seed crystal obtained by cutting from the SiC single crystal can have a large diameter.

以下、上記転位制御種結晶について説明する。
上記転位制御種結晶は、{0001}面よりオフセット角度60°以内の面を成長面として有し、成長中のSiC単結晶に螺旋転位を螺旋転位密度100個/cm2以上で発生することができる螺旋転位発生可能領域を、上記成長面上の50%以下の領域に有すると共に、上記成長面上における上記螺旋転位発生可能領域以外の領域には、上記成長面上に露出している螺旋転位が螺旋転位密度100個/cm2未満である低密度螺旋転位領域を有する。
そして、該転位制御種結晶の上記成長面上にSiC単結晶を成長させるときにおいては、該SiC単結晶の成長途中の表面である途中表面に、平坦なc面ファセットが形成され、かつ該c面ファセットと、上記成長面上の上記螺旋転位発生可能領域をc軸方向又は上記成長面に垂直な方向において上記途中表面に投影した領域とが、少なくとも一部で重なるようにSiC単結晶を成長させることが好ましい(請求項9)。
Hereinafter, the dislocation control seed crystal will be described.
The dislocation control seed crystal has a plane with an offset angle of 60 ° or less from the {0001} plane as a growth plane, and screw dislocations are generated in the growing SiC single crystal at a screw dislocation density of 100 pieces / cm 2 or more. A region having a screw dislocation generation potential that can be generated in a region of 50% or less on the growth surface, and a region other than the region capable of generating the screw dislocation on the growth surface is exposed on the growth surface. Has a low density screw dislocation region having a screw dislocation density of less than 100 / cm 2 .
Then, when the SiC single crystal is grown on the growth surface of the dislocation control seed crystal, a flat c-plane facet is formed on the intermediate surface, which is the surface during the growth of the SiC single crystal, and the c The SiC single crystal is grown so that the surface facet and the region in which the screw dislocation generation region on the growth surface is projected onto the intermediate surface in the c-axis direction or the direction perpendicular to the growth surface overlap at least partially. (Claim 9).

このように上記転位制御種結晶上にSiC単結晶を成長させた場合には、上記螺旋転位発生可能領域から成長中のSiC単結晶中に螺旋転位が発生すると共に、その少なくとも一部が成長中のSiC単結晶の上記c面ファセット内に位置するように、上記SiC単結晶が成長する。その結果、上記SiC単結晶中に異種多形結晶や異方位結晶が形成されることを防止することができる。また、成長中にランダムに螺旋転位が発生することを防止することができる。それ故、上記SiC単結晶の品質をさらに向上させることができる。   When the SiC single crystal is grown on the dislocation control seed crystal as described above, the screw dislocation is generated in the growing SiC single crystal from the region where the screw dislocation can be generated, and at least a part of the crystal is growing. The SiC single crystal grows so as to be located in the c-plane facet of the SiC single crystal. As a result, it is possible to prevent the formation of different polymorphic crystals or differently oriented crystals in the SiC single crystal. Further, it is possible to prevent the occurrence of random screw dislocations during the growth. Therefore, the quality of the SiC single crystal can be further improved.

上記螺旋転位発生可能領域は、螺旋転位を螺旋転位密度100個/cm2以上で発生できる領域である。
上記螺旋転位発生領域から発生する螺旋転位が100個/cm2未満の場合には、成長中のSiC単結晶に異種多形や異方位結晶が形成されるおそれがある。
また、上記螺旋転位発生可能領域は、上記転位制御種結晶における上記成長面上の50%以下の領域にある。上記螺旋転位発生可能領域が50%を越える場合には、成長後に得られる上記SiC単結晶中に多くの螺旋転位が形成され、SiC単結晶の品質が劣化するおそれがある。好ましくは、上記螺旋転位発生可能領域は、上記成長面上の30%以下であることがよい。より好ましくは、10%以下である。
The region capable of generating screw dislocations is a region in which screw dislocations can be generated at a screw dislocation density of 100 / cm 2 or more.
When screw dislocations generated from the screw dislocation generation region is less than 100 / cm 2, there is a possibility that different polymorphs or differently oriented crystal is formed SiC growing single crystal.
Further, the region capable of generating the screw dislocation is in a region of 50% or less on the growth surface in the dislocation control seed crystal. When the region where the screw dislocation can be generated exceeds 50%, many screw dislocations are formed in the SiC single crystal obtained after growth, and the quality of the SiC single crystal may be deteriorated. Preferably, the region where the screw dislocation can be generated is 30% or less on the growth surface. More preferably, it is 10% or less.

また、上記螺旋転位発生可能領域は、上記転位制御種結晶の端部に形成されていることが好ましい。
この場合には、上記螺旋転位発生可能領域から成長中のSiC単結晶中に発生する螺旋転位の位置を、上記SiC単結晶の端部にすることができる。そして、この場合には、上記SiC単結晶において、螺旋転位が発生したSiC単結晶の端部を切除することにより、螺旋転位がほとんどないSiC単結晶を作製することができる。
なお、螺旋転位が発生した部分は切除せずに、成長後の上記SiC単結晶をそのままSiC半導体等に用いることもできる。
Further, the region capable of generating the screw dislocation is preferably formed at an end portion of the dislocation control seed crystal.
In this case, the position of the screw dislocation generated in the growing SiC single crystal from the region capable of generating the screw dislocation can be the end of the SiC single crystal. In this case, in the SiC single crystal, an SiC single crystal having almost no screw dislocations can be produced by cutting off the end of the SiC single crystal in which the screw dislocations are generated.
The grown SiC single crystal can be used as it is for a SiC semiconductor or the like without cutting away the portion where the screw dislocation has occurred.

また、上記転位制御種結晶は、上記成長面上に露出している螺旋転位が螺旋転位密度100個/cm2未満である低密度螺旋転位領域を有している。
上記低密度螺旋転位領域の螺旋転位密度が100個/cm2を越える場合には、成長後に得られる上記SiC単結晶中に、多くの螺旋転位が形成され、上記SiC単結晶の品質が低下するおそれがある。好ましくは、上記低密度螺旋転位領域は、螺旋転位密度が10個/cm2未満であることがよい。より好ましくは1個/cm2未満がよい。最も好ましくは0個/cm2がよい。
Further, the dislocation control seed crystal, screw dislocations exposed on the growth surface has a low density screw dislocation region is less than screw dislocation density of 100 / cm 2.
When the screw dislocation density in the low density screw dislocation region exceeds 100 / cm 2 , many screw dislocations are formed in the SiC single crystal obtained after growth, and the quality of the SiC single crystal is deteriorated. There is a fear. Preferably, the low-density screw dislocation regions, screw dislocation density may be preferably less than 10 / cm 2. More preferably, it is less than 1 piece / cm 2 . Most preferably, 0 piece / cm 2 is good.

また、上記転位制御種結晶の上記成長面は、{0001}面よりオフセット角度60°以内の面である。60°を越える場合には、上記SiC単結晶の上記途中表面に、c面ファセットが形成されないおそれがある。また、上記SiC単結晶に積層欠陥が発生し、SiC単結晶の品質が低下するおそれがある。   The growth surface of the dislocation control seed crystal is a surface having an offset angle of 60 ° or less from the {0001} plane. If it exceeds 60 °, c-plane facets may not be formed on the intermediate surface of the SiC single crystal. In addition, stacking faults may occur in the SiC single crystal, and the quality of the SiC single crystal may be reduced.

また、上記螺旋転位発生可能領域は、例えばSiC種結晶の成長面上に、機械加工、研削加工、及びイオン注入処理等の表面処理を施し、その結晶構造に部分的に乱れを生じさせることにより形成することもできる。   In addition, the above-described region where the screw dislocation can be generated is, for example, by subjecting the growth surface of the SiC seed crystal to surface treatment such as machining, grinding, and ion implantation to partially disturb the crystal structure. It can also be formed.

次に、上記SiC種結晶上に成長したSiC単結晶を、上記SiC種結晶の上記成長面と略平行な方向に切断して取り外し、該SiC種結晶上に再びSiC単結晶を成長させることが好ましい(請求項10)
この場合には、上記SiC種結晶から連続的に高品質なSiC単結晶を得ることができる。
一般に、SiCの単結晶成長においては、成長中に成長結晶(SiC単結晶)に異種多形が混入し、成長結晶の品質を著しく劣化させるおそれがある。そのため、種結晶上に成長した成長結晶をスライスして新たに種結晶を作製すると、該種結晶中に、成長結晶に混入した異種多結晶が含まれ種結晶として用いることができないおそれがある。
そこで、上記のごとく、上記SiC種結晶上に成長したSiC単結晶を、上記SiC種結晶の上記成長面と略平行な方向に切断して取り外し、該SiC種結晶上に再びSiC単結晶を成長させると、たとえ成長中に異種多結晶が発生したとしても、成長したSiC単結晶は取り外されるため、繰り返しSiC単結晶の成長を行うことができる。即ち、上記SiC種結晶を繰り返し使い回すことが可能になる。
Next, the SiC single crystal grown on the SiC seed crystal is cut and removed in a direction substantially parallel to the growth surface of the SiC seed crystal, and the SiC single crystal is grown again on the SiC seed crystal. Preferred (Claim 10)
In this case, a high-quality SiC single crystal can be obtained continuously from the SiC seed crystal.
In general, in SiC single crystal growth, different types of polymorphs may be mixed into the growth crystal (SiC single crystal) during growth, and the quality of the growth crystal may be significantly degraded. For this reason, when a seed crystal is newly produced by slicing the grown crystal grown on the seed crystal, the seed crystal may contain a heterogeneous polycrystal mixed in the grown crystal and cannot be used as the seed crystal.
Therefore, as described above, the SiC single crystal grown on the SiC seed crystal is cut and removed in a direction substantially parallel to the growth surface of the SiC seed crystal, and the SiC single crystal is grown again on the SiC seed crystal. Then, even if different types of polycrystals are generated during the growth, the grown SiC single crystal is removed, so that the SiC single crystal can be repeatedly grown. That is, the SiC seed crystal can be used repeatedly.

