JP2005172731A - Optically measuring method, and method and device for measuring light emitting element - Google Patents

Optically measuring method, and method and device for measuring light emitting element Download PDF

Info

Publication number
JP2005172731A
JP2005172731A JP2003416122A JP2003416122A JP2005172731A JP 2005172731 A JP2005172731 A JP 2005172731A JP 2003416122 A JP2003416122 A JP 2003416122A JP 2003416122 A JP2003416122 A JP 2003416122A JP 2005172731 A JP2005172731 A JP 2005172731A
Authority
JP
Japan
Prior art keywords
light
spectral
emitting element
quantum
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416122A
Other languages
Japanese (ja)
Other versions
JP4336775B2 (en
Inventor
Shunsuke Kobayashi
俊介 小林
Fumio Sasaki
史雄 佐々木
Satoshi Haraichi
聡 原市
Tsuneo Asano
恒夫 浅野
Takeshi Ikeda
壮 池田
Tsutomu Matsuda
剣 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUNKOH-KEIKI CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
BUNKOH-KEIKI CO Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BUNKOH-KEIKI CO Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical BUNKOH-KEIKI CO Ltd
Priority to JP2003416122A priority Critical patent/JP4336775B2/en
Publication of JP2005172731A publication Critical patent/JP2005172731A/en
Application granted granted Critical
Publication of JP4336775B2 publication Critical patent/JP4336775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light source with known spectral absolute photon flux with a simple method. <P>SOLUTION: Outgoing light of a spectral light source 100 having a lamp 1, converging optical systems (lenses) 2 and 4 and a spectroscope 3 is measured by a light detector 5 with a known quantum efficiency, and the spectral absolute photon flux of the spectral light source 100 is determined based on the measurement results. This light source is used as a light source with known spectral absolute photon flux. Calibration of a spectrometric device is performed by use of this light source with known spectral absolute photon flux to measure spectral characteristics of a light emitting element such as an OLED. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学測定方法、発光素子の測定方法および発光素子の測定装置に関し、特に、分光絶対光量子束が既知の光源を作成しこれを用いて光学的測定を行う方法、発光素子の特性を測定する方法およびその装置に関するものである。   The present invention relates to an optical measurement method, a light-emitting element measurement method, and a light-emitting element measurement apparatus, and in particular, a method of creating a light source with a known spectral absolute photon flux and performing optical measurement using the light source, and characteristics of the light-emitting element. The present invention relates to a measuring method and an apparatus therefor.

光は、人間生活と密接に関連しており、物理量であるとともに視覚に関連した心理量でもある。現在の情報化社会において視覚情報の果たす役割は非常に大きく、波長を含む光エネルギーの容易で正確な決定法は非常に重要となっている。
現在広く行われている光エネルギーの絶対値を決定する方法は、黒体放射などの放射特性既知の光源やそれにより放射特性が導かれている標準光源を用いる方法(例えば、非特許文献1参照)や、またはボロメータや熱電堆などの絶対放射計を用いる方法などが行われている(例えば、非特許文献2参照)。
Light is closely related to human life and is a physical quantity as well as a psychological quantity related to vision. In today's information society, visual information plays an extremely important role, and an easy and accurate method for determining light energy including wavelength is very important.
A method of determining the absolute value of light energy that is widely used at present is a method using a light source with known radiation characteristics such as black body radiation or a standard light source whose radiation characteristics are derived therefrom (for example, see Non-Patent Document 1). ), Or a method using an absolute radiometer such as a bolometer or a thermopile (see Non-Patent Document 2, for example).

黒体放射を用い分光光エネルギーを決めることは、正確ではあるが、大掛かりな装置となり取り扱いが困難である。一般的には標準電球が用いられているが、点灯条件などにより放射特性が変化し、また経年変化も比較的顕著である。また、広く用いられているリボン電球などでは、観測しているフィラメントの位置で放射特性が変わるなど、測定に際し厳格に設定条件を守る必要があり、取り扱いに細心の注意を必要とする。
絶対放射計などは、測定感度が非常に低くまた、応答速度が遅いなど信号の検出および処理が難しく、効率的で安定な測定を困難にしている。
Although it is accurate to determine the spectral light energy using black body radiation, it is a large-scale device and difficult to handle. In general, standard light bulbs are used, but the radiation characteristics change depending on the lighting conditions, etc., and the secular change is relatively remarkable. In addition, for ribbon light bulbs and the like that are widely used, it is necessary to strictly observe the setting conditions during measurement, for example, the radiation characteristics change depending on the position of the filament being observed, and careful handling is required.
An absolute radiometer or the like has a very low measurement sensitivity and a slow response speed, making it difficult to detect and process a signal, making it difficult to perform an efficient and stable measurement.

放射特性既知の光源を基準として行われる光学的測定に、エレクトロルミネスセンス(EL)素子などの発光素子に係る各種の測定がある。ELを用いた有機発光素子(OLED)は、面積が数mm、厚さが数十nm程度の有機半導体層を発光層としているところに特徴がある。また、発光種は有機分子を基にしているため、その発光スペクトルはスペクトル幅が広くかつ特有のパターンを有しており、無機発光体の発光スペクトルとは大きく異なる。このためOLEDの特徴を正確に評価し、素子開発に必要な、性能の安定化および向上に資するデータを得るには、無機発光素子とは異なる方法を用いる必要があるが、一般的には従来無機発光素子の評価に用いられてきたものと類似の方法が使われている。 There are various types of measurements related to light emitting elements such as electroluminescence (EL) elements as optical measurements performed using a light source with known radiation characteristics as a reference. An organic light emitting device (OLED) using EL is characterized in that an organic semiconductor layer having an area of several mm 2 and a thickness of several tens of nm is used as a light emitting layer. Further, since the luminescent species are based on organic molecules, the emission spectrum has a wide spectrum width and a specific pattern, and is greatly different from the emission spectrum of the inorganic luminescent material. For this reason, it is necessary to use a method different from that of inorganic light-emitting elements in order to accurately evaluate the characteristics of OLEDs and obtain data that contributes to the stabilization and improvement of performance necessary for element development. A method similar to that used for the evaluation of inorganic light-emitting elements is used.

従来、OLEDの量子効率などを求めるための発光特性は、輝度計を用いて輝度の測定を行い、全発光エネルギーは輝度計により測定された値をもとにOLEDを完全拡散板と仮定して(Lambertの余弦法則)求めていたが、この仮定は大きな誤差を含む(例えば、特許文献1参照)。そして発光スペクトルについては、必要に応じて輝度計による測定とは別に分光光度計により測定されていた。このような輝度計と分光光度計を用いた評価方法では精度の高い評価を行うことは困難である。
また、幅広く独特のパターンのスペクトルを持つ有機材料の発光の量子効率を求めるためには、真の発光スペクトル(分光感度が補正された)の分光絶対光量子束を知る必要があり、輝度計で求めた全発光エネルギーは不正確なものである。
OLEDは、発光面積を広くとることができるが、発光層の厚みが波長より短くまた、屈折率が異なる基板の上に積層されているため、発光方向による光強度の分布が複雑となる。使用目的に応じた素子の発光特性を得るためには、発光方向の光強度の分布情報を正確に評価する必要があるが、従来の測定方法ではこの要求に応えることが難しかった。
鈴木 守 他、 「分光放射輝度・照度標準の確立」電総研研究報告 742号(1974) 大場信英、 日本物理学会誌 19巻 pp.200-207(1964) 特開2001−250675号公報
Conventionally, the emission characteristics for obtaining the quantum efficiency of OLEDs are measured using a luminance meter, and the total emission energy is based on the value measured by the luminance meter, assuming that the OLED is a complete diffuser. (Lambert's cosine law) was calculated, but this assumption includes a large error (see, for example, Patent Document 1). The emission spectrum was measured with a spectrophotometer separately from the measurement with a luminance meter as required. With such an evaluation method using a luminance meter and a spectrophotometer, it is difficult to perform a highly accurate evaluation.
In addition, in order to obtain the quantum efficiency of light emission from organic materials with a wide spectrum of unique patterns, it is necessary to know the spectral absolute photon flux of the true emission spectrum (with corrected spectral sensitivity), which is obtained with a luminance meter. The total emission energy is inaccurate.
Although the OLED can have a large light emitting area, since the thickness of the light emitting layer is shorter than the wavelength and is laminated on a substrate having a different refractive index, the light intensity distribution according to the light emitting direction becomes complicated. In order to obtain the light emission characteristics of the element according to the purpose of use, it is necessary to accurately evaluate the distribution information of the light intensity in the light emission direction, but it has been difficult to meet this requirement with the conventional measurement method.
Mamoru Suzuki et al., “Establishment of Spectral Radiance / Illuminance Standards” Research Institute Research Report No. 742 (1974) Nobuhide Ohba, Journal of the Physical Society of Japan Volume 19 pp.200-207 (1964) JP 2001-250675 A

本発明の課題は、上述した従来技術の問題点をすることであって、その目的は、第1に、測光に必要な、分光絶対光量子束が既知の光源を、正確さを損なうことなく、より簡便な方法で得ることができるようにすることであり、第2に、OLEDを含む発光素子の分光光エネルギーの絶対値を誤差少なく決定することができるようにすることである。   The object of the present invention is to solve the above-mentioned problems of the prior art. The purpose of the present invention is, firstly, a light source required for photometry, whose spectral absolute photon flux is known, without impairing accuracy. Secondly, it is possible to obtain an absolute value of spectral light energy of a light emitting element including an OLED with less error.

上記の目的を達成するため、本発明によれば、被測定対象の測定に適した波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定し、前記分光放射光源を分光絶対光量子束既知光源として用いて光学的測定を行う光学測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of a spectral radiation source having light energy in the wavelength range suitable for measurement of the measurement target is converted into light having a known photo-electron conversion quantum efficiency. There is provided an optical measurement method that is determined using a detector and performs optical measurement using the spectral radiation source as a known light source with a spectral absolute photon flux.

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定し、前記分光放射光源と前記発光素子とを同一測定条件により測定し両者の測定結果を比較することにより前記発光素子の分光光量子束を得る発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A method of measuring a light-emitting element that obtains a spectral light quantum flux of the light-emitting element by measuring the spectral emission light source and the light-emitting element under the same measurement conditions and comparing the measurement results of the two, Is provided.

