JP2005171339A - High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant - Google Patents

High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant Download PDF

Info

Publication number
JP2005171339A
JP2005171339A JP2003414417A JP2003414417A JP2005171339A JP 2005171339 A JP2005171339 A JP 2005171339A JP 2003414417 A JP2003414417 A JP 2003414417A JP 2003414417 A JP2003414417 A JP 2003414417A JP 2005171339 A JP2005171339 A JP 2005171339A
Authority
JP
Japan
Prior art keywords
steam turbine
less
blade
toughness
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414417A
Other languages
Japanese (ja)
Inventor
Masahiko Arai
将彦 新井
Kenichiro Nomura
健一郎 野村
Hiroyuki Doi
裕之 土井
Keiji Kawanaka
啓嗣 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003414417A priority Critical patent/JP2005171339A/en
Publication of JP2005171339A publication Critical patent/JP2005171339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide martenstic steel which is high in all of room temperature strength, toughness and corrosion resistance and consequently can realize the longer blade of a final stage moving blade of a low pressure steam turbine. <P>SOLUTION: The martensite steel contains, by weight, 0.15 to 0.30% C, 0 to 0.50% Si, ≤0.60% Mn, 1.0 to 4.0% Ni, 8 to 15% Cr, over 2 to ≤3% Mo, 0.02 to 0.3% V, over 0.5% to ≤5.0% Cu, 0.02 to 0.1% N, 0.02 to 0.3% in total at least either of Nb and Ta, 0 to 2% W, 0 to 5% Co, 0 to 1.5% Re, 0 to 0.5% in total at least one of Ti, Zr and Hf and the balance composed of Fe and inevitable impurities and has tensile strength ≥1,200 N/mm<SP>2</SP>at room temperature, impact energy ≥20 J, and fracture stress ratio ≥70% of SSRT test. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は12Cr系マルテンサイト鋼に係り、また、12Cr系マルテンサイト鋼により形成された蒸気タービン翼と蒸気タービン発電プラントに関する。本発明のマルテンサイト鋼は、低圧蒸気タービンの最終段動翼に使用するのに好適である。特に起動と停止が頻繁に繰り返される低圧蒸気タービンの最終段動翼材料に適する。   The present invention relates to 12Cr martensitic steel, and also relates to a steam turbine blade and a steam turbine power plant formed of 12Cr martensitic steel. The martensitic steel of the present invention is suitable for use in the last stage rotor blade of a low pressure steam turbine. It is particularly suitable for the last stage blade material of a low-pressure steam turbine that is frequently started and stopped.

蒸気タービンは、近年、省エネルギーの観点から熱効率の向上が望まれ、また省スペースの観点から機器のコンパクト化が望まれている。これらに伴い、低圧蒸気タービンの最終段動翼の翼長は年々増大する傾向にある。低圧蒸気タービンの最終段動翼の長翼化を図るには、高強度で高靭性を有する材料の開発が必要となる。このような背景から、低圧蒸気タービンの最終段動翼材料として従来、用いられている12Cr−Mo−Ni−V−N鋼を改良して強度を高めた材料が開発された(例えば特許文献1参照)。   In recent years, steam turbines are desired to improve thermal efficiency from the viewpoint of energy saving, and from the viewpoint of space saving, downsizing of equipment is desired. Accordingly, the blade length of the last stage rotor blade of the low-pressure steam turbine tends to increase year by year. In order to increase the length of the last stage rotor blade of a low-pressure steam turbine, it is necessary to develop a material having high strength and high toughness. Against this background, a material with improved strength has been developed by improving 12Cr—Mo—Ni—V—N steel, which has been conventionally used as a final stage blade material for low-pressure steam turbines (for example, Patent Document 1). reference).

低圧蒸気タービンは腐食環境に晒されるので、耐食性、特に耐応力腐食割れ(耐SCC;Stress Corrosion Cracking)特性に優れていることが要求される。近年、低圧蒸気タービンの中には、起動と停止が年に数回程度繰り返されるものが出現するようになっており、このようなものでは特に応力腐食割れが起こりやすいことから、強度と靭性に加えて耐食性を改善することの意義は大きい。   Since the low-pressure steam turbine is exposed to a corrosive environment, it is required to have excellent corrosion resistance, particularly, stress corrosion cracking (SCC) resistance. In recent years, some low-pressure steam turbines have been started and stopped several times a year, and since such components are particularly prone to stress corrosion cracking, strength and toughness are reduced. In addition, the significance of improving the corrosion resistance is great.

特開2001−20704号公報(要約、特許請求の範囲)JP 2001-20704 A (Abstract, Claims)

本発明は、低圧蒸気タービンの最終段動翼の長翼化に対応でき、しかも起動と停止が頻繁に繰り返される低圧蒸気タービンの最終段動翼に適用できるように、強度と靭性および耐食性をいずれも高度に備えたマルテンサイト鋼を提供することを目的とする。   The present invention can provide strength, toughness, and corrosion resistance so that it can be applied to the last stage rotor blade of a low pressure steam turbine that can cope with the increase in the length of the last stage rotor blade of the low pressure steam turbine and is frequently started and stopped. The purpose is also to provide a highly equipped martensitic steel.

本発明は、重量で、0.15〜0.30%のC、0〜0.50%のSi、0.60%以下のMn、1.0〜4.0%のNi、8〜15%のCr、2%を超え3%以下のMo、0.02〜0.3%のV、0.5%を超え5.0%以下のCu、0.02〜0.1%のN、合計量で0.02〜0.3%のNb及びTaの少なくとも一種を含み、残部がFeおよび不可避不純物よりなるマルテンサイト鋼にある。   The present invention is 0.15 to 0.30% C, 0 to 0.50% Si, 0.60% or less Mn, 1.0 to 4.0% Ni, 8 to 15% Cr, more than 2% and 3% or less Mo by weight. 0.02 to 0.3% V, more than 0.5% to 5.0% Cu, 0.02 to 0.1% N, 0.02 to 0.3% of Nb and Ta in total amount, the balance being Fe and inevitable impurities In martensitic steel.

本発明のマルテンサイト鋼には、さらにW,CoおよびReから選ばれた少なくとも一種を、Wは2%以下、Coは5%以下、Reは1.5%以下の範囲で含有させることができる。また、TiとZrおよびHfの少なくとも一種を合計量で0.5%以下の範囲で含有させることができる。   The martensitic steel of the present invention may further contain at least one selected from W, Co, and Re in a range of W of 2% or less, Co of 5% or less, and Re of 1.5% or less. Further, at least one of Ti, Zr and Hf can be contained in a total amount of 0.5% or less.