また、一般に厚みが1mm程度の薄い種結晶を、成長容器の台座に保持して成長させる場合においては、種結晶は台座の熱応力を受けて品質が劣化するため、これを種結晶として繰り返し使い回すことは困難である。しかし、本発明においては、上記のごとく、20mm以上の厚さを有するSiC種結晶を、上記種収容部に埋め込み、上記SiC原料の発生源と離れる方向に後退させて配置して成長を行っている。そのため、台座の熱応力をほとんど受けることはなく、SiC種結晶の品質はほとんど劣化しないため、上記のごとくSiC種結晶を使い回すことができる。   In general, when a thin seed crystal having a thickness of about 1 mm is grown on a growth vessel pedestal, the quality of the seed crystal deteriorates due to the thermal stress of the pedestal. Therefore, this seed crystal is repeatedly used as a seed crystal. It is difficult to turn. However, in the present invention, as described above, the SiC seed crystal having a thickness of 20 mm or more is embedded in the seed accommodating portion, and is retracted and disposed in a direction away from the source of the SiC raw material. Yes. Therefore, the thermal stress of the pedestal is hardly received, and the quality of the SiC seed crystal is hardly deteriorated. Therefore, the SiC seed crystal can be reused as described above.

また、上記SiC種結晶上に成長した上記SiC単結晶には、そのSiC種結晶側に、上記SiC種結晶から継承されたc面に平行な積層欠陥が含まれる場合がある。
したがって、上記SiC種結晶から継承されたc面に平行な積層欠陥を完全に排出するため、上記SiC種結晶上に成長した上記SiC単結晶のうち、積層欠陥を含まない高品質な部分のみを取り外し、積層欠陥が含まれる部分をSiC種結晶側に残して新たなSiC種結晶として用いることが好ましい。即ち、上記SiC種結晶上に成長した上記SiC単結晶を取り外す際に、積層欠陥が含まれる成長高さ以上でSiC単結晶を取り外し、積層欠陥が含まれる成長高さ以下の部分をSiC種結晶に残し、該種結晶を再びSiC種結晶として利用することが好ましい。この場合には、再度成長を行って得られるSiC単結晶は全領域において積層欠陥を含まない高品質なものとなり、歩留まりが向上する。なお、上記の成長高さは、上記SiC単結晶における上記SiC種結晶の成長面からの高さである。
Further, the SiC single crystal grown on the SiC seed crystal may include a stacking fault parallel to the c-plane inherited from the SiC seed crystal on the SiC seed crystal side.
Therefore, in order to completely discharge the stacking faults parallel to the c-plane inherited from the SiC seed crystal, only the high-quality portion that does not include the stacking fault is included in the SiC single crystal grown on the SiC seed crystal. It is preferable to remove and use a new SiC seed crystal, leaving a portion including stacking faults on the SiC seed crystal side. That is, when removing the SiC single crystal grown on the SiC seed crystal, the SiC single crystal is removed at a growth height that includes a stacking fault or higher, and a portion that is less than the growth height that includes a stacking fault is removed from the SiC seed crystal. It is preferable to use the seed crystal again as the SiC seed crystal. In this case, the SiC single crystal obtained by performing the growth again has a high quality that does not include stacking faults in the entire region, and the yield is improved. The growth height is a height from the growth surface of the SiC seed crystal in the SiC single crystal.

(実施例1)
次に、本発明の実施例につき、図1〜図6を用いて説明する。
本例は、成長容器内に20mm以上の厚さを有するSiC種結晶を配置し、該SiC種結晶の成長面上にバルク状のSiC単結晶を成長させてSiC単結晶を製造する例である。
Example 1
Next, an embodiment of the present invention will be described with reference to FIGS.
In this example, an SiC seed crystal having a thickness of 20 mm or more is disposed in a growth vessel, and a bulk SiC single crystal is grown on the growth surface of the SiC seed crystal to produce an SiC single crystal. .

まず、以下のようにして、厚さ20mm以上のSiC種結晶を準備する。具体的には、c面を成長面として露出する種結晶を準備し、該種結晶を成長させた後、20mm以上厚みで切り出してSiC種結晶を作製する。
種結晶の成長には、図1に示すごとく、成長容器2として、SiC原料粉末23が供給される本体部21と、該本体部21から取り外し可能な上蓋22とを有する坩堝を用いた。本体部21は、SiC原料粉末23や、種結晶、SiC単結晶等を出し入れするために、その上部を開口させてあり、上蓋22はこの開口部分を塞ぐように配置される。また、上蓋22は、周囲よりも突出した台座225を有しており、種結晶はこの台座225に配置される。
First, an SiC seed crystal having a thickness of 20 mm or more is prepared as follows. Specifically, a seed crystal that exposes the c-plane as a growth surface is prepared, and after the seed crystal is grown, it is cut out with a thickness of 20 mm or more to produce a SiC seed crystal.
For the growth of the seed crystal, as shown in FIG. 1, a crucible having a main body portion 21 to which the SiC raw material powder 23 was supplied and an upper lid 22 removable from the main body portion 21 was used as the growth container 2. The main body 21 has an upper portion opened to take in and out the SiC raw material powder 23, seed crystal, SiC single crystal and the like, and the upper lid 22 is disposed so as to close the opening. The upper lid 22 has a pedestal 225 that protrudes from the periphery, and the seed crystal is disposed on the pedestal 225.

まず、本体部内の底部にSiC原料粉末23を配置した。また、種結晶1を上蓋22の台座225に接着剤により固定し、この上蓋22を本体部23の開口部分に配置した。このとき、SiC原料粉末23と種結晶1の成長面15とが対向するように、成長面15の反対側の面と台座225とを接着剤により固定した。種結晶1の厚みは、1mmである。
次いで、成長容器2を減圧不活性雰囲気中で温度2100〜2400℃に加熱した。このとき、SiC原料粉末23側の温度を種結晶1側の温度よりも20〜200℃高く設定した。これにより、図2に示すごとく、成長容器2内のSiC原料粉末23が加熱により昇華し、このSiC原料粉末23よりも低温の種結晶1上にSiCが堆積し、SiC単結晶10を得た(昇華再析出法)。
First, the SiC raw material powder 23 was arrange | positioned at the bottom part in a main-body part. The seed crystal 1 was fixed to the base 225 of the upper lid 22 with an adhesive, and the upper lid 22 was disposed in the opening portion of the main body 23. At this time, the surface opposite to the growth surface 15 and the base 225 were fixed with an adhesive so that the SiC raw material powder 23 and the growth surface 15 of the seed crystal 1 face each other. The thickness of the seed crystal 1 is 1 mm.
Next, the growth vessel 2 was heated to a temperature of 2100 to 2400 ° C. in a vacuum inert atmosphere. At this time, the temperature on the SiC raw material powder 23 side was set 20 to 200 ° C. higher than the temperature on the seed crystal 1 side. As a result, as shown in FIG. 2, SiC raw material powder 23 in growth vessel 2 is sublimated by heating, and SiC is deposited on seed crystal 1 at a temperature lower than that of SiC raw material powder 23 to obtain SiC single crystal 10. (Sublimation reprecipitation method).

次いで、このSiC単結晶10を立方体状に成形し、図3に示すごとく、c面を成長面35として露出させてSiC種結晶3を作製した。その厚みは30mmであった。   Next, the SiC single crystal 10 was formed into a cubic shape, and as shown in FIG. 3, the c-plane was exposed as a growth surface 35 to produce a SiC seed crystal 3. Its thickness was 30 mm.

続いて、図3及び図4に示すような成長容器4を用いて、上記SiC種結晶3を成長させる。
同図に示すごとく、成長容器4は、SiC原料粉末43が供給される本体部41と上蓋42とからなる坩堝である。上蓋42は、本体部41から取り外し可能になっており、本体部41の上部の開口部分を塞ぐ上蓋の役割を果たしている。また、上蓋42は、その略中央に、成長容器4の外部に向けて凹んだ種収容部425としての開口部を有しており、SiC種結晶は、この開口部425に配置される。
Subsequently, the SiC seed crystal 3 is grown using a growth vessel 4 as shown in FIGS.
As shown in the figure, the growth vessel 4 is a crucible including a main body 41 and an upper lid 42 to which SiC raw material powder 43 is supplied. The upper lid 42 is detachable from the main body 41 and serves as an upper lid that closes the upper opening of the main body 41. Further, the upper lid 42 has an opening portion as a seed accommodating portion 425 that is recessed toward the outside of the growth vessel 4 at substantially the center thereof, and the SiC seed crystal is disposed in the opening portion 425.

まず、上記のようにして作製したSiC種結晶3の成長面(c面)以外の面に、黒鉛板よりなる保護材38を接着剤で貼付した。
次いで、保護材38を貼付したSiC種結晶3を、その成長面35とSiC原料粉末43とが対向するように、成長容器4における上蓋42の開口部425に埋め込んで配置した。このとき、SiC種結晶3は、その上記成長面35と反対側の裏面36を上記上蓋42の内表面421からSiC原料の発生源、即ち本体部41内のSiC原料粉末43と離れる方向に後退させて配置した。
次に、成長容器4を加熱して、上記と同様の昇華再析出法によりSiC種結晶3上にSiC原料を堆積させて、図4に示すごとくSiC単結晶30を得た。
First, the protective material 38 which consists of a graphite plate was affixed on the surface other than the growth surface (c surface) of the SiC seed crystal 3 produced as described above with an adhesive.
Next, the SiC seed crystal 3 to which the protective material 38 was attached was embedded and arranged in the opening 425 of the upper lid 42 in the growth vessel 4 so that the growth surface 35 and the SiC raw material powder 43 faced each other. At this time, the SiC seed crystal 3 recedes from the inner surface 421 of the upper lid 42 with the back surface 36 opposite to the growth surface 35 in a direction away from the source of SiC raw material, that is, the SiC raw material powder 43 in the main body 41. Arranged.
Next, the growth vessel 4 was heated, and a SiC raw material was deposited on the SiC seed crystal 3 by the same sublimation reprecipitation method as described above to obtain a SiC single crystal 30 as shown in FIG.