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される全分光光量子束または部分比が既知のその部分光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記積分球内部に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A first step that is determined using the photodetector of the first and the total spectral photon flux emitted from the spectral radiation source or the partial photon flux of which the partial ratio is known is incident on the integrating sphere and is installed in the integrating sphere A second step of measuring a spectral light quantum flux of the spectral radiation source using a spectroscope and a photodetector; and a light emitting element is disposed inside the integrating sphere, and the spectroscope and the photodetector are used. A third step of measuring the spectral light quantum flux of the light emitting element, and obtaining an absolute value of the spectral light quantum flux of the light emitting element by comparing the measurement results of the second and third processes. A light-emitting element measuring method is provided. .

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される全分光光量子束または部分比が既知のその部分光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、発光素子の前面放射光を前記積分球内へ放出し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A first step that is determined using the photodetector of the first and the total spectral photon flux emitted from the spectral radiation source or the partial photon flux of which the partial ratio is known is incident on the integrating sphere and is installed in the integrating sphere A second step of measuring a spectral light quantum flux of the spectral radiation source using a spectroscope and a photodetector, and emitting front radiation of a light emitting element into the integrating sphere, and the spectroscope and the light detection A third step of measuring the spectral light quantum flux of the light emitting element using a detector, and by comparing the measurement results of the second and third steps, the absolute value of the spectral light quantum flux of the light emitting element A method for measuring a light-emitting element, characterized by: It is provided.

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される全分光光量子束または部分比が既知のその部分光量子束を拡散反射板へ入射し、その反射光を受光する分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記拡散反射板に代えて前記拡散反射板が設置されていた位置に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A first step that is determined by using the photodetector, and the total spectral photon flux emitted from the spectral radiation source or the partial photon flux of which the partial ratio is known is incident on the diffuse reflector and the reflected light is received. A second step of measuring the spectral light quantum flux of the spectral radiant light source using a spectroscope and a photodetector, and arranging a light emitting element at a position where the diffuse reflector is installed instead of the diffuse reflector And a third process of measuring the spectral light quantum flux of the light emitting element using the spectroscope and the photodetector, and comparing the measurement results of the second and third processes, The absolute value of the spectral quantum flux of the light-emitting element can be obtained. Measurement method of a light emitting device characterized, is provided.

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を拡散反射板へ入射し、その反射光を受光する分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記拡散反射板に代えて前記拡散反射板が設置されていた位置に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の相対的な分光光量子束を求めることを特徴とする発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A first process that is determined by using the photodetector, and a spectrophotometer that emits the spectral light quantum flux emitted from the spectral radiation source and enters the diffuse reflector and receives the reflected light and a photodetector. A second step of measuring the spectral light quantum flux of the spectral radiation light source; and a light emitting element disposed at a position where the diffuse reflector is installed instead of the diffuse reflector, the spectroscope, the photodetector, A third step of measuring the spectral light quantum flux of the light-emitting element using a light source, and obtaining a relative spectral light quantum flux of the light-emitting element by comparing the measurement results of the second and third steps A method for measuring a light-emitting element is provided. It is.

また、上記の目的を達成するため、本発明によれば、被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される全分光光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記積分球内に発光素子の少なくとも発光層を配置し、前記分光放射光源から放射される全分光光量子束を前記積分球へ入射してこれにより前記発光層を発光させ、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の内部量子効率を求めることを特徴とする発光素子の測定方法、が提供される。   In order to achieve the above object, according to the present invention, the absolute value of the spectral photon flux of the spectral radiation source having light energy in the emission wavelength range of the light emitting element to be measured is known as the photoelectric conversion quantum efficiency. A first step that is determined using a photodetector of the above, a total spectral light quantum flux emitted from the spectral radiation light source is incident on an integrating sphere, and a spectroscope and a photodetector installed in the integrating sphere are used. And measuring at least the light emitting layer of the light emitting element in the integrating sphere so that the total spectral photon flux emitted from the spectral emitting light source is transferred to the integrating sphere. And a third process of measuring the spectral light quantum flux of the light-emitting element using the spectroscope and the photodetector, and causing the light-emitting layer to emit light. By comparing the measurement results of the process. Measurement method of a light emitting device and obtains the internal quantum efficiency of, is provided.

また、上記の目的を達成するため、本発明によれば、発光源と第1の分光器とを備え、分光絶対光量子束既知光源として用いられる分光放射光源と、前記分光放射光源の光が入射される積分球と、前記積分球から取り出された光が入射される第2の分光器と、前記第2の分光器の出射光を検出する光−電子変換量子効率が既知の光検出器と、を有する発光素子の測定装置、が提供される。   In order to achieve the above object, according to the present invention, a light emitting source and a first spectroscope are provided, a spectral radiation light source used as a known light source for spectral absolute light quantum flux, and light from the spectral radiation light source is incident. An integrating sphere, a second spectroscope on which the light extracted from the integrating sphere is incident, a photodetector having a known photo-electron conversion quantum efficiency for detecting the light emitted from the second spectroscope, , A measuring device for a light-emitting element.

また、上記の目的を達成するため、本発明によれば、発光源と第1の分光器とを備え、分光絶対光量子束既知光源として用いられる分光放射光源と、前記分光放射光源の光が入射される拡散反射板と、前記拡散反射板からの反射光が導入される第2の分光器と、前記第2の分光器の出射光を検出する光−電子変換量子効率が既知の光検出器と、を有する発光素子の測定装置、が提供される。   In order to achieve the above object, according to the present invention, a light emitting source and a first spectroscope are provided, a spectral radiation light source used as a known light source for spectral absolute light quantum flux, and light from the spectral radiation light source is incident. Diffusive reflector, a second spectroscope into which the reflected light from the diffusive reflector is introduced, and a photodetector with known photo-electron conversion quantum efficiency for detecting the emitted light of the second spectroscope And a light emitting device measuring device.

本発明の分光絶対光量子束既知光源の光源として用いられるランプは、特に限定されるものではないが連続スペクトルを有するタングステンランプ、重水素放電管やキセノンランプなどであり、比較的安価に入手できるものである。また、光−電子変換量子効率が既知の光検出器には、特に限定されるものではないが、例えばシリコンフォトダイオードやシリコンフォトダイオードを1次元状ないし2次元状に配列したCCD(charge coupled device)を用いることができ、例えば、シリコンフォトダイオードは経時変化が少なく安定した特性を期待することができる。本発明においては、これらの容易に入手でき安定した特性を有するデバイスを用いて分光絶対光量子束既知光源を構成することができるので、本発明によれば、簡易にかつ安価にしかも精度の高い基準光源を得ることができる。
また、本発明においては、分光絶対光量子束既知光源を基準として、発光素子の全放射光、前面放射光、あるいは蛍光、燐光の分光光量子束の絶対値を求めるものであるので、発光素子の放射絶対光量子束やその量子効率やエネルギー効率などのOLEDをはじめとする発光素子を開発する上で必要なデータを容易に精度よく得ることができる。
The lamp used as the light source of the known spectral absolute light quantum flux known light source of the present invention is not particularly limited, but is a tungsten lamp, deuterium discharge tube, xenon lamp or the like having a continuous spectrum, which can be obtained at a relatively low cost. It is. The photodetector having a known photoelectric conversion quantum efficiency is not particularly limited. For example, a CCD (charge coupled device) in which silicon photodiodes or silicon photodiodes are arranged one-dimensionally or two-dimensionally is used. For example, silicon photodiodes can be expected to have stable characteristics with little change over time. In the present invention, the known absolute light quantum flux known light source can be constructed using these readily available devices having stable characteristics. Therefore, according to the present invention, a simple, inexpensive and highly accurate standard can be obtained. A light source can be obtained.
In the present invention, since the absolute value of the total radiant light, front-side radiant light, or fluorescent or phosphorescent spectral luminescence flux of the light emitting element is obtained with reference to the known light source with the spectral absolute light quantum flux, Data required for developing light-emitting elements such as OLED, such as absolute photon flux and its quantum efficiency and energy efficiency, can be obtained easily and accurately.

次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の第1の実施の形態を示す概略図である。ランプ1より放射された光は集光光学系2により集光されて分光器3に入射される。分光器3の出射光は集光光学系4により集光されて光検出器5に入射され光電変換される。光検出器5を流れる光電流は電流計6により検出され、その出力はコンピュータ7へ入力され、記録され必要に応じて表示される。
ランプ1としては、使用目的に応じて適当な波長範囲(例えば0.2 〜1.1μm)に連続スペクトルを持つものや適当な波長に線スペクトルを持つものなど任意のものを採用することができる。連続スペクトルのものとしてはタングステンランプ、重水素放電管やキセノンランプを挙げることができ、また線スペクトルを持つものとしては水銀ランプを挙げることができる。分光器3は、波長分散素子として一般のプリズムや回折格子を有するものであり、迷光が少ないものが望ましい。分光器3の分光波長はコンピュータ7により制御される。また集光光学系2、4としては、レンズや反射鏡などを用いることができる。また、光検出器5には、何らかの方法で量子効率などが既知となった検出器を用いる。たとえば、Siフォトダイオードでは、広い波長範囲(0.2―1.1 μm)にわたり、光―電子変換量子効率は既知であり、(450―900 nm)でほぼ一定となっている。非常に発達した半導体技術により作製されるため、安定した性能の素子が供給されており、素子はほとんど経時変化を受けない。光検出器の光−電子変換面の大きさはある程度自由に選ぶことが可能であるが、Siフォトダイオードでは場所による検出感度の感度むらも非常に小さいという他の光検出器にはない特徴を有し、測定誤差を容易に小さくすることが可能となる。また、光検出器としてリニア型ないしエリア型のイメージセンサを用いることができる。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a first embodiment of the present invention. The light emitted from the lamp 1 is condensed by the condensing optical system 2 and enters the spectroscope 3. The light emitted from the spectroscope 3 is condensed by the condensing optical system 4 and incident on the photodetector 5 for photoelectric conversion. The photocurrent flowing through the photodetector 5 is detected by an ammeter 6 and its output is input to a computer 7 where it is recorded and displayed as necessary.
As the lamp 1, an arbitrary lamp such as a lamp having a continuous spectrum in an appropriate wavelength range (for example, 0.2 to 1.1 μm) or a lamp having a line spectrum at an appropriate wavelength can be adopted depending on the purpose of use. Examples of the continuous spectrum include tungsten lamps, deuterium discharge tubes, and xenon lamps, and those having a line spectrum include mercury lamps. The spectroscope 3 has a general prism or diffraction grating as a wavelength dispersion element, and preferably has little stray light. The spectral wavelength of the spectroscope 3 is controlled by the computer 7. Moreover, as the condensing optical systems 2 and 4, a lens, a reflective mirror, etc. can be used. For the photodetector 5, a detector whose quantum efficiency is known by some method is used. For example, in a Si photodiode, the photo-electron conversion quantum efficiency is known over a wide wavelength range (0.2-1.1 μm), and is almost constant at (450-900 nm). Since the device is manufactured by a highly developed semiconductor technology, a device with stable performance is supplied, and the device hardly receives a change with time. The size of the photo-electron conversion surface of the photodetector can be freely selected to some extent, but the Si photodiode has a feature that is not found in other photodetectors because the sensitivity unevenness of the detection sensitivity depending on the location is very small. And measurement error can be easily reduced. A linear or area type image sensor can be used as the photodetector.

