JP2005176534A - Charging control circuit for lithium ion battery - Google Patents

Charging control circuit for lithium ion battery Download PDF

Info

Publication number
JP2005176534A
JP2005176534A JP2003414444A JP2003414444A JP2005176534A JP 2005176534 A JP2005176534 A JP 2005176534A JP 2003414444 A JP2003414444 A JP 2003414444A JP 2003414444 A JP2003414444 A JP 2003414444A JP 2005176534 A JP2005176534 A JP 2005176534A
Authority
JP
Japan
Prior art keywords
voltage
charging
battery
controller
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414444A
Other languages
Japanese (ja)
Inventor
Tomomi Sano
佐野  友美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003414444A priority Critical patent/JP2005176534A/en
Publication of JP2005176534A publication Critical patent/JP2005176534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably supply electric power for a controller in ensuring charging power and the electric power for the controller from a secondary side of an output transformer. <P>SOLUTION: By feeding back an output of a differential amplifier AM3, which adjusts a potential, for example, at a T1 point in a charging path from the secondary side of the output transformer Tr to a battery CE so that the voltage divided by a voltage divider DV2 may meet a reference voltage setting value from the controller CT, to a primary controller through a photocoupler PC, the potential at the T1 point is controlled so as to be constant. Control of battery charging current is achieved by controlling the conduction amount of a current control element P1 with a differential amplifier AM1 for adjusting a detection current value in accordance with its command value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、各種携帯機器用電源として大量に使用されるに至っているリチウムイオン電池(単に、電池とも言う)の充電制御回路に関する。   The present invention relates to a charge control circuit for a lithium ion battery (also simply referred to as a battery) that has been used in large quantities as a power source for various portable devices.

リチウムイオン電池の充電制御は充電電流,電圧を監視して行なわれる。特に、過電圧の印加は電池を劣化させるため、充電時の電圧は充電時の電圧が4.2Vの電池で4.2V±30mV(変動率にすると±0.7%)のように、高精度の電圧管理が要求される。電池を1本で使用する場合には、4.1Vまたは4.2Vとなる。   The charging control of the lithium ion battery is performed by monitoring the charging current and voltage. In particular, the application of overvoltage deteriorates the battery, so the voltage during charging is 4.2V ± 30mV for a battery with a charging voltage of 4.2V (± 0.7% when the rate of variation is high). Voltage management is required. When one battery is used, the voltage is 4.1V or 4.2V.

図5に電池充電用電源として一般的なAC/DCコンバータを用いる例を示す。これは、AC電源24を両波整流し、平滑した電圧を高周波でスイッチングし、トランス25を介して二次側に誘起する電圧を整流,平滑して電池充電用とするものである。ACライン側と二次側の充電制御回路22は、トランス25およびフォトカプラ23により絶縁されている。
二次側の電圧制御は、フォトカプラ23を通して一次側の制御器21に伝えることにより行なう。一次側の制御器21はフォトカプラ23から得られる光量に応じ、高周波でスイッチングしているパルス幅を変化(PWM制御:電流の通流期間を変化)させて二次側の電圧を制御する。
FIG. 5 shows an example in which a general AC / DC converter is used as a battery charging power source. In this case, AC power supply 24 is subjected to both-wave rectification, the smoothed voltage is switched at a high frequency, and the voltage induced on the secondary side via transformer 25 is rectified and smoothed for battery charging. The AC line side and secondary side charge control circuits 22 are insulated by a transformer 25 and a photocoupler 23.
The secondary side voltage control is performed by transmitting the voltage to the primary side controller 21 through the photocoupler 23. The primary-side controller 21 controls the secondary-side voltage by changing the pulse width switching at high frequency (PWM control: changing the current flow period) in accordance with the amount of light obtained from the photocoupler 23.

つまり、二次側からの指令で発光量が多い時には出力電圧を低く、少ない時には出力電圧を高くするように一次側で制御する。起動時は二次側の制御電圧は0Vで、フォトカプラ23によるフィードバックは無い(発光しない)ため、出力電圧を高める指令となる。その結果、二次側の制御器22は動作電圧を得て制御を実行できるようになる。   That is, control is performed on the primary side so that the output voltage is low when the light emission amount is large according to a command from the secondary side, and the output voltage is high when the light emission amount is small. At the time of startup, the control voltage on the secondary side is 0V, and there is no feedback by the photocoupler 23 (no light emission), so this is a command to increase the output voltage. As a result, the secondary-side controller 22 can obtain the operating voltage and execute control.