続いて、上記のようにして得られたSiC単結晶30を成形し、これを種結晶として用いてさらにSiC単結晶を成長させる。
即ち、図5に示すごとく、上記にて得られたSiC単結晶30を立方体状に成形し、そのc面を成長面55として露出させてSiC種結晶5を作製した。その厚み(高さ)は60mmであった。
このSiC種結晶5の成長面55(c面)以外の面に、上記と同様にして黒鉛板よりなる保護材58を接着剤を用いて貼付し、図5に示すごとく、このSiC種結晶5を成長容器4における上蓋42の開口部425に埋め込んで配置した。このとき、同図に示すごとく、SiC種結晶5は、上記成長面55の反対側の裏面56が上蓋42の内表面421からSiC原料粉末43と離れる方向に後退するよう配置した。そして、成長容器4を加熱して、図6に示すごとく、上記と同様の昇華再析出法によりSiC種結晶5上にSiC原料を堆積させて、SiC単結晶50を得た。
Subsequently, the SiC single crystal 30 obtained as described above is formed, and this is used as a seed crystal to further grow a SiC single crystal.
That is, as shown in FIG. 5, the SiC single crystal 30 obtained above was formed into a cubic shape, and the c-plane was exposed as a growth surface 55 to produce a SiC seed crystal 5. Its thickness (height) was 60 mm.
A protective material 58 made of a graphite plate is attached to a surface other than the growth surface 55 (c-plane) of the SiC seed crystal 5 using an adhesive in the same manner as described above, and as shown in FIG. Was embedded in the opening 425 of the upper lid 42 in the growth vessel 4. At this time, as shown in the figure, the SiC seed crystal 5 was arranged so that the back surface 56 opposite to the growth surface 55 was retracted from the inner surface 421 of the upper lid 42 in a direction away from the SiC raw material powder 43. Then, the growth vessel 4 was heated, and as shown in FIG. 6, a SiC raw material was deposited on the SiC seed crystal 5 by the same sublimation reprecipitation method as described above to obtain a SiC single crystal 50.

本例においては、上記のごとく、SiC種結晶からSiC単結晶を作製し、該SiC単結晶を上記SiC単結晶として再び用いてSiC単結晶の成長を繰り替えし行うことにより、SiC単結晶の長尺化を図ることができた。また、SiC単結晶を繰り返して成長させたときの平均の成長速度は、第1回目の単結晶の成長時とほとんど変わらなかった。即ち、SiC単結晶を繰り替えし成長させても成長速度の低下はほとんどなく、短期間で長尺のSiC単結晶を作製することができた。
また、成長結晶の先細りがなかったことから、SiC種結晶からは熱が効率的に放熱されていたと考えられる。また、SiC単結晶を成長方向と平行にスライスし、透過光学顕微鏡にて観察を行って結晶性を評価した結果、カーボンインクルージョンやクラック等の発生は観察されず、高品質であった。
In this example, as described above, a SiC single crystal is produced from an SiC seed crystal, and the SiC single crystal is reused as the SiC single crystal to repeat the growth of the SiC single crystal. We were able to plan scale. Moreover, the average growth rate when the SiC single crystal was repeatedly grown was almost the same as that during the first single crystal growth. That is, even if the SiC single crystal was repeatedly grown, the growth rate was hardly reduced, and a long SiC single crystal could be produced in a short period of time.
Moreover, since there was no taper of a growth crystal, it is thought that the heat | fever was efficiently thermally radiated from the SiC seed crystal. Moreover, as a result of slicing the SiC single crystal parallel to the growth direction and observing with a transmission optical microscope and evaluating the crystallinity, the occurrence of carbon inclusions and cracks was not observed, and the quality was high.

また、本例においては、例えば図3及び図4に示すごとく、SiC種結晶3の側面部に、該側面部を覆う保護材38を配設した。
そのため、成長容器4の内側において、該成長容器4の内表面から成長する多結晶がSiC種結晶3に悪影響を及ぼして該SiC種結晶3から成長するSiC単結晶30に転位が発生することを防止でき、上記のごとく高品質のSiC単結晶を得ることができた。
In this example, as shown in FIGS. 3 and 4, for example, a protective material 38 covering the side surface portion is disposed on the side surface portion of the SiC seed crystal 3.
Therefore, inside the growth vessel 4, the polycrystal grown from the inner surface of the growth vessel 4 has an adverse effect on the SiC seed crystal 3, and dislocation occurs in the SiC single crystal 30 grown from the SiC seed crystal 3. As described above, a high-quality SiC single crystal could be obtained.

また、本例においては、例えば図3及び図4に示すごとく、SiC種結晶3の側面における成長容器4の外側に位置する部分にも保護材4を配設した。即ち、開口部425にSiC種結晶3を埋め込んで配置したことにより、SiC種結晶3における成長容器4の外側に露出した部分にも、その側面に保護材4を配設してある。また、SiC種結晶3の裏面36にも保護材4を配設してある。そのため、成長容器4の外側において、SiC種結晶からSiCが昇華してしまうことを防止できた。   In this example, as shown in FIGS. 3 and 4, for example, the protective material 4 is also disposed on the side surface of the SiC seed crystal 3 that is located outside the growth vessel 4. That is, since the SiC seed crystal 3 is embedded in the opening 425 and disposed, the protective material 4 is disposed on the side surface of the SiC seed crystal 3 exposed to the outside of the growth vessel 4. A protective material 4 is also provided on the back surface 36 of the SiC seed crystal 3. Therefore, it was possible to prevent SiC from sublimating from the SiC seed crystal outside the growth vessel 4.

(実施例2)
実施例1においては、c軸方向に繰り返し成長させてSiC単結晶の長尺化を図ったが、本例は、SiC種結晶をc軸と垂直な方向(a面方向)に繰り返し成長させてSiC単結晶のc面の大口径化を図った例である。
まず、SiC単結晶から、成長面として{1−100}面を露出した、厚み30mmのSiC種結晶を切り出した。
(Example 2)
In Example 1, the SiC single crystal was elongated by repeatedly growing in the c-axis direction. However, in this example, the SiC seed crystal was repeatedly grown in the direction perpendicular to the c-axis (a-plane direction). This is an example in which the diameter of the c-plane of the SiC single crystal is increased.
First, a SiC seed crystal having a thickness of 30 mm, with the {1-100} plane exposed as a growth surface, was cut out from the SiC single crystal.

続いて、図7に示すごとく、上記にて準備したSiC種結晶6の成長面65({1−100}面)以外の面に、黒鉛板よりなる保護材68を接着剤を用いて貼付した。
次いで、実施例1と同様の成長容器4を準備し、上記SiC種結晶6は、成長容器4における上蓋42の開口部425に埋め込み、その成長面65と反対側の裏面66を上蓋42の内表面421からSiC原料粉末43と離れる方向に後退させて配置した。そして、図8に示すごとく、成長容器4を加熱して、実施例1と同様に昇華再析出法によりSiC種結晶6上にSiC原料を堆積させてSiC単結晶60を得た。
Subsequently, as shown in FIG. 7, a protective material 68 made of a graphite plate was attached to a surface other than the growth surface 65 ({1-100} surface) of the SiC seed crystal 6 prepared above using an adhesive. .
Next, the same growth vessel 4 as in Example 1 is prepared, and the SiC seed crystal 6 is embedded in the opening 425 of the upper lid 42 in the growth vessel 4, and the back surface 66 on the opposite side of the growth surface 65 is placed inside the upper lid 42. The surface 421 was disposed so as to recede in a direction away from the SiC raw material powder 43. Then, as shown in FIG. 8, the growth vessel 4 was heated and the SiC raw material was deposited on the SiC seed crystal 6 by the sublimation reprecipitation method in the same manner as in Example 1 to obtain the SiC single crystal 60.

次いで、上記のようにして得られたSiC単結晶60を立方体状に成形し、図9に示すごとく、{11−20}面を成長面615として露出するSiC種結晶61を作製した。このSiC種結晶61の成長面615({11−20}面)以外の面に、上記と同様に保護材68を貼付した。そして、図9に示すごとく、この{11−20}面を成長面615として露出するSiC種結晶61を、成長容器4における上蓋42の開口部425に埋め込んで、SiC種結晶61における成長面615と反対側の裏面616が上蓋42の内表面421からSiC原料粉末43と離れる方向に後退するようにこれを配置した。そして、成長容器4を加熱して、図10に示すごとく上記と同様の昇華再析出法によりSiC種結晶61上にSiC原料を堆積させて、SiC単結晶62を得た。   Next, SiC single crystal 60 obtained as described above was formed into a cubic shape, and as shown in FIG. 9, SiC seed crystal 61 exposing {11-20} plane as growth surface 615 was produced. A protective material 68 was attached to a surface other than the growth surface 615 ({11-20} surface) of the SiC seed crystal 61 in the same manner as described above. Then, as shown in FIG. 9, the SiC seed crystal 61 that exposes the {11-20} plane as the growth surface 615 is embedded in the opening 425 of the upper lid 42 in the growth vessel 4 to grow the growth surface 615 in the SiC seed crystal 61. This was arranged so that the back surface 616 opposite to the inner surface 421 of the upper lid 42 was retracted in the direction away from the SiC raw material powder 43. Then, the growth vessel 4 was heated, and an SiC raw material was deposited on the SiC seed crystal 61 by the same sublimation reprecipitation method as described above, as shown in FIG.

次いで、上記のようにして得られたSiC単結晶62を立方体状に成形し、図11に示すごとく、{0001}面を成長面635と露出させたSiC種結晶63を作製した。このSiC種結晶63の成長面635({0001}面)以外の面に、上記と同様にして黒鉛板よりなる保護材68を接着剤を用いて貼付し、このSiC種結晶63を、成長容器4における上蓋42の開口部425に埋め込み、その成長面635と反対側の裏面636が上蓋42の内表面421からSiC原料粉末43と離れる方向に後退するように配置した。そして、成長容器4を加熱して、図12に示すごとく、上記と同様の昇華再析出法によりSiC種結晶63上にSiC原料を堆積させて、SiC単結晶64を得た。   Next, the SiC single crystal 62 obtained as described above was formed into a cubic shape, and as shown in FIG. 11, a SiC seed crystal 63 having the {0001} plane exposed from the growth surface 635 was produced. A protective material 68 made of a graphite plate is attached to a surface other than the growth surface 635 ({0001} surface) of the SiC seed crystal 63 in the same manner as described above, and the SiC seed crystal 63 is attached to the growth container. 4 is embedded in the opening 425 of the upper lid 42, and the rear surface 636 opposite to the growth surface 635 is disposed so as to recede from the inner surface 421 of the upper lid 42 in a direction away from the SiC raw material powder 43. Then, the growth vessel 4 was heated, and as shown in FIG. 12, a SiC raw material was deposited on the SiC seed crystal 63 by the same sublimation reprecipitation method as described above to obtain a SiC single crystal 64.