ランプ1、集光光学系2、4および分光器3は、分光光源100を構成しており、本発明により分光絶対光量子束既知光源として用いられるものである。分光光源100を出射する光は、すべて光検出器5に入射させることもできるが部分光のみを入射させることもできる。後者の場合には、部分光の全体に対する割合を既知としておくかあるいは常に部分光のみを用いるようにする。すなわち、部分光をもって分光絶対光量子束既知光源の放射する光として取り扱う。   The lamp 1, the condensing optical systems 2, 4 and the spectroscope 3 constitute a spectral light source 100, which is used as a known light source with a known spectral absolute photon flux according to the present invention. All of the light emitted from the spectral light source 100 can be incident on the photodetector 5, but only partial light can be incident. In the latter case, the ratio of the partial light to the whole is known or only partial light is always used. That is, the partial light is handled as light emitted from a known light source having a spectral absolute photon flux.

ここで、分光光源100の全出射光が光検出器5に入射され光検出器5としてSiフォトダイオードを用いるものとする。このとき、光源からの光量子束の絶対値を式(1)により求める。
n(λ) Δλ=iSi(λ)Δλ/{e・η(λ)} ・・・(1)
ここに、
n(λ)Δλ;波長λにおける分光光量子数
η(λ);Siフォトダイオードの量子効率
iSi(λ);Siフォトダイオードの出力(A)
e;電子の電荷
以上により、光量子束の絶対値が既知の分光光源100が得られたことになる。
Here, it is assumed that the light emitted from the spectral light source 100 is incident on the photodetector 5 and a Si photodiode is used as the photodetector 5. At this time, the absolute value of the photon flux from the light source is obtained by equation (1).
n (λ) Δλ = i Si (λ) Δλ / {e · η (λ)} (1)
here,
n (λ) Δλ; Spectral photon number η (λ) at wavelength λ; Quantum efficiency of Si photodiode
i Si (λ); Output of Si photodiode (A)
e: A spectral light source 100 having a known absolute value of the photon flux is obtained by the charge of electrons or more.

分光光源100からの光の一部 npart(λ)ΔλをSiフォトダイオードに入射させる場合は、全体に対する比αを式(2)で定義すると、
α=npart(λ)Δλ/n (λ)Δλ= iSi,part(λ)Δλ/iSi (λ)Δλ ・・・(2)
光源からの光量子束の絶対値は式(3)により求めることができる。
n(λ)Δλ=npart(λ)Δλ/α=iSi,part (λ)Δλ/{e・η(λ)・α}・・・(3)
When a part n part (λ) Δλ of the light from the spectral light source 100 is incident on the Si photodiode, the ratio α to the whole is defined by equation (2).
α = n part (λ) Δλ / n (λ) Δλ = i Si, part (λ) Δλ / i Si (λ) Δλ (2)
The absolute value of the photon flux from the light source can be obtained by equation (3).
n (λ) Δλ = n part (λ) Δλ / α = i Si, part (λ) Δλ / {e ・ η (λ) ・ α} (3)

本発明においては、以上のようにして、分光光量子数を単位として分光光エネルギーを決定するが、分光光量子単位とradiometory(放射測光)単位は、式(4)により変換することができる。さらに、人間生活のための光エネルギーの単位には、人間の視感度に準拠したphotometryによるものが必要となるが、photometry(=visual photometry:視感測光)単位とradiometory単位は式(5)を用い関連づけることができる。
Φe(λ)Δλ=n(λ)Δλ・h(c/λ) ・・(4)
ΦV(λ)Δλ=KmV(λ)Φe(λ)Δλ ・・・(5)
ここに、
Φe(λ)Δλ;分光放射束(W)
ΦV(λ)Δλ;分光光束 (lumen)
Km;最大視感効率
V(λ)= K(λ)/Km;分光視感効率
h;プランク定数
c;光速
In the present invention, as described above, the spectral light energy is determined with the spectral light quantum number as a unit. However, the spectral light quantum unit and the radiometory (radiometric photometric) unit can be converted by the equation (4). Furthermore, the unit of light energy for human life needs to be based on photometry conforming to human visual sensitivity, but photometry (= visual photometry) unit and radiometory unit are based on Equation (5). Can be used and related.
Φ e (λ) Δλ = n (λ) Δλ ・ h (c / λ) ・ ・ (4)
Φ V (λ) Δλ = K m V (λ) Φ e (λ) Δλ (5)
here,
Φ e (λ) Δλ; Spectral radiant flux (W)
Φ V (λ) Δλ; spectral luminous flux (lumen)
Km : Maximum luminous efficiency
V (λ) = K (λ) / K m ; spectral luminous efficiency
h: Planck's constant
c; speed of light

図2は、本発明の第2の実施の形態を示す概略図である。本実施の形態において、分光光源100は、図1に示される第1の実施の形態の分光光源100と同等の構成を有するものである。また、図2において、図1に示された要素と同等のものには同一の参照番号が付されているので重複する説明は省略する。本実施の形態においては、光学的特性(拡散反射率など)が既知で光入射窓8a、8b、光出射窓8cが設けられた積分球8が用いられる。図2に示すように、分光光源100より出射された光は、光入射窓8aより積分球8内へ入射される。積分球8内には、入射光が直接光出射窓8cへ到達することを防止するためにバッフル9が配置されている。光出射窓8cから出射した光は光検出器5に入射される。   FIG. 2 is a schematic diagram showing a second embodiment of the present invention. In the present embodiment, the spectral light source 100 has the same configuration as the spectral light source 100 of the first embodiment shown in FIG. In FIG. 2, the same reference numerals are given to the same elements as those shown in FIG. In the present embodiment, an integrating sphere 8 having known optical characteristics (such as diffuse reflectance) and provided with light incident windows 8a and 8b and a light exit window 8c is used. As shown in FIG. 2, the light emitted from the spectral light source 100 enters the integrating sphere 8 through the light incident window 8a. A baffle 9 is disposed in the integrating sphere 8 in order to prevent incident light from directly reaching the light exit window 8c. The light emitted from the light exit window 8 c enters the photodetector 5.

この測定時に使用されていない光出射窓8bは、積分球内面と同等の反射率を有する部材により塞がれている(以下の実施の形態においても使用されていない入射ないし出射窓は積分球内面と同等の反射率を有する部材により塞がれているものとする)。本実施の形態においても光検出器5にはSiフォトダイオードが用いられているものとする。
積分球中の全分光光量子束nInt(λ)Δλは、式(6)により与えられる。
nInt(λ)Δλ= n (λ)Δλρ(λ) (1-f)/ {1-ρ(λ) (1-f) } ・・・(6)
ここで、
n(λ)Δλ;入射分光光量子束
f=(Ai+Ae)/AS ・・・(7)
AS,Ai,Aeは、それぞれ、積分球の面積、光入射窓の面積、光出射窓の面積である。
また、積分球につけた光出射窓の立体角をΩ、そこでの分光光量子束をnInt(Ω,λ)Δλとすると、
nInt(λ)Δλ=nInt(Ω,λ)Δλ・4π/Ω ・・・(8)
nInt(Ω,λ)Δλ= iSi(λ)Δλ/{e・η(λ)} ・・・(9)
であるから、入射分光光量子束は、
n (λ)Δλ=[{1-ρ(λ) (1-f) }/ρ(λ) (1-f) ] nInt(λ)Δλ
=[{1/ρ(λ) (1-f) }-1] nInt(Ω,λ)Δλ・(4π/Ω)
=[{1/ρ(λ) (1-f) }-1] iSi(λ)Δλ/{e・η(λ)}・(4π/Ω) ・・・(10)
The light exit window 8b that is not used at the time of measurement is closed by a member having a reflectance equivalent to the inner surface of the integrating sphere (the incident or exit window that is not used in the following embodiments is the inner surface of the integrating sphere). And is covered with a member having a reflectance equivalent to that of Also in this embodiment, it is assumed that a Si photodiode is used for the photodetector 5.
The total spectral photon flux n Int (λ) Δλ in the integrating sphere is given by the equation (6).
n Int (λ) Δλ = n (λ) Δλρ (λ) (1-f) / {1-ρ (λ) (1-f)} (6)
here,
n (λ) Δλ; Incident spectroscopic photon flux
f = (A i + A e ) / A S ... (7)
A S , A i , and A e are the area of the integrating sphere, the area of the light incident window, and the area of the light exit window, respectively.
Also, if the solid angle of the light exit window attached to the integrating sphere is Ω and the spectral light quantum flux there is n Int (Ω, λ) Δλ,
n Int (λ) Δλ = n Int (Ω, λ) Δλ ・ 4π / Ω (8)
n Int (Ω, λ) Δλ = i Si (λ) Δλ / {e ・ η (λ)} (9)
Therefore, the incident spectral photon flux is
n (λ) Δλ = [{1-ρ (λ) (1-f)} / ρ (λ) (1-f)] n Int (λ) Δλ
= [{1 / ρ (λ) (1-f)} -1] n Int (Ω, λ) Δλ ・ (4π / Ω)
= [{1 / ρ (λ) (1-f)} -1] i Si (λ) Δλ / {e · η (λ)} · (4π / Ω) (10)

本実施の形態においても、第1の実施の形態同様、分光光源100を出射する光を、すべて積分球に入射させることもできるが一部 npart(λ)Δλのみを入射させることもできる。後者の場合には、部分光の全体に対する割合を既知としておくかあるいは常に部分光のみを用いるようにする。
また、ランプや分光器などがもつ波長特性および光検出器のダイナミックレンジなどにより校正すべきすべての波長に渡って分光絶対光量子束を求めることが困難な場合は、使用波長において拡散反射率既知の積分球を用い、分光光量子束の相対値を求める。次に、ある特定の波長において、第1の実施の形態の方法もしくは式(10)により分光光量子束の絶対値を求め、その値を基準にしてすべての波長の絶対値を決定してもよい。
Also in the present embodiment, as in the first embodiment, all the light emitted from the spectral light source 100 can be incident on the integrating sphere, but only a part n part (λ) Δλ can be incident. In the latter case, the ratio of the partial light to the whole is known or only partial light is always used.
Also, if it is difficult to obtain the spectral absolute photon flux over all wavelengths to be calibrated due to the wavelength characteristics of lamps, spectrometers, etc. and the dynamic range of the photodetector, the diffuse reflectance is known at the wavelength used. Using an integrating sphere, the relative value of the spectral light quantum flux is obtained. Next, at a specific wavelength, the absolute value of the spectral light quantum flux may be obtained by the method of the first embodiment or the formula (10), and the absolute values of all wavelengths may be determined based on the value. .

