JP2005177778A - Method of removing welding spatter - Google Patents

Method of removing welding spatter Download PDF

Info

Publication number
JP2005177778A
JP2005177778A JP2003419131A JP2003419131A JP2005177778A JP 2005177778 A JP2005177778 A JP 2005177778A JP 2003419131 A JP2003419131 A JP 2003419131A JP 2003419131 A JP2003419131 A JP 2003419131A JP 2005177778 A JP2005177778 A JP 2005177778A
Authority
JP
Japan
Prior art keywords
steel plate
continuous steel
nozzle
continuous
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003419131A
Other languages
Japanese (ja)
Other versions
JP4418224B2 (en
Inventor
Seiji Sugiyama
誠司 杉山
Yutaka Karashima
豊 唐島
Akihiro Jinno
晶弘 神野
Keiichiro Torisu
慶一郎 鳥巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003419131A priority Critical patent/JP4418224B2/en
Publication of JP2005177778A publication Critical patent/JP2005177778A/en
Application granted granted Critical
Publication of JP4418224B2 publication Critical patent/JP4418224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of removing welding spatters by which welding spatters of a weld zone of a continuous steel plate can be removed by jetting water from a nozzle without making scratches on the continuous steel plate and the jetted water is surely discharged. <P>SOLUTION: The method of removing the welding spatters of the weld zone of a continuous steel plate 15 in a continuous processing line 10 of a steel plate is disclosed, wherein a nozzle header 25 is given V shape with a bent angle of ≥90° and ≤160°, the bent part 26 of the nozzle header 25 is arranged above the center of the plate width of the continuous steel plate 15 and upstream in the transportation direction of thereof, while both distal ends 27, 28 of the nozzle header are arranged downstream in the transportaion direction, and the jetting water is jetted with the discharging port area of each planar injection nozzle 29 set to ≥6 mm<SP>2</SP>and ≤20 mm<SP>2</SP>, with the header pressure set to ≥0.5 MPa and ≤5 MPa, and with the discharging port height set to ≥50 mm and ≤200 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼板連続処理ラインで先行する鋼板の終端と後行する鋼板の先端を突き合わせ溶接して形成した連続鋼板の溶接部の溶接スパッタの除去方法に係り、更に詳しくは、ノズルからの噴射水によって連続鋼板に疵を付けることなく円滑に溶接スパッタを除去する方法に関する。
ここで、鋼板連続処理ラインとは、例えば、鋼板の連続冷間圧延ラインや連続メッキライン等を指す。
The present invention relates to a method for removing weld spatter of a welded portion of a continuous steel plate formed by butt welding the end of a preceding steel plate and the front end of a subsequent steel plate in a continuous steel plate treatment line, and more specifically, injection from a nozzle. The present invention relates to a method of smoothly removing weld spatter without watering a continuous steel plate with water.
Here, the steel plate continuous treatment line refers to, for example, a continuous cold rolling line or a continuous plating line of a steel plate.

通常、鋼板連続処理ラインにおいては、処理ラインを先行する鋼板の終端と後行する鋼板の先端との突き合わせ溶接を行って、連続鋼板を形成する処理が行われている。そのとき、連続鋼板の溶接部には溶接スパッタが溶着し、この溶着した溶接スパッタが鋼板連続処理ラインを通過した処理済鋼板(例えば、薄板鋼板、メッキ鋼板)の表面における疵発生の原因になる場合がある。特に、疵に関して厳格な管理が要求される容器用鋼板(薄板鋼板の一例)においては、溶接スパッタを含めて連続鋼板の表面に存在する異物を確実に除去する方法の開発が大いに求められている。
ここで、鋼板連続処理ラインにおける連続鋼板の表面から異物を除去するために、連続鋼板の幅方向に高圧温水を噴射して鋼板表面の洗浄を行う方法が提案されている(例えば、特許文献1参照)。そこで、突き合わせ溶接を行う場所から下流側の位置に連続鋼板の幅方向に高圧水を噴射する複数のノズルを備えた高圧洗浄装置を配置して、溶接スパッタを除去することが試みられている。
Usually, in the steel plate continuous processing line, a process of forming a continuous steel plate by performing butt welding between the end of the steel plate preceding the processing line and the tip of the subsequent steel plate is performed. At that time, weld spatter is deposited on the welded portion of the continuous steel plate, and this welded spatter causes the generation of flaws on the surface of the treated steel plate (for example, a thin steel plate or a plated steel plate) that has passed through the steel plate continuous treatment line. There is a case. In particular, in steel plates for containers (an example of thin steel plates) that require strict management with respect to dredging, there is a great demand for the development of a method that reliably removes foreign matter existing on the surface of continuous steel plates, including welding spatter. .
Here, in order to remove foreign substances from the surface of the continuous steel plate in the steel plate continuous treatment line, a method of cleaning the steel plate surface by injecting high-pressure hot water in the width direction of the continuous steel plate has been proposed (for example, Patent Document 1). reference). Therefore, an attempt has been made to remove welding spatter by disposing a high-pressure cleaning device including a plurality of nozzles for injecting high-pressure water in the width direction of the continuous steel plate at a position downstream from the place where butt welding is performed.

特開平11−269678号公報JP-A-11-269678

しかしながら、高圧水を噴射して溶接スパッタの除去を行う場合、溶接スパッタを除去した後の水の一部は溶接スパッタを含んだ状態で連続鋼板上に残留するため、連続鋼板上にこの残留水が存在している状態で連続鋼板の搬送が行われると、除去された溶接スパッタが再び連続鋼板の表面に付着してしまうことになる。そして、溶接スパッタが連続鋼板の表面に付着した状態で、例えば、冷間圧延が行われると、形成された薄板鋼板の表面にはこの溶接スパッタに起因する疵が発生するという問題が発生する。
そこで、溶接スパッタを除去した後の水を押し流すために、高圧水の圧力を高めて溶接スパッタの除去を行うことが行われた。
しかし、高圧水の圧力を高めると、高圧水の力で除去された溶接スパッタが連続鋼板表面に押し付けられて、溶接スパッタが付着したり圧入されたり、溶接スパッタによる引っ掻き疵が発生したりする。その結果、このような連続鋼板を、例えば、冷間圧延すると、形成された薄板鋼板の表面に疵が発生するという問題が生じていた。
However, when removing welding spatter by spraying high-pressure water, a part of the water after removing the welding spatter remains on the continuous steel plate including the welding spatter. If the continuous steel plate is transported in a state where there is, the weld spatter removed will adhere to the surface of the continuous steel plate again. Then, for example, when cold rolling is performed in a state where the weld spatter adheres to the surface of the continuous steel plate, there arises a problem that wrinkles due to the weld spatter are generated on the surface of the formed thin steel plate.
Therefore, in order to wash away the water after the welding spatter has been removed, the welding spatter is removed by increasing the pressure of the high-pressure water.
However, when the pressure of the high-pressure water is increased, the weld spatter removed by the pressure of the high-pressure water is pressed against the surface of the continuous steel plate, so that the weld spatter adheres or is pressed in, or scratches due to the weld spatter are generated. As a result, when such a continuous steel plate is cold-rolled, for example, there has been a problem that wrinkles are generated on the surface of the formed thin steel plate.