図5の構成で、二次側の制御器22の電源は、トランス二次側巻線からとるのが一番自然であるが、充電する電池の電圧に応じて二次巻線から得られる電圧は変動する。十分使い切った電池では、その電圧は2V程度となる。このとき、二次巻線から得られる電圧も同様の2V程度になる。この電圧を制御器が動作できる電圧にするには、直列に抵抗器を入れる等の対策が必要になるが、充電電流が大きくなる急速充電では1A以上の電流が流れ、これによるロスを許容することはできない。このような事情から、制御器が通常必要とする電圧(4〜6V)をどのように確保するかが課題となる。   In the configuration of FIG. 5, the power source of the secondary side controller 22 is most naturally taken from the transformer secondary side winding, but the voltage obtained from the secondary winding according to the voltage of the battery to be charged. Will fluctuate. In a fully used battery, the voltage is about 2V. At this time, the voltage obtained from the secondary winding is also about 2V. In order to make this voltage a voltage at which the controller can operate, it is necessary to take measures such as inserting a resistor in series. However, rapid charging with a large charging current causes a current of 1 A or more to flow, and this causes a loss It is not possible. Under such circumstances, a problem is how to secure the voltage (4 to 6 V) normally required by the controller.

ところで、電池への充電時には二次側の電圧は電池電圧よりも多少高い(=電池電圧+0.1V〜0.5V:逆阻止ダイオード(ショットキーダイオード)Dの順方向電圧降下+電流検出用抵抗Rでの電圧降下)程度である。特に放電し過ぎた電池を充電しようとすると、電池電圧は1V以下まで低下していることを考慮する必要がある。このような電圧の低い電池を充電する場合、2次側巻線の電圧を整流・平滑した電圧(以下充電電圧という)は1.1V[=1V(電池電圧)+0.1V(ダイオードDの順方向電圧降下)とした]程度しか発生しない。電池の充電電圧は二次巻線の出力電圧、すなわちこの1.1Vになるが、この電圧では制御器の電源電圧として使用するには電圧が低すぎる。   By the way, when the battery is charged, the secondary voltage is slightly higher than the battery voltage (= battery voltage + 0.1V to 0.5V: forward voltage drop of reverse blocking diode (Schottky diode) D + current detection resistor. Voltage drop at R). In particular, when trying to charge a battery that has been discharged too much, it is necessary to consider that the battery voltage has dropped to 1 V or less. When charging a battery having such a low voltage, a voltage obtained by rectifying and smoothing the voltage of the secondary winding (hereinafter referred to as a charging voltage) is 1.1 V [= 1 V (battery voltage) +0.1 V (in order of the diode D). Direction voltage drop)] only occurs. The charging voltage of the battery becomes the output voltage of the secondary winding, that is, 1.1 V, but this voltage is too low to be used as the power supply voltage of the controller.

通常のアナログ,ディジタル混在の制御器には3〜5Vの安定化した電圧が必要である。また、その電源を安定化するために+1Vの電圧マージンを見込むと、4〜6Vの制御器(IC)用の電圧が必要になる。しかし、上記のように、充電する電池が1本の構成では、そのままの1.1V程度の電圧しか得られないため、制御器に必要な電圧(4〜6V)を確保することができない。   A normal analog / digital controller requires a stabilized voltage of 3-5V. Further, if a voltage margin of + 1V is expected in order to stabilize the power supply, a voltage for a controller (IC) of 4 to 6V is required. However, as described above, with a single battery to be charged, only the voltage of about 1.1 V can be obtained as it is, and thus the voltage (4 to 6 V) necessary for the controller cannot be secured.

その対策として、制御用の電源を電池充電用電源から取らずに、別のルートから安定した電圧を確保する図6のような構成が考えられる。
これは、二次側の電圧制御を一次側で実施するのではなく、二次側の電圧を整流,平滑したDC電圧をベースにステップダウン構成のスイッチングレギュレータ32を設け、制御器用の電源には二次側の電圧を整流,平滑したDC電圧を用いるか、別巻線を設けてその電圧を使用するようにする。
As a countermeasure, a configuration as shown in FIG. 6 can be considered in which a stable voltage is secured from another route without taking a control power source from the battery charging power source.
This is because the secondary side voltage control is not performed on the primary side, but a step-down switching regulator 32 is provided based on a DC voltage obtained by rectifying and smoothing the secondary side voltage. A DC voltage obtained by rectifying and smoothing the secondary side voltage is used, or another winding is provided to use the voltage.

図6のようにすると、一次側の制御器は特に必要なくなり、商用電源周波数での電源トランス構成も考えられるが、トランスが大きく重いことから、この部分も高周波スイッチングが必須となる。その結果、一次・二次側に類似の回路を準備することになり、部品数の増大に伴うコストアップ,回路サイズの増大等の問題が発生する。なお、図6の符号33は充電制御器、34はリチウムイオン電池を示す。   In the case of FIG. 6, the primary side controller is not particularly necessary, and a power transformer configuration at a commercial power frequency can be considered. However, since the transformer is large and heavy, high-frequency switching is also essential in this part. As a result, similar circuits are prepared on the primary and secondary sides, and problems such as an increase in cost and an increase in circuit size due to an increase in the number of components occur. In addition, the code | symbol 33 of FIG. 6 shows a charge controller, 34 shows a lithium ion battery.