上記のごとく、本例においては、まず、成長面としてa面({11−20}面及び{1−100}面)を露出させてSiCの成長を行っている。これは所謂a面成長であり、このa面成長を繰り返し行うことにより、得られるSiC単結晶のc面の大口径化を図ることができる。また、螺旋転位やマイクロパイプ欠陥のほとんどないSiC単結晶を得ることができる。
また、本例においては、a面成長を繰り返した後、さらにc面成長を行っている。そのため、螺旋転位やマイクロパイプ欠陥に加えて、積層欠陥のほとんどないSiC単結晶64を得ることができる。また、SiC単結晶64は、図12に示すごとく、大口径で長尺のものとすることができる。
As described above, in this example, first, SiC is grown by exposing the a-plane ({11-20} plane and {1-100} plane) as the growth plane. This is so-called a-plane growth, and by repeating this a-plane growth, the diameter of the c-plane of the obtained SiC single crystal can be increased. In addition, an SiC single crystal having almost no screw dislocations or micropipe defects can be obtained.
In this example, after repeating a-plane growth, c-plane growth is further performed. Therefore, it is possible to obtain SiC single crystal 64 having almost no stacking faults in addition to screw dislocations and micropipe defects. Further, as shown in FIG. 12, the SiC single crystal 64 can have a large diameter and a long length.

また、実施例1と同様に、本例においてもSiC単結晶の平均の成長速度は通常の単結晶成長時とかわず、SiC単結晶を繰り返して成長させても成長速度の低下はほとんどおこらなかった。その結果、大口径かつ長尺のSiC単結晶を短時間で作製することができた。
また、成長結晶の先細りがなかったことから、SiC種結晶からは熱が効率的に放熱されていたと考えられる。また、SiC単結晶を成長方向と平行にスライスし、透過光学顕微鏡にて観察を行って結晶性を評価した結果、カーボンインクルージョンやクラック等の発生は観察されず、高品質であった。
As in Example 1, in this example, the average growth rate of the SiC single crystal was not different from that in the normal single crystal growth, and the growth rate was hardly lowered even when the SiC single crystal was repeatedly grown. . As a result, a large-diameter and long SiC single crystal could be produced in a short time.
Moreover, since there was no taper of the growth crystal, it is considered that heat was efficiently radiated from the SiC seed crystal. Moreover, as a result of slicing the SiC single crystal parallel to the growth direction and observing with a transmission optical microscope and evaluating the crystallinity, the occurrence of carbon inclusions and cracks was not observed, and the quality was high.

(実施例3)
本例は、成長面に螺旋転位発生可能領域を有する転位制御種結晶を作製し、該転位制御種結晶を用いて、SiC単結晶を作製する例である。
以下、本例について図13〜図17を用いて説明する。まず、以下のようにして上記転位制御種結晶を準備する。
具体的には、まず図13に示すごとく、<0001>方向と略平行な面({1−100}面)を成長面715として露出した、厚さ30mmのSiC種結晶71を準備した。
このSiC種結晶71は、c面成長により作製された4H多形のSiC単結晶より、<0001>方向と平行な面である{1−100}面を露出するようにして切り出されて作製されたものである。SiC種結晶71は、その内部に螺旋転位79を螺旋転位密度100個/cm2以上有している。
(Example 3)
In this example, a dislocation control seed crystal having a region capable of generating a screw dislocation on the growth surface is produced, and an SiC single crystal is produced using the dislocation control seed crystal.
Hereinafter, this example will be described with reference to FIGS. First, the dislocation control seed crystal is prepared as follows.
Specifically, as shown in FIG. 13, an SiC seed crystal 71 having a thickness of 30 mm was prepared in which a plane ({1-100} plane) substantially parallel to the <0001> direction was exposed as a growth plane 715.
This SiC seed crystal 71 is produced by cutting a 4H polymorphic SiC single crystal produced by c-plane growth so that the {1-100} plane, which is a plane parallel to the <0001> direction, is exposed. It is a thing. The SiC seed crystal 71 has therein screw dislocations 79 having a density of 100 screw dislocations / cm 2 or more.

次に、実施例2と同様の成長容器を準備し、実施例2と同様に該成長容器における上蓋の開口部に上記SiC単結晶71を埋め込み、その裏面を上蓋の内表面から後退させて配置し、昇華再析出法によりSiC種結晶71上にSiC単結晶を成長させた(図7〜図10参照)。なお、SiC種結晶の成長面以外の面には、実施例2と同様に予め黒鉛よりなる保護材を貼付しておく。このようにして、図14に示すごとく、上記SiC種結晶71を<1−100>方向に成長させて、さらに、図15に示すごとく、<11−20>方向に成長させてSiC単結晶72を作製した。   Next, a growth vessel similar to that of Example 2 was prepared, and the SiC single crystal 71 was embedded in the opening of the upper lid in the growth vessel, and the rear surface thereof was set back from the inner surface of the upper lid, as in Example 2. Then, a SiC single crystal was grown on the SiC seed crystal 71 by the sublimation reprecipitation method (see FIGS. 7 to 10). In addition, a protective material made of graphite is attached in advance to the surface other than the growth surface of the SiC seed crystal in the same manner as in Example 2. In this way, the SiC seed crystal 71 is grown in the <1-100> direction as shown in FIG. 14, and further grown in the <11-20> direction as shown in FIG. Was made.

このSiC単結晶72は、上記SiC種結晶71以外の領域には、螺旋転位79をほとんど含有していない。続いて、このSiC単結晶72より、その{0001}面から8°傾いた面が成長面として露出するように種結晶を切り出し、図16に示すごとく、これを転位制御種結晶7とした。
このとき、SiC種結晶71の少なくとも一部が残るように上記転位制御種結晶7を切り出すことにより、転位制御種結晶7は、図16に示すごとく、上記螺旋転位発生可能領域75として、螺旋転位密度100個/cm2以上で螺旋転位を露出する領域を有すると共に、螺旋転位密度100個/cm2未満の低密度螺旋転位領域76を有するものとなる。また、螺旋転位発生可能領域75は、上記転位制御種結晶7における端部の成長面上の約25%の領域に形成されていた。
This SiC single crystal 72 contains almost no screw dislocations 79 in a region other than the SiC seed crystal 71. Subsequently, a seed crystal was cut out from the SiC single crystal 72 so that a surface inclined by 8 ° from the {0001} plane was exposed as a growth surface, and this was used as a dislocation control seed crystal 7 as shown in FIG.
At this time, the dislocation control seed crystal 7 is cut out so that at least a part of the SiC seed crystal 71 remains, so that the dislocation control seed crystal 7 becomes a screw dislocation generation region 75 as shown in FIG. It has a region where the screw dislocation is exposed at a density of 100 / cm 2 or more, and a low density screw dislocation region 76 having a screw dislocation density of less than 100 / cm 2 . Further, the screw dislocation generation possible region 75 was formed in a region of about 25% on the growth surface at the end of the dislocation control seed crystal 7.

本例においては、上記のごとく、まず、実施例1及び実施例2と同様の、上蓋に種収容部を有した成長容器を用い、該種収容部に上記SiC種結晶を埋め込み、上蓋の内表面からSiC原料の発生源と離れる方向に後退させて配置し、a面成長を行ってSiC単結晶を作製した。そのため、c面が大口径のSiC単結晶を得ることができ、さらに上記のごとく、該SiC単結晶から種結晶を切り出すことにより、大口径の転位制御種結晶を得ることができた。   In this example, as described above, first, a growth vessel having a seed container in the upper lid, as in Examples 1 and 2, was used, and the SiC seed crystal was embedded in the seed container, The SiC single crystal was produced by performing a-plane growth by arranging it so as to recede from the surface in a direction away from the source of the SiC raw material. Therefore, a SiC single crystal having a large c-plane diameter can be obtained, and as described above, a large-diameter dislocation-controlled seed crystal can be obtained by cutting a seed crystal from the SiC single crystal.

次に、上記転位制御種結晶7を用いて、SiC単結晶を作製する。
図17に示すごとく、螺旋転位制御結晶7は、{0001}面よりオフセット角度60°以内の面を上記成長面77として有し、成長中の上記SiC単結晶70に螺旋転位79を螺旋転位密度100個/cm2以上で発生することができる螺旋転位発生可能領域75を、上記成長面77上の50%以下の領域に有すると共に、上記成長面77上における上記螺旋転位発生可能領域77以外の領域には、上記成長面77上に露出している螺旋転位が螺旋転位密度100個/cm2未満である低密度螺旋転位領域76を有する。
Next, a SiC single crystal is produced using the dislocation control seed crystal 7.
As shown in FIG. 17, the screw dislocation control crystal 7 has a surface within an offset angle of 60 ° from the {0001} plane as the growth surface 77, and the screw dislocation density of the screw dislocation 79 is formed in the growing SiC single crystal 70. 100 pieces / cm screw dislocation generation region 75 can be generated by two or more, which has 50% or less area on the growth surface 77, other than the screw dislocation generation region 77 on the growth surface 77 The region has a low density screw dislocation region 76 in which screw dislocations exposed on the growth surface 77 are less than 100 screw dislocation density / cm 2 .

そして、該転位制御種結晶7の上記成長面上に上記SiC単結晶を成長させるときにおいては、上記転位制御種結晶7の成長途中の表面である途中表面703に、平坦なc面ファセット705が形成され、かつ該c面ファセット705と、上記成長面77上の上記螺旋転位発生可能領域75をc軸方向又は上記成長面77に垂直な方向において上記途中表面703に投影した領域とが、少なくとも一部で重なるようにSiC単結晶70を成長させる。   When the SiC single crystal is grown on the growth surface of the dislocation control seed crystal 7, a flat c-plane facet 705 is formed on the intermediate surface 703 that is a surface in the middle of the growth of the dislocation control seed crystal 7. The c-plane facet 705 formed and at least a region obtained by projecting the helical dislocation generation region 75 on the growth surface 77 onto the intermediate surface 703 in the c-axis direction or the direction perpendicular to the growth surface 77 is at least The SiC single crystal 70 is grown so as to partially overlap.

上記転位制御種結晶上へのSiC単結晶の成長は、昇華再析出法によりおこなう。また、成長容器としては、図1に示すものと同様の、上蓋22に周囲よりも突出した台座225を有した成長容器2を用いた(図1及び図2参照)。   The growth of the SiC single crystal on the dislocation control seed crystal is performed by a sublimation reprecipitation method. Further, as the growth vessel, the growth vessel 2 having a pedestal 225 projecting from the surroundings on the upper lid 22 was used, as shown in FIG. 1 (see FIGS. 1 and 2).