図3は、本発明の第3の実施の形態を示す概略図である。本実施の形態において、分光光源100は、図1に示される第1の実施の形態の分光光源100と同等の構成を有するものである。また、図3において、図1に示された要素と同等のものには同一の参照番号が付されているので重複する説明は省略する。本実施の形態においては、光源の分光絶対光量子束の集光点に入射光に対して垂直に拡散反射率ρλが既知の拡散反射板10を配置し、その反射光を拡散反射板10の前方(角度θ、距離r)に置いた量子効率既知の光検出器5(本実施の形態においては検出部面積ASi をもつSiフォトダイオード)により受光する。拡散反射板10の受光面は、光吸収体からなり所定の面積の開口を有するマスク11により覆われている。 FIG. 3 is a schematic view showing a third embodiment of the present invention. In the present embodiment, the spectral light source 100 has the same configuration as the spectral light source 100 of the first embodiment shown in FIG. In FIG. 3, the same reference numerals are assigned to the same elements as those shown in FIG. In the present embodiment, a diffuse reflector 10 having a known diffuse reflectance ρ λ is disposed perpendicular to the incident light at the condensing point of the spectral absolute photon flux of the light source, and the reflected light is transmitted to the diffuse reflector 10. Light is received by a photodetector 5 (a Si photodiode having a detection area A Si in this embodiment) placed in front (angle θ, distance r) with a known quantum efficiency. The light receiving surface of the diffuse reflector 10 is covered with a mask 11 made of a light absorber and having an opening with a predetermined area.

拡散反射板10にあたる分光絶対光量子束をn(λ)Δλとすると、光検出器5に到達する光量子束は、
ρ(λ)n(λ)ΔλASicosθ/πr2 ・・・(11)
であり、光検出器の出力をiSi(λ)Δλとすると、
n(λ)Δλ=(πr2/ASicosθ)・{iSi(λ)Δλ/e・η(λ)}/ρ(λ) ・・・(12)
本実施の形態においては、Lambertの余弦法則を仮定しているが、拡散反射板の場合には、この法則に比較的よく適合しているので、誤差は比較的少なく抑えることができる。しかし、より精度を上げるのであれば次のようにすればよい。Lambertの法則に従う場合には放射パターンは図4においてAに示すようになるが、実際の放射パターンはBのようになる。そこで、角度を変えて複数の位置において(例えば3、4個所)において光量子束の絶対値を測定して例えば図4にa〜dと示される実測値点を得る。これらの実測値点から放射パターンBを推定し、全角度(0〜180°)にわたって光量子束を積分してn(λ)Δλを得る。
If the spectral absolute photon flux corresponding to the diffuse reflector 10 is n (λ) Δλ, the photon flux reaching the photodetector 5 is
ρ (λ) n (λ) ΔλA Si cos θ / πr 2 (11)
And if the output of the photodetector is i Si (λ) Δλ,
n (λ) Δλ = (πr 2 / A Si cos θ) · {i Si (λ) Δλ / e · η (λ)} / ρ (λ) (12)
In the present embodiment, Lambert's cosine law is assumed. However, in the case of a diffuse reflector, the error is relatively small because it conforms to this law relatively well. However, if the accuracy is to be increased, the following may be performed. In the case of following Lambert's law, the radiation pattern is shown as A in FIG. Therefore, by changing the angle, the absolute value of the photon flux is measured at a plurality of positions (for example, three or four locations) to obtain actually measured value points indicated by a to d in FIG. The radiation pattern B is estimated from these actually measured value points, and the photon flux is integrated over all angles (0 to 180 °) to obtain n (λ) Δλ.

図3に示す装置を用いて分光光量子束の相対値を求めることができる。この場合、分光光源100の全放射光を拡散反射板10に集光してもよいが、部分光であってもよい。
いま、部分光を拡散反射板10に入射するものとし、拡散反射板にあたる分光絶対光量子束をnpart(λ)Δλとすると、に到達する光量子束は、
ρ(λ)npart(λ)ΔλASicosθ/πr2 であり、光検出器の出力をiSi(λ)Δλとすると、
npart(λ)Δλ=(πr2/ASicosθ)・{iSi(λ)Δλ/e・η(λ)}/ρ(λ)・・・(13)
また、相対値nrelative(λ)Δλは、Cinstrumentを比例定数として、
nrelative(λ)Δλ=CinstrumentiSi(λ)Δλ/e・η(λ) ・・・(14)
で求めることができる。
ここで、分光光量子束の絶対値を求めるには、式(1)、(10)、(12)等を用いてある特定の波長での絶対値を求め、これと式(14)とを用いればよい。
The relative value of the spectroscopic photon flux can be obtained using the apparatus shown in FIG. In this case, the total emitted light of the spectral light source 100 may be collected on the diffuse reflector 10 or may be partial light.
Now, assuming that the partial light is incident on the diffuse reflector 10 and that the spectral absolute photon flux corresponding to the diffuse reflector is n part (λ) Δλ, the photon flux reaching
ρ (λ) n part (λ) ΔλA Si cos θ / πr 2 and if the output of the photodetector is i Si (λ) Δλ,
n part (λ) Δλ = (πr 2 / A Si cos θ) · {i Si (λ) Δλ / e · η (λ)} / ρ (λ) (13)
In addition, the relative value n relative (λ) Δλ is defined by using C instrument as a proportional constant.
n relative (λ) Δλ = C instrument i Si (λ) Δλ / e · η (λ) (14)
Can be obtained.
Here, in order to obtain the absolute value of the spectroscopic quantum flux, the absolute value at a specific wavelength is obtained using equations (1), (10), (12), etc., and this and equation (14) are used. That's fine.

図5、図6は、本発明の第4の実施の形態を説明するための概略図である。本実施の形態においては分光絶対光量子束が既知の光源を用いて分光感度の補正を行った後、すなわち分光感度の校正を行った後有機発光素子(OLED)の分光光量子束の測定を行う。
まず、図5に示すように、装置を構成して、分光絶対光量子束が既知の分光光源100を用いて積分球18を含む測定系の校正を行う。図5に示すように、分光光源100から出射される光の全て(または部分比が明らかである一部)を、内面に拡散反射面を持つ積分球18へ導入し、積分球18から取り出された光を集光光学系(本実施の形態では光ファイバ束により構成される)12を介して分光器13へ導く。そして、分光器13の出力光を光検出器(例えばSiフォトダイオード)15で受光する。光検出器15の出力は電流計16により検出されコンピュータ17において記録され、必要に応じて表示される。コンピュータ17は、分光器3、13の波長の制御を行う。積分球の内部の拡散反射面は、一般的に用いられる拡散反射率の高い材料(BaSO4、MgOなど)の塗布膜でもよいが、また汚れが付着し難い高い拡散反射率をもつ白色プラスチックなどで構成してもよい。積分球8の内部には、分光光源100の出射光が直接光出射窓へ到達するのを防止するためのバッフル19が配置されている。このバッフル19には積分球18の内面と同じ拡散反射面係数をもつように考慮されている。
本実施の形態において用いられる光検出器15、電流計16およびコンピュータ17は、分光光源100の分光絶対光量子束を決定する際に用いたもの(すなわち、第1ないし第3の実施の形態において用いられたもの)と同一のものであっても別に用意されたものであってもよい。
5 and 6 are schematic views for explaining a fourth embodiment of the present invention. In the present embodiment, the spectral light quantum flux of the organic light emitting device (OLED) is measured after correcting the spectral sensitivity using a light source having a known spectral absolute light quantum flux, that is, after correcting the spectral sensitivity.
First, as shown in FIG. 5, the apparatus is configured, and the measurement system including the integrating sphere 18 is calibrated using a spectral light source 100 whose spectral absolute photon flux is known. As shown in FIG. 5, all of the light emitted from the spectral light source 100 (or part of which the partial ratio is clear) is introduced into an integrating sphere 18 having a diffuse reflection surface on the inner surface and taken out from the integrating sphere 18. The collected light is guided to the spectroscope 13 through a condensing optical system 12 (configured by an optical fiber bundle in the present embodiment). Then, the output light of the spectroscope 13 is received by a photodetector (for example, Si photodiode) 15. The output of the photodetector 15 is detected by the ammeter 16 and recorded in the computer 17 and displayed as necessary. The computer 17 controls the wavelengths of the spectrometers 3 and 13. The diffuse reflection surface inside the integrating sphere may be a coating film of a commonly used material with high diffuse reflectivity (BaSO4, MgO, etc.), but it is also made of white plastic with high diffuse reflectivity that is difficult to adhere dirt. It may be configured. Inside the integrating sphere 8, a baffle 19 for preventing the light emitted from the spectral light source 100 from directly reaching the light exit window is disposed. The baffle 19 is considered to have the same diffuse reflection surface coefficient as the inner surface of the integrating sphere 18.
The photodetector 15, the ammeter 16 and the computer 17 used in this embodiment are those used when determining the spectral absolute photon flux of the spectral light source 100 (that is, used in the first to third embodiments). May be the same as the above-mentioned one) or may be prepared separately.