本発明はかかる事情に鑑みてなされたもので、鋼板連続処理ラインで形成された連続鋼板の溶接部の溶接スパッタをノズルからの噴射水によって連続鋼板に疵を付けることなく円滑に除去すると共に、連続鋼板の表面からの噴射水の排水を確実に行うことが可能な溶接スパッタの除去方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and smoothly remove the weld spatter of the welded portion of the continuous steel plate formed in the steel plate continuous processing line without sprinkling the continuous steel plate with water sprayed from the nozzle, An object of the present invention is to provide a welding spatter removal method capable of reliably draining water from the surface of a continuous steel plate.

前記目的に沿う請求項1記載の溶接スパッタの除去方法は、鋼板連続処理ラインで先行する鋼板の終端と後行する鋼板の先端を突き合わせ溶接して形成した連続鋼板の溶接部の溶接スパッタを、該連続鋼板の上方に該連続鋼板に交差して配置した管状のノズルヘッダーに設けられた複数のノズルから噴出する噴射水によって除去する溶接スパッタの除去方法において、
前記ノズルヘッダーを屈折角度が90°以上で160°以下のV字形状となし、該V字形状の屈折部を前記連続鋼板の板幅中央位置の上方で前記搬送方向の上流側に、該V字形状の両先部を該連続鋼鈑の上方で該搬送方向の下流側に配置し、前記各ノズルに吐出口面積が6mm2 以上で20mm2 以下の平面状噴出ノズルを使用し、前記ノズルヘッダーのヘッダー圧力を0.5MPa以上で5MPa以下、前記連続鋼板の表面から前記各ノズルの吐出口までの高さを50mm以上で200mm以下にして前記噴射水を噴射する。
The welding spatter removal method according to claim 1, which meets the above-mentioned purpose, includes welding spatter of a welded portion of a continuous steel plate formed by butt welding the end of the preceding steel plate and the tip of the subsequent steel plate in the steel plate continuous treatment line, In the method of removing welding spatter, which is removed by spray water ejected from a plurality of nozzles provided in a tubular nozzle header disposed above the continuous steel plate and intersecting the continuous steel plate,
The nozzle header is formed in a V shape having a refraction angle of 90 ° or more and 160 ° or less, and the V-shaped refracting portion is disposed upstream of the center position of the width of the continuous steel plate and upstream of the conveying direction. Both ends of the letter-shape are disposed on the downstream side in the conveying direction above the continuous steel plate, and a flat jet nozzle having a discharge port area of 6 mm 2 or more and 20 mm 2 or less is used for each nozzle; The jet water is sprayed at a header pressure of 0.5 MPa or more and 5 MPa or less, and a height from the surface of the continuous steel plate to the discharge port of each nozzle is 50 mm or more and 200 mm or less.

連続鋼板にノズルから噴射水を吹き付けた際に連続鋼板の表面に存在する溶接スパッタに与えられる運動エネルギーの大きさは、噴射水の圧力、噴射水の流量、及びノズルの吐出口と連続鋼板までの距離の影響を受ける。ここで、噴射水の圧力はノズルヘッダーのヘッダー圧力、噴射水の流量はヘッダー圧力及びノズルの吐出口面積、及びノズルの吐出口と連続鋼板までの距離は連続鋼鈑の表面からノズル吐出口までの高さの影響を受ける。
従って、各ノズルの吐出口面積を6mm2 以上で20mm2 以下、ノズルヘッダーのヘッダー圧力を0.5MPa以上で5MPa以下、連続鋼板の表面から各ノズルの吐出口までの高さを50mm以上で200mm以下の範囲内にそれぞれ設定することで、噴射水から溶接部の溶接スパッタに対して、連続鋼板の表面から離脱するのに必要な運動エネルギーを供給することができる。
When spray water is sprayed from a nozzle to a continuous steel plate, the magnitude of kinetic energy given to the welding spatter present on the surface of the continuous steel plate is the pressure of the spray water, the flow rate of the spray water, and the nozzle outlet and the continuous steel plate. Affected by distance. Here, the jet water pressure is the header pressure of the nozzle header, the jet water flow is the header pressure and the nozzle outlet area, and the distance between the nozzle outlet and the continuous steel plate is from the surface of the continuous steel plate to the nozzle outlet. Affected by the height of.
Therefore, the discharge port area of each nozzle is 6 mm 2 or more and 20 mm 2 or less, the header pressure of the nozzle header is 0.5 MPa or more and 5 MPa or less, and the height from the surface of the continuous steel plate to the discharge port of each nozzle is 50 mm or more and 200 mm. By setting each within the following ranges, it is possible to supply the kinetic energy necessary for detaching from the surface of the continuous steel plate from the spray water to the weld spatter of the weld.

また、ノズルヘッダーを屈折角度が90°以上で160°以下のV字形状として、V字形状の屈折部を連続鋼板の板幅中央位置の上方で搬送方向の上流側に、V字形状の両端部を搬送方向の下流側に配置にすることで、ノズルヘッダーに設けられた各ノズルから噴射されて連続鋼板の表面に吹き付けられる噴射水に連続鋼板の端部に向かう速度を与えることができる。このため、連続鋼板上の溶接スパッタを除去した後の水を連続鋼板の端部に向けて流すことができ容易に排水することができる。
ここで、屈折角度が160°を超えると噴射水の連続鋼板の端部に向かう分速度が小さくなって、溶接スパッタを除去した後の水の排水性が低下する。また、屈折角度を90°未満にすると、連続鋼鈑をその幅方向に一端側から他端側までをノズルヘッダーで上方から覆うときに、V字形状の屈折部から各端部までの長さを大きくする必要が生じ、設備規模が大きくなって好ましくない。
Further, the nozzle header is formed in a V shape having a refraction angle of 90 ° or more and 160 ° or less, and the V-shaped refracting portion is located upstream of the center position of the continuous steel plate in the conveying direction and on both ends of the V-shape. By arrange | positioning a part to the downstream of a conveyance direction, the speed which goes to the edge part of a continuous steel plate can be given to the spray water sprayed from each nozzle provided in the nozzle header and sprayed on the surface of a continuous steel plate. For this reason, the water after removing the welding spatter on the continuous steel plate can be made to flow toward the end of the continuous steel plate and can be easily drained.
Here, if the refraction angle exceeds 160 °, the speed of the spray water toward the end of the continuous steel sheet becomes small, and the drainage performance of the water after removing the welding spatter is lowered. If the refraction angle is less than 90 °, the length from the V-shaped refraction part to each end part when the continuous steel sheet is covered with the nozzle header from one end side to the other end side in the width direction from above. This is not preferable because the size of the facility is increased.

請求項2記載の溶接スパッタの除去方法は、請求項1記載の溶接スパッタの除去方法において、前記鋼板は容器用鋼板である。 The welding spatter removal method according to claim 2 is the welding spatter removal method according to claim 1, wherein the steel plate is a steel plate for containers.

請求項3記載の溶接スパッタの除去方法は、請求項1及び2記載の溶接スパッタの除去方法において、隣り合う前記平面状噴出ノズルから噴出された前記噴出水が前記連続鋼板の表面上で重なる際の重なり代を前記連続鋼板の幅方向に5mm以上で20mm以下の範囲にする。 The welding spatter removal method according to claim 3 is the welding spatter removal method according to claim 1 or 2, wherein the jet water ejected from the adjacent planar jet nozzles overlaps on the surface of the continuous steel plate. The overlap margin is set in the range of 5 mm to 20 mm in the width direction of the continuous steel plate.