具体的には、まず、図17に示すごとく、成長容器の上蓋22の台座225に上記転位制御種結晶7を配置した。このとき、該転位制御種結晶7を、その上記成長面77とSiC原料の発生源とが対向するように配置した。
次いで、実施例1と同様に、昇華再析出法により転位制御種結晶7の成長面77上に、SiCを堆積させ、SiC単結晶70を成長させた(昇華再析出法)。
Specifically, as shown in FIG. 17, the dislocation control seed crystal 7 was first placed on the base 225 of the upper lid 22 of the growth vessel. At this time, the dislocation control seed crystal 7 was arranged so that the growth surface 77 and the source of the SiC raw material faced each other.
Next, similarly to Example 1, SiC was deposited on the growth surface 77 of the dislocation control seed crystal 7 by the sublimation reprecipitation method to grow the SiC single crystal 70 (sublimation reprecipitation method).

このとき、図17に示すごとく、成長中のSiC単結晶70の途中表面703には、{0001}面と略平行なc面ファセット705が形成される。上記転位制御種結晶7は、{0001}面より8°傾いた面を成長面77としているため、成長と共に形成されるc面ファセット105は、途中表面703の端部に形成される。
一方、上記転位制御種結晶7の上記螺旋転位発生可能領域75からは、成長中のSiC単結晶70中に螺旋転位79が継承される。
At this time, as shown in FIG. 17, c-plane facets 705 substantially parallel to the {0001} plane are formed on the intermediate surface 703 of the growing SiC single crystal 70. Since the dislocation control seed crystal 7 has a growth surface 77 that is inclined by 8 ° from the {0001} plane, the c-plane facet 105 formed along with the growth is formed at the end of the intermediate surface 703.
On the other hand, the screw dislocation generation region 75 of the dislocation control seed crystal 7 inherits the screw dislocation 79 in the growing SiC single crystal 70.

本例においては、上記のごとく、螺旋転位発生可能領域75を転位制御種結晶7の端部に形成し、{0001}面からオフセット角度8°の面を成長面としたことにより、成長と共に形成されるc面ファセット705と、上記成長面77上の上記螺旋転位発生可能領域75をc軸方向又は上記成長面77に垂直な方向において上記途中表面703に投影した領域とが、少なくとも一部で重なるようにSiC単結晶70が成長する。なお、図17においては、上記螺旋転位発生可能領域75をc軸方向において途中表面703に投影した領域を矢印aで示し、上記成長面77に垂直な方向において途中表面703に投影した領域を矢印bで示した。   In the present example, as described above, the spiral dislocation generation possible region 75 is formed at the end of the dislocation control seed crystal 7 and is formed along with the growth by forming a plane having an offset angle of 8 ° from the {0001} plane. At least a portion of the c-plane facet 705 that is projected onto the intermediate surface 703 in the c-axis direction or the direction perpendicular to the growth surface 77. SiC single crystal 70 grows so as to overlap. In FIG. 17, an area where the spiral dislocation generation possible region 75 is projected onto the intermediate surface 703 in the c-axis direction is indicated by an arrow a, and an area projected onto the intermediate surface 703 in the direction perpendicular to the growth surface 77 is indicated by an arrow. Indicated by b.

そのため、図17に示すごとく、SiC単結晶70の成長中においては、常にc面ファセット705内には螺旋転位79(または貫通欠陥)が存在し続け、4H多形のステップ供給源として機能した。
その結果、本例において得られたSiC単結晶70には、異種多形結晶の二次元核生成が発生することなく、異方位結晶が生じることはなかった。
Therefore, as shown in FIG. 17, during the growth of the SiC single crystal 70, the screw dislocations 79 (or threading defects) always existed in the c-plane facet 705 and functioned as a 4H polymorphic step source.
As a result, in the SiC single crystal 70 obtained in this example, two-dimensional nucleation of heterogeneous polymorphic crystals did not occur, and different orientation crystals did not occur.

また、本例においては、螺旋転位79は、螺旋転位発生可能領域75とc面ファセット705との間の局所的な領域に発生しており、低密度螺旋転位領域76からは螺旋転位はほとんど継承されていなかった。
そのため、本例において得られたSiC単結晶70は、螺旋転位が少なく、高品質でSiC半導体などの用途に適したものであった。
In this example, the screw dislocation 79 is generated in a local region between the screw dislocation generation region 75 and the c-plane facet 705, and the screw dislocation is almost inherited from the low density screw dislocation region 76. Was not.
Therefore, the SiC single crystal 70 obtained in this example has few screw dislocations and is high quality and suitable for applications such as SiC semiconductors.

(実施例4)
本例は、成長面に螺旋転位発生可能領域を有する転位制御種結晶上に、SiC単結晶を繰り返し作製する例である。
以下、本例について、図18及び図19を用いて説明する。
まず、上記実施例3と同様にして、SiC種結晶として転位制御種結晶7を準備した。この転位制御種結晶7は、{0001}面よりオフセット角度8°の面を成長面77として有し、螺旋転位発生可能領域75として、螺旋転位密度100個/cm2以上で螺旋転位を露出する領域を有すると共に、螺旋転位密度100個/cm2未満の低密度螺旋転位領域76を有するものである。また、螺旋転位発生可能領域75は、転位制御種結晶7における端部の成長面上の約25%の領域に形成されている。また、本例においては、転位制御種結晶7の厚みは30mmである。
この転位制御種結晶7の成長面77以外の面には、黒鉛板よりなる保護材78を接着剤にて貼付した。
(Example 4)
In this example, a SiC single crystal is repeatedly formed on a dislocation control seed crystal having a region capable of generating a screw dislocation on the growth surface.
Hereinafter, this example will be described with reference to FIGS.
First, in the same manner as in Example 3, a dislocation control seed crystal 7 was prepared as an SiC seed crystal. This dislocation control seed crystal 7 has a plane with an offset angle of 8 ° from the {0001} plane as a growth plane 77, and exposes screw dislocations as a screw dislocation generation region 75 at a screw dislocation density of 100 pieces / cm 2 or more. And a low density screw dislocation region 76 having a screw dislocation density of less than 100 / cm 2 . Further, the screw dislocation generation possible region 75 is formed in a region of about 25% on the growth surface at the end of the dislocation control seed crystal 7. In this example, the thickness of the dislocation control seed crystal 7 is 30 mm.
A protective material 78 made of a graphite plate was attached to the surface other than the growth surface 77 of the dislocation control seed crystal 7 with an adhesive.

また、図18に示すごとく、実施例1と同様の上蓋に種収容部425としての開口部を有する成長容器を準備し、成長容器の本体部には、SiC原料粉末を供給した。
次いで、保護材78を貼付した転位制御種結晶7を、実施例1と同様に、成長容器における上蓋42の開口部425に埋め込んで配置した。このとき、転位制御種結晶7は、その成長面77と反対側の裏面711を上蓋42の内表面421からSiC原料の発生源、即ち本体部内のSiC原料粉末と離れる方向に後退させて配置した。
次に、成長容器を加熱して、実施例1と同様の昇華再析出法により、転位制御種結晶7上にSiC原料を堆積させて、SiC単結晶70を成長させた。
本例においては、実施例3と同様に、螺旋転位発生可能領域75を転位制御種結晶7の端部に形成し、{0001}面からオフセット角度8°の面を成長面としたことにより、成長と共に形成されるc面ファセット705と、上記成長面77上の上記螺旋転位発生可能領域75をc軸方向又は上記成長面77に垂直な方向において上記途中表面703に投影した領域とが、少なくとも一部で重なるようにSiC単結晶70が成長する。なお、図18においては、螺旋転位発生可能領域75をc軸方向において途中表面703に投影した領域を矢印aで示し、上記成長面77に垂直な方向において途中表面703に投影した領域を矢印bで示してある。
Further, as shown in FIG. 18, a growth vessel having an opening as a seed accommodating portion 425 on an upper lid similar to that in Example 1 was prepared, and SiC raw material powder was supplied to the main body of the growth vessel.
Next, the dislocation control seed crystal 7 to which the protective material 78 was attached was embedded in the opening 425 of the upper lid 42 in the growth vessel in the same manner as in Example 1. At this time, the dislocation control seed crystal 7 is disposed with the back surface 711 opposite to the growth surface 77 set back from the inner surface 421 of the upper lid 42 in a direction away from the source of SiC raw material, that is, the SiC raw material powder in the main body. .
Next, the growth vessel was heated, and an SiC raw material was deposited on the dislocation control seed crystal 7 by the sublimation reprecipitation method similar to that of Example 1, thereby growing the SiC single crystal 70.
In this example, as in Example 3, the screw dislocation generation possible region 75 is formed at the end of the dislocation control seed crystal 7, and the surface having an offset angle of 8 ° from the {0001} plane is used as the growth surface. A c-plane facet 705 formed along with growth, and a region obtained by projecting the helical dislocation generation possible region 75 on the growth surface 77 onto the intermediate surface 703 in the c-axis direction or the direction perpendicular to the growth surface 77. SiC single crystal 70 grows so as to partially overlap. In FIG. 18, a region where the screw dislocation generation possible region 75 is projected onto the intermediate surface 703 in the c-axis direction is indicated by an arrow a, and a region projected onto the intermediate surface 703 in the direction perpendicular to the growth surface 77 is indicated by the arrow b. It is shown by.

そのため、実施例3と同様に、SiC単結晶70の成長中においては、常にc面ファセット705内には螺旋転位79(または貫通欠陥)が存在し続け、4H多形のステップ供給源として機能した。それ故、異方位結晶や螺旋転位が非常に少なく、高品質なSiC単結晶を得ることができた。   Therefore, similarly to Example 3, during the growth of the SiC single crystal 70, the screw dislocations 79 (or threading defects) always existed in the c-plane facet 705 and functioned as a 4H polymorphic step source. . Therefore, it was possible to obtain a high-quality SiC single crystal with very few different orientation crystals and screw dislocations.

続いて、図19に示すごとく、転位制御種結晶7上に成長したSiC単結晶を、転位制御種結晶7の成長面77と略平行な方向に切断して取りはずした。
そして、SiC単結晶を取り外した後の転位制御種結晶7を用いて、その成長面77上に再びSiC単結晶を成長させた。
このようにして、SiC種結晶としての転位制御種結晶7上にSiC単結晶を繰り返し成長させることができ、また得られたSiC単結晶は非常に高品質なものであった。なお、図19においては、切断して取り外したSiC単結晶を点線で表してある。
Subsequently, as shown in FIG. 19, the SiC single crystal grown on the dislocation control seed crystal 7 was removed by cutting in a direction substantially parallel to the growth surface 77 of the dislocation control seed crystal 7.
Then, the SiC single crystal was again grown on the growth surface 77 by using the dislocation control seed crystal 7 after the SiC single crystal was removed.
In this way, the SiC single crystal can be repeatedly grown on the dislocation control seed crystal 7 as the SiC seed crystal, and the obtained SiC single crystal has a very high quality. In FIG. 19, the SiC single crystal cut and removed is indicated by a dotted line.