また、図5の回路において電池充電電圧と制御器の電圧を二次側に設けた図示しない三次巻線から引き出そうとすると、二次巻線と三次巻線の巻線比での電圧設定ではかなり厳しい状況が発生する。すなわち、従来方法では電池電圧が0Vに近いときは充電電圧も0Vに近い値となり、このとき制御器用の電圧は二次巻線との巻線比で決まることから、この電圧を6Vと仮定して0.5Vの充電電圧が発生したとすると、実に12倍(=6/0.5)の巻数で電圧を確保する必要が生じる。この巻数を採用すると、異常(短絡)電池の場合は何とか制御電源を確保できるものの、正常電池の場合には電池電圧が4.2Vまで上昇してくるため、制御器用の電圧はなんと50.4V(4.2×6/0.5)もの電圧が発生する計算になる。このような電圧では制御器の耐圧も不足するため、この電圧の上限を抑えるための素子が必要になる。この種の素子は通常熱を発生させ、そのロスで電圧を低下させるため、効率の良い電源とは言いがたい。   Further, in the circuit of FIG. 5, if the battery charging voltage and the controller voltage are to be extracted from a tertiary winding (not shown) provided on the secondary side, the voltage setting at the winding ratio between the secondary winding and the tertiary winding is considerably large. A severe situation occurs. That is, in the conventional method, when the battery voltage is close to 0V, the charging voltage is also close to 0V. At this time, the voltage for the controller is determined by the winding ratio with the secondary winding, so this voltage is assumed to be 6V. If a charging voltage of 0.5 V is generated, it is necessary to ensure the voltage with 12 times (= 6 / 0.5) the number of turns. If this number of turns is adopted, the control power supply can be secured somehow in the case of an abnormal (short-circuit) battery, but the battery voltage rises to 4.2V in the case of a normal battery, so the voltage for the controller is 50.4V. This is a calculation that generates a voltage of (4.2 × 6 / 0.5). At such a voltage, the withstand voltage of the controller is insufficient, and an element for suppressing the upper limit of this voltage is required. This type of device usually generates heat and reduces the voltage due to its loss, so it is difficult to say that it is an efficient power source.

そこで、出願人は図7のような回路を提案をしている(特許文献1参照)。
これは、トランス二次側の整流・平滑部1の出力端Tvとリチウムイオン電池9との間に、電界効果トランジスタ(pチャンネル(pch)FET)のような電流制御素子2を直列に接続し、そのコントロール(ゲート)端子を増幅器3からの出力により制御することで、制御器への電源供給端子Tvを一定電圧に保つものである。
図8は図7の充電制御方式を説明するもので、図8(a)は図7の要部回路図、図8(b)はその動作説明図である。すなわち、図8(a)に示す電流制御用増幅器8Aおよび電圧制御用増幅器8Bにより、電流,電圧の検出値を指令値とそれぞれ比較し、出力電圧の低い方を選択してフォトカプラ10の発光ダイオードDへの通電電流が決まるように構成されている。
Therefore, the applicant has proposed a circuit as shown in FIG. 7 (see Patent Document 1).
This is because a current control element 2 such as a field effect transistor (p-channel (pch) FET) is connected in series between the output terminal Tv of the rectifying / smoothing unit 1 on the transformer secondary side and the lithium ion battery 9. The control (gate) terminal is controlled by the output from the amplifier 3 to keep the power supply terminal Tv to the controller at a constant voltage.
FIG. 8 is a diagram for explaining the charging control system of FIG. 7, FIG. 8 (a) is a circuit diagram of the main part of FIG. 7, and FIG. That is, the current control amplifier 8A and the voltage control amplifier 8B shown in FIG. 8A compare the detected values of the current and voltage with the command values, respectively, and select the one with the lower output voltage to emit light from the photocoupler 10. The energization current to the diode D is determined.

電池電圧の制御は図8(b)のように、電池電圧が低い状態では点線で示すように定電流制御を行ない、電池電圧が一定値(例えば、電池1本の4.2V)になると定電圧充電に移行し、その充電電流が一定値(例えば、定電流充電時の1/10)以下になったときに充電を終了する。定電流充電から定電圧充電へのモード切替は、各制御における制御電圧の低い方の電圧にしたがってフォトカプラ10の発光量が制御される構成となっているため、この電圧の切り替わりを充電時の電池電圧が4.2Vになったとき、電圧制御用増幅器8Bの出力電圧が電流制御用増幅器8Aの出力電圧よりも低くなるように設定しておけば、各増幅器の出力が制御切替用ダイオードD1,D2のカソードに接続され、そのD1,D2のアノードが共通に発光ダイオードLEDのカソードに接続されていることにより、電流制御出力よりも低い電圧となる電圧制御を自動的に選択して実行することができる。   As shown in FIG. 8 (b), the battery voltage is controlled by performing a constant current control as indicated by a dotted line when the battery voltage is low, and is fixed when the battery voltage becomes a constant value (for example, 4.2V per battery). The process proceeds to voltage charging, and charging is terminated when the charging current becomes a certain value (for example, 1/10 of constant current charging) or less. The mode switching from the constant current charging to the constant voltage charging is configured such that the light emission amount of the photocoupler 10 is controlled according to the lower control voltage in each control. If the output voltage of the voltage control amplifier 8B is set to be lower than the output voltage of the current control amplifier 8A when the battery voltage becomes 4.2V, the output of each amplifier will be the control switching diode D1. , D2 are connected to the cathodes, and the anodes of D1 and D2 are commonly connected to the cathodes of the light emitting diodes LED, so that voltage control that is lower than the current control output is automatically selected and executed. be able to.