分光光源100の出射光の量子数n(λ)Δλは、式(1)、(10)または(12)により既に求められている。そして、この量子数は積分球8への入射光量子数となり、これは図6の測定系(積分球18、集光光学系12、分光器13および光検出器15を含む測定系)により、その出力電流をidet1,std(λ)Δλ、補正係数をcorrdet1(λ)として、以下の式(15)で求められる。
n(λ)Δλ={1/corrdet1(λ)}idet1,std(λ)Δλ/e ・・・(15)
例えば、式(1)と式(15)とを等置することにより、補正係数は式(16)のように求まる。
corrdet1(λ)=idet1,std(λ)Δλ・η(λ)/iSi(λ)Δλ ・・・(16)
The quantum number n (λ) Δλ of the light emitted from the spectroscopic light source 100 has already been obtained from the equation (1), (10), or (12). Then, this quantum number becomes the incident light quantum number to the integrating sphere 8, which is obtained by the measurement system of FIG. 6 (measurement system including the integrating sphere 18, the condensing optical system 12, the spectroscope 13, and the photodetector 15). The output current is i det1, std (λ) Δλ, and the correction coefficient is corr det1 (λ).
n (λ) Δλ = {1 / corr det1 (λ)} i det1, std (λ) Δλ / e (15)
For example, by arranging equation (1) and equation (15) equally, the correction coefficient is obtained as equation (16).
corr det1 (λ) = i det1, std (λ) Δλ ・ η (λ) / i Si (λ) Δλ (16)

次に、図6に示すように、測定すべき発光素子、ここでは有機発光素子(OLED)14を積分球18中に保持し、分光感度の補正値が求まった光検出系で光電変換電流を測定し、式(17)によりOLEDの全分光絶対光量子束を求める。
nOLED(λ)Δλ=idet1,OLED(λ)Δλ/{e・corrdet1(λ) } ・・・(17)
ここに、
nOLED(λ);OLEDの全分光光量子束
idet1,OLED(λ);光検出器15の出力電流(A)
OLEDの全分光光量子束が求まると、これとOLEDへの注入電流とから外部量子効率を求めることができる。
Next, as shown in FIG. 6, the light emitting element to be measured, here, the organic light emitting element (OLED) 14 is held in the integrating sphere 18 and the photoelectric conversion current is obtained by the photodetection system in which the correction value of the spectral sensitivity is obtained. Measure and obtain the total spectral absolute photon flux of the OLED by equation (17).
n OLED (λ) Δλ = i det1, OLED (λ) Δλ / {e · corr det1 (λ)} (17)
here,
n OLED (λ): OLED total spectral photon flux
i det1, OLED (λ); output current of photodetector 15 (A)
Once the total spectroscopic quantum flux of the OLED is obtained, the external quantum efficiency can be obtained from this and the injected current into the OLED.

図7は、本発明の第5の実施の形態を説明するための概略図である。本実施の形態においては有機発光素子の前方へ出射される光についてのみ測定が行われる。図7に示される測定を行うに先立って予め図5に示される装置構成により、測定系の補正係数は式(16)により求まっているものとする。
図7に示されるように、有機発光素子14を、その前面のみを露出させるマスクを介して積分球18の光入射窓に取り付ける。このときの出力電流をidet1,OLED(λ)とすると、有機発光素子の前方放射分光光量子束nOLED,front(λ)は、次の式(18)により求まる。
nOLED,front(λ)Δλ=idet1,OLED(λ)Δλ/{e・corrdet1(λ) } ・・・(18)
全放射分光光量子束と前方放射分光光量子束とが分かると両者から光の取り出し効率を知ることができる。
FIG. 7 is a schematic diagram for explaining a fifth embodiment of the present invention. In the present embodiment, measurement is performed only for light emitted forward of the organic light emitting element. Prior to the measurement shown in FIG. 7, it is assumed that the correction coefficient of the measurement system is obtained by the equation (16) by the apparatus configuration shown in FIG. 5 in advance.
As shown in FIG. 7, the organic light emitting element 14 is attached to the light incident window of the integrating sphere 18 through a mask that exposes only the front surface thereof. Assuming that the output current at this time is i det1, OLED (λ), the forward emission spectroscopic quantum flux n OLED, front (λ) of the organic light emitting device is obtained by the following equation (18).
n OLED, front (λ) Δλ = i det1, OLED (λ) Δλ / {e · corr det1 (λ)} (18)
If the total emission spectral photon flux and the forward emission spectral photon flux are known, the light extraction efficiency can be known from both.

図8、図9は、本発明の第6の実施の形態を説明するための概略図である。図5に示した第4の実施の形態では、分光光源100からの光は積分球18の拡散反射面に直接照射されていたが、本実施の形態においては、測定すべきOLEDが保持される場所においた、拡散反射率既知の拡散反射板に照射される。すなわち、図8に示されるように、積分球18内に拡散反射率がρ(λ)の拡散反射板20が配置される。このとき、出力電流がidet2,std(λ)であるとすると式(19)により補正係数corrdet2(λ)が求められる。
corrdet2(λ)=idet2,std(λ)Δλ・η(λ)/{ρ(λ)・iSi(λ)Δλ} ・・・(19)
よって、図9に示されるように有機発光素子14を積分球18中に保持するときは、そのときの出力電流をidet2,OLED(λ)としてOLEDの全分光絶対光量子束は式(20)により求められる。
nOLED(λ)Δλ=idet2,OLED(λ)Δλ/{e・corrdet2(λ)} ・・・(20)
8 and 9 are schematic views for explaining a sixth embodiment of the present invention. In the fourth embodiment shown in FIG. 5, the light from the spectroscopic light source 100 is directly applied to the diffuse reflection surface of the integrating sphere 18, but in this embodiment, the OLED to be measured is held. Irradiated to a diffuse reflector of known diffuse reflectivity. That is, as shown in FIG. 8, a diffuse reflector 20 having a diffuse reflectance of ρ (λ) is arranged in the integrating sphere 18. At this time, assuming that the output current is i det2, std (λ), the correction coefficient corr det2 (λ) is obtained by the equation (19).
corr det2 (λ) = i det2, std (λ) Δλ ・ η (λ) / {ρ (λ) ・ i Si (λ) Δλ} (19)
Therefore, when the organic light emitting device 14 is held in the integrating sphere 18 as shown in FIG. 9, the total spectral absolute photon flux of the OLED is expressed by the following equation (20) with the output current at that time being i det2, OLED (λ). It is calculated by.
n OLED (λ) Δλ = i det2, OLED (λ) Δλ / {e · corr det2 (λ)} (20)

図10、図11は、本発明の第7の実施の形態を説明するための概略図である。本実施の形態は拡散反射板を用いて発光素子の全絶対光量子束を求める方法に関する。
まず、図10に示されるように測定装置を構成して、測定系(集光光学系、分光器および光検出器からなる)の補正係数を求める。図10に示されるように、分光絶対光量子束が既知の分光光源100の全出射光(または部分比が既知の部分光)を拡散反射率既知〔ρ(λ)〕の拡散反射板20に入射し、その反射光を集光光学系(本実施の形態では光ファイバー束)22に集光し、分光器13へ導く。拡散反射板20の表面は、光吸収材からなり、測定すべきOLEDの発光面積(AOLED)と同じ開口(開口面積AS;m2)を有するマスク21により覆われている。分光光源100の出射光は拡散反射板20に垂直に入射され、集光光学系22の集光窓は拡散反射板20に立てた垂線に対し角度θの位置に配置されている。
分光光源100により照射された拡散反射板20の光量子輝度LS(λ)(個/m2・Ω)は、式(21)により求められる。
LS(λ)=ρ(λ)n(λ)Δλ/(πAS・cosθ) ・・・(21)
これを本実施の形態の測定系で測定した出力電流がidet3,std(λ)であるとすると、この出力電流を補正係数と電子の電荷(e)で除した値が上記光量子輝度を示すことになる。すなわち、式(22)が成立する。
LS(λ)=ρ(λ)n(λ)Δλ/(πAS・cosθ)
=idet3,std(λ)Δλ/{e・corrdet3(λ) } ・・・(22)
したがって、補正係数は、
corrdet3(λ)=idet3,std(λ)ΔλπAS・cosθ/{e・ρ(λ)n(λ)Δλ}
式(1)を代入して、
corrdet3(λ)=idet3,std(λ)ΔλπAS・cosθη(λ)/{ρ(λ)iSi(λ)Δλ}・・(23)
10 and 11 are schematic views for explaining a seventh embodiment of the present invention. The present embodiment relates to a method for obtaining the total absolute photon flux of a light emitting element using a diffuse reflector.
First, as shown in FIG. 10, the measurement apparatus is configured, and a correction coefficient of a measurement system (consisting of a condensing optical system, a spectroscope, and a photodetector) is obtained. As shown in FIG. 10, the total emitted light (or partial light with a known partial ratio) of the spectral light source 100 with a known spectral absolute photon flux is incident on the diffuse reflector 20 with a known diffuse reflectance [ρ (λ)]. Then, the reflected light is condensed on a condensing optical system (optical fiber bundle in this embodiment) and guided to the spectroscope 13. The surface of the diffuse reflector 20 is made of a light absorbing material, and is covered with a mask 21 having the same opening (opening area A S ; m 2 ) as the emission area (A OLED ) of the OLED to be measured. The light emitted from the spectral light source 100 is perpendicularly incident on the diffuse reflector 20, and the condensing window of the condensing optical system 22 is disposed at a position of an angle θ with respect to a vertical line standing on the diffuse reflector 20.
The photon luminance L S (λ) (pieces / m 2 · Ω) of the diffuse reflector 20 irradiated by the spectral light source 100 is obtained by the equation (21).
L S (λ) = ρ (λ) n (λ) Δλ / (πA S · cos θ) (21)
Assuming that the output current measured by the measurement system of the present embodiment is i det3, std (λ), the value obtained by dividing the output current by the correction coefficient and the charge (e) of the electron indicates the photon luminance. It will be. That is, Formula (22) is materialized.
L S (λ) = ρ (λ) n (λ) Δλ / (πA S · cosθ)
= i det3, std (λ) Δλ / {e · corr det3 (λ)} (22)
Therefore, the correction factor is
corr det3 (λ) = i det3, std (λ) ΔλπA S · cosθ / {e · ρ (λ) n (λ) Δλ}
Substituting equation (1),
corr det3 (λ) = i det3, std (λ) ΔλπA S・ cosθη (λ) / {ρ (λ) i Si (λ) Δλ} (23)