平面状噴出ノズルから噴射された噴射水は平面状噴出ノズルの噴射方向に対して両側に扇形状に広がり、両側の噴射水の圧力は中央部の噴射水の圧力より低くなって、溶接スパッタに与える運動エネルギーは低下する。このため、連続鋼板の表面上で噴射水の重なり代を連続鋼板の幅方向で5mm以上にすると、重なり代には両平面状噴出ノズルから噴射水が吹き付けられるので、溶接スパッタに与える総運動エネルギーを増加させることができ、溶接スパッタに対して連続鋼板の表面から離脱するのに必要な運動エネルギーを供給することができる。
一方、重なり代を連続鋼板の幅方向で20mmを超えるようにすると、圧力のあまり低下していない噴射水同士が重なり合うようになって、重なり代に過剰な運動エネルギーが供給される。このため、除去された溶接スパッタが噴射水の力で連続鋼板の表面に再び押し付けられて、付着したり圧入されたり、あるいは引っ掻き疵を発生させたりする頻度が高くなる。
The spray water jetted from the flat jet nozzle spreads in a fan shape on both sides with respect to the jet direction of the flat jet nozzle, and the pressure of the jet water on both sides becomes lower than the pressure of the jet water at the center, which causes welding spattering. The kinetic energy given decreases. For this reason, if the overlap margin of the spray water on the surface of the continuous steel plate is 5 mm or more in the width direction of the continuous steel plate, since the spray water is sprayed from both planar jet nozzles in the overlap margin, the total kinetic energy given to the welding spatter , And the kinetic energy necessary for detaching from the surface of the continuous steel sheet can be supplied to the welding spatter.
On the other hand, when the overlap margin exceeds 20 mm in the width direction of the continuous steel plate, the jet waters whose pressures do not decrease so much overlap each other, and excessive kinetic energy is supplied to the overlap margin. For this reason, the frequency with which the removed welding spatter is again pressed against the surface of the continuous steel plate by the force of spray water and is attached, press-fitted, or generates scratches is increased.

請求項4記載の溶接スパッタの除去方法は、請求項1〜3記載の溶接スパッタの除去方法において、前記平面状噴出ノズルの吐出口方向が前記連続鋼板の表面に立てた垂線に対して5°以上で20°以下の範囲で前記連続鋼板の上流側に傾いている。
平面状噴出ノズルの吐出口方向を連続鋼板の表面に立てた垂線に対して5°以上で20°以下の範囲で連続鋼板の上流側に傾けて設定することで、連続鋼鈑の表面からノズルの吐出口までの高さが50mm以上で200mm以下の範囲で一定の場合、平面状噴出ノズルの吐出口から噴射する噴射水が連続鋼板表面に達するまでの移動距離を一定範囲に維持することができ、噴射水から溶接部の溶接スパッタに対して連続鋼板の表面から離脱するのに必要な運動エネルギーを確実に供給することができる。
The welding spatter removal method according to claim 4 is the welding spatter removal method according to claims 1 to 3, wherein a discharge port direction of the planar ejection nozzle is 5 ° with respect to a vertical line standing on the surface of the continuous steel plate. As described above, it is inclined to the upstream side of the continuous steel plate within a range of 20 ° or less.
By setting the discharge port direction of the flat jet nozzle to the upstream side of the continuous steel plate within the range of 5 ° or more and 20 ° or less with respect to the perpendicular standing on the surface of the continuous steel plate, the nozzle from the surface of the continuous steel plate When the height to the discharge port is constant within the range of 50 mm or more and 200 mm or less, the moving distance until the spray water sprayed from the discharge port of the flat jet nozzle reaches the surface of the continuous steel plate can be maintained within a certain range. It is possible to reliably supply the kinetic energy necessary for detaching from the surface of the continuous steel plate from the spray water to the weld spatter of the weld.

請求項1〜4記載の溶接スパッタの除去方法は、各ノズルに吐出口面積が6mm2 以上で20mm2 以下の平面状噴出ノズルを使用し、ノズルヘッダーのヘッダー圧力を0.5MPa以上で5MPa以下、連続鋼板の表面から各ノズルの吐出口までの高さを50mm以上で200mm以下にするので、噴射水から溶接部の溶接スパッタに対して、連続鋼板の表面から離脱するのに必要な運動エネルギーを供給することができ、溶接スパッタを円滑に除去することが可能になる。
また、ノズルヘッダーを屈折角度が90°以上で160°以下のV字形状となし、V字形状の屈折部を連続鋼板の板幅中央位置の上方で搬送方向の上流側に、V字形状の両先部を搬送方向の下流側に配置するので、連続鋼板上での溶接スパッタを除去した後の水は連続鋼板の両側に向けて排水することができ、水の移動距離が短くなって連続鋼板上での水の除去を確実に行うことが可能になる。その結果、除去された溶接スパッタが引き続いて噴射される噴射水の力で連続鋼板表面に押し付けられる頻度が低減して、連続鋼板の表面への溶接スパッタの付着、圧入、及び疵の発生を抑制することが可能になる。
The welding spatter removal method according to any one of claims 1 to 4, wherein each nozzle uses a flat jet nozzle having a discharge port area of 6 mm 2 or more and 20 mm 2 or less, and the header pressure of the nozzle header is 0.5 MPa or more and 5 MPa or less. Since the height from the surface of the continuous steel plate to the discharge port of each nozzle is 50 mm or more and 200 mm or less, the kinetic energy required to disengage from the surface of the continuous steel plate from the spray water to the weld spatter of the weld Can be supplied, and welding spatter can be removed smoothly.
Further, the nozzle header is formed in a V shape having a refraction angle of 90 ° or more and 160 ° or less, and the V-shaped refracting portion is formed on the upstream side of the plate width center position of the continuous steel plate and on the upstream side in the conveying direction. Since both ends are arranged on the downstream side in the conveying direction, the water after removing the welding spatter on the continuous steel plate can be drained toward both sides of the continuous steel plate, and the water travel distance becomes shorter and continuous. It becomes possible to reliably remove water on the steel plate. As a result, the frequency at which the removed weld spatter is pressed against the continuous steel plate surface by the force of the spray water that is subsequently sprayed is reduced, and welding spatter adherence to the continuous steel plate surface, press-fitting, and generation of flaws are suppressed. It becomes possible to do.

特に、請求項2記載の溶接スパッタの除去方法は、鋼板が容器用鋼板であるので、製缶時の割れ発生率を低減することが可能になる。 In particular, the welding spatter removal method according to claim 2 can reduce the crack generation rate during can making since the steel plate is a vessel steel plate.

請求項3記載の溶接スパッタの除去方法は、隣り合う平面状噴出ノズルから噴出された噴出水が連続鋼板の表面上で重なる際の重なり代を連続鋼板の幅方向で5mm以上で20mm以下の範囲にするので、除去された溶接スパッタが引き続いて噴射される噴射水の力で連続鋼板表面に押し付けられる頻度をより低減することができ、連続鋼板の表面への溶接スパッタの付着、圧入、及び疵の発生をより抑制することが可能になる。 The welding spatter removal method according to claim 3, wherein the overlap margin when the water jetted from the adjacent flat jet nozzles overlaps on the surface of the continuous steel plate is in the range of 5 mm or more and 20 mm or less in the width direction of the continuous steel plate. Therefore, the frequency at which the removed weld spatter is pressed against the continuous steel plate surface by the force of the spray water that is subsequently jetted can be further reduced. Can be further suppressed.