特開2001−327096号公報(第3頁、図1)JP 2001-327096 A (page 3, FIG. 1)

ところで、上記特許文献1でリチウムイオン電池1本の充電を考えるとき、図7の整流・平滑部1の出力電圧値が電池9の満充電時の電圧4.2Vだとこの電圧を制御器の電源電圧とするには懸念があるため、充電電圧はこれより高い電圧6V以上にせざるを得ない。したがって、電池9の満充電時の電圧の4.2Vになって定電圧充電モードになっても、pチャンネルFET2の両端の電圧差、すなわちFET2において電力ロスが発生し、充電装置としての効率を上げることができない。
したがって、この発明はこのような課題を解決するためになされたもので、定電圧充電モードにおける電力ロスを抑制しつゝ、制御器用電源を安定して得られるようにすることにある。
By the way, when considering the charging of one lithium ion battery in the above-mentioned Patent Document 1, if the output voltage value of the rectifying / smoothing unit 1 in FIG. Since there is concern about the power supply voltage, the charging voltage must be higher than 6V. Therefore, even when the voltage of the battery 9 at full charge is 4.2 V and the constant voltage charging mode is set, a voltage difference between both ends of the p-channel FET 2, that is, power loss occurs in the FET 2, and the efficiency as a charging device is increased. I can't raise it.
Accordingly, the present invention has been made to solve such a problem, and it is desirable to stably obtain a power supply for a controller while suppressing power loss in a constant voltage charging mode.

このような課題を解決するため、請求項1の発明では、AC/DCコンバータの出力トランス二次側の整流・平滑されたDC電圧を、リチウムイオン電池の充電用および制御器用電源として用いるリチウムイオン電池の充電制御回路において、前記DC電圧が充電対象電池の充電上限電圧に等しくなるよう前記出力トランス一次側の制御器にフィードバックするフィードバック手段を設けるとともに、そのフィードバックされた出力トランス二次側のDC電圧とリチウムイオン電池との間に直列に電流制御素子を設け、検出される充電電流が指令値と等しくなるように前記電流制御素子の導通度を制御する信号を前記電流制御素子の制御信号とすることを特徴とする。この請求項1の発明においては、前記電流制御素子を強制的にオン,オフさせる信号をそのコントロール端子に印加する信号印加手段を設け、リチウムイオン電池への充電電流の遮断機能を持たせることができる(請求項2の発明)。また、上記請求項1または2の発明においては、前記電流制御素子がpチャンネルFETであることができる(請求項3の発明)。   In order to solve such a problem, in the invention of claim 1, the lithium ion using the rectified and smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter as a power source for charging a lithium ion battery and a controller. In the battery charging control circuit, feedback means is provided for feeding back to the controller on the primary side of the output transformer so that the DC voltage is equal to the charging upper limit voltage of the battery to be charged, and the DC on the secondary side of the output transformer fed back is provided. A current control element is provided in series between the voltage and the lithium ion battery, and a signal for controlling the continuity of the current control element so that the detected charging current is equal to the command value and the control signal of the current control element It is characterized by doing. According to the first aspect of the present invention, there is provided a signal applying means for applying a signal for forcibly turning on and off the current control element to the control terminal thereof so as to have a function of interrupting a charging current to the lithium ion battery. (Invention of claim 2) In the invention of claim 1 or 2, the current control element may be a p-channel FET (invention of claim 3).

上記のように出力トランス二次側のDC電圧を一定にして、電池充電時のパワロスを極力少なくするのは、電流制御時に無駄な電力を消費することになるが、予備充電や急速充電期間は通常の電池であれば極めて短時間に終了するため問題は殆どなく、制御器用の電源を安定して得られるので、有効な方式といえる。   As described above, making the DC voltage on the secondary side of the output transformer constant and reducing the power loss when charging the battery as much as possible consumes wasted power during current control. If it is a normal battery, it will be completed in a very short time, so there is almost no problem, and a power supply for the controller can be obtained stably.

図1はこの発明の実施の形態を示す回路図である。
図示のように、AC/DCコンバータの出力電圧から電流検出抵抗Rを出た後(電流制御素子P1の前)の、例えばT1点の電圧を、電池充電の上限電圧である4.2Vとなるように制御する構成とする。すなわち、電流検出抵抗Rを出た後(電流制御素子P1の前)の例えばT1点の電位を、分圧器VD2により分圧した値と、分圧器VD3を経た制御器CTからの電圧指令VREFとを一致させるように動作する差動増幅器AM3の出力によりフォトカプラPCを動作させ、その光量変化により一次側のAC/DCコンバータを例えばパルス幅(PWM)制御することで、一定となるようにフィードバック制御する。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
As shown in the figure, after the current detection resistor R is output from the output voltage of the AC / DC converter (before the current control element P1), for example, the voltage at the point T1 becomes 4.2 V, which is the upper limit voltage for battery charging. It is set as the structure controlled as follows. That is, a value obtained by dividing, for example, the potential at the point T1 after exiting the current detection resistor R (before the current control element P1) by the voltage divider VD2, and a voltage command VREF from the controller CT via the voltage divider VD3 The photocoupler PC is operated by the output of the differential amplifier AM3 that operates so as to coincide with each other, and the primary side AC / DC converter is subjected to, for example, pulse width (PWM) control according to the change in the amount of light so that the feedback becomes constant. Control.