本発明のマルテンサイト鋼において、不可避不純物とは、マルテンサイト鋼を溶解、製造する過程で、原料等から混入する不純物を意味し、これらの不純物はできるだけ少ないことが望ましい。主な不純物はP,S,Al,Sb,SnおよびAsなどであり、これらのうちPは0.03%以下、Sは0.02%以下、Alは0.05%以下、Sbは0.0015%以下、Snは0.01%以下およびAsは0.02%以下に抑えることが望ましい。   In the martensitic steel of the present invention, the inevitable impurities mean impurities mixed from raw materials in the process of melting and manufacturing the martensitic steel, and these impurities are desirably as small as possible. The main impurities are P, S, Al, Sb, Sn and As. Among these, P is 0.03% or less, S is 0.02% or less, Al is 0.05% or less, Sb is 0.0015% or less, Sn is 0.01%. The following and As are preferably suppressed to 0.02% or less.

本発明によれば、前記マルテンサイト鋼により形成された蒸気タービン翼、特に低圧蒸気タービン最終段動翼が提供される。また、本発明によれば、前記マルテンサイト鋼により形成された低圧蒸気タービン最終段動翼を備えた蒸気タービン発電プラントが提供される。   According to the present invention, there is provided a steam turbine blade made of the martensitic steel, particularly a low pressure steam turbine final stage moving blade. Moreover, according to this invention, the steam turbine power plant provided with the low pressure steam turbine final stage moving blade formed of the said martensitic steel is provided.

本発明によれば、3000rpmに対し翼部長さが1092mm(45インチ)以上の低圧蒸気タービン最終段動翼が実現可能である。また3600rpmに対し翼部長さが889mm(35インチ)以上の低圧蒸気タービン最終段動翼が実現可能である。   According to the present invention, it is possible to realize a low-pressure steam turbine final stage moving blade having a blade length of 1092 mm (45 inches) or more with respect to 3000 rpm. In addition, a low-pressure steam turbine final stage moving blade with a blade length of 889 mm (35 inches) or more with respect to 3600 rpm can be realized.

低圧蒸気タービンの動翼は、高速回転による高い遠心力と振動応力に耐えるため、引張強さが高いと同時に高サイクル疲労強度が高くなければならない。動翼材料の金属組織に有害なδフェライトが存在すると疲労強度が著しく低下するので、動翼材料は全焼戻しマルテンサイト組織にすることが望ましい。本発明のマルテンサイト鋼において、次式で示されるCr当量が10以下になるように成分調整されると、δフェライト相を実質的に含まないようにすることができる。   The blades of a low-pressure steam turbine must have high tensile strength and high cycle fatigue strength to withstand high centrifugal force and vibration stress due to high-speed rotation. When δ ferrite harmful to the metal structure of the blade material is present, the fatigue strength is remarkably lowered. Therefore, it is desirable that the blade material has a fully tempered martensite structure. In the martensitic steel of the present invention, when the components are adjusted so that the Cr equivalent represented by the following formula is 10 or less, the δ ferrite phase can be substantially not included.

Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-2Mn-4Ni-2Co+2.5Ta
本発明のマルテンサイト鋼は、均質で高強度とするために、調質熱処理として、溶解、鍛造後に1000〜1100℃好ましくは1000〜1075℃の温度で、0.5〜3時間程度加熱保持後に室温まで急冷する焼入れ処理を施すことが望ましい。急冷手段としては油焼入れが好ましい。さらに残留オーステナイトをより完全に分解しマルテンサイトへの変態を促進するために、焼入れ後にさらに氷冷、ドライアイスまたは液体窒素温度まで冷却する深冷処理を施すことが好ましい。ついで、540〜620℃の温度で焼戻し処理を施すことが望ましい。焼戻し処理としては、540〜570℃の温度で1〜6時間程度加熱保持後に室温まで冷却する一次焼戻しと、560〜590℃の温度で1〜6時間程度加熱保持後に室温まで冷却する二次焼戻しを行うことが望ましく、これらの処理を二回以上繰り返して行うことがより望ましい。二次焼戻し温度は一次焼戻し温度にくらべて高くすることが好ましく、10〜30℃、特に15〜20℃程度高くすることが望ましい。
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-2Mn-4Ni-2Co + 2.5Ta
In order to make the martensitic steel of the present invention homogeneous and high strength, as a tempering heat treatment, after melting and forging, the temperature is 1000 to 1100 ° C, preferably 1000 to 1075 ° C, and after heating and holding for about 0.5 to 3 hours to room temperature It is desirable to perform a quenching process for rapid cooling. As the quenching means, oil quenching is preferable. Furthermore, in order to decompose the retained austenite more completely and promote the transformation to martensite, it is preferable to perform a deep cooling treatment that further cools to ice cooling, dry ice or liquid nitrogen temperature after quenching. Next, it is desirable to perform a tempering treatment at a temperature of 540 to 620 ° C. As tempering treatment, primary tempering which is cooled to room temperature after heating and holding at a temperature of 540 to 570 ° C. for about 1 to 6 hours, and secondary tempering which is cooled to room temperature after being heated for about 1 to 6 hours at a temperature of 560 to 590 ° C. It is desirable to perform these processes, and it is more desirable to repeat these processes twice or more. The secondary tempering temperature is preferably higher than the primary tempering temperature, and is preferably about 10 to 30 ° C, particularly about 15 to 20 ° C.

次に、本発明に係るマルテンサイト鋼の組成範囲限定理由について説明する。なお、以下の説明において、単に%と記載したのは重量%を意味する。   Next, the reason for limiting the composition range of the martensitic steel according to the present invention will be described. In the following description, “%” simply means “% by weight”.

Cは高い引張強さを得るために0.15%以上必要であるが、あまり多く含有すると、靭性が低下するとともにSCC感受性を増大させ耐食性が低下するので0.30%以下にする。特に、0.18〜0.28%が好ましく、0.20〜0.26%がより好ましい。   C needs to be 0.15% or more in order to obtain high tensile strength, but if it is contained too much, the toughness is lowered and the SCC sensitivity is increased and the corrosion resistance is lowered, so the content is made 0.30% or less. In particular, 0.18 to 0.28% is preferable, and 0.20 to 0.26% is more preferable.

Siは鋼の溶解の際に脱酸剤として添加するものであるが、δフェライト生成元素であり、多量の添加は、疲労強度及び靭性を低下させる有害なδフェライト生成の原因になるので、0.50%以下にする。特に0.25%以下が好ましく、0.10%以下がより好ましい。なお、カーボン真空脱酸法及びエレクトロスラグ再溶解法などにより鋼を溶解製造する場合には、Si添加は必要なく、無添加にすることもできる。   Si is added as a deoxidizer during melting of steel, but is a δ ferrite forming element, and a large amount of addition causes harmful δ ferrite generation that reduces fatigue strength and toughness. % Or less. In particular, it is preferably 0.25% or less, and more preferably 0.10% or less. In addition, when steel is melted and manufactured by a carbon vacuum deoxidation method, an electroslag remelting method, etc., Si addition is not necessary, and it can be made non-added.

Mnは脱硫剤および脱酸剤として鋼の溶解時に添加するものである。少量のMnの添加は靭性を向上させるが、多量の添加はかえって靭性を低下させるので、0.60%以下とする。特に0.50%以下が好ましく、0.40%以下さらには0.20%以下がより好ましい。   Mn is added as a desulfurizing agent and a deoxidizing agent when the steel is melted. The addition of a small amount of Mn improves the toughness, but the addition of a large amount reduces the toughness, so it is made 0.60% or less. In particular, it is preferably 0.50% or less, more preferably 0.40% or less, and even more preferably 0.20% or less.