請求項4記載の溶接スパッタの除去方法は、平面状噴出ノズルの吐出口方向が連続鋼板の表面に立てた垂線に対して5°以上で20°以下の範囲で連続鋼板の上流側に傾いているので、平面状噴出ノズルの吐出口から噴射する噴射水の移動距離を一定範囲に維持して、噴射水から溶接部の溶接スパッタに対して連続鋼板の表面から離脱するのに必要な運動エネルギーを確実に供給することができ、溶接部の溶接スパッタを確実に除去することが可能になる。このため、ヘッダー圧力を高める必要がなくなり、連続鋼板に噴射水を吹き付けた際に、連続鋼板からの跳ね返り水の発生量を少なくすることが可能になる。 According to a fourth aspect of the present invention, there is provided a welding spatter removal method in which the discharge port direction of the flat ejection nozzle is inclined to the upstream side of the continuous steel sheet within a range of 5 ° or more and 20 ° or less with respect to a perpendicular standing on the surface of the continuous steel plate. Therefore, the kinetic energy required to move away from the surface of the continuous steel plate from the spray water to the weld spatter of the welded part while maintaining the moving distance of the spray water sprayed from the discharge port of the flat jet nozzle in a certain range Can be reliably supplied, and welding spatter in the welded portion can be reliably removed. For this reason, there is no need to increase the header pressure, and it becomes possible to reduce the amount of rebound water generated from the continuous steel plate when spray water is sprayed onto the continuous steel plate.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態の溶接スパッタの除去方法を適用した高圧洗浄装置を備えた鋼板連続冷延処理ラインの説明図、図2は同高圧洗浄装置に設けられたノズルヘッダーの説明図、図3は連続鋼板とノズルヘッダーの関係を示す側断面図、図4は溶接スパッタの除去状況に及ぼすノズルヘッダー圧力と平面状噴出ノズルの吐出口方向の関係を示す説明図、図5(A)はノズルヘッダーに設けられた各平面状噴出ノズルのスプレーパターンの側面図、(B)は噴射水が連続鋼板に衝突した際のスプレーパターンの平面図、図6はノズルヘッダーに設けられた各平面状噴出ノズルのスプレーパターン間に生じる噴出水の重なり代を示す説明図、図7は溶接スパッタの除去状況に及ぼすノズルヘッダー圧力と噴射水の重なり代の関係を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a steel plate continuous cold rolling treatment line equipped with a high-pressure cleaning apparatus to which the welding spatter removal method of one embodiment of the present invention is applied, and FIG. 2 is a nozzle provided in the high-pressure cleaning apparatus. FIG. 3 is a side sectional view showing the relationship between the continuous steel plate and the nozzle header, FIG. 4 is an explanatory diagram showing the relationship between the nozzle header pressure and the discharge port direction of the flat ejection nozzle, which is related to the welding spatter removal status, FIG. 5A is a side view of the spray pattern of each planar ejection nozzle provided on the nozzle header, FIG. 5B is a plan view of the spray pattern when the spray water collides with the continuous steel plate, and FIG. Explanatory drawing which shows the overlap margin of the jet water which arises between the spray patterns of each provided flat jet nozzle, FIG. 7 is the relationship between the nozzle header pressure and the jet water overlap margin which influences the removal condition of welding spatter It is an explanatory diagram showing.

図1に示すように、本発明の一実施の形態に溶接スパッタの除去方法を適用した鋼板連続処理ラインの一例である鋼板連続冷延処理ライン10は、先行する鋼板(例えば、容器用鋼板)11の終端と、払出しリール12から払出し機13を介して供給され鋼板11に対して後行する鋼板(例えば、容器用鋼板)14の先端を突き合わせ溶接して連続鋼板15を形成する溶接機16と、溶接機16の下流側に設けられて連続鋼板15の溶接部の溶接スパッタを除去する高圧洗浄装置17と、高圧洗浄装置17の下流側に設けられて連続鋼板15を常に一定範囲の長さだけ保持されるようにしながら下流側に供給するルーパー18を有している。更に、鋼板連続冷延処理ライン10は、ルーパー18を通過した連続鋼板15の搬送方向を変えながら連続鋼板15に生じる張力を制御する連続鋼板搬送制御機19と、張力が制御された連続鋼板15を冷間圧延する圧延ロール20を複数段備えた圧延機21と、圧延されて得られた薄板鋼板22を巻き取って巻取りリール23を形成して次工程に払い出す巻取り機24を有している。
なお、払出し機13、溶接機16、ルーパー18、連続鋼板搬送制御機19、圧延機21、及び巻取り機24には、従来から使用されている機器をそのまま適用することができるので、詳細な説明は省略し、高圧洗浄装置17についてのみ詳細に説明する。
As shown in FIG. 1, a steel plate continuous cold-rolling treatment line 10 that is an example of a steel plate continuous treatment line to which a welding spatter removal method is applied to an embodiment of the present invention is a preceding steel plate (for example, a steel plate for containers). A welding machine 16 that forms a continuous steel plate 15 by butt welding the end of the steel plate 11 and the tip of a steel plate (for example, a steel plate for containers) 14 that is supplied from the pay-out reel 12 via the discharge device 13 and that follows the steel plate 11. A high-pressure cleaning device 17 provided on the downstream side of the welding machine 16 to remove weld spatter from the welded portion of the continuous steel plate 15, and a continuous steel plate 15 provided on the downstream side of the high-pressure cleaning device 17. It has a looper 18 that supplies the downstream side while being held as it is. Further, the steel sheet continuous cold rolling processing line 10 includes a continuous steel sheet transport controller 19 that controls the tension generated in the continuous steel sheet 15 while changing the transport direction of the continuous steel sheet 15 that has passed through the looper 18, and the continuous steel sheet 15 that is controlled in tension. A rolling machine 21 having a plurality of rolling rolls 20 for cold rolling, and a winding machine 24 that winds a thin steel plate 22 obtained by rolling to form a take-up reel 23 and delivers it to the next process. doing.
In addition, since the apparatus currently used can be applied as it is to the delivery machine 13, the welding machine 16, the looper 18, the continuous steel plate conveyance control machine 19, the rolling machine 21, and the winder 24, it is detailed. Description is omitted, and only the high-pressure cleaning device 17 will be described in detail.

図2、図3に示すように、高圧洗浄装置17は、連続鋼板15の上方に連続鋼板15の搬送方向に対して交差するように配置された管状のノズルヘッダー25と、ノズルヘッダー25を支持する図示しない架台と、ノズルヘッダー25に、例えば、0.5〜5MPaに加圧した水を供給する能力を備えた図示しない高圧水供給ポンプを有している。ノズルヘッダー25は、平面視して中央部で屈折してV字形状となって、その屈折角度θは90°以上で160°以下の範囲に固定(例えば、120°)されており、V字形状の屈折部26は連続鋼板15の板幅中央位置の上方でその搬送方向の上流側に、V字形状の両先部27、28を搬送方向の下流側に配置する。
これによって、噴射水に連続鋼板15の端部に向かう速度を与えて連続鋼板15に吹き付けることができ、連続鋼板15上の溶接スパッタを除去した後の水を連続鋼板15の端部に向けて容易に排水することができる。
As shown in FIGS. 2 and 3, the high-pressure cleaning device 17 supports the nozzle header 25 and the tubular nozzle header 25 disposed above the continuous steel plate 15 so as to intersect the conveying direction of the continuous steel plate 15. The high pressure water supply pump (not shown) provided with the capacity | capacitance which supplies the pressure pressurized to 0.5-5 Mpa, for example to the mount frame and the nozzle header 25 which are not shown. The nozzle header 25 is refracted at the central portion in plan view to be V-shaped, and its refraction angle θ is fixed within a range of 90 ° to 160 ° (for example, 120 °). The shape-shaped refracting portion 26 has V-shaped tip portions 27 and 28 disposed on the downstream side in the transport direction on the upstream side in the transport direction above the center position of the width of the continuous steel plate 15.
Thus, the sprayed water can be sprayed onto the continuous steel plate 15 at a speed toward the end of the continuous steel plate 15, and the water after removing the welding spatter on the continuous steel plate 15 is directed toward the end of the continuous steel plate 15. It can be easily drained.