このとき、制御器CTの電源電圧は、二次巻線の電池充電電圧よりも3〜4V高い三次巻線を設け、この巻線から得られる電圧を制御器用として利用する。二次巻線は電池充電電圧用の4.2Vに固定しているため、制御用電圧も電池電圧よりも3〜4V高い電圧(7.2〜8.2V)を常に安定して確保することができる。
また、T1点と電池CEとの間にはpチャンネルFET等の電流制御素子P1が設けられ、これには電流検出抵抗Rの両端の電圧から充電電流を検出する差動増幅器AM2と、この差動増幅器AM2の出力と制御器CTからの出力値VREFを分圧器VD1で分圧した電流指令相当値とを一致させるように動作する差動増幅器AM1とが設けられ、電流検出値が電流指令値と等しくなるように素子P1の導通度が制御されるようになっている。
At this time, the power supply voltage of the controller CT is provided with a tertiary winding 3-4V higher than the battery charging voltage of the secondary winding, and the voltage obtained from this winding is used for the controller. Because the secondary winding is fixed at 4.2V for battery charging voltage, the control voltage must always be stable and secure 3-4V higher voltage (7.2-8.2V) than the battery voltage. Can do.
Further, a current control element P1 such as a p-channel FET is provided between the point T1 and the battery CE, which includes a differential amplifier AM2 that detects a charging current from the voltage across the current detection resistor R, and this difference. There is provided a differential amplifier AM1 which operates so as to match the output of the dynamic amplifier AM2 with the current command equivalent value obtained by dividing the output value VREF from the controller CT by the voltage divider VD1, and the detected current value is the current command value. The conductivity of the element P1 is controlled to be equal to

図3はこの発明による充電動作説明図で、同(a)は充電電圧,同(b)は充電電流を示す。
基本構成は、AC/DCコンバータの出力トランスTrの二次巻線の直流出力電圧(充電電圧)を常に一定電圧=電池充電終了電圧として、電池との電圧差をその間に設けたpチャンネルFETである素子P1で吸収するように、P1のオン抵抗R1を通電電流指令値に合わせるように調整する構成にしている。
すなわち、電池がほぼ空の状態では予備充電を実施し、電池電圧が一定値以上に上昇すると、急速充電を経て定電圧充電となる。予備充電,急速充電の電流制御はpチャンネルFETの導通度を制御して電流を調整するとともに、定電圧充電ではpチャンネルFETをON状態に制御する。
FIG. 3 is an explanatory diagram of the charging operation according to the present invention, in which (a) shows the charging voltage and (b) shows the charging current.
The basic configuration is a p-channel FET in which the DC output voltage (charging voltage) of the secondary winding of the output transformer Tr of the AC / DC converter is always a constant voltage = battery charging end voltage, and the voltage difference with the battery is provided therebetween. The ON resistance R1 of P1 is adjusted to match the energization current command value so as to be absorbed by a certain element P1.
That is, when the battery is almost empty, preliminary charging is performed, and when the battery voltage rises to a certain value or more, constant charging is performed through rapid charging. Current control for pre-charging and quick charging controls the current by adjusting the continuity of the p-channel FET, and the p-channel FET is controlled to be ON in constant voltage charging.

このように、充電電圧を一定にして制御器CTの電源を確保する構成のため、電池の電圧に関わらず制御器CTには一定の最適な電圧が印加され、安定な動作が期待できる。なお、予備充電(100mAの定電流充電)時の制御用電圧は、その充電経路に直列に接続した素子P1が負担する。このときの発生ロスの最大値は、充電電圧3.1V以上で急速充電としたときを例にして、
予備充電時 100mA×4.2V =0.42W
急速充電時 1.5A×(4.2−3.1)V=1.65W
のようになる。
As described above, since the power supply of the controller CT is ensured with a constant charging voltage, a constant optimum voltage is applied to the controller CT regardless of the battery voltage, and stable operation can be expected. Note that the control voltage during the preliminary charging (constant current charging of 100 mA) is borne by the element P1 connected in series to the charging path. The maximum value of the loss generated at this time is taken as an example when quick charging is performed at a charging voltage of 3.1 V or more.
At the time of preliminary charge 100mA × 4.2V = 0.42W
1.5A x (4.2-3.1) V = 1.65W at the time of quick charge
become that way.