Crは耐食性と引張強さを高めるが、多量に添加するとδフェライト組織生成の原因になり、靭性が低下する。高い耐食性と引張強さを得るためには8%以上含有させることが必要であり、靭性の低下を抑えるために上限量は15%以下とする。特に強度の点から10〜14%が好ましく、11〜12.5%がより好ましい。   Cr increases corrosion resistance and tensile strength, but if added in a large amount, it causes the formation of δ ferrite structure and lowers toughness. In order to obtain high corrosion resistance and tensile strength, it is necessary to contain 8% or more, and the upper limit is 15% or less in order to suppress a decrease in toughness. In particular, 10 to 14% is preferable from the viewpoint of strength, and 11 to 12.5% is more preferable.

Moは固溶強化作用と、炭化物および窒化物の析出強化作用とによって引張強さを高める効果がある。しかし、2%以下では引張強さ向上の効果が不十分であり、3%を超えるとδフェライト生成原因になるので、2%を超え3%以下とする。特に2.1〜2.9%が好ましく、2.2〜2.8%がより好ましい。なお、W及びCoも、Moと同じ様な効果がある。これらも多量に添加すると、靭性低下をもたらすので、Wは2%以下、Coは5%以下の範囲で含有させることが望ましい。   Mo has an effect of increasing tensile strength by a solid solution strengthening action and a precipitation strengthening action of carbides and nitrides. However, if it is 2% or less, the effect of improving the tensile strength is insufficient, and if it exceeds 3%, δ ferrite is produced, so it exceeds 2% and is 3% or less. In particular, 2.1 to 2.9% is preferable, and 2.2 to 2.8% is more preferable. W and Co have the same effect as Mo. If these are also added in a large amount, the toughness is lowered, so it is desirable to contain W in a range of 2% or less and Co in a range of 5% or less.

Vは炭化物を析出し引張強さを高めると同時に靭性を向上させる効果がある。V0.02%未満ではその効果が不充分であり、0.30%を超えるとδフェライト生成の原因になることから、0.02〜0.3%の範囲とする。特に0.10〜0.28%の範囲が好ましく、0.18〜0.25%の範囲がより好ましい。   V has the effect of precipitating carbides and increasing the tensile strength and at the same time improving the toughness. If V is less than 0.02%, the effect is insufficient, and if it exceeds 0.30%, δ ferrite is generated, so the range is 0.02 to 0.3%. The range of 0.10 to 0.28% is particularly preferable, and the range of 0.18 to 0.25% is more preferable.

NbおよびTaは、MC炭化物を形成して引張強さを高める効果と靭性を高める効果がある。しかし、NbおよびTaの一種または二種の合計量が0.02%未満ではその効果が不十分であり、0.2%を超えるとδフェライト生成が促進されるので、0.02〜0.2%の範囲とする。0.08〜0.18%の範囲が好ましく、0.10〜0.16%の範囲がより好ましい。   Nb and Ta have the effect of forming MC carbides to increase the tensile strength and the toughness. However, if the total amount of one or two of Nb and Ta is less than 0.02%, the effect is insufficient, and if it exceeds 0.2%, δ ferrite formation is promoted, so the range is 0.02 to 0.2%. The range of 0.08 to 0.18% is preferable, and the range of 0.10 to 0.16% is more preferable.

Cuは耐食性を改善するのに効果がある。しかし、0.5%以下では、その効果が不十分であり、3%を超えると靭性、加工性が低下するため、0.5%を超え3%以下とする。特に0.6〜2.8%の範囲が好ましく、0.8〜2.5%の範囲がより好ましい。   Cu is effective in improving the corrosion resistance. However, if it is 0.5% or less, the effect is insufficient. If it exceeds 3%, the toughness and workability deteriorate, so it exceeds 0.5% and is 3% or less. In particular, the range of 0.6 to 2.8% is preferable, and the range of 0.8 to 2.5% is more preferable.

Niは低温靭性を高めると共に、δフェライト生成を防止する効果がある。その効果は1%以上の含有で発揮され、4%の含有で飽和に達する。したがって、Ni量は1〜4%とする。特に1.5〜3.5%が好ましく、2.0〜3.0%がより好ましい。   Ni increases the low temperature toughness and has the effect of preventing the formation of δ ferrite. The effect is exhibited when the content is 1% or more, and reaches saturation when the content is 4%. Therefore, the Ni content is 1 to 4%. In particular, 1.5 to 3.5% is preferable, and 2.0 to 3.0% is more preferable.

Nは引張強さの向上及びδフェライトの生成防止に効果がある。しかし、0.02%未満ではその効果が十分でなく、0.1%を超えると靭性が低下する。0.03〜0.09%の範囲が好ましく、0.04〜0.8%の範囲がより好ましい。   N is effective in improving the tensile strength and preventing the formation of δ ferrite. However, if it is less than 0.02%, the effect is not sufficient, and if it exceeds 0.1%, the toughness decreases. The range of 0.03-0.09% is preferable, and the range of 0.04-0.8% is more preferable.

Reは固溶強化作用により、引張強さと靭性および耐食性を向上させる。しかし、3%を超えて含有するとかえって靭性が低下する。Reは非常に高価な元素であるので、実用的な範囲から1.5%を上限として含むことが好ましい。   Re improves the tensile strength, toughness, and corrosion resistance by a solid solution strengthening action. However, if it exceeds 3%, the toughness is rather lowered. Since Re is a very expensive element, it is preferable to include 1.5% as an upper limit from a practical range.

本発明のマルテンサイト鋼において、P及びSの低減は、引張強さを損なわず、低温靭性を高める効果があり、極力低減することが望ましい。低温靭性向上の点からP0.03%以下、S0.02%以下にすることが好ましい。特にP0.02%以下、S0.015%以下にすることが好ましく、P0.015%以下、S0.010%以下がより好ましい。   In the martensitic steel of the present invention, the reduction of P and S has the effect of increasing the low temperature toughness without impairing the tensile strength, and it is desirable to reduce it as much as possible. From the viewpoint of improving low-temperature toughness, it is preferable to make P 0.03% or less and S0.02% or less. In particular, P0.02% or less and S0.015% or less are preferable, and P0.015% or less and S0.010% or less are more preferable.

Sb、Sn及びAsの低減も、低温靭性を高める効果があり、極力低減することが望ましい。現在の製鋼技術レベルの点から、Sbは0.0015%以下、Snは0.01%以下及びAsは0.02%以下に限定する。Sb0.001%以下、Sn0.005%以下及びAs0.01%以下が特に好ましい。   Reduction of Sb, Sn and As also has the effect of increasing low temperature toughness, and it is desirable to reduce it as much as possible. From the viewpoint of the present steelmaking technology level, Sb is limited to 0.0015% or less, Sn is limited to 0.01% or less, and As is limited to 0.02% or less. Sb 0.001% or less, Sn 0.005% or less, and As 0.01% or less are particularly preferable.