ここで、ノズルヘッダー25の側部には、吐出口面積が6〜20mm2 の平面状噴出ノズル(ノズルの一例)29が、その吐出口30を連続鋼板15の表面からの高さHを50mm以上で200mm以下にして、連続鋼板15の上流側に傾いた吐出口30の吐出方向と連続鋼板15の表面に立てた垂線との角度、すなわち吐出口方向角φを変化させて、溶接スパッタの除去状況に及ぼすノズルヘッダー圧力と平面状噴出ノズル29の吐出口方向角φの関係を調査した。その結果を図4に示す。
図4から、ノズルヘッダー圧力を一定、例えば、1MPaとした場合、吐出口方向角φは大きくなると、溶接スパッタが連続鋼板15の表面に残留することが判る。これは、吐出口方向角φを大きくすると、平面状噴出ノズル29の吐出口方向に沿って計った吐出口30と連続鋼板15の表面までの距離が長くなって、連続鋼板15の表面の溶接スパッタに噴射水から与えらる運動エネルギー量が小さくなるためと考えられる。
Here, on the side of the nozzle header 25, a flat jet nozzle (an example of a nozzle) 29 having a discharge port area of 6 to 20 mm 2 has a height H of 50 mm from the surface of the continuous steel plate 15. By changing the angle between the discharge direction of the discharge port 30 inclined to the upstream side of the continuous steel plate 15 and the perpendicular line standing on the surface of the continuous steel plate 15, that is, the discharge port direction angle φ, to 200 mm or less, The relationship between the nozzle header pressure on the removal situation and the discharge port direction angle φ of the planar ejection nozzle 29 was investigated. The result is shown in FIG.
From FIG. 4, it is understood that when the nozzle header pressure is constant, for example, 1 MPa, the welding spatter remains on the surface of the continuous steel plate 15 as the discharge port direction angle φ increases. This is because when the discharge port direction angle φ is increased, the distance between the discharge port 30 measured along the discharge port direction of the planar ejection nozzle 29 and the surface of the continuous steel plate 15 is increased, and the surface of the continuous steel plate 15 is welded. This is considered to be because the amount of kinetic energy given to the sputter from the jet water becomes small.

一方、図4から吐出口方向角φが大きくても、ノズルヘッダー圧力を大きくすると、溶接スパッタを連続鋼板15の表面から除去できることが判る。しかし、ノズルヘッダー圧力を大きくすると、連続鋼板15の表面からの跳ね返り水が多くなって高圧洗浄装置17外への水の飛散が生じ好ましくない。このため、各平面状噴出ノズル29の吐出口方向角φを5°以上で20°以下とした。
これによって、平面状噴出ノズル29の吐出口方向に沿って計った吐出口30と連続鋼板15の表面までの距離を一定範囲内に維持することができ、溶接部の溶接スパッタに対して連続鋼板15の表面から離脱するのに必要な運動エネルギーを噴射水から確実に供給することができる。
On the other hand, it can be seen from FIG. 4 that even if the discharge port direction angle φ is large, welding spatter can be removed from the surface of the continuous steel plate 15 by increasing the nozzle header pressure. However, when the nozzle header pressure is increased, the amount of water bounced off from the surface of the continuous steel plate 15 increases, and water splashes out of the high-pressure cleaning device 17, which is not preferable. For this reason, the discharge port direction angle φ of each planar ejection nozzle 29 is set to 5 ° or more and 20 ° or less.
Thereby, the distance from the discharge port 30 measured along the discharge port direction of the flat ejection nozzle 29 to the surface of the continuous steel plate 15 can be maintained within a certain range, and the continuous steel plate is welded against the welding spatter of the weld. The kinetic energy required to leave the surface of the 15 can be reliably supplied from the jet water.

ここで、図5(A)に示すように、吐出口30から噴射された噴射水は吐出口30の幅方向で、例えば、中心角αが45°の扇形状に広がる特性を有している。このため、連続鋼板15の表面には、図5(B)に示すように、両端側で先細となった幅狭状のスプレーパターン31が形成される。そして、このスプレーパターン31から、両側の噴射水の圧力は中央部の噴射水の圧力より低くなって、溶接スパッタに与える運動エネルギーが低下していることが判る。
そこで、図6に示すように、各平面状噴出ノズル29から連続鋼板15に対して噴射水を吹き付けた際に、隣り合う平面状噴出ノズル29から噴射された噴出水のスプレーパターン31が連続鋼板15の表面上で重なるようにして、両平面状噴出ノズル29から噴射水を吹き付け溶接スパッタに与える総運動エネルギーを増加させ、溶接スパッタが除去する際の状況を調査した。その結果を図7に示す。なお、図7における噴射水の重なり代とは、連続鋼板15の幅方向での重なり代W(図6参照)を指す。
Here, as shown in FIG. 5A, the water jetted from the discharge port 30 has a characteristic of spreading in a fan shape with a central angle α of 45 ° in the width direction of the discharge port 30, for example. . For this reason, as shown in FIG. 5B, a narrow spray pattern 31 that is tapered at both ends is formed on the surface of the continuous steel plate 15. And from this spray pattern 31, it turns out that the pressure of the jet water of both sides becomes lower than the pressure of the jet water of a center part, and the kinetic energy given to welding spatter is falling.
Therefore, as shown in FIG. 6, when spray water is sprayed from the respective planar ejection nozzles 29 to the continuous steel plate 15, the spray pattern 31 of the ejected water ejected from the adjacent planar ejection nozzles 29 is a continuous steel plate. The total kinetic energy given to the welding spatter was increased by spraying water from both planar jet nozzles 29 so as to overlap on the surface of 15 and the situation when the welding spatter was removed was investigated. The result is shown in FIG. In addition, the overlap margin of the jet water in FIG. 7 refers to the overlap margin W (refer FIG. 6) in the width direction of the continuous steel plate 15.