次に、図11に示すように、拡散反射板20の位置に測定すべき有機発光素子14をおき、補正係数の求められた光検出系でその分光絶対光量子束を測定する。OLEDからの前面放出絶対光量子束をnOLED,front(λ)とすると、その光量子輝度LOLED(λ)は、式(24)により与えられる。
LOLED(λ)=nOLED,front(λ)Δλ/{πAOLED・cosθ} ・・・(24)
測定系の出力電流idet3,OLED(λ)を電子の電荷と測定系の補正係数で除した値が光量子輝度となるから式(25)が成立する。
LOLED(λ)=idet3,OLED(λ)Δλ/{e・corrdet3(λ) } ・・・(25)
したがって、
nOLED,front(λ)Δλ=idet3,OLED(λ)ΔλπAOLED・cosθ/{e・corrdet3(λ)} ・・・(26)
Next, as shown in FIG. 11, the organic light emitting element 14 to be measured is placed at the position of the diffuse reflector 20, and the spectral absolute photon flux is measured by the light detection system for which the correction coefficient is obtained. When the front emission absolute photon flux from the OLED is n OLED, front (λ), the photon luminance L OLED (λ) is given by the equation (24).
L OLED (λ) = n OLED, front (λ) Δλ / {πA OLED・ cosθ} (24)
Since the value obtained by dividing the output current i det3, OLED (λ) of the measurement system by the charge of the electron and the correction coefficient of the measurement system is the photon luminance, Equation (25) is established.
L OLED (λ) = i det3, OLED (λ) Δλ / {e · corr det3 (λ)} (25)
Therefore,
n OLED, front (λ) Δλ = i det3, OLED (λ) ΔλπA OLED・ cosθ / {e ・ corr det3 (λ)} (26)

式(21)および式(24)は、Lambertの法則が前提となっている。しかし、特に発光素子の放射パターンはこの法則からのずれが大きい可能性がある。したがって、より高い精度の光量子束を得るためには、拡散反射板20および有機発光素子14の双方について、あるいは、少なくとも有機発光素子14について、角度を変えて複数(例えば3、4個所)の位置においてにおいて光電変換電流を測定して複数の実測値を得る。これらの実測値から放射パターンを推定し(図4参照)、全角度(0〜180°)にわたって積分して全放射光量子束を求めるようにしてもよい。   Equations (21) and (24) are predicated on Lambert's law. However, the radiation pattern of the light emitting element may have a large deviation from this law. Therefore, in order to obtain a photon flux with higher accuracy, a plurality of (for example, three or four) positions are changed at different angles for both the diffuse reflector 20 and the organic light emitting element 14 or at least for the organic light emitting element 14. The photoelectric conversion current is measured in to obtain a plurality of actual measurement values. The radiation pattern may be estimated from these actually measured values (see FIG. 4) and integrated over all angles (0 to 180 °) to obtain the total radiation photon flux.

次に、有機発光素子とその発光層のみをガラス基板上に形成した素子(以下、発光層エレメントという)についてフォトルミネッセンス(PL)測定およびエレクトロルミネッセンス(EL)測定を行い量子効率などを求める実施の形態(第8の実施の形態)について説明する。
はじめに、図12を参照して、有機発光素子の発光過程について説明する。有機発光素子の発光層に電子と正孔が注入されると、発光層において一重項状態と三重項状態の電子−正孔対が生成される。これらの電子−正孔対一部は発光して消滅し、他の一部は発光することなく消滅しあるいは他の状態へ遷移する。発生した光の一部は素子外部へ放出され、他の一部は電極に吸収されるなどして内部消滅する。また、電流注入により励起対を生成する方法に代え、有機発光素子または発光層エレメントに適当な波長の励起光を照射することにより、一重項状態ないし三重項状態の電子−正孔対を生成することができる。
図12において、各過程には添え字付きのηによりその過程での効率(収率)が示されている。
Next, with regard to an element in which only an organic light-emitting element and its light-emitting layer are formed on a glass substrate (hereinafter referred to as a light-emitting layer element), photoluminescence (PL) measurement and electroluminescence (EL) measurement are performed to obtain quantum efficiency and the like. A form (eighth embodiment) will be described.
First, the light emission process of the organic light emitting device will be described with reference to FIG. When electrons and holes are injected into the light emitting layer of the organic light emitting device, singlet and triplet state electron-hole pairs are generated in the light emitting layer. Some of these electron-hole pairs are extinguished by light emission, and the other part are extinguished without light emission or transit to other states. Part of the generated light is emitted to the outside of the device, and the other part is absorbed by the electrode and disappears internally. Further, instead of a method of generating an excitation pair by current injection, an electron-hole pair in a singlet state or a triplet state is generated by irradiating an organic light emitting element or a light emitting layer element with excitation light having an appropriate wavelength. be able to.
In FIG. 12, the efficiency (yield) in each process is indicated by η with a subscript in each process.

発光層エレメントとしては、有機発光素子に用いられる有機発光材料をガラス基板に同じ作製手法を用い同じ形状で形成したものを用いる。ELおよびPL測定は、例えば図1に示した装置構成により、分光絶対光量子束が既知となった分光光源100を用い、例えば図5に示した装置構成により、測定系の校正が終了した装置を用いて行われる。
図13は、発光層エレメントのPL測定を行う装置構成の概略図である。図13において、図5に示される部分と同等の部分には同一の参照符号が付せられている。図13に示すように、積分球18内に発光層エレメント24を配置し、分光光源100の出射光を照射して、1重項状態へ励起し、それからの発光を測定する。このとき、図14に示すように、発光層エレメント24への入射光をI、透過光をIとするとき、I−I=Iabsが吸収されたことになり、発光I Fが観測される。このときの発光量子収率φemissは、
φemiss=∫IFdλ/∫Iabsdλ ・・・(27)
で、表され、
φemiss≒ηF ・・・(28)
と見なすことができる。
ここに、
∫Iabsdλ;発光層エレメントの全光吸収量(個)
∫IFdλ;発光層エレメントの全発光量(個)
As a light emitting layer element, an organic light emitting material used for an organic light emitting element is formed on a glass substrate in the same shape using the same manufacturing method. For EL and PL measurement, for example, a spectral light source 100 whose spectral absolute photon flux is known by the apparatus configuration shown in FIG. 1 is used. For example, an apparatus whose calibration of the measurement system is completed by the apparatus configuration shown in FIG. Done with.
FIG. 13 is a schematic diagram of an apparatus configuration for performing PL measurement of the light emitting layer element. In FIG. 13, parts that are the same as the parts shown in FIG. 5 are given the same reference numerals. As shown in FIG. 13, the light emitting layer element 24 is disposed in the integrating sphere 18, irradiated with the light emitted from the spectral light source 100, excited to a singlet state, and light emission therefrom is measured. At this time, as shown in FIG. 14, when the incident light to the light emitting layer element 24 is I 0 and the transmitted light is I, I 0 −I = I abs is absorbed, and the light emission IF is observed. Is done. The emission quantum yield φ emiss at this time is
φ emiss = ∫I F dλ / ∫I abs dλ (27)
Represented by
φ emiss ≒ η F・ ・ ・ (28)
Can be considered.
here,
∫I abs dλ: Total light absorption amount of the light emitting layer element
∫ I F dλ: Total light emission quantity of the light emitting layer element (pieces)

また、3重項状態へ光励起した場合も類似の式で表すことができ、発光量子収率φemiss、発光効率ηPは、式(29)、式(30)から得ることができる。
φemiss=∫IPdλ/∫Iabsdλ ・・・(29)
φemiss≒ηP ・・・(30)
ここに、
∫IPdλ;発光層エレメントの全発光量(個)
次に、図15に示すように、積分球18内に有機発光素子14を配置し、分光光源100の出射光を照射して、一重項状態へ励起し、それからの発光を測定する。このとき、発光量子収率φemiss,OLEDは、
φemiss,OLED≒ηFηext ・・・(31)
となる。
同様に、三重項状態へ励起した場合の発光量子収率φemiss,OLEDは、
φemiss,OLED≒ηPηext ・・・(32)
となる。
次に、図15に示すように、有機発光素子14を積分球18内に保持した状態で、有機発光素子14の発光層に電子、正孔を注入してEL測定を行う。電子、正孔の注入バランスを1と仮定すると、外部量子効率φext, OLEDは、
φext,OLED≒ηSηFηext ・・・(33)
または、
φext,OLED≒ηTηPηext ・・・(34)
となる。
以上説明したように、本発明によれば、分光絶対光量子数既知の光源を励起光として用い、分光感度が補正された測定系によりそれぞれの発光効率を測定し、発光素子の発光各過程での量子効率ηST)、ηFP)、ηextの知見を得る事が可能となる。
Further, when photoexcited to the triplet state, it can be expressed by a similar equation, and the emission quantum yield φ emiss and the emission efficiency η P can be obtained from the equations (29) and (30).
φ emiss = ∫I P dλ / ∫I abs dλ (29)
φ emiss ≒ η P・ ・ ・ (30)
here,
∫I P dλ: Total light emission quantity of the light emitting layer element
Next, as shown in FIG. 15, the organic light emitting element 14 is disposed in the integrating sphere 18, irradiated with the light emitted from the spectral light source 100, excited to a singlet state, and light emission therefrom is measured. At this time, the emission quantum yield φ emiss, OLED is
φ emiss, OLED ≒ η F η ext・ ・ ・ (31)
It becomes.
Similarly, the emission quantum yield φ emiss, OLED when excited to the triplet state is
φ emiss, OLED ≒ η P η ext・ ・ ・ (32)
It becomes.
Next, as shown in FIG. 15, with the organic light emitting element 14 held in the integrating sphere 18, EL measurement is performed by injecting electrons and holes into the light emitting layer of the organic light emitting element 14. Assuming that the injection balance of electrons and holes is 1, the external quantum efficiency φ ext, OLED is
φ ext, OLED ≒ η S η F η ext ... (33)
Or
φ ext, OLED ≒ η T η P η ext (34)
It becomes.
As described above, according to the present invention, a light source having a known spectral absolute photon number is used as excitation light, and the respective light emission efficiencies are measured by a measurement system with corrected spectral sensitivity. Knowledge of quantum efficiency η ST ), η FP ), and η ext can be obtained.

また、式(31)、(32)の発光量子収率を求める過程において、励起光の波長を選択することにより、励起光の試料への侵入深さを調節することができる。励起光の試料への侵入深さと発光量子収率との関係を調べることにより、電極による発光量子収率への影響を知ることができる。   In addition, in the process of obtaining the emission quantum yields of equations (31) and (32), the penetration depth of the excitation light into the sample can be adjusted by selecting the wavelength of the excitation light. By examining the relationship between the penetration depth of the excitation light into the sample and the emission quantum yield, the influence of the electrode on the emission quantum yield can be known.