上記の値は少ない値ではないが、実際の充電動作ではこのロスの大きな状態は、あまり長時間継続しない。ちなみに、充電時間を1時間とすると、上記の予備および急速充電で電池電圧が3.1Vから充電上限電圧の4.2Vまで変化する期間は大体10分程度であり、比率としては小さい(通常の充電時間は約1時間)。また、充電終了から、より満充電とするために、通常は充電終了後約1時間継続して定電圧充電することから合計2時間となり、そのうちの10分となればその比率はさらに低下することになる。
これに対し、トランス二次側の誘起電圧をそのまま充電電圧とし、三次巻線から制御器の駆動電圧を得る方法は、充電経路でのロスは少ないが、制御器駆動時の電圧ロスが大きくなる期間の比率がこの発明の場合とは逆、例えば図4(a)の斜線部Aで示すように、全充電時間の約2時間に対して1時間50分程度となり、全体の効率が低下することになる。ここで、図4の(a)は充電電圧および制御器へ供給される駆動電圧、(b)は充電電流についての説明図である。
Although the above value is not a small value, in the actual charging operation, this large loss state does not continue for a long time. Incidentally, if the charging time is 1 hour, the period during which the battery voltage changes from 3.1 V to the charging upper limit voltage of 4.2 V in the above-described preliminary and rapid charging is about 10 minutes, and the ratio is small (normal Charging time is about 1 hour). Also, in order to make the battery fully charged after the end of charging, it will normally last for about 1 hour after the end of charging, so it will take 2 hours in total, and if that time becomes 10 minutes, the ratio will be further reduced. become.
On the other hand, the method in which the induced voltage on the secondary side of the transformer is directly used as the charging voltage and the driving voltage of the controller is obtained from the tertiary winding has little loss in the charging path, but the voltage loss at the time of driving the controller becomes large. Contrary to the case of the present invention, for example, as shown by the hatched portion A in FIG. 4A, the period ratio is about 1 hour 50 minutes with respect to about 2 hours of the total charging time, and the overall efficiency is lowered. It will be. Here, (a) of FIG. 4 is an explanatory diagram of the charging voltage and the driving voltage supplied to the controller, and (b) is an explanatory diagram of the charging current.

また、この発明によれば、電圧,電流制御のために図8に示すようなダイオード突合せの方法を用いないため、下記のような利点もある。
(1)ダイオードが不要になる。IC化する場合に、ダイオードのサイズはMOSに比べ て小さくないので、省チップ面積にもつながる。
(2)ダイオードによる電圧降下(0.6V程度)がなくなって動作電圧範囲が広がり、 外部定数の変動もより広範囲な定数変動に対応できる。これにより、制御器の電源 電圧を低下させることができる。
さらに、次の利点もある。
(3)二次側の誘起電圧が電池の上限充電電圧に制御されるため、過電圧対策が容易に実 現できる
Further, according to the present invention, since the diode matching method as shown in FIG. 8 is not used for voltage and current control, there are the following advantages.
(1) No diode is required. In the case of an IC, the size of the diode is not smaller than that of the MOS, which leads to a chip saving area.
(2) The voltage drop (approximately 0.6V) due to the diode is eliminated and the operating voltage range is widened, and the fluctuation of the external constant can also deal with a wider range of constant fluctuation. As a result, the power supply voltage of the controller can be lowered.
In addition, there are the following advantages.
(3) Since the induced voltage on the secondary side is controlled to the upper limit charging voltage of the battery, overvoltage countermeasures can be easily realized.

(4)充電用の電源電圧は、電池充電上限電圧として先に述べたように、0.7%程度の 精度で、制御用IC(集積回路)の内部的なトリミングを実施して4.2V±30 mVを達成している。
この精度を確保した電圧を他の回路部へ流用したい要望はあったものの(例えば、 制御器内の基準電圧,A/D変換器の基準電圧など)、従来方式では予備,急速充 電時に上記T1点の電圧が変化するため利用できなかった。
しかし、この発明の方式によれば、この電圧は充電の初期から終了まで電池充電上 限電圧に固定されるため、これを利用することが可能となり、制御器内部回路の簡 略化,高精度化が実現できる。
(4) The power supply voltage for charging is 4.2V by performing internal trimming of the control IC (integrated circuit) with an accuracy of about 0.7% as described above as the battery charging upper limit voltage. ± 30 mV is achieved.
Although there is a demand to use this voltage that ensures this accuracy for other circuit parts (eg, the reference voltage in the controller, the reference voltage of the A / D converter, etc.), the conventional method uses the It could not be used because the voltage at point T1 changed.
However, according to the method of the present invention, this voltage is fixed to the battery charging upper limit voltage from the beginning to the end of charging, so that it can be used, and the controller internal circuit is simplified and highly accurate. Can be realized.