また、本例においては、図19に示すごとく、転位制御種結晶7上に成長したSiC単結晶をすべて切断して取り外したが、成長したSiC単結晶のうちの一部をSiC種結晶側に残して切断し、これを新たな種結晶として用いることもできる。   Further, in this example, as shown in FIG. 19, all of the SiC single crystal grown on the dislocation control seed crystal 7 was cut and removed, but a part of the grown SiC single crystal was moved to the SiC seed crystal side. It can also be cut off and used as a new seed crystal.

(実施例5)
本例においては、保護材とSiC種結晶との間に、両者の間に働く熱応力を緩和するための応力緩衝材を配設した例につき、図20を用いて説明する。
まず、SiC単結晶から、厚み30mmのSiC種結晶8を切り出した。図20に示すごとく、上記にて準備したSiC種結晶8の側面及び成長面85と反対側の裏面86に、応力緩衝材87として柔軟性黒鉛シートを接着剤を用いて貼付した。さらに、SiC種結晶8の側面と保護材とで応力緩衝材87を挟むように、応力緩衝材87に保護材88を接着剤で貼付した。また、SiC種結晶8の成長面85と反対側の裏面86にも、応力緩衝材87を挟むように保護材88を貼付した。
(Example 5)
In this example, an example in which a stress buffer material for relaxing thermal stress acting between the protective material and the SiC seed crystal is disposed will be described with reference to FIG.
First, a SiC seed crystal 8 having a thickness of 30 mm was cut out from the SiC single crystal. As shown in FIG. 20, a flexible graphite sheet as a stress buffer material 87 was attached to the side surface of the SiC seed crystal 8 prepared above and the back surface 86 opposite to the growth surface 85 using an adhesive. Further, a protective material 88 was attached to the stress buffer material 87 with an adhesive so that the stress buffer material 87 was sandwiched between the side surface of the SiC seed crystal 8 and the protective material. In addition, a protective material 88 was attached to the back surface 86 opposite to the growth surface 85 of the SiC seed crystal 8 so as to sandwich the stress buffer material 87.

次いで、図20に示すごとく、実施例1と同様の上蓋42に開口部425を有する成長容器4を準備し、応力緩衝材87及び保護材88を貼付したSiC種結晶8を、上蓋42の開口部425に埋め込んで配置した。このとき、SiC種結晶8は、その成長面85と反対側の裏面86を上蓋42の内表面421からSiC原料の発生源、即ち本体部内のSiC原料粉末43と離れる方向に後退させて配置した。次に、成長容器4を加熱して、上記と同様の昇華再析出法によりSiC種結晶8上にSiC原料を堆積させて、図20に示すごとくSiC単結晶80を得た。   Next, as shown in FIG. 20, the growth vessel 4 having the opening 425 is prepared in the upper lid 42 similar to that of the first embodiment, and the SiC seed crystal 8 to which the stress buffer material 87 and the protective material 88 are pasted is It was embedded in the part 425. At this time, the SiC seed crystal 8 is disposed such that the back surface 86 opposite to the growth surface 85 is set back from the inner surface 421 of the upper lid 42 in a direction away from the source of SiC raw material, that is, the SiC raw material powder 43 in the main body. . Next, the growth vessel 4 was heated, and a SiC raw material was deposited on the SiC seed crystal 8 by the same sublimation reprecipitation method as described above to obtain a SiC single crystal 80 as shown in FIG.

本例においては、保護材88とSiC種結晶8との間に応力緩衝材87を配設した。そのため、SiC種結晶8と保護材88との熱膨張差に起因した応力を緩衝することができる。そのため、SiC種結晶8に応力がほとんどかからない状態でSiC単結晶80を成長させることができ、格子面の反りやマクロ欠陥の発生を防止することができる。そのため、非常に高品質なSiC単結晶80を得ることができた。   In this example, a stress buffer material 87 is disposed between the protective material 88 and the SiC seed crystal 8. Therefore, the stress resulting from the difference in thermal expansion between SiC seed crystal 8 and protective material 88 can be buffered. Therefore, SiC single crystal 80 can be grown in a state where stress is hardly applied to SiC seed crystal 8, and the occurrence of lattice plane warpage and macro defects can be prevented. Therefore, a very high quality SiC single crystal 80 could be obtained.

上記の例においては、応力緩衝材を種結晶と保護材との間に配設したが、図21に示すごとく、応力緩衝材87を保護材88と上蓋42との間に配設することもできる。
この場合には、保護材88と上蓋42との熱膨張差に起因した応力を緩衝することができる。そのため、SiC種結晶に応力がほとんどかからない状態でSiC単結晶を成長させることができ、高品質なSiC単結晶を得ることができる。
In the above example, the stress buffer material is disposed between the seed crystal and the protective material. However, as shown in FIG. 21, the stress buffer material 87 may be disposed between the protective material 88 and the upper lid 42. it can.
In this case, the stress resulting from the difference in thermal expansion between the protective material 88 and the upper lid 42 can be buffered. Therefore, a SiC single crystal can be grown in a state where stress is hardly applied to the SiC seed crystal, and a high-quality SiC single crystal can be obtained.

(比較例1)
次に、成長容器の上蓋に一体的に形成した台座上にSiC種結晶を配置して、該SiC種結晶上にSiC単結晶を繰り返し成長させた例について説明する。
本例においては、図23に示すごとく、成長容器91として、SiC原料粉末93が供給される本体部911と、該本体部911から取り外し可能な上蓋912とを有する坩堝を用いた。本体部911は、SiC原料粉末93や、種結晶、SiC単結晶等を出し入れするために、その上部を開口させてあり、上蓋912はこの開口部分を塞ぐように配置される。また、上蓋912は、周囲よりも突出した台座913を有しており、種結晶はこの台座913に配置される。
(Comparative Example 1)
Next, an example will be described in which an SiC seed crystal is disposed on a pedestal formed integrally with the upper lid of the growth vessel, and an SiC single crystal is repeatedly grown on the SiC seed crystal.
In this example, as shown in FIG. 23, a crucible having a main body 911 to which SiC raw material powder 93 is supplied and an upper lid 912 that can be removed from the main body 911 is used as the growth container 91. The main body 911 has an opening at the top thereof for taking in and out the SiC raw material powder 93, seed crystal, SiC single crystal and the like, and the upper lid 912 is disposed so as to close the opening. The upper lid 912 has a pedestal 913 protruding from the periphery, and the seed crystal is arranged on the pedestal 913.

上記成長容器91の本体部911内にSiC原料粉末93を配置した。また、成長面95としてc面を露出した種結晶9を上蓋912の台座913に接着剤を用いて固定し、この上蓋912を本体部911の開口部分に配置した。このとき、SiC原料粉末93と種結晶9の成長面95とが対向するように、種結晶9は、成長面95の反対側の面と台座913とを接着剤により固定した。   SiC raw material powder 93 was placed in the main body 911 of the growth vessel 91. The seed crystal 9 with the c-plane exposed as the growth surface 95 was fixed to the pedestal 913 of the upper lid 912 using an adhesive, and the upper lid 912 was disposed in the opening of the main body 911. At this time, the seed crystal 9 fixed the surface opposite to the growth surface 95 and the base 913 with an adhesive so that the SiC raw material powder 93 and the growth surface 95 of the seed crystal 9 face each other.

次いで、成長容器91を減圧不活性雰囲気中で温度2100〜2400℃に加熱した。このとき、SiC原料粉末93側の温度を種結晶9側の温度よりも20〜200℃高く設定した。これにより、図23に示すごとく、成長容器91内のSiC原料粉末93が加熱により昇華し、このSiC原料粉末93よりも低温の種結晶9上にSiCが堆積し、SiC単結晶90が成長した(昇華再析出法)。
さらに成長を続けると、SiC原料粉末93が昇華により枯渇したため、原料を交換し改めて同じ時間だけ昇華再析出法による成長を行った。
Next, the growth vessel 91 was heated to a temperature of 2100 to 2400 ° C. in a vacuum inert atmosphere. At this time, the temperature on the SiC raw material powder 93 side was set 20 to 200 ° C. higher than the temperature on the seed crystal 9 side. Accordingly, as shown in FIG. 23, SiC raw material powder 93 in growth vessel 91 is sublimated by heating, SiC is deposited on seed crystal 9 at a temperature lower than SiC raw material powder 93, and SiC single crystal 90 is grown. (Sublimation reprecipitation method).
As the growth continued, the SiC raw material powder 93 was depleted by sublimation, so that the raw material was replaced and growth was performed again by the sublimation reprecipitation method for the same time.

その結果、二回目の成長時の成長速度は、一回目の成長速度と比較して極端に遅くなった。また、図23に示すごとく、本例にて得られたSiC単結晶90は、その先端部905が先細りしていた。これは成長と共に、単結晶90からの放熱性が低下したためと考えられる。
また、得られたSiC単結晶90を成長方向にスライスし、透過光学顕微鏡にて観察を行って結晶性を評価したところ、継ぎ足し界面にカーボンインクルージョンが観察され、また先端部905には、微小なクラックが発生していた。これは、SiC単結晶90の周囲に成長した多結晶99がSiC単結晶90に悪影響を及ぼしたためであると考えられる。なお、図23においては、SiC単結晶の周囲に成長した多結晶99を2種類のハッチングを用いて表しており、縦線と横線との格子で示した部分は1回目の成長時に発生した多結晶であり、斜め線の格子で表された部分は2回目の成長時に発生した多結晶99である。
As a result, the growth rate during the second growth was extremely slow compared to the first growth rate. Further, as shown in FIG. 23, the tip portion 905 of the SiC single crystal 90 obtained in this example was tapered. This is considered to be because the heat dissipation from the single crystal 90 decreased with the growth.
Further, when the obtained SiC single crystal 90 was sliced in the growth direction and observed with a transmission optical microscope to evaluate the crystallinity, carbon inclusion was observed at the added interface, and the tip 905 had a minute amount. Cracks have occurred. This is presumably because the polycrystal 99 grown around the SiC single crystal 90 had an adverse effect on the SiC single crystal 90. In FIG. 23, the polycrystal 99 grown around the SiC single crystal is represented by using two types of hatching, and the portion indicated by the lattice of the vertical line and the horizontal line is the polycrystal generated during the first growth. The portion of the crystal, which is represented by the diagonal line lattice, is the polycrystal 99 generated during the second growth.