図7から、ノズルヘッダー圧力が3MPa以下では、重なり代を5mm以上にすると、溶接スパッタを連続鋼板15の表面から除去できることが判る。また、重なり代が大きくなると溶接スパッタが連続鋼板15の表面に残存することが判る。これは、ノズルヘッダー圧力が低くなると、隣り合う平面状噴出ノズル29から噴射された噴出水同士が干渉しあって相互に噴射水の持つ運動エネルギーを減少させるためと考えられる。
一方、ノズルヘッダー圧力が4MPa以上では、重なり代を5mm以上にすると、溶接スパッタを連続鋼板15の表面から除去できるが、重なり代が30mm以上では連続鋼板15の表面に疵が入ることが判った。これは、圧力のあまり低下していない噴射水同士が重なり合うようになって、重なり代に過剰な運動エネルギーが供給され、除去された溶接スパッタが連続鋼板15の表面に再び押し付けられて引っ掻き疵が発生したと考えられる。
従って、隣り合う平面状噴出ノズル29から噴射された噴出水同士の連続鋼板15の幅方向での重なり代を5mm以上で20mm以下となるように各平面状噴出ノズル29の間隔を調整して配置することにより、重なり代が生じている連続鋼板15の表面の溶接スパッタに対して連続鋼板15の表面から離脱するのに必要な運動エネルギーを供給することができると共に、除去された溶接スパッタが連続鋼板15の表面に再び押し付けられて、付着したり圧入されたり、あるいは引っ掻き疵を発生させたりすることを防止できる。
From FIG. 7, it can be seen that when the nozzle header pressure is 3 MPa or less, the welding spatter can be removed from the surface of the continuous steel plate 15 if the overlap margin is 5 mm or more. It can also be seen that weld spatter remains on the surface of the continuous steel plate 15 as the overlap margin increases. This is presumably because, when the nozzle header pressure is lowered, the jet water ejected from the adjacent planar jet nozzles 29 interfere with each other to reduce the kinetic energy of the jet water.
On the other hand, when the nozzle header pressure is 4 MPa or more, the welding spatter can be removed from the surface of the continuous steel plate 15 when the overlap margin is 5 mm or more. However, when the overlap margin is 30 mm or more, the surface of the continuous steel plate 15 is wrinkled. . This is because the spray waters whose pressures have not decreased so much overlap each other, excessive kinetic energy is supplied to the overlap, and the removed weld spatter is pressed again against the surface of the continuous steel plate 15 to cause scratches. It is thought that it occurred.
Therefore, the interval between the planar ejection nozzles 29 is adjusted so that the overlapping margin in the width direction of the continuous steel plate 15 between the ejection water jetted from the adjacent planar ejection nozzles 29 is 5 mm or more and 20 mm or less. By doing so, it is possible to supply the kinetic energy necessary for detachment from the surface of the continuous steel plate 15 to the welding spatter on the surface of the continuous steel plate 15 where the overlap margin is generated, and the removed weld spatter is continuously provided. It can be prevented from being pressed again against the surface of the steel plate 15 to adhere or press-fit, or to generate scratches.

続いて、本発明の一実施の形態に溶接スパッタの除去方法について説明する。
先ず、鋼板連続冷延処理ライン10の溶接機16の下流側に配置された高圧洗浄装置17の架台に、屈折角度が90°以上で160°以下のV字形状のノズルヘッダー25を、V字形状の屈折部26が連続鋼板15の板幅中央位置の上方で搬送方向の上流側に位置するようにして、V字形状の両先部27、28が搬送方向の下流側に位置するようにして配置する。
そして、ノズルヘッダー25に設けられた吐出口面積が6mm2 以上で20mm2 以下の複数の平面状噴出ノズル29の各位置を、その吐出口30から連続鋼板15の表面までの高さHが50mm以上で200mm以下になるように調整すると共に、各平面状噴出ノズル29の吐出口30の吐出方向と連続鋼板15の表面に立てた垂線との角度、すなわち吐出口方向角φが5°以上で20°以下になるように調整する。更に、隣り合う平面状噴出ノズル29から噴射された噴出水のスプレーパターン31の側部同士が連続鋼板15の表面上で重なる際の重なり代Wが連続鋼板15の幅方向で5mm以上で20mm以下となるように各平面状噴出ノズル29の間隔を調整する。
Next, a welding spatter removal method will be described in an embodiment of the present invention.
First, a V-shaped nozzle header 25 having a refraction angle of 90 ° or more and 160 ° or less is mounted on a frame of a high-pressure cleaning device 17 disposed on the downstream side of the welding machine 16 of the steel sheet continuous cold rolling processing line 10. The shape-shaped refracting portion 26 is positioned upstream of the central position of the continuous steel plate 15 and upstream of the conveying direction, and the V-shaped tip portions 27 and 28 are positioned downstream of the conveying direction. Arrange.
The height H from the discharge port 30 to the surface of the continuous steel plate 15 is 50 mm at each position of the plurality of planar ejection nozzles 29 having a discharge port area of 6 mm 2 or more and 20 mm 2 or less provided in the nozzle header 25. The adjustment is made to be 200 mm or less as described above, and the angle between the discharge direction of the discharge port 30 of each planar ejection nozzle 29 and the perpendicular standing on the surface of the continuous steel plate 15, that is, the discharge port direction angle φ is 5 ° or more. Adjust to 20 ° or less. Furthermore, the overlap margin W when the side portions of the spray pattern 31 of the sprayed water jetted from the adjacent planar jet nozzles 29 overlap on the surface of the continuous steel plate 15 is 5 mm or more and 20 mm or less in the width direction of the continuous steel plate 15. The interval between the planar ejection nozzles 29 is adjusted so that

次いで、鋼板連続冷延処理ライン10に連続鋼板15を通板しながら、各平面状噴出ノズル29から毎分5.2〜61リットルの水が吐出されるように高圧水供給ポンプを用いて水を供給する。その結果、ノズルヘッダー25のヘッダー圧力が0.5MPa以上で5MPa以下となり、各平面状噴出ノズル29からは圧力が0.5MPa以上で5MPa以下の噴射水が噴射されて、連続鋼板15の表面に吹き付けられる。
ここで、各平面状噴出ノズル29の吐出口面積、ノズルヘッダー25のヘッダー圧力、連続鋼板の表面から各平面状噴出ノズル29の吐出口30までの高さHをそれぞれ上記の範囲内に設定することで、連続鋼板15の表面に溶着している溶接スパッタに噴射水が吹き付けられた場合、噴射水から溶接スパッタに対して連続鋼板15の表面から離脱するのに必要な運動エネルギーを供給することができる。このため、溶接スパッタは連続鋼板15の表面から離脱する。
Next, while passing the continuous steel plate 15 through the steel plate continuous cold-rolling treatment line 10, water is discharged using a high-pressure water supply pump so that 5.2 to 61 liters of water is discharged from each planar ejection nozzle 29 per minute. Supply. As a result, the header pressure of the nozzle header 25 is 0.5 MPa or more and 5 MPa or less, and each planar jet nozzle 29 is sprayed with water having a pressure of 0.5 MPa or more and 5 MPa or less, and is applied to the surface of the continuous steel plate 15. Be sprayed.
Here, the discharge port area of each planar ejection nozzle 29, the header pressure of the nozzle header 25, and the height H from the surface of the continuous steel plate to the ejection port 30 of each planar ejection nozzle 29 are set within the above ranges, respectively. Thus, when spray water is sprayed on the weld spatter welded to the surface of the continuous steel plate 15, the kinetic energy necessary to detach from the surface of the continuous steel plate 15 is supplied from the spray water to the weld spatter. Can do. For this reason, the welding spatter is detached from the surface of the continuous steel plate 15.