図2は図1の変形例を示す回路図で、図1に示すものに対してnチャンネルFETのN1と、充電ON/OFFスイッチとしてのnチャンネルFETのN2を付加して構成される。なお、差動増幅器AM1の正負入力が、図1のものに対し逆転している。
いま、N2のゲートに“L”が入力されるとN2はOFFし、このN2と差動増幅器AM1とで新たな差動増幅器が構成される。N1で信号の位相(論理)が逆転する形なので、差動増幅器AM1の正負入力の逆転がキャンセルされ、図1と同様の充電動作が行なわれる。
FIG. 2 is a circuit diagram showing a modification of FIG. 1, which is configured by adding N1 of an n-channel FET and N2 of an n-channel FET as a charge ON / OFF switch to the one shown in FIG. The positive / negative input of the differential amplifier AM1 is reversed with respect to that of FIG.
Now, when “L” is input to the gate of N2, N2 is turned OFF, and this N2 and differential amplifier AM1 constitute a new differential amplifier. Since the phase (logic) of the signal is reversed at N1, the reversal of the positive / negative input of the differential amplifier AM1 is canceled, and the same charging operation as in FIG. 1 is performed.

ここで、N1によりオープンドレインの差動増幅器となるため、プルアップ抵抗としてのR1は必須である。一方、N2のゲートに“H”が入力されると、N2はONして、N1のゲートが“L”となり、N1がOFFする。すると、P1のゲートはR1を介してP1のソースに接続されるので、P1のゲートとソースが同電位となりP1がOFFする。これにより、電池の充電経路が遮断され、充電は停止される。そして、充電経路が遮断されることにより、電流検出抵抗R、電流制御素子P1およびダイオードDによる損失をゼロとすることができる。   Here, since N1 becomes an open drain differential amplifier, R1 as a pull-up resistor is essential. On the other hand, when “H” is input to the gate of N2, N2 is turned ON, the gate of N1 is set to “L”, and N1 is turned OFF. Then, since the gate of P1 is connected to the source of P1 via R1, the gate and source of P1 become the same potential and P1 is turned OFF. Thereby, the charging path of the battery is interrupted and charging is stopped. And the loss by current detection resistance R, current control element P1, and diode D can be made into zero by intercepting a charge course.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention 図1の変形例を示す回路図Circuit diagram showing a modification of FIG. 図1の充電動作説明図Charge operation explanatory diagram of FIG. 従来の充電動作例の説明図Illustration of conventional charging operation example AC/DCコンバータによる従来の充電制御回路図Conventional charge control circuit diagram by AC / DC converter 充電制御回路の別の従来例を示す回路図Circuit diagram showing another conventional charge control circuit 特許文献1に開示された充電制御回路図Charge control circuit diagram disclosed in Patent Document 1 図7の充電制御方式を説明する説明図Explanatory drawing explaining the charge control system of FIG.

符号の説明Explanation of symbols

CT…制御器、PC…フォトカプラ、AM1〜AM3…差動増幅器、VD1〜VD3…分圧器、P1…電流制御素子(pチャンネルFET)、N1,N2…nチャンネルFET、Tr…トランス。

CT ... controller, PC ... photocoupler, AM1 to AM3 ... differential amplifier, VD1 to VD3 ... voltage divider, P1 ... current control element (p-channel FET), N1, N2 ... n-channel FET, Tr ... transformer.

Claims (3)

AC/DCコンバータの出力トランス二次側の整流・平滑されたDC電圧を、リチウムイオン電池の充電用および制御器用電源として用いるリチウムイオン電池の充電制御回路において、
前記DC電圧が充電対象電池の充電上限電圧に等しくなるよう前記出力トランス一次側の制御器にフィードバックするフィードバック手段を設けるとともに、そのフィードバックされた出力トランス二次側のDC電圧とリチウムイオン電池との間に直列に電流制御素子を設け、検出される充電電流が指令値と等しくなるように前記電流制御素子の導通度を制御する信号を前記電流制御素子の制御信号とすることを特徴とするリチウムイオン電池の充電制御回路。
In a charge control circuit for a lithium ion battery that uses the rectified and smoothed DC voltage on the secondary side of the output transformer of the AC / DC converter as a power source for charging the lithium ion battery and a controller,
Feedback means is provided for feeding back to the controller on the primary side of the output transformer so that the DC voltage becomes equal to the charging upper limit voltage of the battery to be charged, and the DC voltage on the secondary side of the output transformer and the lithium ion battery A current control element provided in series therebetween, and a signal for controlling the conductivity of the current control element so that a detected charging current is equal to a command value is used as a control signal for the current control element Ion battery charge control circuit.
前記電流制御素子を強制的にオン,オフさせる信号をそのコントロール端子に印加する信号印加手段を設け、リチウムイオン電池への充電電流の遮断機能を持たせたことを特徴とする請求項1に記載のリチウムイオン電池の充電制御回路。   The signal applying means for applying a signal for forcibly turning on and off the current control element to a control terminal thereof is provided to provide a function of interrupting a charging current to the lithium ion battery. Lithium-ion battery charge control circuit. 前記電流制御素子がpチャンネルFETであることを特徴とする請求項1または2に記載のリチウムイオン電池の充電制御回路。

The charge control circuit for a lithium ion battery according to claim 1, wherein the current control element is a p-channel FET.