実施例1にかかる、上蓋に種結晶を配置するための台座を有する成長容器の概略を示す説明図。Explanatory drawing which shows the outline of the growth container concerning Example 1 which has the base for arrange | positioning a seed crystal to an upper cover. 実施例1にかかる、上蓋に種結晶を配置するための台座を有する成長容器を用いて、種結晶上にSiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that a SiC single crystal is grown on a seed crystal using the growth container which has the base for arrange | positioning a seed crystal to an upper cover concerning Example 1. FIG. 実施例1にかかる、成長容器の上蓋に形成された種収容部に、SiC種結晶を上蓋の内表面から後退させるように配置した様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal was arrange | positioned in the seed accommodating part formed in the upper cover of the growth container concerning Example 1 so that it might reverse | retreat from the inner surface of an upper cover. 実施例1にかかる、成長容器の上蓋の種収容部に配置したSiC種結晶上に第1回目のSiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC single crystal of the 1st time is grown on the SiC seed crystal arrange | positioned at the seed accommodating part of the upper cover of the growth container concerning Example 1. FIG. 実施例1にかかる、第1回目の成長後に得られたSiC単結晶を種結晶とし、該種結晶を成長容器の上蓋の種収容部に、上蓋の内表面から後退させるように配置した様子を示す説明図。The SiC single crystal obtained after the first growth according to Example 1 was used as a seed crystal, and the seed crystal was disposed in the seed container of the upper lid of the growth vessel so as to be retracted from the inner surface of the upper lid. FIG. 実施例1にかかる、SiC種結晶上に第2回目のSiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that the 2nd time SiC single crystal is grown on the SiC seed crystal concerning Example 1. FIG. 実施例2にかかる、成長面として{11−20}面を露出したSiC種結晶を成長容器の上蓋に形成された種収容部に、上蓋の内表面から後退させるように配置した様子を示す説明図。The description which shows a mode that the SiC seed crystal which exposed {11-20} surface as a growth surface concerning Example 2 was arrange | positioned in the seed accommodating part formed in the upper cover of the growth container so that it might reverse | retreat from the inner surface of an upper cover. Figure. 実施例2にかかる、SiC種結晶を<11−20>方向に成長させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal concerning Example 2 is made to grow in a <11-20> direction. 実施例2にかかる、<11−20>方向に成長させて得られるSiC単結晶の{1−100}面を成長面として露出させ、これを種結晶とし、該SiC種結晶を成長容器の上蓋に形成された種収容部に、上蓋の内表面から後退させるように配置した様子を示す説明図。The {1-100} plane of the SiC single crystal obtained by growing in the <11-20> direction according to Example 2 is exposed as a growth surface, which is used as a seed crystal, and the SiC seed crystal is used as an upper lid of the growth vessel. Explanatory drawing which shows a mode that it arrange | positioned in the seed accommodating part formed in this so that it might reverse | retreat from the inner surface of an upper cover. 実施例2にかかる、SiC種結晶を<1−100>方向に成長させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal concerning Example 2 is made to grow in a <1-100> direction. 実施例2にかかる、<11−20>方向及び<1−100>方向に成長させたSiC単結晶の{0001}面を成長面として露出させ、これを種結晶とし、該SiC種結晶を成長容器の上蓋に形成された種収容部に、上蓋の内表面から後退させるように配置した様子を示す説明図。The SiC single crystal grown in the <11-20> direction and the <1-100> direction according to Example 2 is exposed as a growth surface, which is used as a seed crystal, and the SiC seed crystal is grown. Explanatory drawing which shows a mode that it arrange | positioned in the seed accommodating part formed in the upper cover of the container so that it might reverse | retreat from the inner surface of an upper cover. 実施例2にかかる、SiC種結晶を<0001>方向に成長させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal concerning Example 2 is made to grow in a <0001> direction. 実施例3にかかる、螺旋転位を含有するSiC種結晶を示す説明図。FIG. 6 is an explanatory view showing an SiC seed crystal containing screw dislocations according to Example 3; 実施例3にかかる、SiC種結晶をa面成長(1回目)させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal concerning Example 3 carries out a surface growth (1st time). 実施例3にかかる、SiC種結晶をa面成長(2回目)させる様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal concerning Example 3 carries out a surface growth (2nd time). 実施例3にかかる、転位制御種結晶を示す説明図。FIG. 6 is an explanatory view showing a dislocation control seed crystal according to Example 3. 実施例3にかかる、転位制御種結晶を用いてSiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that a SiC single crystal is grown using the dislocation control seed crystal concerning Example 3. FIG. 実施例4にかかる、成長容器の上蓋に形成された種収容部に、SiC種結晶をとして転位制御種結晶を配置し、該転位制御種結晶上にSiC単結晶を成長させるた様子を示す説明図。Explanation showing a state in which a dislocation control seed crystal is disposed as a SiC seed crystal in a seed container formed on the upper lid of the growth vessel according to Example 4 and a SiC single crystal is grown on the dislocation control seed crystal. Figure. 実施例4にかかる、転位制御種結晶上に成長したSiC種結晶を切断して取り外した様子を示す説明図。Explanatory drawing which shows a mode that the SiC seed crystal which grew on the dislocation control seed crystal concerning Example 4 was cut | disconnected and removed. 実施例5にかかる、SiC種結晶と保護材との間に応力緩衝材を配設して、SiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that a stress buffer material is arrange | positioned between the SiC seed crystal and protective material concerning Example 5, and a SiC single crystal is grown. 実施例5にかかる、保護材と上蓋との間に応力緩衝材を配設して、SiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that a stress buffer material is arrange | positioned between a protective material and an upper cover concerning Example 5, and a SiC single crystal is grown. SiC単結晶の主要な面方位を示す説明図。Explanatory drawing which shows the main surface orientation of a SiC single crystal. 比較例にかかる、SiC種結晶上に連続してSiC単結晶を成長させる様子を示す説明図。Explanatory drawing which shows a mode that a SiC single crystal grows continuously on the SiC seed crystal concerning a comparative example.

符号の説明Explanation of symbols

3 SiC種結晶
35 成長面
30 SiC単結晶
38 保護材
4 成長容器
41 本体部
42 上蓋
425 種収容部(開口部)
DESCRIPTION OF SYMBOLS 3 SiC seed crystal 35 Growth surface 30 SiC single crystal 38 Protective material 4 Growth container 41 Main body part 42 Upper lid 425 Seed accommodating part (opening part)

Claims (10)

成長容器内にSiC種結晶を配置し、該SiC種結晶の成長面上にバルク状のSiC単結晶を成長させて、SiC単結晶を製造する方法において、
上記成長容器としては、SiC原料が供給される本体部とその上部に配置される上蓋とを有し、該上蓋に上記成長容器の外部に向けて凹んだ種収容部を形成したものを用い、
上記SiC種結晶としては、成長方向に20mm以上の厚さを有するものを用い、該SiC種結晶を、その上記成長面とSiC原料の発生源とが対向するよう上記種収容部に埋め込み、上記成長面と反対側の裏面を上記上蓋の内表面から上記SiC原料の発生源と離れる方向に後退させて配置することを特徴とするSiC単結晶の製造方法。
In a method for producing a SiC single crystal by arranging a SiC seed crystal in a growth vessel and growing a bulk SiC single crystal on a growth surface of the SiC seed crystal,
The growth vessel has a main body portion to which SiC raw material is supplied and an upper lid disposed on the main body portion, and uses a seed storage portion that is recessed toward the outside of the growth vessel on the upper lid.
As the SiC seed crystal, one having a thickness of 20 mm or more in the growth direction is used, and the SiC seed crystal is embedded in the seed container so that the growth surface and the source of the SiC raw material face each other. A method for producing a SiC single crystal, wherein the rear surface opposite to the growth surface is disposed so as to recede from the inner surface of the upper lid in a direction away from the source of the SiC raw material.
請求項1において、上記SiC種結晶の側面部の少なくとも一部には、該側面部を覆う保護材が配設されていることを特徴とするSiC単結晶の製造方法。   The method for producing a SiC single crystal according to claim 1, wherein a protective material covering the side surface portion is disposed on at least a part of the side surface portion of the SiC seed crystal. 請求項2において、上記SiC種結晶と、上記保護材とは一体的に接合されていることを特徴とするSiC単結晶の製造方法。   3. The method for producing a SiC single crystal according to claim 2, wherein the SiC seed crystal and the protective material are integrally joined. 請求項2又は3において、上記保護材と上記SiC種結晶との間には、両者の間にはたらく熱応力を緩和するための応力緩衝材が配設されていることを特徴とするSiC単結晶の製造方法。   4. The SiC single crystal according to claim 2, wherein a stress buffering material for relaxing thermal stress acting between the protective material and the SiC seed crystal is disposed between the protective material and the SiC seed crystal. Manufacturing method. 請求項2〜4のいずれか一項において、上記保護材と上記上蓋との間には、両者の間に働く熱応力を緩和するための応力緩衝材が配設されていることを特徴とするSiC単結晶の製造方法。   The stress buffer material for relieving the thermal stress which acts between both in the said protective material and the said upper cover is arrange | positioned in any one of Claims 2-4. A method for producing a SiC single crystal. 請求項1〜5のいずれか1項において、上記SiC種結晶として、c面よりオフセット角度60°以内の面を上記成長面として露出させたものを用いることを特徴とするSiC単結晶の製造方法。   6. The method for producing a SiC single crystal according to claim 1, wherein the SiC seed crystal is one in which a surface within an offset angle of 60 degrees from the c-plane is exposed as the growth surface. . 請求項1〜5のいずれか1項において、上記SiC種結晶として、c面と略垂直な面を上記成長面として露出させたものを用いることを特徴とするSiC単結晶の製造方法。   6. The method for producing a SiC single crystal according to claim 1, wherein the SiC seed crystal is one in which a surface substantially perpendicular to the c-plane is exposed as the growth surface. 請求項7において、上記SiC種結晶は、螺旋転位密度が100個/cm2以上の領域を少なくとも一部に有することを特徴とするSiC単結晶の製造方法。 In claim 7, the SiC seed crystal, manufacturing method of SiC single crystal screw dislocation density is characterized by having at least a portion of 100 / cm 2 or more regions. 請求項1〜5のいずれか1項において、上記SiC種結晶として、{0001}面よりオフセット角度60°以内の面を上記成長面として有し、成長中の上記SiC単結晶に螺旋転位を螺旋転位密度100個/cm2以上で発生することができる螺旋転位発生可能領域を、上記成長面上の50%以下の領域に有すると共に、上記成長面上における上記螺旋転位発生可能領域以外の領域には、上記成長面上に露出している螺旋転位が螺旋転位密度100個/cm2未満である低螺旋転位密度領域を有する転位制御種結晶を用い、該転位制御種結晶の上記成長面上に上記SiC単結晶を成長させるときにおいては、該SiC単結晶の成長途中の表面である途中表面に、平坦なc面ファセットが形成され、かつ該c面ファセットと、上記成長面上の上記螺旋転位発生可能領域をc軸方向又は上記成長面に垂直な方向において上記途中表面に投影した領域とが、少なくとも一部で重なるようにSiC単結晶を成長させることを特徴とするSiC単結晶の製造方法。 6. The SiC seed crystal according to claim 1, wherein the SiC seed crystal has a plane having an offset angle of 60 ° or less from the {0001} plane as the growth plane, and spiral dislocations are formed on the growing SiC single crystal. The dislocation density generation region capable of being generated at a dislocation density of 100 / cm 2 or more is included in a region of 50% or less on the growth surface, and the region other than the region capable of generating the screw dislocation on the growth surface. Uses a dislocation control seed crystal having a low screw dislocation density region in which the screw dislocations exposed on the growth surface are less than 100 screw dislocation densities / cm 2 , and on the growth surface of the dislocation control seed crystal. When the SiC single crystal is grown, a flat c-plane facet is formed on the intermediate surface, which is a surface in the middle of the growth of the SiC single crystal, and the c-plane facet is formed on the growth surface. A SiC single crystal is grown such that a region in which a screw dislocation generation region is projected onto the intermediate surface in the c-axis direction or a direction perpendicular to the growth surface overlaps at least partially. Production method. 請求項1〜9のいずれか1項において、上記SiC種結晶上に成長したSiC単結晶を、上記SiC種結晶の上記成長面と略平行な方向に切断して取り外し、該SiC種結晶上に再びSiC単結晶を成長させることを特徴とするSiC単結晶の製造方法。   The SiC single crystal grown on the SiC seed crystal according to any one of claims 1 to 9, is cut and removed in a direction substantially parallel to the growth surface of the SiC seed crystal, and the SiC single crystal is removed on the SiC seed crystal. A method for producing a SiC single crystal, wherein the SiC single crystal is grown again.
JP2003425643A 2003-12-22 2003-12-22 Method for producing SiC single crystal Expired - Lifetime JP4219800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425643A JP4219800B2 (en) 2003-12-22 2003-12-22 Method for producing SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425643A JP4219800B2 (en) 2003-12-22 2003-12-22 Method for producing SiC single crystal