平面状噴出ノズル29から噴射された噴射水は平面状噴出ノズル29の吐出口30から扇形状に広がるため、連続鋼板15の表面には両端側で先細となった幅狭状のスプレーパターン31が形成される。そして、このスプレーパターン31では両側の噴射水の圧力は中央部の噴射水の圧力より低くなって、溶接スパッタに与える運動エネルギーは低下する。
しかし、連続鋼板15の表面上で噴射水の重なり代を連続鋼板15の幅方向で5mm以上にしているため、重なり代には両平面状噴出ノズル29から噴射水が吹き付けられ溶接スパッタに与える総運動エネルギーを増加させることができ、溶接スパッタに対して連続鋼板15の表面から離脱するのに必要な運動エネルギーは供給できる。更に、連続鋼板15の表面上で噴射水の重なり代を連続鋼板15の幅方向で20mm以下にしているため、除去された溶接スパッタが連続鋼板15の表面に再び押し付けられて、付着したり圧入されたり、あるいは引っ掻き疵を発生させたりすることができるような運動エネルギーは供給されない。
従って、溶接スパッタを噴射水によって連続鋼板15の表面に疵を付けることなく円滑に除去することができる。
Since the spray water ejected from the planar ejection nozzle 29 spreads in a fan shape from the discharge port 30 of the planar ejection nozzle 29, a narrow spray pattern 31 tapered on both ends is formed on the surface of the continuous steel plate 15. It is formed. And in this spray pattern 31, the pressure of the spray water of both sides becomes lower than the pressure of the spray water of the center part, and the kinetic energy given to welding spatter falls.
However, since the overlap margin of the spray water on the surface of the continuous steel plate 15 is set to 5 mm or more in the width direction of the continuous steel plate 15, the spray water is sprayed from both planar jet nozzles 29 to the welding spatter in the overlap margin. The kinetic energy can be increased, and the kinetic energy necessary to leave the surface of the continuous steel plate 15 can be supplied to the welding spatter. Furthermore, since the overlapping margin of the spray water on the surface of the continuous steel plate 15 is set to 20 mm or less in the width direction of the continuous steel plate 15, the removed weld spatter is pressed again on the surface of the continuous steel plate 15 to adhere or press fit. Kinetic energy is not provided that can be applied or cause scratching.
Therefore, welding spatter can be smoothly removed by spraying water without causing wrinkles on the surface of the continuous steel plate 15.

また、V字形状のノズルヘッダー25は、V字形状の屈折部26が連続鋼板15の板幅中央位置の上方で搬送方向の上流側に、V字形状の両先部27、28が搬送方向の下流側に配置されているので、各平面状噴出ノズル29からは連続鋼板15の端部に向かう速度を有して噴射水が噴射している。
その結果、連続鋼板15上の溶接スパッタを除去した後の溶接スパッタが浮遊している水は、この分速度のため連続鋼板15の端部に向けて流れ出す。このため、連続鋼板15上からは溶接スパッタを除去した後の水が連続鋼板15の両側に向けて排水され、連続鋼板15上に溶接スパッタが浮遊している水が残留することはなく、従って、連続鋼板15の表面に一度除去された溶接スパッタが残留することもない。
Further, the V-shaped nozzle header 25 has a V-shaped refracting portion 26 on the upstream side in the conveying direction above the central position of the continuous steel plate 15, and both V-shaped tip portions 27 and 28 in the conveying direction. Since each of the planar ejection nozzles 29 is disposed on the downstream side, the spray water is ejected at a speed toward the end of the continuous steel plate 15.
As a result, the water in which the welding spatter after the welding spatter on the continuous steel plate 15 is removed flows out toward the end of the continuous steel plate 15 due to this speed. For this reason, the water after removing the welding spatter from the continuous steel plate 15 is drained toward both sides of the continuous steel plate 15, and the water in which the welding spatter is floating does not remain on the continuous steel plate 15. The weld spatter once removed does not remain on the surface of the continuous steel plate 15.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の溶接スパッタの除去方法を構成する場合も本発明の権利範囲に含まれる。例えば、V字形状のノズルヘッダーの屈折角度を90°以上で160°以下の範囲で固定したが、連続鋼板の幅や搬送速度に応じてこの範囲で可変としてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. The case where the welding spatter removal method of the present invention is configured by combining some or all of the forms and modifications is also included in the scope of the present invention. For example, the refraction angle of the V-shaped nozzle header is fixed in the range of 90 ° to 160 °, but may be variable in this range according to the width of the continuous steel plate and the conveyance speed.

本発明の一実施の形態の溶接スパッタの除去方法を適用した高圧洗浄装置を備えた鋼板連続冷延処理ラインの説明図である。It is explanatory drawing of the steel plate continuous cold rolling process line provided with the high-pressure washing apparatus to which the removal method of the welding spatter of one embodiment of the present invention is applied. 同高圧洗浄装置に設けられたノズルヘッダーの説明図である。It is explanatory drawing of the nozzle header provided in the same high-pressure washing apparatus. 連続鋼板とノズルヘッダーの関係を示す側断面図である。It is a sectional side view which shows the relationship between a continuous steel plate and a nozzle header. 溶接スパッタの除去状況に及ぼすノズルヘッダー圧力と平面状噴出ノズルの吐出口方向の関係を示す説明図である。It is explanatory drawing which shows the relationship between the nozzle header pressure which affects the removal condition of a welding sputter | spatter, and the discharge port direction of a planar ejection nozzle. (A)はノズルヘッダーに設けられた各平面状噴出ノズルのスプレーパターンの側面図、(B)は噴射水が連続鋼板に衝突した際のスプレーパターンの平面図である。(A) is a side view of the spray pattern of each planar ejection nozzle provided in the nozzle header, and (B) is a plan view of the spray pattern when the spray water collides with the continuous steel plate. ノズルヘッダーに設けられた各平面状噴出ノズルのスプレーパターン間に生じる噴出水の重なり代を示す説明図である。It is explanatory drawing which shows the overlap margin of the ejection water which arises between the spray patterns of each planar ejection nozzle provided in the nozzle header. 溶接スパッタの除去状況に及ぼすノズルヘッダー圧力と噴射水の重なり代の関係を示す説明図である。It is explanatory drawing which shows the relationship between the nozzle header pressure which influences the removal condition of a welding sputter | spatter, and the overlap margin of spray water.

符号の説明Explanation of symbols

10:鋼板連続冷延処理ライン、11:鋼板、12:払出しリール、13:払出し機、14:鋼板、15:連続鋼板、16:溶接機、17:高圧洗浄装置、18:ルーパー、19:連続鋼板搬送制御機、20:圧延ロール、21:圧延機、22:薄板鋼板、23:巻取りリール、24:巻取り機、25:ノズルヘッダー、26:屈折部、27、28:先部、29:平面状噴出ノズル、30:吐出口、31:スプレーパターン 10: Steel plate continuous cold rolling treatment line, 11: Steel plate, 12: Dispensing reel, 13: Dispenser, 14: Steel plate, 15: Continuous steel plate, 16: Welding machine, 17: High pressure washing device, 18: Looper, 19: Continuous Steel sheet conveyance control machine, 20: rolling roll, 21: rolling machine, 22: thin steel sheet, 23: winding reel, 24: winding machine, 25: nozzle header, 26: refraction part, 27, 28: front part, 29 : Planar jet nozzle, 30: Discharge port, 31: Spray pattern

Claims (4)