本発明の第1の実施の形態を説明するための、分光光源の分光絶対光量子束を測定する方法を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the method to measure the spectral absolute photon flux of a spectral light source for demonstrating the 1st Embodiment of this invention. 本発明の第2の実施の形態を説明するための、分光光源の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method of measuring the spectrum absolute photon flux of a spectrum light source for demonstrating the 2nd Embodiment of this invention. 本発明の第3の実施の形態を説明するための、分光光源の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method to measure the spectral absolute photon flux of a spectral light source for demonstrating the 3rd Embodiment of this invention. 拡散反射板の反射パターンの説明図。Explanatory drawing of the reflection pattern of a diffuse reflection board. 本発明の第4の実施の形態を説明するための、発光素子測定系の校正方法を示す概略図。Schematic which shows the calibration method of the light emitting element measurement system for demonstrating the 4th Embodiment of this invention. 本発明の第4の実施の形態を説明するための、発光素子の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method to measure the spectral absolute photon flux of a light emitting element for demonstrating the 4th Embodiment of this invention. 本発明の第5の実施の形態を説明するための、発光素子の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method to measure the spectrum absolute photon flux of the light emitting element for demonstrating the 5th Embodiment of this invention. 本発明の第6の実施の形態を説明するための、発光素子測定系の校正方法を示す概略図。Schematic which shows the calibration method of the light emitting element measurement system for demonstrating the 6th Embodiment of this invention. 本発明の第6の実施の形態を説明するための、発光素子の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method to measure the spectral absolute photon flux of a light emitting element for demonstrating the 6th Embodiment of this invention. 本発明の第7の実施の形態を説明するための、発光素子測定系の校正方法を示す概略図。Schematic which shows the calibration method of the light emitting element measurement system for demonstrating the 7th Embodiment of this invention. 本発明の第7の実施の形態を説明するための、発光素子の分光絶対光量子束を測定する方法を示す概略図。Schematic which shows the method to measure the spectral absolute photon flux of a light emitting element for demonstrating the 7th Embodiment of this invention. 発光素子の発光の各過程の説明図。Explanatory drawing of each process of light emission of a light emitting element. 本発明の第8の実施の形態を説明するための、発光層エレメントのフォトルミネッセンス測定の方法を示す概略図。Schematic which shows the method of the photoluminescence measurement of the light emitting layer element for demonstrating the 8th Embodiment of this invention. 発光層エレメントに対する光励起の状態を説明する図。The figure explaining the state of the optical excitation with respect to a light emitting layer element. 本発明の第8の実施の形態を説明するための、発光素子のエレクトロルミネッセンス測定の方法を示す概略図。Schematic which shows the method of the electroluminescence measurement of the light emitting element for demonstrating the 8th Embodiment of this invention.

符号の説明Explanation of symbols

1 ランプ
2、4、12、22 集光光学系
3、13 分光器
5、15 光検出器
6、16 電流計
7、17 コンピュータ
8、18 積分球
9、19 バッフル
10、20 拡散反射板
11、21 マスク
14 有機発光素子(OLED)
24 発光層エレメント
100 分光光源

1 Lamp 2, 4, 12, 22 Condensing optical system 3, 13 Spectrometer 5, 15 Photo detector 6, 16 Ammeter 7, 17 Computer 8, 18 Integrating sphere 9, 19 Baffle 10, 20 Diffuse reflector 11, 21 Mask 14 Organic light emitting device (OLED)
24 Light emitting layer element 100 Spectral light source

Claims (27)