Alは脱酸剤、脱窒剤として効果があるが、多量の添加は靭性を低下させるため、0.05%以下に抑えることが望ましい。カーボン真空脱酸法及びエレクトロスラグ再溶解法などの溶解方法によって鋼を製造する場合は、Alを添加しなくてもよく、無添加とすることができる。   Al is effective as a deoxidizing agent and denitrifying agent, but adding a large amount reduces toughness, so it is desirable to suppress it to 0.05% or less. When steel is produced by a melting method such as a carbon vacuum deoxidation method or an electroslag remelting method, Al need not be added, and no addition can be made.

本発明のマルテンサイト鋼には、Ti、Zr、Hf等のMC炭化物形成元素の少なくとも一種を合計で0.5%以下含有させることができる。これらの元素の添加により、引張強さを高めることができる。   The martensitic steel of the present invention can contain a total of 0.5% or less of at least one MC carbide forming element such as Ti, Zr, and Hf. By adding these elements, the tensile strength can be increased.

以上のことを考慮すると、本発明のマルテンサイト鋼の好ましい組成範囲は、重量で、0.18〜0.28%のC、0〜0.25%のSi、0.50%以下のMn、1.5〜3.5%のNi、10〜14%のCr、2.1〜2.9%のMo、0.1〜0.28%のV、0.6〜2.8%のCu、0.03〜0.09%のN、合計量で0.08〜0.18%のNb及びTaの少なくとも一種、0〜2%のW、0〜5%のCo、0〜1.5%のRe、合計量で0〜0.5%のTiとZrおよびHfの少なくとも一種を含み、残部がFeと同伴する不可避不純物である。   Considering the above, the preferred composition range of the martensitic steel of the present invention is 0.18 to 0.28% C, 0 to 0.25% Si, 0.50% or less Mn, 1.5 to 3.5% Ni, 10% by weight. ~ 14% Cr, 2.1-2.9% Mo, 0.1-0.28% V, 0.6-2.8% Cu, 0.03-0.09% N, at least one of 0.08-0.18% Nb and Ta in total amount, 0 It contains ˜2% W, 0 to 5% Co, 0 to 1.5% Re, 0 to 0.5% of Ti, Zr and Hf in total amount, and the balance is inevitable impurities accompanying Fe.

本発明により、引張強さと靱性及び耐食性の三つの特性を高度に具備するマルテンサイト鋼が実現可能となる。本発明のマルテンサイト鋼は低圧蒸気タービンの最終段動翼の長翼化にあたって必要とされる前述の三つの特性を併せ持つものであり、本発明により、低圧蒸気タービン最終段動翼の長翼化を図ることが可能になった。   According to the present invention, it is possible to realize a martensitic steel having a high degree of three properties of tensile strength, toughness, and corrosion resistance. The martensitic steel of the present invention has the above-mentioned three characteristics required for lengthening the last stage rotor blade of the low pressure steam turbine. According to the present invention, the last stage rotor blade of the low pressure steam turbine is lengthened. It became possible to plan.

本発明のマルテンサイト鋼によって形成される低圧蒸気タービン最終段動翼の一例を図3に示す。最終段動翼は、高速蒸気が突き当たる翼プロファイル部1と、ロータシャフトへの翼植え込み部2と、蒸気中の水滴によるエロージョンを防止するためのエロージョンシールド4およびコンティニュアスカバー6を有する。エロージョンシールド4は通常はステライト板を溶接することによって形成される。ロータシャフトへの翼植え込み部2には、翼の遠心力を支えるためのピンが挿入されるピン穴3が形成される。なお、符号5はタイボスである。   An example of the low-pressure steam turbine final stage rotor blade formed of the martensitic steel of the present invention is shown in FIG. The final stage moving blade has a blade profile portion 1 where high speed steam strikes, a blade implantation portion 2 on the rotor shaft, an erosion shield 4 and a continuous cover 6 for preventing erosion due to water droplets in the steam. The erosion shield 4 is usually formed by welding a stellite plate. A pin hole 3 into which a pin for supporting the centrifugal force of the blade is inserted is formed in the blade implantation portion 2 on the rotor shaft. Reference numeral 5 denotes a tie boss.

図4は、低圧蒸気タービン最終段動翼として、翼長さが1168mmの動翼を備えた、回転数3000rpmの蒸気タービンの断面図を示している。本実施例の蒸気タービンは、高圧蒸気タービン10と中圧蒸気タービン20および低圧蒸気タービン30を備えた単軸型ニ車室の蒸気タービンであり、低圧蒸気タービン30の最終段動翼31として、翼長1168mmの動翼が備えられている。   FIG. 4 shows a cross-sectional view of a steam turbine having a rotation speed of 3000 rpm, which has a blade having a blade length of 1168 mm as a low-pressure steam turbine final stage blade. The steam turbine of the present embodiment is a single-shaft dual-chamber steam turbine including a high-pressure steam turbine 10, an intermediate-pressure steam turbine 20, and a low-pressure steam turbine 30, and as a final stage moving blade 31 of the low-pressure steam turbine 30, A moving blade with a blade length of 1168mm is provided.

12Cr系マルテンサイト鋼に含まれる各種成分の含有量を変えて、強度、靭性および耐食性に及ぼす各種成分の影響を調べた。表1は、試験に用いたマルテンサイト鋼の化学組成を重量%で示したものである。表1の成分を除く残部はFeである。開発材No.7〜20は本発明に係るマルテンサイト鋼であり、比較材No.1〜6は、現用の材料および本発明材との比較のために作成したものである。各試料はそれぞれ150kgを真空アーク溶解で製造した後、1150℃の温度に加熱して鍛造を行い、試験用の素材とした。その後、焼入れ処理と焼戻し処理を施した。焼入れ処理は、1050℃の温度で1時間加熱後、油焼入れにより室温まで冷却する方法とした。また、焼戻し処理は、545℃の温度に加熱し2時間保持後に室温まで空冷する一次焼戻し処理と、その後、560℃の温度に加熱し2時間保持後に室温まで空冷する二次焼戻し処理を施した。得られた試料は、いずれも、全焼戻しマルテンサイト組織を有していた。   The effects of various components on strength, toughness, and corrosion resistance were investigated by changing the content of various components contained in 12Cr martensitic steel. Table 1 shows the chemical composition of the martensitic steel used in the test in% by weight. The balance excluding the components in Table 1 is Fe. The developed materials No. 7 to 20 are martensitic steels according to the present invention, and the comparative materials No. 1 to 6 are prepared for comparison with the current materials and the present invention materials. 150 kg of each sample was manufactured by vacuum arc melting and then forged by heating to a temperature of 1150 ° C. as a test material. Thereafter, quenching and tempering were performed. The quenching treatment was performed by heating at a temperature of 1050 ° C. for 1 hour and then cooling to room temperature by oil quenching. In addition, the tempering process was performed by performing a primary tempering process in which the temperature was 545 ° C. and the air was cooled to room temperature after being held for 2 hours, and then a secondary tempering process was performed in which the temperature was 560 ° C. and the air was cooled to room temperature after being held for 2 hours. . All of the obtained samples had a total tempered martensite structure.