Publications (2)

Publication Number Publication Date
JP2005179155A true JP2005179155A (en) 2005-07-07
JP4219800B2 JP4219800B2 (en) 2009-02-04

Family

ID=34785462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425643A Expired - Lifetime JP4219800B2 (en) 2003-12-22 2003-12-22 Method for producing SiC single crystal

Country Status (1)

Country Link
JP (1) JP4219800B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046367A (en) * 2007-08-22 2009-03-05 Denso Corp Apparatus for manufacturing silicon carbide single crystal
JP2009542571A (en) * 2006-07-06 2009-12-03 クリー, インコーポレイティッド Growth of 100 mm silicon carbide crystals on off-axis seed crystals
JP2010184838A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
JP2010235390A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc DISLOCATION CONTROLLING SEED CRYSTAL, PRODUCTION METHOD OF THE SAME, AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL
WO2011037079A1 (en) * 2009-09-24 2011-03-31 住友電気工業株式会社 Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
US8168515B2 (en) 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
JP2013116840A (en) * 2011-12-02 2013-06-13 Toyota Central R&D Labs Inc Sic single crystal, sic wafer, and semiconductor device
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE
JP2014034504A (en) * 2012-08-10 2014-02-24 Toyota Central R&D Labs Inc Method of producing sublimable single crystal
US8835671B2 (en) 2009-11-06 2014-09-16 University Of Washington Through Its Center For Commercialization Crosslinked zwitterionic hydrogels
WO2015001847A1 (en) * 2013-07-03 2015-01-08 住友電気工業株式会社 Silicon carbide single-crystal substrate and method for manufacturing same
TWI499687B (en) * 2013-02-20 2015-09-11 Denso Corp Silicon carbide single crystal and silicon carbide single crystal manufacturing method
JP2018083738A (en) * 2016-11-25 2018-05-31 昭和電工株式会社 Single crystal growth apparatus, single crystal growth method, and single crystal
US10724152B2 (en) 2015-12-03 2020-07-28 Showa Denko K.K. Method for producing SiC single crystal, SiC single crystal, and SiC ingot
CN113186601A (en) * 2021-04-30 2021-07-30 北京天科合达半导体股份有限公司 High-quality silicon carbide seed crystal, silicon carbide substrate and preparation method thereof
JP7085833B2 (en) 2017-12-25 2022-06-17 昭和電工株式会社 Method for manufacturing silicon carbide single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472012B2 (en) 2010-09-29 2014-04-16 株式会社デンソー Method for producing silicon carbide single crystal

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542571A (en) * 2006-07-06 2009-12-03 クリー, インコーポレイティッド Growth of 100 mm silicon carbide crystals on off-axis seed crystals
US8980445B2 (en) 2006-07-06 2015-03-17 Cree, Inc. One hundred millimeter SiC crystal grown on off-axis seed
JP2009046367A (en) * 2007-08-22 2009-03-05 Denso Corp Apparatus for manufacturing silicon carbide single crystal
JP2010184838A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
JP2010235390A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc DISLOCATION CONTROLLING SEED CRYSTAL, PRODUCTION METHOD OF THE SAME, AND PRODUCTION METHOD OF SiC SINGLE CRYSTAL
US8168515B2 (en) 2009-05-11 2012-05-01 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate
CN102549715A (en) * 2009-09-24 2012-07-04 住友电气工业株式会社 Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
WO2011037079A1 (en) * 2009-09-24 2011-03-31 住友電気工業株式会社 Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
US9738780B2 (en) 2009-11-06 2017-08-22 University Of Washington Through Its Center For Commercialization Crosslinked mixed charge hydrogels
US8835671B2 (en) 2009-11-06 2014-09-16 University Of Washington Through Its Center For Commercialization Crosslinked zwitterionic hydrogels
US9394435B2 (en) 2009-11-06 2016-07-19 University Of Washington Through Its Center For Commercialization Crosslinked zwitterionic hydrogels
JP2011111372A (en) * 2009-11-27 2011-06-09 Showa Denko Kk Silicon carbide single crystal, method for producing the same, silicon carbide single crystal wafer, and silicon carbide single crystal ingot
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
JP2013116840A (en) * 2011-12-02 2013-06-13 Toyota Central R&D Labs Inc Sic single crystal, sic wafer, and semiconductor device
JP2013136494A (en) * 2011-12-28 2013-07-11 Toyota Central R&D Labs Inc SINGLE CRYSTAL PRODUCTION APPARATUS, SiC SINGLE CRYSTAL, WAFER AND SEMICONDUCTOR DEVICE
JP2014034504A (en) * 2012-08-10 2014-02-24 Toyota Central R&D Labs Inc Method of producing sublimable single crystal
US10253431B2 (en) 2013-02-20 2019-04-09 Denso Corporation Silicon carbide single crystal and method for producing silicon carbide single crystal
TWI499687B (en) * 2013-02-20 2015-09-11 Denso Corp Silicon carbide single crystal and silicon carbide single crystal manufacturing method
WO2015001847A1 (en) * 2013-07-03 2015-01-08 住友電気工業株式会社 Silicon carbide single-crystal substrate and method for manufacturing same
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
US10724152B2 (en) 2015-12-03 2020-07-28 Showa Denko K.K. Method for producing SiC single crystal, SiC single crystal, and SiC ingot
US11773507B2 (en) 2015-12-03 2023-10-03 Resonac Corporation SiC single crystal, and SiC ingot
JP2018083738A (en) * 2016-11-25 2018-05-31 昭和電工株式会社 Single crystal growth apparatus, single crystal growth method, and single crystal
JP7085833B2 (en) 2017-12-25 2022-06-17 昭和電工株式会社 Method for manufacturing silicon carbide single crystal
CN113186601A (en) * 2021-04-30 2021-07-30 北京天科合达半导体股份有限公司 High-quality silicon carbide seed crystal, silicon carbide substrate and preparation method thereof

Also Published As

Publication number Publication date
JP4219800B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4219800B2 (en) Method for producing SiC single crystal
US11124892B2 (en) Defect reduction in seeded aluminum nitride crystal growth
JP6584428B2 (en) Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
JP3764462B2 (en) Method for producing silicon carbide single crystal
JP5130468B2 (en) Method for manufacturing SiC epitaxial substrate
JP4603386B2 (en) Method for producing silicon carbide single crystal
EP1852528A1 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP2010089983A (en) METHOD FOR FORMING SiC SINGLE CRYSTAL
JP5472012B2 (en) Method for producing silicon carbide single crystal
JP2004269297A (en) SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
US20160153115A1 (en) Group iii nitride crystals, their fabrication method, and method of fabricating bulk group iii nitride crystals in supercritical ammonia
JP6526811B2 (en) Method of processing a group III nitride crystal
JP5263900B2 (en) Method for growing single crystal SiC
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4521588B2 (en) Method for producing single crystal SiC film
JP4494856B2 (en) Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same
JP5948988B2 (en) Method for producing silicon carbide single crystal
JP5370025B2 (en) Silicon carbide single crystal ingot
JPH07267795A (en) Growth method of silicon carbide single crystal
JPH0797299A (en) Method for growing sic single crystal
JP2004262709A (en) GROWTH METHOD FOR SiC SINGLE CRYSTAL
JP2019119623A (en) Silicon carbide single crystal ingot and method for manufacturing silicon carbide single crystal
JP2011051861A (en) METHOD FOR MANUFACTURING AlN SINGLE CRYSTAL AND SEED SUBSTRATE
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JP2017088416A (en) Manufacturing method of single crystal of silicon carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term