JP2003414444A 2003-12-12 2003-12-12 Charging control circuit for lithium ion battery Pending JP2005176534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414444A JP2005176534A (en) 2003-12-12 2003-12-12 Charging control circuit for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414444A JP2005176534A (en) 2003-12-12 2003-12-12 Charging control circuit for lithium ion battery

Publications (1)

Publication Number Publication Date
JP2005176534A true JP2005176534A (en) 2005-06-30

Family

ID=34734240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414444A Pending JP2005176534A (en) 2003-12-12 2003-12-12 Charging control circuit for lithium ion battery

Country Status (1)

Country Link
JP (1) JP2005176534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433359A (en) * 2005-12-16 2007-06-20 Amita Technologies Inc Ltd Protection method and device for lithium battery
JP2009123560A (en) * 2007-11-15 2009-06-04 Panasonic Corp Battery pack and charging system
US7816889B2 (en) 2006-05-08 2010-10-19 Samsung Sdi Co., Ltd. Method of charging rechargeable battery and protection circuit for rechargeable battery
WO2014000674A1 (en) * 2012-06-28 2014-01-03 华为终端有限公司 Charger and charging system
TWI461878B (en) * 2007-08-23 2014-11-21 Ricoh Co Ltd A method and charge-up circuit capable of adjusting charge-up current
JP2017529822A (en) * 2014-08-26 2017-10-05 クローズド−アップ ジョイント−ストック カンパニー ドライブClosed−Up Joint−Stock Company Drive A device for generating a constant DC load current
CN107809175A (en) * 2016-09-09 2018-03-16 苏州力生美半导体有限公司 Switching Power Supply, digital voltage power and numerical control adjustable reference source chip

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433359A (en) * 2005-12-16 2007-06-20 Amita Technologies Inc Ltd Protection method and device for lithium battery
GB2433359B (en) * 2005-12-16 2008-03-26 Amita Technologies Inc Ltd Protecting method for lithium battery and device thereof
US7816889B2 (en) 2006-05-08 2010-10-19 Samsung Sdi Co., Ltd. Method of charging rechargeable battery and protection circuit for rechargeable battery
TWI461878B (en) * 2007-08-23 2014-11-21 Ricoh Co Ltd A method and charge-up circuit capable of adjusting charge-up current
JP2009123560A (en) * 2007-11-15 2009-06-04 Panasonic Corp Battery pack and charging system
WO2014000674A1 (en) * 2012-06-28 2014-01-03 华为终端有限公司 Charger and charging system
EP2804287A1 (en) * 2012-06-28 2014-11-19 Huawei Device Co., Ltd. Charger and charging system
EP2804287A4 (en) * 2012-06-28 2015-04-01 Huawei Device Co Ltd Charger and charging system
US9362768B2 (en) 2012-06-28 2016-06-07 Huawei Device Co., Ltd. Charger and charging system
JP2017529822A (en) * 2014-08-26 2017-10-05 クローズド−アップ ジョイント−ストック カンパニー ドライブClosed−Up Joint−Stock Company Drive A device for generating a constant DC load current
CN107809175A (en) * 2016-09-09 2018-03-16 苏州力生美半导体有限公司 Switching Power Supply, digital voltage power and numerical control adjustable reference source chip
CN107809175B (en) * 2016-09-09 2024-01-30 苏州力生美半导体有限公司 Switching power supply, numerical control voltage source and numerical control adjustable reference source chip

Similar Documents

Publication Publication Date Title
US6618274B2 (en) Synchronous rectifier controller to eliminate reverse current flow in a DC/DC converter output
KR100597379B1 (en) Method for starting power source apparatus, circuit for starting power source apparatus, power source apparatus
US8964421B2 (en) Powering a synchronous rectifier controller
EP1905149B1 (en) Dual-input dc-dc converter with integrated ideal diode function
US8885370B2 (en) Current-fed isolation converter
JP5226753B2 (en) Charging system and charging method
CN202798467U (en) DC/DC converter, power supply device applying DC/DC converter, and electronic device
US10270354B1 (en) Synchronous rectifier controller integrated circuits
JP6343354B2 (en) Separation type synchronous rectification control circuit, control device therefor, and separation type synchronous rectification control method
US8649129B2 (en) Method and apparatus of providing over-temperature protection for power converters
US9112423B2 (en) Bidirectional DC-DC converter and power supply system
JP5905689B2 (en) DC / DC converter, power supply device using the same, and electronic device
JP2017070187A (en) Tapped winding flyback converter for multiple output voltages
CN212486401U (en) Power supply and peripheral circuit for power supply
EP1879284A2 (en) DC-DC converter and power supply apparatus
US6912140B2 (en) Switching power supply
US10418906B2 (en) High efficiency primary and secondary bias flyback converter with dual outputs
JP2005176534A (en) Charging control circuit for lithium ion battery
JP2003299354A (en) Synchronous rectifier circuit for flyback converter
JP2002101662A (en) Power supply device
JP2020005481A (en) Step-up power supply circuit
US20130272034A1 (en) Method of forming a low power dissipation regulator and structure therefor
WO2011118118A1 (en) Charging device
JP2013090509A (en) Power supply device
JP6072881B2 (en) DC / DC converter, power supply device using the same, and electronic device