表2は、これらの試料の室温(20℃)の機械的性質を示す。なお、表2において、TSは引張強さ、vEは衝撃エネルギー、YSは耐力、Elは伸び、RAは絞りを表す。   Table 2 shows the room temperature (20 ° C) mechanical properties of these samples. In Table 2, TS represents tensile strength, vE represents impact energy, YS represents yield strength, El represents elongation, and RA represents aperture.

低圧蒸気タービン最終段付近の蒸気温度は、高くてもせいぜい100℃であるので、常温において高強度、高靭性および高耐食性を有することが要求される。強度としては、特に引張強さが高いことが求められるが、変形防止の観点から耐力も大きい方がよい。靭性は、衝撃吸収エネルギーによって評価される。耐食性は、低歪み速度試験(SSRT試験)によって評価され、下記の式によって求められる破断応力比が高いものほどSCC感受性が低い。本実施例では、SSRT試験は、90℃、3%NaClの腐食雰囲気と窒素ガス雰囲気で行った。   Since the steam temperature in the vicinity of the final stage of the low-pressure steam turbine is at most 100 ° C., it is required to have high strength, high toughness and high corrosion resistance at room temperature. The strength is required to be particularly high in tensile strength, but it is preferable that the proof stress is large from the viewpoint of preventing deformation. Toughness is evaluated by impact absorption energy. Corrosion resistance is evaluated by a low strain rate test (SSRT test), and the higher the breaking stress ratio obtained by the following formula, the lower the SCC sensitivity. In this example, the SSRT test was performed at 90 ° C. in a 3% NaCl corrosive atmosphere and a nitrogen gas atmosphere.

破断応力比=腐食環境下の破断応力/窒素ガス雰囲気下の破断応力
3000rpmに対し1092mm以上および3600rpmに対し889mm以上の長翼に適用するには、室温の引張強さは1200N/mm2以上、特に1250N/mm2以上であることが望ましい。また、室温の衝撃吸収エネルギーは20J以上、特に22J以上であることが望ましい。また、耐食性としては、破断応力比が70%以上であることが望ましい。本発明の実施例である開発材No.7〜20は、いずれもこれらの諸条件を満足している。
Rupture stress ratio = rupture stress in corrosive environment / rupture stress in nitrogen gas atmosphere
For application to long blades of 1092 mm or more for 3000 rpm and 889 mm or more for 3600 rpm, the tensile strength at room temperature is desirably 1200 N / mm 2 or more, particularly 1250 N / mm 2 or more. Further, the impact absorption energy at room temperature is desirably 20 J or more, particularly 22 J or more. As the corrosion resistance, it is desirable that the breaking stress ratio is 70% or more. Development materials No. 7 to 20 which are examples of the present invention all satisfy these conditions.

Figure 2005171339
Figure 2005171339

Figure 2005171339
Figure 2005171339

図1は、表1に示す各試料について、引張強さとSSRT試験から求めた破断応力比との関係を示す。図1中の黒く塗りつぶされているものが、本発明の実施例である。Cu無添加の比較材No.4は、破断応力比は高いが引張強さが低い。引張強さが1300N/mm2以上のものでは、Cuを添加したものが高い破断応力比を有する。 FIG. 1 shows the relationship between the tensile strength and the breaking stress ratio obtained from the SSRT test for each sample shown in Table 1. An example of the present invention is shown in black in FIG. Comparative material No. 4 containing no Cu has a high fracture stress ratio but a low tensile strength. In the case where the tensile strength is 1300 N / mm 2 or more, the one to which Cu is added has a high breaking stress ratio.

図2は、No.1とNo.7〜9の試料について、Cu添加量と破断応力比との関係を示したものである。本発明に係るNo.7〜9の試料は、高い破断応力比を示しており、Cu添加の効果が顕著である。   FIG. 2 shows the relationship between the Cu addition amount and the breaking stress ratio for the samples No. 1 and Nos. 7-9. Samples No. 7 to 9 according to the present invention show a high breaking stress ratio, and the effect of Cu addition is remarkable.

次に、No.4及び5、No.10及び11の試料について、焼入れ処理と深冷処理および焼戻し処理を施して、室温の機械的性質を比較した。焼入れは、1050℃で1時間加熱後油焼入れにより室温まで冷却する方法とした。深冷処理は、ドライアイス中で冷却した。焼戻しは、545℃に加熱し2時間保持後室温まで空冷する一次焼戻しと、その後、560℃に加熱し2時間保持後室温まで空冷する二次焼戻しとを施した。   Next, the samples No. 4 and 5, and No. 10 and 11 were subjected to quenching treatment, deep cooling treatment, and tempering treatment, and the mechanical properties at room temperature were compared. Quenching was performed by heating at 1050 ° C. for 1 hour and then cooling to room temperature by oil quenching. The deep cooling treatment was cooled in dry ice. For tempering, primary tempering was carried out by heating to 545 ° C. and holding for 2 hours, followed by air cooling to room temperature, followed by secondary tempering by heating to 560 ° C. and holding for 2 hours, followed by air cooling to room temperature.

いずれの試料も全焼戻しマルテンサイト組織を有していた。表3は、これらの試料の室温(20℃)の機械的性質を示したものである。No.5及びNo.11の試料は、室温の強度が若干向上し、室温の衝撃吸収エネルギーが若干低下し、破断応力比が向上した。一方、No.4及びNo.10の試料は、強度、衝撃吸収エネルギー、破断応力比に明確な変化が見られなかった。これらより、高C高Niの鋼において、深冷処理により残留オーステナイト量の低減の効果が現れ、強度と破断応力比の向上効果が確認された。   All samples had a total tempered martensite structure. Table 3 shows the mechanical properties of these samples at room temperature (20 ° C.). In the samples No. 5 and No. 11, the strength at room temperature was slightly improved, the impact absorption energy at room temperature was slightly decreased, and the fracture stress ratio was improved. On the other hand, No. 4 and No. 10 samples did not show clear changes in strength, impact absorption energy, and breaking stress ratio. From these, in the steel of high C and high Ni, the effect of reducing the amount of retained austenite by deep cooling treatment appeared, and the improvement effect of strength and breaking stress ratio was confirmed.

Figure 2005171339
Figure 2005171339

本発明により、低圧蒸気タービンの最終段動翼の長翼化が可能となり、蒸気タービンの熱効率向上および機器のコンパクト化を図ることが可能になった。これによる産業上の効果はきわめて大きい。   According to the present invention, it is possible to increase the blade length of the final stage moving blade of the low-pressure steam turbine, thereby improving the thermal efficiency of the steam turbine and reducing the size of the equipment. This has a huge industrial effect.

引張強さと破断応力比との関係を示す特性図。The characteristic view which shows the relationship between tensile strength and breaking stress ratio. Cu添加量と破断応力比との関係を示す特性図。The characteristic view which shows the relationship between Cu addition amount and a breaking stress ratio. 本発明による低圧蒸気タービン最終段動翼の一実施例を示す正面図。The front view which shows one Example of the low pressure steam turbine last stage moving blade by this invention. 本発明による蒸気タービンの一実施例を示す断面図。1 is a cross-sectional view showing an embodiment of a steam turbine according to the present invention.

符号の説明Explanation of symbols

1…翼プロファイル部、2…翼植え込み部、3…ピン穴、4…エロージョンシールド、5…タイボス、6…コンティニュアスカバー。   DESCRIPTION OF SYMBOLS 1 ... Wing profile part, 2 ... Wing implantation part, 3 ... Pin hole, 4 ... Erosion shield, 5 ... Tie boss, 6 ... Continuous cover.

Claims (16)

重量で、0.15〜0.30%のC、0〜0.50%のSi、0.60%以下のMn、1.0〜4.0%のNi、8〜15%のCr、2%を超え3%以下のMo、0.02〜0.3%のV、0.5%を超え5.0%以下のCu、0.02〜0.1%のN、合計量で0.02〜0.3%のNb及びTaの少なくとも一種、0〜2%のW、0〜5%のCo、0〜1.5%のRe、合計量で0〜0.5%のTiとZrおよびHfの少なくとも一種を含み、残部がFeおよび不可避不純物よりなることを特徴とする高強度高靭性高耐食マルテンサイト鋼。   0.15 to 0.30% C, 0 to 0.50% Si, 0.60% or less Mn, 1.0 to 4.0% Ni, 8 to 15% Cr, more than 2% to 3% Mo, 0.02 to 0.3% by weight % V, 0.5% to 5.0% Cu, 0.02 to 0.1% N, 0.02 to 0.3% of Nb and Ta in total amount, 0 to 2% W, 0 to 5% Co, A high-strength, high-toughness, corrosion-resistant martensitic steel comprising 0 to 1.5% Re and a total amount of 0 to 0.5% of Ti, Zr, and Hf, with the balance being Fe and inevitable impurities. 請求項1において、前記不可避不純物としてP,S,Al,Sb,SnおよびAsの少なくとも一種が含まれ、Pは0〜0.03%、Sは0〜0.02%、Alは0〜0.05%、Sbは0〜0.0015%、Snは0〜0.01%およびAsは0〜0.02%よりなることを特徴とする高強度高靭性高耐食マルテンサイト鋼。   In claim 1, the inevitable impurities include at least one of P, S, Al, Sb, Sn and As, P is 0 to 0.03%, S is 0 to 0.02%, Al is 0 to 0.05%, Sb is A high-strength, high-toughness, corrosion-resistant martensitic steel characterized by comprising 0 to 0.0015%, Sn of 0 to 0.01%, and As of 0 to 0.02%. 請求項1において、下記の式で求められるCr当量が10以下であることを特徴とする高強度高靭性高耐食マルテンサイト鋼。
Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-2Mn-4Ni-2Co+2.5Ta
The high-strength, high-toughness, corrosion-resistant martensitic steel according to claim 1, wherein the Cr equivalent calculated by the following formula is 10 or less.
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-2Mn-4Ni-2Co + 2.5Ta
重量で、0.15〜0.30%のC、0〜0.50%のSi、0.60%以下のMn、1.0〜4.0%のNi、8〜15%のCr、2%を超え3%以下のMo、0.02〜0.3%のV、0.5%を超え5.0%以下のCu、0.02〜0.1%のN、合計量で0.02〜0.3%のNb及びTaの少なくとも一種、0〜2%のW、0〜5%のCo、0〜1.5%のRe、合計量で0〜0.5%のTiとZrおよびHfの少なくとも一種を含み、残部がFeおよび不可避不純物よりなるマルテンサイト鋼により形成されたことを特徴とする蒸気タービン翼。   0.15 to 0.30% C, 0 to 0.50% Si, 0.60% or less Mn, 1.0 to 4.0% Ni, 8 to 15% Cr, more than 2% to 3% Mo, 0.02 to 0.3% by weight % V, 0.5% to 5.0% Cu, 0.02 to 0.1% N, 0.02 to 0.3% of Nb and Ta in total amount, 0 to 2% W, 0 to 5% Co, A steam turbine blade characterized in that it is made of martensitic steel containing 0 to 1.5% Re and 0 to 0.5% of Ti, Zr and Hf in total amount, the balance being Fe and inevitable impurities. 請求項4において、前記不可避不純物としてP,S,Al,Sb,SnおよびAsの少なくとも一種が含まれ、Pは0〜0.03%、Sは0〜0.02%、Alは0〜0.05%、Sbは0〜0.0015%、Snは0〜0.01%およびAsは0〜0.02%よりなることを特徴とする蒸気タービン翼。   5. The inevitable impurity according to claim 4, wherein at least one of P, S, Al, Sb, Sn and As is included, P is 0 to 0.03%, S is 0 to 0.02%, Al is 0 to 0.05%, and Sb is A steam turbine blade comprising 0 to 0.0015%, Sn of 0 to 0.01%, and As of 0 to 0.02%. 前記蒸気タービンが低圧蒸気タービンであり、前記翼が最終段動翼であることを特徴とする請求項4に記載の蒸気タービン翼。   The steam turbine blade according to claim 4, wherein the steam turbine is a low-pressure steam turbine, and the blade is a final stage moving blade. 請求項6において、前記最終段動翼の長さが3000rpmに対し1092mm以上であることを特徴とする蒸気タービン翼。   The steam turbine blade according to claim 6, wherein the length of the last stage moving blade is 1092 mm or more with respect to 3000 rpm. 請求項6において、前記最終段動翼の長さが3600rpmに対し889mm以上であることを特徴とする蒸気タービン翼。   The steam turbine blade according to claim 6, wherein a length of the last stage moving blade is 889 mm or more with respect to 3600 rpm. 請求項4において、Wを2%以下含むことを特徴とする蒸気タービン翼。   The steam turbine blade according to claim 4, wherein the steam turbine blade includes 2% or less of W. 請求項4において、Coを5%以下含むことを特徴とする蒸気タービン翼。   The steam turbine blade according to claim 4, comprising 5% or less of Co. 請求項4において、Reを1.5%以下含むことを特徴とする蒸気タービン翼。   5. The steam turbine blade according to claim 4, wherein Re is contained in an amount of 1.5% or less. 請求項4において、下記の式で求められるCr当量が10以下であることを特徴とする蒸気タービン翼。
Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-2Mn-4Ni-2Co+2.5Ta
The steam turbine blade according to claim 4, wherein a Cr equivalent calculated by the following formula is 10 or less.
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-2Mn-4Ni-2Co + 2.5Ta
請求項4において、重量で、0.18〜0.28%のC、0〜0.25%のSi、0.50%下のMn、1.5〜3.5%のNi、10〜14%のCr、2.1〜2.9%のMo、0.1〜0.28%のV、0.6〜2.8%のCu、0.03〜0.09%のN、合計量で0.08〜0.18%のNb及びTaの少なくとも一種、0〜2%のW、0〜5%のCo、0〜1.5%のRe、合計量で0〜0.5%のTiとZrおよびHfの少なくとも一種を含むことを特徴とする蒸気タービン翼。   5. The composition according to claim 4, wherein 0.18 to 0.28% C, 0 to 0.25% Si, 0.50% Mn, 1.5 to 3.5% Ni, 10 to 14% Cr, 2.1 to 2.9% Mo, 0.1% by weight. -0.28% V, 0.6-2.8% Cu, 0.03-0.09% N, 0.08-0.18% Nb and Ta in total amount, 0-2% W, 0-5% Co, 0 A steam turbine blade comprising -1.5% Re and 0-0.5% in total, at least one of Ti, Zr, and Hf. 重量で、0.15〜0.30%のC、0〜0.50%のSi、0.60%以下のMn、1.0〜4.0%のNi、8〜15%のCr、2%を超え3%以下のMo、0.02〜0.3%のV、0.5%を超え5.0%以下のCu、0.02〜0.1%のN、合計量で0.02〜0.3%のNb及びTaの少なくとも一種、0〜2%のW、0〜5%のCo、0〜1.5%のRe、合計量で0〜0.5%のTiとZrおよびHfの少なくとも一種を含み、残部がFeおよび不可避不純物よりなるマルテンサイト鋼により形成された翼を低圧蒸気タービンの最終段動翼に備えたことを特徴とする蒸気タービン発電プラント。   0.15 to 0.30% C, 0 to 0.50% Si, 0.60% or less Mn, 1.0 to 4.0% Ni, 8 to 15% Cr, more than 2% to 3% Mo, 0.02 to 0.3% by weight % V, 0.5% to 5.0% Cu, 0.02 to 0.1% N, 0.02 to 0.3% of Nb and Ta in total amount, 0 to 2% W, 0 to 5% Co, The final stage motion of the low-pressure steam turbine is a blade formed of martensitic steel containing 0 to 1.5% Re and 0 to 0.5% of Ti, Zr and Hf in total amount, the balance being Fe and inevitable impurities. A steam turbine power plant characterized in that the blade is provided. 請求項14において、前記不可避不純物としてP,S,Al,Sb,SnおよびAsの少なくとも一種が含まれ、Pは0〜0.03%、Sは0〜0.02%、Alは0〜0.05%、Sbは0〜0.0015%、Snは0〜0.01%およびAsは0〜0.02%よりなることを特徴とする蒸気タービン発電プラント。   15. The inevitable impurity according to claim 14, wherein at least one of P, S, Al, Sb, Sn, and As is included, P is 0 to 0.03%, S is 0 to 0.02%, Al is 0 to 0.05%, and Sb is A steam turbine power plant comprising 0 to 0.0015%, Sn of 0 to 0.01%, and As of 0 to 0.02%. 請求項14において、下記の式で求められるCr当量が10以下であることを特徴とする蒸気タービン発電プラント。
Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-2Mn-4Ni-2Co+2.5Ta
In Claim 14, the Cr equivalent calculated | required by the following formula is 10 or less, The steam turbine power plant characterized by the above-mentioned.
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-2Mn-4Ni-2Co + 2.5Ta
JP2003414417A 2003-12-12 2003-12-12 High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant Pending JP2005171339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414417A JP2005171339A (en) 2003-12-12 2003-12-12 High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414417A JP2005171339A (en) 2003-12-12 2003-12-12 High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant

Publications (1)

Publication Number Publication Date
JP2005171339A true JP2005171339A (en) 2005-06-30

Family

ID=34734222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414417A Pending JP2005171339A (en) 2003-12-12 2003-12-12 High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant

Country Status (1)

Country Link
JP (1) JP2005171339A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127613A (en) * 2006-11-20 2008-06-05 Hitachi Ltd Precipitation-hardened martensitic stainless steel
CN100413988C (en) * 2005-10-27 2008-08-27 广东省韶关钢铁集团有限公司 Hammer for hammer crusher
EP2377962A1 (en) * 2010-04-16 2011-10-19 Hitachi, Ltd. Precipitation hardenable martensitic stainless steel and steam turbine blade using the same
US20120114496A1 (en) * 2010-11-09 2012-05-10 Shinji Oikawa Precipitation Hardening Martensitic Stainless Steel and Steam Turbine Component Made Thereof
EP2546383A1 (en) * 2011-06-16 2013-01-16 Hitachi Ltd. Precipitate hardening stainless steel and long blade using same for steam turbine
US20130186106A1 (en) * 2012-01-19 2013-07-25 Hitachi, Ltd. Precipitation hardening martensitic stainless steel, and steam turbine long blade, steam turbine, and power plant using the same
CN103374687A (en) * 2012-04-27 2013-10-30 大同特殊钢株式会社 Steel for steam turbine blade with excellent strength and toughness
CN103451575A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Copper-iron alloy material
CN103602918A (en) * 2013-11-18 2014-02-26 乐山力盾铸钢有限公司 High-strength wear-resistant corrosion-resistant antimagnetic stainless steel
CN103774061A (en) * 2014-01-07 2014-05-07 无锡市派克重型铸锻有限公司 Blade ring forged piece and fabrication technology thereof
CN104099519A (en) * 2014-07-08 2014-10-15 宁波市鄞州文昌金属制品有限公司 Temperature resistant pin and preparation method thereof
CN104313475A (en) * 2014-11-06 2015-01-28 内蒙古包钢钢联股份有限公司 Seamless steel tube for rare earth containing moisture-resistant H2S corrosion L625QS pipeline and production method thereof
CN104404375A (en) * 2014-11-06 2015-03-11 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel pipe for producing L555QO seabed pipelines and production method thereof
CN104962819A (en) * 2015-06-30 2015-10-07 安庆市灵宝机械有限责任公司 Alloy for cutting bit
CN104962912A (en) * 2015-06-30 2015-10-07 安庆市灵宝机械有限责任公司 Processing method of wear-resistant anti-corrosion coating on surface of cutting tooth
CN107354399A (en) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 A kind of alloy abrasion resistant steel
CN107435125A (en) * 2017-07-25 2017-12-05 烟台市中拓合金钢有限责任公司 A kind of powder metallurgy immersion coating stove boiler tube
CN108103402A (en) * 2017-12-26 2018-06-01 西华大学 A kind of rail transit vehicle body stainless steel and preparation method and application
CN108866453A (en) * 2018-07-19 2018-11-23 西京学院 A kind of martensite heat-resistant steel and preparation method thereof
CN110819898A (en) * 2019-11-18 2020-02-21 燕山大学 High-strength corrosion-resistant zirconium-containing stainless steel and preparation method thereof
CN112522635A (en) * 2020-10-22 2021-03-19 中国科学院金属研究所 High-carbon high-chromium martensitic stainless steel for cutter and preparation method thereof
CN115768914A (en) * 2020-04-13 2023-03-07 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413988C (en) * 2005-10-27 2008-08-27 广东省韶关钢铁集团有限公司 Hammer for hammer crusher
JP4702267B2 (en) * 2006-11-20 2011-06-15 株式会社日立製作所 Precipitation hardening type martensitic stainless steel
JP2008127613A (en) * 2006-11-20 2008-06-05 Hitachi Ltd Precipitation-hardened martensitic stainless steel
US8747733B2 (en) 2010-04-16 2014-06-10 Hitachi, Ltd. Precipitation hardenable martensitic stainless steel and steam turbine blade using the same
EP2377962A1 (en) * 2010-04-16 2011-10-19 Hitachi, Ltd. Precipitation hardenable martensitic stainless steel and steam turbine blade using the same
US20120114496A1 (en) * 2010-11-09 2012-05-10 Shinji Oikawa Precipitation Hardening Martensitic Stainless Steel and Steam Turbine Component Made Thereof
US9873930B2 (en) * 2010-11-09 2018-01-23 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardening martensitic stainless steel and steam turbine component made thereof
EP2546383A1 (en) * 2011-06-16 2013-01-16 Hitachi Ltd. Precipitate hardening stainless steel and long blade using same for steam turbine
US9062362B2 (en) 2011-06-16 2015-06-23 Mitsubishi Hitachi Power Systems, Ltd. Precipitate hardening stainless steel and long blade using same for steam turbine
US20130186106A1 (en) * 2012-01-19 2013-07-25 Hitachi, Ltd. Precipitation hardening martensitic stainless steel, and steam turbine long blade, steam turbine, and power plant using the same
US9388702B2 (en) * 2012-01-19 2016-07-12 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardening martensitic stainless steel, and steam turbine long blade, steam turbine, and power plant using the same
US9416436B2 (en) 2012-04-27 2016-08-16 Daido Steel Co., Ltd. Steel for steam turbine blade with excellent strength and toughness
CN103374687A (en) * 2012-04-27 2013-10-30 大同特殊钢株式会社 Steel for steam turbine blade with excellent strength and toughness
CN103451575B (en) * 2013-08-23 2015-07-01 苏州长盛机电有限公司 Copper-iron alloy material
CN103451575A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Copper-iron alloy material
CN103602918A (en) * 2013-11-18 2014-02-26 乐山力盾铸钢有限公司 High-strength wear-resistant corrosion-resistant antimagnetic stainless steel
CN103774061B (en) * 2014-01-07 2015-11-18 无锡市派克重型铸锻有限公司 Leaf joint forging and manufacture craft thereof
CN103774061A (en) * 2014-01-07 2014-05-07 无锡市派克重型铸锻有限公司 Blade ring forged piece and fabrication technology thereof
CN104099519A (en) * 2014-07-08 2014-10-15 宁波市鄞州文昌金属制品有限公司 Temperature resistant pin and preparation method thereof
CN104099519B (en) * 2014-07-08 2016-05-04 宁波市鄞州文昌金属制品有限公司 A kind of heatproof red needle and preparation method thereof
CN104313475A (en) * 2014-11-06 2015-01-28 内蒙古包钢钢联股份有限公司 Seamless steel tube for rare earth containing moisture-resistant H2S corrosion L625QS pipeline and production method thereof
CN104404375A (en) * 2014-11-06 2015-03-11 内蒙古包钢钢联股份有限公司 Rare-earth-containing seamless steel pipe for producing L555QO seabed pipelines and production method thereof
CN104962912B (en) * 2015-06-30 2017-12-01 安庆市灵宝机械有限责任公司 A kind of processing method of pick surface abrasion resistance erosion shield
CN104962912A (en) * 2015-06-30 2015-10-07 安庆市灵宝机械有限责任公司 Processing method of wear-resistant anti-corrosion coating on surface of cutting tooth
CN104962819A (en) * 2015-06-30 2015-10-07 安庆市灵宝机械有限责任公司 Alloy for cutting bit
CN107354399A (en) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 A kind of alloy abrasion resistant steel
CN107435125A (en) * 2017-07-25 2017-12-05 烟台市中拓合金钢有限责任公司 A kind of powder metallurgy immersion coating stove boiler tube
CN108103402A (en) * 2017-12-26 2018-06-01 西华大学 A kind of rail transit vehicle body stainless steel and preparation method and application
CN108103402B (en) * 2017-12-26 2019-07-19 西华大学 A kind of rail transit vehicle body stainless steel and the preparation method and application thereof
CN108866453A (en) * 2018-07-19 2018-11-23 西京学院 A kind of martensite heat-resistant steel and preparation method thereof
CN108866453B (en) * 2018-07-19 2020-11-24 西京学院 Martensite heat-resistant steel and preparation method thereof
CN110819898A (en) * 2019-11-18 2020-02-21 燕山大学 High-strength corrosion-resistant zirconium-containing stainless steel and preparation method thereof
CN115768914A (en) * 2020-04-13 2023-03-07 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material
CN115768914B (en) * 2020-04-13 2023-09-22 日本制铁株式会社 Martensitic stainless steel material and method for producing martensitic stainless steel material
CN112522635A (en) * 2020-10-22 2021-03-19 中国科学院金属研究所 High-carbon high-chromium martensitic stainless steel for cutter and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2005171339A (en) High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant
JP4542491B2 (en) High-strength heat-resistant cast steel, method for producing the same, and uses using the same
JPH0563544B2 (en)
JP2014080656A (en) Precipitation hardening type martensitic stainless steel and steam turbine long blade using the same
JP2013209742A (en) Steam turbine rotor
EP2224019A1 (en) High corrosion resistance precipitation hardened martensitic stainless steel
JP2005194626A (en) Precipitation hardening martensitic steel, its production method, and turbine moving blade and steam turbine obtained by using the same
US20110232809A1 (en) High corrosion resistance precipitation hardened martensitic stainless steel
JP4256311B2 (en) Rotor shaft for steam turbine, steam turbine, and steam turbine power plant
JP3921574B2 (en) Heat-resistant steel, gas turbine using the same, and various components
JP2007254806A (en) Turbine casing
JP2010065322A (en) Ferritic heat resistant steel
JPS6054385B2 (en) heat resistant steel
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
JP4702267B2 (en) Precipitation hardening type martensitic stainless steel
JP2012077667A (en) Rotor shaft for steam turbine, and steam turbine and steam turbine power generation plant, using shaft
JP2015093991A (en) Precipitation-hardened martensitic stainless steel, turbine member using the stainless steel and turbine using the turbine member
JP5981357B2 (en) Heat resistant steel and steam turbine components
JP3345988B2 (en) Steam turbine rotor
JP3800630B2 (en) Final stage blades for steam turbine power plant and low pressure steam turbine and their manufacturing method
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP2004052060A (en) Steam turbine blade, steam turbine and high strength martensitic steel
US11788177B2 (en) Precipitation-hardened stainless steel alloys
JP2014201792A (en) Precipitation hardening based martensitic stainless steel, steam turbine rotor blade and steam turbine
JP2001152293A (en) HIGH Cr FERRITIC HEAT RESISTING STEEL