鋼板連続処理ラインで先行する鋼板の終端と後行する鋼板の先端を突き合わせ溶接して形成した連続鋼板の溶接部の溶接スパッタを、該連続鋼板の上方に該連続鋼板に交差して配置した管状のノズルヘッダーに設けられた複数のノズルから噴出する噴射水によって除去する溶接スパッタの除去方法において、
前記ノズルヘッダーを屈折角度が90°以上で160°以下のV字形状となし、該V字形状の屈折部を前記連続鋼板の板幅中央位置の上方で前記搬送方向の上流側に、該V字形状の両先部を該連続鋼鈑の上方で該搬送方向の下流側に配置し、前記各ノズルに吐出口面積が6mm2 以上で20mm2 以下の平面状噴出ノズルを使用し、前記ノズルヘッダーのヘッダー圧力を0.5MPa以上で5MPa以下、前記連続鋼板の表面から前記各ノズルの吐出口までの高さを50mm以上で200mm以下にして前記噴射水を噴射することを特徴とする溶接スパッタの除去方法。
Tubing in which the weld spatter of the welded portion of the continuous steel plate formed by butt welding the end of the preceding steel plate and the tip of the subsequent steel plate in a continuous steel plate processing line is arranged above the continuous steel plate and intersecting the continuous steel plate In the method of removing welding spatter that is removed by spray water ejected from a plurality of nozzles provided in the nozzle header of
The nozzle header is formed in a V shape having a refraction angle of 90 ° or more and 160 ° or less, and the V-shaped refracting portion is disposed upstream of the center position of the width of the continuous steel plate and upstream of the conveying direction. Both ends of the letter-shape are disposed on the downstream side in the conveying direction above the continuous steel plate, and a flat jet nozzle having a discharge port area of 6 mm 2 or more and 20 mm 2 or less is used for each nozzle; Welding spatter characterized by spraying the spray water with a header pressure of 0.5 MPa to 5 MPa and a height from the surface of the continuous steel plate to the discharge port of each nozzle being 50 mm to 200 mm. Removal method.
請求項1記載の溶接スパッタの除去方法において、前記鋼板は容器用鋼板であることを特徴とする溶接スパッタの除去方法。 2. The welding spatter removal method according to claim 1, wherein the steel plate is a vessel steel plate. 請求項1及び2のいずれか1項に記載の溶接スパッタの除去方法において、隣り合う前記平面状噴出ノズルから噴出された前記噴出水が前記連続鋼板の表面上で重なる際の重なり代を前記連続鋼板の幅方向に5mm以上で20mm以下の範囲にすることを特徴とする溶接スパッタの除去方法。 3. The welding spatter removal method according to claim 1, wherein an overlap margin when the jet water jetted from the adjacent flat jet nozzles overlaps on a surface of the continuous steel plate is the continuous. A method of removing welding spatter, wherein the width is in the range of 5 mm to 20 mm in the width direction of the steel sheet. 請求項1〜3のいずれか1項に記載の溶接スパッタの除去方法において、前記平面状噴出ノズルの吐出口方向が前記連続鋼板の表面に立てた垂線に対して5°以上で20°以下の範囲で前記連続鋼板の上流側に傾いていることを特徴とする溶接スパッタの除去方法。 In the removal method of the welding sputter of any one of Claims 1-3, the discharge port direction of the said planar ejection nozzle is 5 degrees or more and 20 degrees or less with respect to the perpendicular standing on the surface of the said continuous steel plate. A welding spatter removal method characterized by being inclined to the upstream side of the continuous steel plate in a range.
JP2003419131A 2003-12-17 2003-12-17 How to remove welding spatter Expired - Lifetime JP4418224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419131A JP4418224B2 (en) 2003-12-17 2003-12-17 How to remove welding spatter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419131A JP4418224B2 (en) 2003-12-17 2003-12-17 How to remove welding spatter

Publications (2)

Publication Number Publication Date
JP2005177778A true JP2005177778A (en) 2005-07-07
JP4418224B2 JP4418224B2 (en) 2010-02-17

Family

ID=34781104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419131A Expired - Lifetime JP4418224B2 (en) 2003-12-17 2003-12-17 How to remove welding spatter

Country Status (1)

Country Link
JP (1) JP4418224B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126229A (en) * 2006-11-16 2008-06-05 Nippon Steel Corp Continuous cold rolling equipment and its operating method
JP2010227894A (en) * 2009-03-30 2010-10-14 Seiren Co Ltd Recycling method of advertising sheet, and method for manufacturing of regeneration sheet
CN102248011A (en) * 2011-06-02 2011-11-23 武汉钢铁(集团)公司 Soft water seal-based flow-guide and drainage device used in after-rolling cooling process of hot-rolled steel strip
CN103813865A (en) * 2011-06-28 2014-05-21 思万特股份公司 Device for cleaning a material or structure, e.g. a steel material
CN108778860A (en) * 2016-06-24 2018-11-09 阿尔弗雷德·卡赫欧洲两合公司 Drying equipment for motor vehicle and the vehicle-cleaning equipment with drying equipment
CN110586552A (en) * 2019-10-17 2019-12-20 攀钢集团矿业有限公司 Reciprocating type high gradient magnet separator washing unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126229A (en) * 2006-11-16 2008-06-05 Nippon Steel Corp Continuous cold rolling equipment and its operating method
JP2010227894A (en) * 2009-03-30 2010-10-14 Seiren Co Ltd Recycling method of advertising sheet, and method for manufacturing of regeneration sheet
CN102248011A (en) * 2011-06-02 2011-11-23 武汉钢铁(集团)公司 Soft water seal-based flow-guide and drainage device used in after-rolling cooling process of hot-rolled steel strip
CN103813865A (en) * 2011-06-28 2014-05-21 思万特股份公司 Device for cleaning a material or structure, e.g. a steel material
US10245622B2 (en) 2011-06-28 2019-04-02 Silvent Ab Device for cleaning a material or structure, E.G. A steel material
CN108778860A (en) * 2016-06-24 2018-11-09 阿尔弗雷德·卡赫欧洲两合公司 Drying equipment for motor vehicle and the vehicle-cleaning equipment with drying equipment
CN110586552A (en) * 2019-10-17 2019-12-20 攀钢集团矿业有限公司 Reciprocating type high gradient magnet separator washing unit

Also Published As

Publication number Publication date
JP4418224B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
KR101804834B1 (en) Rolling mill roll-cleaning device and cleaning method
CN101253011B (en) Hot rolling facility of steel plate and hot rolling method
WO2007026906A1 (en) Cooling facility and cooling method of steel plate
JP4779749B2 (en) Steel plate cooling method and cooling equipment
JP2007090355A (en) Cooling equipment for steel sheet and manufacturing method of steel sheet
JP4418224B2 (en) How to remove welding spatter
JP2003096584A (en) Spray apparatus for cleaning metallic web and cleaning method therefor
JPH09141322A (en) Method and device for removing cooling after on steel strip
JP2017170511A (en) Descaling device and descaling method
JP6350456B2 (en) Hot-rolled steel descaling method and descaling apparatus, hot-rolled steel material manufacturing method and manufacturing apparatus
CN202192123U (en) Rust removal mechanism and roll type straightening machine with same
JP7128478B2 (en) Chemical conversion treatment apparatus and method for manufacturing chemical conversion treated steel sheet
JP2000271615A (en) Method and device for cleaning work roll
TWI841216B (en) High pressure cleaning device
JP4706113B2 (en) Temper rolling method and hot-rolling equipment for hot-dip galvanized steel strip
JP6575584B2 (en) Metal plate surface adhesion oil removal method, metal plate surface adhesion oil removal device, and metal plate manufacturing method
JPH0569028A (en) Skin pass rolling mill
CN102756014A (en) Rust removing mechanism and roller type straightener equipped with same
JPH09241886A (en) Method for preventing pressed flaw in electroplated metalllic strip and device therefor
JPH046255A (en) Strip stabilizing device in hot dip metal plating cell
JP2002294478A (en) Draining device for steel strip
JPH1177159A (en) Method and device for scale removal in roller leveler
US20190179178A1 (en) Substrate processing device
JP5904338B2 (en) Clogging prevention method and clogging prevention device for wiping nozzle
JP2003230907A (en) Equipment for passing metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350