被測定対象の測定に適した波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定し、前記分光放射光源を分光絶対光量子束既知光源として用いて光学的測定を行う光学測定方法。 The absolute value of the spectral quantum flux of the spectral radiation source having light energy in the wavelength range suitable for the measurement of the object to be measured is determined using a photodetector having a known photo-electron conversion quantum efficiency, and the spectral radiation source is spectrally separated. An optical measurement method for performing optical measurement using a known light source with absolute photon flux. 前記分光放射光源が、ランプと分光器とを含んで構成されていることを特徴とする請求項1に記載の光学測定方法。 The optical measurement method according to claim 1, wherein the spectral radiation source includes a lamp and a spectroscope. 前記分光放射光源から放射される全分光光量子束または前記分光放射光源の部分比が既知の部分分光光量子束を前記光検出器に入射し、前記分光放射光源の分光光量子束の絶対値を求めることを特徴とする請求項1または2に記載の光学測定方法。 A total spectral light quantum flux emitted from the spectral radiation light source or a partial spectral light quantum flux whose partial ratio of the spectral radiation light source is known is incident on the photodetector, and an absolute value of the spectral light quantum flux of the spectral radiation light source is obtained. The optical measurement method according to claim 1 or 2. 前記分光放射光源から放射される全分光光量子束または前記分光放射光源の部分比が既知の部分分光光量子束を光学的特性が既知の積分球へ入射し、前記積分球に設置された前記光検出器により前記分光放射光源の分光光量子束の絶対値を求めることを特徴とする請求項1または2に記載の光学測定方法。 The total spectral light quantum flux emitted from the spectral radiation light source or the partial spectral light quantum flux whose partial ratio of the spectral radiation light source is known is incident on an integrating sphere having a known optical characteristic, and the light detection set in the integrating sphere The optical measurement method according to claim 1 or 2, wherein an absolute value of a spectral light quantum flux of the spectral radiation source is obtained by a detector. 前記分光放射光源から放射される全分光光量子束または前記分光放射光源の部分比が既知の部分分光光量子束を拡散反射率が既知の拡散反射板へ入射し、その反射光を前記光検出器により受光して前記分光放射光源の分光光量子束の絶対値を求めることを特徴とする請求項1または2に記載の光学測定方法。 The total spectral light quantum flux emitted from the spectral radiation light source or the partial spectral light quantum flux whose partial ratio of the spectral radiation light source is known is incident on a diffuse reflector having a known diffuse reflectance, and the reflected light is reflected by the photodetector. The optical measurement method according to claim 1, wherein the optical measurement method receives light to obtain an absolute value of a spectral light quantum flux of the spectral radiation light source. 前記分光放射光源の特定の波長の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定すると共に、前記分光放射光源から放射される分光光量子束を光−電子変換量子効率が既知の光検出器により測定して前記分光放射光源の分光光量子束の相対値を求め、両測定結果から前記分光放射光源の分光光量子束の絶対値を求めることを特徴とする請求項1または2に記載の光学測定方法。 The absolute value of the spectroscopic photon bundle of a specific wavelength of the spectroscopic light source is determined using a photodetector having a known photo-electron conversion quantum efficiency, and the spectroscopic photon flux emitted from the spectroscopic light source is converted to photo-electron. A relative value of a spectral light quantum flux of the spectral radiation light source is measured by a photodetector having a known conversion quantum efficiency, and an absolute value of a spectral light quantum flux of the spectral radiation light source is obtained from both measurement results. Item 3. The optical measurement method according to Item 1 or 2. 前記分光放射光源から放射される分光光量子束を積分球へ入射し、前記積分球に設置された光−電子変換量子効率が既知の光検出器により前記分光放射光源の分光光量子束の相対値を求めることを特徴とする請求項6に記載の光学測定方法。 Spectral photon flux emitted from the spectral radiation source is made incident on an integrating sphere, and the relative value of the spectral photon flux of the spectral radiation source is calculated by a photodetector having a known photo-electron conversion quantum efficiency installed in the integrating sphere. The optical measurement method according to claim 6, wherein the optical measurement method is obtained. 前記分光放射光源から放射される分光光量子束を拡散反射率が既知の拡散反射板へ入射し、前記拡散反射板の反射光を光−電子変換量子効率が既知の光検出器により測定して前記分光放射光源の分光光量子束の相対値を求めることを特徴とする請求項6に記載の光学測定方法。 The spectral light quantum bundle emitted from the spectral radiation source is incident on a diffuse reflector having a known diffuse reflectance, and the reflected light of the diffuse reflector is measured by a photodetector having a known photo-electron conversion quantum efficiency. The optical measurement method according to claim 6, wherein a relative value of the spectral light quantum flux of the spectral radiation source is obtained. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定し、前記分光放射光源と前記発光素子とを同一測定条件により測定し両者の測定結果を比較することにより前記発光素子の分光光量子束を得る発光素子の測定方法。 An absolute value of a spectral light quantum flux of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured is determined using a photodetector having a known light-electron conversion quantum efficiency, and the spectral radiation light source and the A method for measuring a light emitting element, wherein the light emitting element is measured under the same measurement conditions and the measurement results of the two are compared to obtain the spectral light quantum flux of the light emitting element. 前記分光放射光源と前記発光素子とを同一の分光器と同一の光検出器とを用いて測定することを特徴とする請求項9に記載の発光素子の測定方法。 The method for measuring a light-emitting element according to claim 9, wherein the spectral radiation source and the light-emitting element are measured using the same spectroscope and the same photodetector. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記積分球内部に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法。 A first step of determining an absolute value of a spectral light quantum bundle of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured using a photodetector having a known photo-electron conversion quantum efficiency; A second step in which a spectroscopic quantum beam emitted from a spectral radiation source is incident on an integrating sphere, and a spectroscopic quantum beam of the spectral radiation source is measured using a spectroscope and a photodetector installed in the integrating sphere; A third step of disposing a light emitting element inside the integrating sphere and measuring a spectral light quantum flux of the light emitting element using the spectroscope and the photodetector. A method for measuring a light emitting element, comprising: obtaining an absolute value of a spectral light quantum flux of the light emitting element by comparing measurement results of processes. 請求項11に記載された発光素子の測定方法により得られた前記発光素子の分光光量子束の絶対値を用いて前記発光素子の外部量子効率を求めることを特徴とする発光素子の測定方法。 A method for measuring a light emitting element, comprising: obtaining an external quantum efficiency of the light emitting element by using an absolute value of a spectral light quantum flux of the light emitting element obtained by the method for measuring a light emitting element according to claim 11. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、発光素子の前面放射光を前記積分球内へ放出し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法。 A first step of determining an absolute value of a spectral light quantum bundle of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured using a photodetector having a known photo-electron conversion quantum efficiency; A second step in which a spectroscopic quantum beam emitted from a spectral radiation source is incident on an integrating sphere, and a spectroscopic quantum beam of the spectral radiation source is measured using a spectroscope and a photodetector installed in the integrating sphere; A third step of emitting the front radiation of the light emitting element into the integrating sphere and measuring the spectral light quantum flux of the light emitting element using the spectroscope and the photodetector. A method for measuring a light-emitting element, wherein the absolute value of the spectral light quantum flux of the light-emitting element is obtained by comparing the measurement results of the third step. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を拡散反射板へ入射し、その反射光を受光する分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記拡散反射板に代えて前記拡散反射板が設置されていた位置に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の分光光量子束の絶対値を求めることを特徴とする発光素子の測定方法。 A first step of determining an absolute value of a spectral light quantum bundle of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured using a photodetector having a known photo-electron conversion quantum efficiency; A second step of measuring a spectral light quantum flux of the spectral radiation light source using a spectroscope and a photodetector that receive the reflected light by entering the spectral light quantum flux emitted from the spectral radiation light source; The light emitting element is arranged at the position where the diffuse reflecting plate is installed instead of the diffuse reflecting plate, and the spectral light quantum flux of the light emitting element is measured using the spectroscope and the photodetector. And measuring the absolute value of the spectral quantum flux of the light emitting device by comparing the measurement results of the second and third steps. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を拡散反射板へ入射し、その反射光を受光する分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記拡散反射板に代えて前記拡散反射板が設置されていた位置に発光素子を配置し、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の相対的な分光光量子束を求めることを特徴とする発光素子の測定方法。 A first step of determining an absolute value of a spectral light quantum bundle of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured using a photodetector having a known photo-electron conversion quantum efficiency; A second step of measuring a spectral light quantum flux of the spectral radiation light source using a spectroscope and a photodetector that receive the reflected light by entering the spectral light quantum flux emitted from the spectral radiation light source; The light emitting element is arranged at the position where the diffuse reflecting plate is installed instead of the diffuse reflecting plate, and the spectral light quantum flux of the light emitting element is measured using the spectroscope and the photodetector. And measuring the relative spectral photon flux of the light emitting device by comparing the measurement results of the second and third steps. 被測定対象の発光素子の発光波長範囲に光エネルギーを有する分光放射光源の分光光量子束の絶対値を光−電子変換量子効率が既知の光検出器を用いて決定する第1の過程と、前記分光放射光源から放射される分光光量子束を積分球へ入射し、前記積分球に設置された分光器と光検出器とを用いて前記分光放射光源の分光光量子束を測定する第2の過程と、前記積分球内に発光素子の少なくとも発光層を配置し、前記分光放射光源から放射される全分光光量子束を前記積分球へ入射してこれにより前記発光層を発光させ、前記分光器と前記光検出器とを用いて前記発光素子の分光光量子束を測定する第3の過程と、を有し、第2、第3の過程の測定結果を比較することにより前記発光素子の量子効率を求めることを特徴とする発光素子の測定方法。 A first step of determining an absolute value of a spectral light quantum bundle of a spectral radiation source having light energy in a light emission wavelength range of a light emitting element to be measured using a photodetector having a known photo-electron conversion quantum efficiency; A second step in which a spectroscopic quantum beam emitted from a spectral radiation source is incident on an integrating sphere, and a spectroscopic quantum beam of the spectral radiation source is measured using a spectroscope and a photodetector installed in the integrating sphere; , At least a light emitting layer of a light emitting element is disposed in the integrating sphere, and the total spectroscopic quantum flux emitted from the spectral radiation source is incident on the integrating sphere, thereby causing the light emitting layer to emit light, and the spectrometer and the A third step of measuring the spectral light quantum flux of the light emitting element using a photodetector, and obtaining the quantum efficiency of the light emitting element by comparing the measurement results of the second and third steps Measurement of light-emitting elements characterized by Law. 前記積分球または前記拡散反射板へ入射される前記分光放射光源からの分光光量子束は、前記分光放射光源から放射される全分光光量子束または前記分光放射光源の部分比が既知の部分分光光量子束であることを特徴とする請求項11、13、14または16に記載の光学測定方法。 The spectral light quantum flux from the spectral radiation light source incident on the integrating sphere or the diffuse reflector is the total spectral light quantum flux emitted from the spectral radiation light source or the partial spectral light quantum flux whose partial ratio of the spectral radiation light source is known. The optical measurement method according to claim 11, 13, 14, or 16. 前記積分球または前記拡散反射板と前記分光器との間に集光手段が介在していることを特徴とする請求項11から17のいずれかに記載の発光素子の測定方法。 The light-emitting element measuring method according to claim 11, wherein a condensing unit is interposed between the integrating sphere or the diffuse reflector and the spectroscope. 前記集光手段が光ファイバ束であることを特徴とする請求項18に記載の発光素子の測定方法。 The method of measuring a light emitting element according to claim 18, wherein the condensing means is an optical fiber bundle. 前記発光素子がエレクトロルミネッセンス(EL)素子であることを特徴とする請求項9から19のいずれかに記載の発光素子の測定方法。 The method for measuring a light-emitting element according to claim 9, wherein the light-emitting element is an electroluminescence (EL) element. 発光源と第1の分光器とを備え、分光絶対光量子束既知光源として用いられる分光放射光源と、前記分光放射光源の光が入射される積分球と、前記積分球から取り出された光が入射される第2の分光器と、前記第2の分光器の出射光を検出する光−電子変換量子効率が既知の光検出器と、を有する発光素子の測定装置。 A light emitting source and a first spectroscope are provided, a spectral radiation light source used as a known light source for spectral absolute light quantum flux, an integrating sphere into which light from the spectral radiation light source is incident, and light extracted from the integrating sphere is incident A measuring device for a light emitting element, comprising: a second spectroscope to be detected; and a photodetector having a known light-electron conversion quantum efficiency for detecting light emitted from the second spectroscope. 前記分光放射光源に代えて、少なくとも前記積分球の内部または入射窓に発光素子を設置できることを特徴とする請求項21に記載の発光素子の測定装置。 The light-emitting element measuring apparatus according to claim 21, wherein a light-emitting element can be installed at least in the integrating sphere or in an incident window in place of the spectral radiation source. 発光源と第1の分光器とを備え、分光絶対光量子束既知光源として用いられる分光放射光源と、前記分光放射光源の光が入射される拡散反射板と、前記拡散反射板からの反射光が導入される第2の分光器と、前記第2の分光器の出射光を検出する光−電子変換量子効率が既知の光検出器と、を有する発光素子の測定装置。 A spectral emission light source including a light emission source and a first spectroscope, which is used as a known light source for spectral absolute light quantum flux, a diffuse reflection plate on which light from the spectral emission light source is incident, and reflected light from the diffuse reflection plate An apparatus for measuring a light-emitting element, comprising: a second spectroscope to be introduced; and a photodetector having a known photoelectric conversion quantum efficiency for detecting light emitted from the second spectroscope. 前記拡散反射板に代えて、該拡散反射板の取り付け位置に発光素子を設置できることを特徴とする請求項23に記載の発光素子の測定装置。 The light-emitting element measuring apparatus according to claim 23, wherein a light-emitting element can be installed at an attachment position of the diffuse reflector in place of the diffuse reflector. 前記拡散反射板の前面には、光入射部に開口を有する、光吸収材料からなるマスクが配置されていることを特徴とする請求項23に記載の発光素子の測定装置。 24. The light emitting element measurement device according to claim 23, wherein a mask made of a light absorbing material having an opening at a light incident portion is disposed on a front surface of the diffuse reflector. 前記光検出器の出力信号が入力され、前記第1および第2の分光器を制御するコンピュータが備えられていることを特徴とする請求項21から25のいずれかに記載の発光素子の測定装置。 26. The light emitting element measurement apparatus according to claim 21, further comprising a computer that receives the output signal of the photodetector and controls the first and second spectrometers. . 前記光検出器がシリコンフォトダイオードによって構成されていることを特徴とする請求項21から26のいずれかに記載の発光素子の測定装置。
27. The light emitting element measurement apparatus according to claim 21, wherein the photodetector is constituted by a silicon photodiode.
JP2003416122A 2003-12-15 2003-12-15 Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus Expired - Fee Related JP4336775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416122A JP4336775B2 (en) 2003-12-15 2003-12-15 Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416122A JP4336775B2 (en) 2003-12-15 2003-12-15 Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus

Publications (2)

Publication Number Publication Date
JP2005172731A true JP2005172731A (en) 2005-06-30
JP4336775B2 JP4336775B2 (en) 2009-09-30

Family

ID=34735406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416122A Expired - Fee Related JP4336775B2 (en) 2003-12-15 2003-12-15 Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus

Country Status (1)

Country Link
JP (1) JP4336775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625085B2 (en) 2011-03-08 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Defect evaluation method for semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625085B2 (en) 2011-03-08 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Defect evaluation method for semiconductor

Also Published As

Publication number Publication date
JP4336775B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
KR102293477B1 (en) Calibration method for optical characteristic measurement system
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
JP4452737B2 (en) Luminometer and measuring method
JP3287775B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
Johnson et al. Absolute photoluminescence quantum efficiency measurement of light-emitting thin films
Hollandt et al. Traceability in fluorometry—part I: physical standards
Brack et al. Absolute photometric calibration of large aperture optical systems
Hanselaer et al. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
RU2008142734A (en) TWO-COLOR PYROMETRIC MEASUREMENT OF TEMPERATURE OF X-RAY FOCAL SPOT
Polder et al. Calibration and characterization of spectral imaging systems
JP4336775B2 (en) Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus
JP3716303B2 (en) Method and apparatus for measuring luminous efficiency of photosensitive light emitting device
JP2019113568A (en) Spectrometric measurement device and spectrometric measurement method
He et al. Light output measurements of the organic light-emitting devices
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
Ohno Improved photometric standards and calibration procedures at NIST
Zong et al. Measurement of total radiant flux of UV LEDs
Samedov et al. Filter-radiometer-based realization of candela and establishment of photometric scale at UME
Prakash et al. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer
Toivanen et al. Realizations of the units of luminance and spectral radiance at the HUT
Zwinkels Metrology of photoluminescent materials
TW201932824A (en) Light measurement device and light measurement method
JP2002107268A (en) Measuring method and device for external quantum efficiency of electric light emitting element
Roberts Calibration of the Pierre Auger fluorescence detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4336775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees