JP2005172452A - Wave aberration measuring instrument of high precision - Google Patents

Wave aberration measuring instrument of high precision Download PDF

Info

Publication number
JP2005172452A
JP2005172452A JP2003408793A JP2003408793A JP2005172452A JP 2005172452 A JP2005172452 A JP 2005172452A JP 2003408793 A JP2003408793 A JP 2003408793A JP 2003408793 A JP2003408793 A JP 2003408793A JP 2005172452 A JP2005172452 A JP 2005172452A
Authority
JP
Japan
Prior art keywords
light
optical system
wavefront aberration
pinhole
shaping plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003408793A
Other languages
Japanese (ja)
Inventor
Haruhiko Horiguchi
春彦 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003408793A priority Critical patent/JP2005172452A/en
Publication of JP2005172452A publication Critical patent/JP2005172452A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a measuring error resulting from measuring a wave aberration of an examined optical system by a double pulse. <P>SOLUTION: This wave aberration measuring instrument has a TS lens for making light from a light source get incident into the examined optical system, a light wave shaping plate having an opening part (window) having a size enough to pass light wave front information, and having a pin hole of a size proper to convert the light into an ideal spherical wave in the vicinity thereof, and a spherical mirror in a anti-light source side from the pin hole. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体露光装置用縮小投影光学レンズ、ミラー等の高精度な光学系の波面収差精度を極めて高い精度で測定する波面収差測定装置に関するものであり、特に高周波成分を含む波面の高精度な波面収差測定に好適なものである。   The present invention relates to a wavefront aberration measuring apparatus for measuring the wavefront aberration accuracy of a highly accurate optical system such as a reduction projection optical lens and a mirror for a semiconductor exposure apparatus with extremely high accuracy, and in particular, high accuracy of a wavefront including a high frequency component. It is suitable for accurate wavefront aberration measurement.

従来より高精度なレンズ、ミラーの波面収差測定は、フィゾー干渉計やトワイマン−グリーン干渉計などを用い、被検光学系をダブルパスで測定する波面収差測定装置が一般的である。   Conventionally, a wavefront aberration measuring apparatus that uses a Fizeau interferometer, a Twyman-Green interferometer, or the like to measure a test optical system with a double path is generally used for measuring the wavefront aberration of a lens or mirror with higher accuracy.

図7に、従来のダブルパスで被検光学系の波面収差測定を行う波面収差測定装置の構成を示す。このような装置は、例えば特許文献1等に開示されている。   FIG. 7 shows the configuration of a wavefront aberration measuring apparatus that measures the wavefront aberration of a test optical system using a conventional double pass. Such an apparatus is disclosed in, for example, Patent Document 1.

ここでは代表例として、フィゾー型干渉計を用いた従来の波面収差測定装置を示している。   Here, as a representative example, a conventional wavefront aberration measuring apparatus using a Fizeau interferometer is shown.

同図において、2は光源であるところのレーザ、3は引き回し光学系、4は集光レンズ、18は理想球面波を発生させるための空間フィルタ、16はハーフミラー、17はミラー、20は引き回されてきた光を平行光とするためのコリメータレンズ、50は引き回し光学系、5はTSレンズ6を駆動させるためのXYZステージ、6は被検光学系へ光を導くためのTSレンズ、7はWafer面、8は被検光学系、52はReticle面、10はRSミラー、15はRSミラー10を駆動させるためのPZT、13は参照光と被検光学系の光波情報を持った被検光を干渉させるための干渉計ユニット、51は空間フィルタ、19は撮像素子14へと光を導く結像レンズ、14はCDDカメラなどの撮像素子である。   In the figure, 2 is a laser as a light source, 3 is a drawing optical system, 4 is a condenser lens, 18 is a spatial filter for generating an ideal spherical wave, 16 is a half mirror, 17 is a mirror, and 20 is a drawing. A collimator lens for converting the rotated light into parallel light, 50 is a drawing optical system, 5 is an XYZ stage for driving the TS lens 6, 6 is a TS lens for guiding light to the optical system to be tested, 7 Is a Wafer surface, 8 is a test optical system, 52 is a Reticle surface, 10 is an RS mirror, 15 is a PZT for driving the RS mirror 10, and 13 is a test having light wave information of the reference light and the test optical system. An interferometer unit for causing light to interfere, 51 is a spatial filter, 19 is an imaging lens for guiding light to the image sensor 14, and 14 is an image sensor such as a CDD camera.

また、11は被検レンズを搭載するための搭載台、12は本体、21はステージの動きを制御するステージコントローラ、22はホストコンピュータである。   Reference numeral 11 denotes a mounting table for mounting the lens to be examined, 12 a main body, 21 a stage controller for controlling the movement of the stage, and 22 a host computer.

同図において、光源(レーザ)2から出た光は引き回し光学系3、ハーフミラー16で反射後、コリメータレンズ20で平行光とされて引き回し光学系50を通ってWafer側から入射し、TSレンズ6、被検光学系8を通ってReticle面9、RSミラー10に達してRSミラー10で反射される。   In the figure, the light emitted from the light source (laser) 2 is reflected by the drawing optical system 3 and the half mirror 16, converted into parallel light by the collimator lens 20, passed through the drawing optical system 50 and incident from the wafer side, and the TS lens 6. Passes through the optical system 8 to be tested, reaches the Reticle surface 9 and the RS mirror 10 and is reflected by the RS mirror 10.

その後、入射時と逆方向に被検光学系8、TSレンズ6を通って引き回し光学系50を逆進した光はハーフミラー16を透過し、CCDカメラなどの撮像素子14上に被検光束として入射する。一方、TSレンズ6の最終面である、いわゆるフィゾー面により反射された光束も、TSレンズ6→引き回し光学系50→ミラー17→ハーフミラー16→撮像素子14の光路で、参照光として入射する。これらの2光束の干渉により、CCD上で縞検出される。またRSミラー10はPZT15により光軸方向にスキャンされ、いわゆるフリンジスキャン法により、被検波面の位相検出が可能となっている。これをもとにホストコンピュータ22で波面収差を計算させている。
特開2002−022608号公報
After that, the light that has been routed through the test optical system 8 and the TS lens 6 in the direction opposite to that of the incident light and then traveled back through the optical system 50 is transmitted through the half mirror 16 as a test light beam on the image sensor 14 such as a CCD camera. Incident. On the other hand, a light beam reflected by a so-called Fizeau surface, which is the final surface of the TS lens 6, also enters as a reference light in the optical path of the TS lens 6 → the routing optical system 50 → the mirror 17 → the half mirror 16 → the image sensor 14. Stripes are detected on the CCD by the interference of these two light beams. The RS mirror 10 is scanned in the optical axis direction by the PZT 15, and the phase of the wavefront to be detected can be detected by a so-called fringe scanning method. Based on this, the host computer 22 calculates the wavefront aberration.
JP 2002-022608 A

しかしながら、上記従来例のように、被検光学系の波面収差をダブルパスで測定する波面収差測定装置の場合には
(1)被検光学系を通過する往路で回折される光路に対して、RSミラー反射後に被検光学系を通過する復路光の位相がずれる場合がある
(2)このため、特に測定波面の高周波数領域に大きな収差がある場合には、ダブルパス起因による位相ずれの影響により、被検光学系の高精度な波面収差の測定に影響する恐れがある
という問題があった。
However, in the case of a wavefront aberration measuring apparatus that measures the wavefront aberration of the optical system to be measured by a double path as in the above-described conventional example, (1) For the optical path diffracted in the forward path passing through the optical system to be tested, There is a case where the phase of the return light passing through the test optical system after mirror reflection may be shifted. (2) For this reason, particularly when there is a large aberration in the high frequency region of the measurement wavefront, due to the influence of the phase shift due to the double path, There is a problem that it may affect the measurement of the wavefront aberration with high accuracy of the optical system under test.

本提案では上記従来例の課題に鑑み、被検光学系の波面収差測定をダブルパスで測定することに起因する測定誤差を抑制する。   In the present proposal, in view of the problems of the above-described conventional example, measurement errors caused by measuring the wavefront aberration of the optical system to be measured by a double pass are suppressed.

より実用的で高い精度が期待できる波面収差測定方法および装置を提供するために、光源からの光を一旦集光させるTSレンズ(コリメータレンズ)と、被検光学系を光が通過した位置にRSミラーが配置された波面収差測定装置において、RSミラーからの反射光の集光点近傍の領域に、集光した光を理想的な球面波に変換する適切なサイズのピンホールと共にその近傍に光波面情報を十分通過させる大きさを持つ開口部(窓)を有する光波整形板を有し、被検光学系を通過する往路光はその開口部を通過させ、RSミラー反射後の光は光波整形板のピンホールを通過させることで理想球面波を発生させ、光波面情報をいったんキャンセルさせて、ピンホールを通過することによって発生した理想球面波を用いて被検光学系を逆方向(復路)へ通過させることにより、被検光学系のシングルパスの光波面情報を持った光を作成する。   To provide a wavefront aberration measuring method and apparatus that can be expected to be more practical and highly accurate, a TS lens (collimator lens) that temporarily collects light from the light source, and an RS at the position where the light has passed through the test optical system. In a wavefront aberration measuring apparatus in which a mirror is disposed, a light wave is present in the vicinity of a pinhole of an appropriate size for converting the collected light into an ideal spherical wave in a region near the condensing point of the reflected light from the RS mirror. It has a light wave shaping plate that has an opening (window) with a size that allows the surface information to sufficiently pass through. Outgoing light that passes through the optical system to be tested passes through the opening, and the light reflected by the RS mirror is light wave shaped. An ideal spherical wave is generated by passing through the pinhole of the plate, the optical wavefront information is canceled once, and the optical system to be tested is reversed (return path) using the ideal spherical wave generated by passing through the pinhole. By passing to, to create a light having wavefront information of the single pass of the optical system to be measured.

この光を被検光と呼ぶことにする。   This light is called test light.

また、フィゾー型干渉計を用いた波面収差測定装置の場合には、TSレンズの最終面でいわゆるフィゾー面と呼ばれる面からの戻り光を参照光として用い、それ以外の、例えばトワイマン・グリーン干渉計を用いた波面収差測定装置の場合には、高精度な参照面からの戻り光を参照光とする。   Further, in the case of a wavefront aberration measuring apparatus using a Fizeau interferometer, the return light from a surface called a Fizeau surface at the final surface of the TS lens is used as a reference light, and other, for example, a Twyman Green interferometer In the case of the wavefront aberration measuring apparatus using the reference light, the return light from the highly accurate reference surface is used as the reference light.

これら2つの光(被検光,参照光)を干渉計ユニットで干渉させて、CCDなどの撮像素子で干渉縞を撮像することにより、被検光学系の波面収差をコンピュータで解析可能としたものである。   By making these two lights (test light and reference light) interfere with an interferometer unit and imaging interference fringes with an image sensor such as a CCD, the wavefront aberration of the test optical system can be analyzed by a computer. It is.

以上説明したように、ダブルパス型波面収差測定装置において、被検光学系を通過した往路光を光波整形板の開口部を通過させ、RSミラーで反射後、光波整形板のピンホールを通過させることにより発生する理想球面波を被検光学系復路のシングルパス測定に用い、参照面からの光と干渉させることで得られる干渉縞像を干渉計内に設けられたCCDカメラなどの撮像素子で撮影し、電子化された情報をコンピュータで解析可能とすることで、測定波面に高周波領域が存在し、かつ大きな収差が存在する場合でも、被検光学系を通過する往路の回折光と復路光の位相ずれによる波面収差測定への影響を受けることなく、高精度な波面収差測定ができるという効果がある。   As described above, in the double-pass wavefront aberration measuring apparatus, the forward light that has passed through the optical system to be tested passes through the opening of the light wave shaping plate, is reflected by the RS mirror, and then passes through the pinhole of the light wave shaping plate. An ideal fringe wave generated by the sensor is used for single-pass measurement of the return path of the optical system under test, and an interference fringe image obtained by interfering with the light from the reference surface is photographed by an image sensor such as a CCD camera provided in the interferometer. Since the computerized information can be analyzed by a computer, even if there is a high-frequency region in the measurement wavefront and there is a large aberration, the diffracted light and the backward light passing through the test optical system There is an effect that the wavefront aberration can be measured with high accuracy without being affected by the wavefront aberration measurement due to the phase shift.

(第1実施例)
図1は本発明の第1の実施例を示す。
(First embodiment)
FIG. 1 shows a first embodiment of the present invention.

同図は、被検光学系8に半導体露光装置に搭載される投影レンズを用い、フィゾー型干渉計を有する波面収差測定装置の場合を例として示している。また、同図は被検光学系8にWafer側から光が入射する場合を示しているが、Reticle側から光が入射するような構成でも構わない。   This figure shows, as an example, a case of a wavefront aberration measuring apparatus having a Fizeau interferometer using a projection lens mounted on a semiconductor exposure apparatus for the optical system 8 to be tested. In addition, this figure shows a case where light enters the optical system 8 to be tested from the Wafer side, but a configuration in which light enters from the Reticle side may also be used.

光源(レーザ)2から出た光が引き回し光学系3、集光レンズ4を通り、空間フィルタ18へ導かれ、理想球面波を発生させる。光はさらにハーフミラー16、ミラー17へと導かれてコリメータレンズ20で平行光となり、TSレンズ6へ到達する。TSレンズ6から出射された光は被検光学系(往路)8、光波整形板1の開口部1bを通過してRSミラー15へ到達する。1は被検光学系を通過してきた往路光を通過させる開口部1bを持ち、RSミラー10反射後の反射光を通過させるピンホール1aを有する光波整形板であり、固定配置してある。   Light emitted from the light source (laser) 2 is routed through the optical system 3 and the condenser lens 4 and is guided to the spatial filter 18 to generate an ideal spherical wave. The light is further guided to the half mirror 16 and the mirror 17, becomes parallel light by the collimator lens 20, and reaches the TS lens 6. The light emitted from the TS lens 6 passes through the test optical system (outward path) 8 and the opening 1 b of the light wave shaping plate 1 and reaches the RS mirror 15. Reference numeral 1 denotes a light wave shaping plate having a pinhole 1a that has an opening 1b that allows passage of outgoing light that has passed through the optical system to be tested, and that passes reflected light after being reflected by the RS mirror 10.

図2は前記光波整形板1の詳細図であり、ピンホール1aと開口部(窓)1bが隣接して設けられている様子を示している。開口部(窓)1bは光波面情報が通過するのに十分な大きさで1つまたは複数であるとする。   FIG. 2 is a detailed view of the light wave shaping plate 1 and shows a state in which a pinhole 1a and an opening (window) 1b are provided adjacent to each other. It is assumed that the opening (window) 1b is large enough to allow light wavefront information to pass therethrough and is one or more.

図3は前記光波整形板を通過する光の説明図であり、被検光学系の光波面情報を持った回折光を含む往路光が光波整形板の開口部(窓)1bを通過し、RSミラー10で反射する様子を示している。反射した光の一部は光波整形板1のピンホール1aへ到達して理想球面波を発生させる。その理想球面波は被検光学系8を通過して(復路)、被検光学系8のシングルパスの光波面情報を持った光がTSレンズ6、干渉計ユニット13内の結像レンズ19を通り、CCDカメラなどの撮像素子14へと到達する。   FIG. 3 is an explanatory diagram of light passing through the light wave shaping plate. Outgoing light including diffracted light having light wavefront information of the optical system to be tested passes through an opening (window) 1b of the light wave shaping plate, and RS A state of reflection by the mirror 10 is shown. Part of the reflected light reaches the pinhole 1a of the light wave shaping plate 1 and generates an ideal spherical wave. The ideal spherical wave passes through the test optical system 8 (return path), and the light having the single-pass optical wavefront information of the test optical system 8 passes through the TS lens 6 and the imaging lens 19 in the interferometer unit 13. As a result, it reaches the image sensor 14 such as a CCD camera.

この光を被検光と呼ぶことにする。   This light is called test light.

また、TSレンズ6の最終面、いわゆるフィゾー面からの戻り光は、引き回し光学系50,干渉計ユニット13内の結像レンズ19などを通り、撮像素子14へと到達する。   Further, the return light from the final surface of the TS lens 6, the so-called Fizeau surface, passes through the drawing optical system 50, the imaging lens 19 in the interferometer unit 13, and the like and reaches the image sensor 14.

この光を参照光と呼ぶことにする。   This light will be referred to as reference light.

これら2つの光(被検光,参照光)を干渉計ユニット13内で干渉させて干渉縞を形成し、撮像素子14で撮像する。   These two lights (test light and reference light) are caused to interfere in the interferometer unit 13 to form interference fringes, and an image is picked up by the image sensor 14.

被検光学系8の波面収差計算においては従来例と同様に計算され、ホストコンピュータ22により、撮像された干渉縞から被検光学系8の波面収差が算出される。   The wavefront aberration of the test optical system 8 is calculated in the same manner as in the conventional example, and the wavefront aberration of the test optical system 8 is calculated from the captured interference fringe by the host computer 22.

このように、被検光学系8の波面収差をシングルパスで測定することにより、被検光学系8の回折を含む往路光と復路光との位相ずれの影響を考慮せずに、高精度な波面収差測定が可能となる。   In this way, by measuring the wavefront aberration of the test optical system 8 with a single path, high accuracy can be achieved without considering the influence of the phase shift between the forward light and the return light including diffraction of the test optical system 8. Wavefront aberration measurement is possible.

(第2実施例)
図4に本発明の第2の実施例を示す。
(Second embodiment)
FIG. 4 shows a second embodiment of the present invention.

同図は第1の実施例において固定配置されている光波整形板1に駆動機能を持たせたものであり、その他は第1の実施例と同様である。必要に応じて光波整形板1を光路中に挿入し、被検光学系8の波面収差測定を行う。波面収差測定の方法は、第1の実施例の場合と同様である。   This figure shows the optical wave shaping plate 1 fixedly arranged in the first embodiment with a drive function, and the other parts are the same as in the first embodiment. If necessary, the light wave shaping plate 1 is inserted into the optical path and the wavefront aberration of the optical system 8 to be measured is measured. The method for measuring the wavefront aberration is the same as in the first embodiment.

(第3実施例)
図5に本発明の第3の実施例を示す。
(Third embodiment)
FIG. 5 shows a third embodiment of the present invention.

同図は第1の実施例で用いるフィゾー型干渉計以外の干渉計を用いた波面収差測定装置を示しており、同図にはその代表例として、トワイマン・グリーン干渉計を用いた場合を示しているが、従来の波面収差測定装置の場合と同様に上記干渉計はトワイマン・グリーン干渉計に限るものではなく、他の干渉計を用いてもよい。   This figure shows a wavefront aberration measuring apparatus using an interferometer other than the Fizeau interferometer used in the first embodiment, and the figure shows a case where a Twiman-Green interferometer is used as a representative example. However, as in the case of the conventional wavefront aberration measuring apparatus, the interferometer is not limited to the Twiman-Green interferometer, and other interferometers may be used.

本実施例では、光源(レーザ)2から引き回し光学系50まで引き回されてきた光をハーフミラー55で反射光,透過光に分け、反射光はコリメータレンズ56を通って被検光学系8へ入射し、第1の実施例と同様の方法で被検光を得る。光波整形板1は固定配置してある。また、ハーフミラー55の透過光が参照面54へと到達し、反射されて戻ってきた光を参照光とする。   In this embodiment, the light led from the light source (laser) 2 and led to the optical system 50 is divided into reflected light and transmitted light by the half mirror 55, and the reflected light passes through the collimator lens 56 to the test optical system 8. Incident light is obtained by the same method as in the first embodiment. The light wave shaping plate 1 is fixedly arranged. Further, the light transmitted through the half mirror 55 reaches the reference surface 54 and is reflected and returned is referred to as reference light.

これら2つの光(被検光,参照光)を用いて、従来例と同様にして被検光学系8の波面収差を計算する。   Using these two lights (test light and reference light), the wavefront aberration of the test optical system 8 is calculated in the same manner as in the conventional example.

(第4実施例)
図6に本発明の第4の実施例を示す。
(Fourth embodiment)
FIG. 6 shows a fourth embodiment of the present invention.

同図は第3の実施例において固定配置されている光波整形板1に駆動機能を持たせたものであり、その他は第3の実施例と同様である。必要に応じて光波整形板1を光路中に挿入し、被検光学系8の波面収差測定を行う。波面収差測定の方法は、第3の実施例の場合と同様である。   This figure shows the light wave shaping plate 1 fixedly arranged in the third embodiment having a drive function, and the other parts are the same as in the third embodiment. If necessary, the light wave shaping plate 1 is inserted into the optical path and the wavefront aberration of the optical system 8 to be measured is measured. The method for measuring the wavefront aberration is the same as in the third embodiment.

本発明の第1実施例。1 is a first embodiment of the present invention. 本発明の第1実施例で使用したピンホール部分の詳細説明図。Detailed explanatory drawing of the pinhole part used in 1st Example of this invention. 本発明の第1実施例で使用した光波整形板を通る光の説明図。Explanatory drawing of the light which passes the light wave shaping board used in 1st Example of this invention. 本発明の第2実施例。2 shows a second embodiment of the present invention. 本発明の第3実施例。3rd Example of this invention. 本発明の第4実施例。4th Example of this invention. 従来例の説明図。Explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 光波整形板
2 レーザ(光源)
3 引き回し光学系
4 集光レンズ
5 XYZステージ
6 TSレンズ
7 Wafer面
8 被検光学系
10 RSミラー
11 搭載台
12 本体
13 干渉計ユニット
14 撮像素子
15 PZT
16 ハーフミラー
17 ミラー
18 空間フィルタ
19 結像レンズ
20 コリメータレンズ
21 ステージコントローラ
22 ホストコンピュータ
50 引き回し光学系
51 空間フィルタ
52 Reticle面
53 トワイマン・グリーンユニット
54 参照面
55 ハーフミラー
56コリメータレンズ
1 Light wave shaping plate 2 Laser (light source)
3 Leading optical system 4 Condensing lens 5 XYZ stage 6 TS lens 7 Wafer surface 8 Optical system to be tested 10 RS mirror 11 Mount 12 Body 13 Interferometer unit 14 Image sensor 15 PZT
16 Half mirror 17 Mirror 18 Spatial filter 19 Imaging lens 20 Collimator lens 21 Stage controller 22 Host computer 50 Route optical system 51 Spatial filter 52 Reticle surface 53 Twiman Green unit 54 Reference surface 55 Half mirror 56 Collimator lens

Claims (6)

光源からの光を被検光学系に入射させるためのTSレンズと、光波面情報を十分通過させる大きさを持つ開口部(窓)と共にその近傍に光を理想的な球面波に変換する適切なサイズのピンホールを有する光波整形板と、ピンホールから反光源側に球面ミラーを有することを特徴とする波面収差測定装置。   Appropriate to convert light into an ideal spherical wave in the vicinity with a TS lens for allowing light from the light source to enter the optical system to be tested, and an opening (window) having a size that allows light wavefront information to sufficiently pass therethrough A wavefront aberration measuring apparatus comprising: a light wave shaping plate having a size pinhole; and a spherical mirror on the side opposite to the light source from the pinhole. 光源からの光を被検光学系に入射させるためのTSレンズと、光波面情報を十分通過させる大きさを持つ開口部(窓)と共にその近傍に、被検光学系に入射し一旦出射した光がピンホールから反光源側に配置された球面ミラーで反射された後、反射後の光を理想的な球面波に変換する適切なサイズのピンホールを有する光波整形板と、波面収差を測定する被検光学系を通過する往路光は前記光波整形板の開口部(窓)を通過させて球面ミラーで反射後、反射光は前記光波整形板のピンホールを通過させて被検光学系をシングルパスで通過させた光と、TSレンズの最終面からの光の両者を干渉させることで被検光学系の波面収差を計測する請求項1に記載の波面収差測定装置。   Light that is incident on the test optical system and exits in the vicinity of the TS lens that allows the light from the light source to enter the test optical system and an opening (window) that is large enough to pass light wavefront information. Is reflected by a spherical mirror located on the side opposite to the light source from the pinhole, and then a light wave shaping plate having a pinhole of an appropriate size for converting the reflected light into an ideal spherical wave, and measuring wavefront aberration The forward light passing through the test optical system passes through the opening (window) of the light wave shaping plate and is reflected by the spherical mirror, and then the reflected light passes through the pinhole of the light wave shaping plate and passes through the single optical test system. 2. The wavefront aberration measuring apparatus according to claim 1, wherein the wavefront aberration of the optical system to be measured is measured by causing interference between the light passed through the path and the light from the final surface of the TS lens. 光源からの光を被検光学系に入射させるためのコリメータレンズと、コリメータレンズより光源側に配置されたハーフミラーと、光波面情報を十分通過させる大きさを持つ開口部(窓)と共にその近傍に光を理想的な球面波に変換する適切なサイズのピンホールを有する光波整形板と、ピンホールから反光源側に球面ミラーを有することを特徴とする波面収差測定装置。   A collimator lens for allowing light from the light source to enter the test optical system, a half mirror disposed on the light source side of the collimator lens, and an opening (window) having a size that allows light wavefront information to sufficiently pass therearound A wavefront aberration measuring apparatus comprising: a light wave shaping plate having a pinhole of an appropriate size for converting light into an ideal spherical wave; and a spherical mirror on the side opposite to the light source from the pinhole. 前記コリメータレンズより光源側に配置されたハーフミラーでの反射光は、コリメータレンズで平行光とされて被検光学系へ入射し、光波面情報を十分通過させる大きさを持つ開口部(窓)と共にその近傍に理想的な球面波に変換する適切なサイズのピンホールを有する光波整形板と、波面収差を測定する被検光学系を通過する往路光は前記光波整形板の開口部(窓)を通過させ、被検光学系を一旦出射した光はピンホールから反光源側に配置された球面ミラーで反射され、その反射光を前記光波整形板のピンホールを通過させて被検光学系をシングルパスで通過させた光と、ハーフミラーを透過した光が参照面へ到達し、参照面で反射して戻ってきた光の両者を干渉させることで被検光学系の波面収差を計測する請求項3に記載の波面収差測定装置。   The reflected light from the half mirror disposed on the light source side of the collimator lens is converted into parallel light by the collimator lens and enters the optical system to be measured, and has an opening (window) having a size that allows light wavefront information to pass sufficiently. In addition, an optical wave shaping plate having an appropriately sized pinhole for converting it into an ideal spherical wave in the vicinity thereof, and forward light passing through a test optical system for measuring wavefront aberration is an opening (window) of the optical wave shaping plate The light once emitted from the test optical system is reflected by the spherical mirror arranged on the side opposite to the light source from the pinhole, and the reflected light passes through the pinhole of the light wave shaping plate to pass the test optical system. The wavefront aberration of the optical system to be measured is measured by causing both the light that has passed through the single path and the light that has passed through the half mirror to reach the reference surface to interfere with the light that has been reflected and returned from the reference surface. Item 3. Wavefront aberration according to item 3 Constant apparatus. 前記光波整形板が固定配置されていることを特徴とする請求項1または2または3または4に記載の波面収差測定装置。   The wavefront aberration measuring device according to claim 1, wherein the light wave shaping plate is fixedly arranged. 前記光波整形板は駆動機構により、光路中に挿入、取り出し可能なことを特徴とする請求項1または2または3または4に記載の波面収差測定装置。
5. The wavefront aberration measuring apparatus according to claim 1, wherein the light wave shaping plate can be inserted into and removed from the optical path by a driving mechanism.
JP2003408793A 2003-12-08 2003-12-08 Wave aberration measuring instrument of high precision Withdrawn JP2005172452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003408793A JP2005172452A (en) 2003-12-08 2003-12-08 Wave aberration measuring instrument of high precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003408793A JP2005172452A (en) 2003-12-08 2003-12-08 Wave aberration measuring instrument of high precision

Publications (1)

Publication Number Publication Date
JP2005172452A true JP2005172452A (en) 2005-06-30

Family

ID=34730374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003408793A Withdrawn JP2005172452A (en) 2003-12-08 2003-12-08 Wave aberration measuring instrument of high precision

Country Status (1)

Country Link
JP (1) JP2005172452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267629A (en) * 2013-06-25 2013-08-28 中国科学院上海光学精密机械研究所 Point-diffraction interference wave aberration measuring instrument
CN104280138A (en) * 2014-09-15 2015-01-14 北京理工大学 Wave surface phase measuring method based on four-beam interference
CN104280137A (en) * 2014-09-15 2015-01-14 北京理工大学 Hybrid wave-front sensing device based on four-light-beam interference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267629A (en) * 2013-06-25 2013-08-28 中国科学院上海光学精密机械研究所 Point-diffraction interference wave aberration measuring instrument
CN104280138A (en) * 2014-09-15 2015-01-14 北京理工大学 Wave surface phase measuring method based on four-beam interference
CN104280137A (en) * 2014-09-15 2015-01-14 北京理工大学 Hybrid wave-front sensing device based on four-light-beam interference

Similar Documents

Publication Publication Date Title
WO2013084557A1 (en) Shape-measuring device
US20050178944A1 (en) Method for optically detecting deviations of an image plane of an imaging system from the surface of a substrate
JP2000097666A (en) Interferometer for measuring shape of surface, wavefront aberration measuring machine, manufacture of projection optical system using this interferometer and machine, and method for calibrating this interferometer
CN101114134A (en) Alignment method and micro-device manufacturing method used for shadow cast scan photo-etching machine
KR20150011313A (en) Interferometer, lithography apparatus, and method of manufacturing article
JP2009162539A (en) Light wave interferometer apparatus
JP3728187B2 (en) Imaging optical system performance measuring method and apparatus
JP2008215833A (en) Apparatus and method for measuring optical characteristics
JP4544103B2 (en) Interface position measuring method and position measuring apparatus
JP4667965B2 (en) Light beam measuring device
JP4721685B2 (en) Shape measuring method and shape measuring apparatus
JP2008135745A (en) Wave front aberration measuring device and projection aligner
JP4223349B2 (en) Vibration-resistant interferometer device
JP2005172452A (en) Wave aberration measuring instrument of high precision
JP2019179237A (en) Method for determining focus position of lithography mask and metrology system for implementing such method
JPH10160582A (en) Interferometer for measuring transmitted wave front
JP4810693B2 (en) Lightwave interference measurement device
JP2007057297A (en) Optical characteristic measuring device, optical characteristic measuring method, exposure device and exposure method
JP2009244227A (en) Light wave interference measuring method
JP2009210359A (en) Evaluation method, evaluation apparatus, and exposure device
JP2011038967A (en) Positioning device, and optical adapter mountable thereon and dismountable therefrom
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
JP4635371B2 (en) Wavefront conversion optical system, surface shape measuring apparatus, and surface shape measuring method
JP2000088546A (en) Apparatus and method of measuring shape
CN111324006B (en) Detection device and apparatus for detecting structure on region part of photoetching mask

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306