JP2005171214A - Magnetic abrasive grain for magnetic grinding and its production process - Google Patents

Magnetic abrasive grain for magnetic grinding and its production process Download PDF

Info

Publication number
JP2005171214A
JP2005171214A JP2003436532A JP2003436532A JP2005171214A JP 2005171214 A JP2005171214 A JP 2005171214A JP 2003436532 A JP2003436532 A JP 2003436532A JP 2003436532 A JP2003436532 A JP 2003436532A JP 2005171214 A JP2005171214 A JP 2005171214A
Authority
JP
Japan
Prior art keywords
magnetic
abrasive grains
grains
abrasive
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436532A
Other languages
Japanese (ja)
Inventor
Shuhei Kuge
修平 久下
Hideki Kawakubo
秀樹 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2003436532A priority Critical patent/JP2005171214A/en
Publication of JP2005171214A publication Critical patent/JP2005171214A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide novel, easy to use and low cost magnetic abrasive grains for magnetic grinding grains capable of participating all the abrasive grains for the grinding with magnetic field without attraction to another magnetic material under annihilation of the magnetic field and their production process. <P>SOLUTION: The magnetic abrasive grains for magnetic grinding have a structure of cores of non-magnetic grinding grains (e.g. diamond, cubical crystals of boron nitride, alumina, silicon carbide and ceria) coated with fine magnetic particles (containing a spinel ferrite component of MOFe<SB>2</SB>O<SB>3</SB>as a magnetic particle component wherein M represents one or two selected from Fe, Mn, Zn, Ni and Co). The magnetic abrasive grains are produced by neutralization and precipitation processes of plural mixed aqueous solution of Fe, Mn, Zn, Ni and Co sulfates, hydrochlorides and nitrates. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はセラミックス部品・金属部品等の磁気研磨に用いる新規磁性砥粒及びその製造方法に関する。The present invention relates to a novel magnetic abrasive grain used for magnetic polishing of ceramic parts, metal parts and the like, and a method for producing the same.

磁気研磨法として知られる研磨技術は、磁性砥粒に磁場を印加することによって砥粒に加工圧力及び保持力を与えセラミックス等の円筒内外面や球面等複雑形状の精密仕上げ加工に応用できる技術である。この磁気研磨に用いられる砥粒には砥粒として要求される硬度と共に磁性を併せ持つことが要求される。Polishing technology known as magnetic polishing is a technology that can be applied to precision finishing of complex shapes such as ceramic inner and outer surfaces and spherical surfaces by applying a magnetic field to magnetic abrasive grains to apply processing pressure and holding force to the abrasive grains. is there. The abrasive grains used for this magnetic polishing are required to have magnetism as well as the hardness required for the abrasive grains.

一方、高い硬度を有するダイヤモンド,立方晶窒化ホウ素、アルミナ等の砥粒は、高い砥粒性能を有するものの非磁性であるため直接磁気研磨用砥粒として使用できない欠点があった。On the other hand, abrasive grains such as diamond, cubic boron nitride, and alumina having high hardness have a drawback that they cannot be used directly as abrasive grains for magnetic polishing because they have high abrasive performance but are non-magnetic.

従来、この問題を解決するために磁性金属等を芯材として表面にダイヤモンド等の非磁性砥粒群を付着させる複合磁性砥粒が提案されている。
特開平4−176556 特開平4−306290 安斉正博他、砥粒加工学会誌33,4,p34(1989)
Conventionally, in order to solve this problem, composite magnetic abrasive grains have been proposed in which a magnetic metal or the like is used as a core material and nonmagnetic abrasive grains such as diamond are adhered to the surface.
JP-A-4-176556 JP-A-4-306290 Masahiro Ansai et al., Journal of Abrasive Technology, 33, 4, p34 (1989)

しかしながら、これらの方法には多くの欠点がある。例えば、砥粒の含有率がいずれも50重量%以下であること、さらに砥粒群を含有した磁性2次粒子の大きさが砥粒の数倍から数百倍あり一度に研磨に寄与する粒子数が少ないこと、磁場を取り去っても残留磁化があり他の磁性材料に引き寄せられ除去困難なこと、作成に高価で大掛かりな装置を要することなどがあげられる。However, these methods have many drawbacks. For example, the content of abrasive grains is 50% by weight or less, and the size of magnetic secondary particles containing abrasive grains is several to several hundred times that of abrasive grains and contributes to polishing at once. For example, the number is small, there is residual magnetization even if the magnetic field is removed, it is attracted to other magnetic materials and difficult to remove, and an expensive and large-scale device is required for production.

本発明が解決しようとする課題は、個々の砥粒全てが磁場により研磨に寄与し、かつ磁場を消去したときには他の磁性材料に引き寄せられることのない取り扱いの容易で、安価な新規磁性砥粒及びその製造方法を提供することである。The problem to be solved by the present invention is that each individual abrasive grain contributes to polishing by a magnetic field, and when the magnetic field is erased, it is easy to handle and inexpensive new magnetic abrasive grains that are not attracted to other magnetic materials And a method of manufacturing the same.

本発明者らは、鋭意検討の結果、ダイヤモンド、立方晶窒化ホウ素、アルミナ等の砥粒を核として液相析出金属酸化物及びその複合体のスピネルフェライトを含む微細な磁性粒子を被覆せしめることにより、上記目的が達成されることを知見した。As a result of intensive studies, the inventors of the present invention coated fine magnetic particles containing spinel ferrite of a liquid phase precipitated metal oxide and a composite thereof with diamond, cubic boron nitride, alumina and other abrasive grains as nuclei. It has been found that the above-mentioned purpose is achieved.

本発明の新規磁性砥粒は、ダイヤモンド、立方晶窒化ホウ素、アルミナ等の砥粒粒子個々の表面を液相析出させた50nm以下の磁性微粒子が被覆していることを特徴とする。The novel magnetic abrasive grains of the present invention are characterized in that 50 nm or less magnetic fine particles on which the surface of each abrasive grain particle such as diamond, cubic boron nitride, and alumina is deposited in a liquid phase are coated.

この製造方法は、あらかじめ水に分散させたダイヤモンド、立方晶窒化ホウ素、アルミナ等の研磨材砥粒懸濁液に析出後スピネルフェライトとなり得る金属塩を溶解させ水酸化アルカリを添加し、該研磨材砥粒を核としてスピネルフェライト磁性粒子を該研磨材砥粒表面に析出被覆させることまたは、あらかじめ水酸化アルカリを添加した水に分散させたダイヤモンド、立方晶窒化ホウ素、アルミナ等の研磨材砥粒懸濁液に析出後スピネルフェライトとなり得る金属塩水溶液を添加し該研磨材砥粒を核としてスピネルフェライトを含む磁性粒子を該研磨材砥粒表面に析出被覆させることを特徴とする。製造に要する装置は、容器・攪拌羽・モーター等の一般的装置のみで特に加熱も要しないためきわめて安価に製造可能である。磁性微粒子の被覆(析出)量・組成は、砥粒・金属塩類の投入比率で容易に制御できる。In this production method, a metal salt that can be converted into spinel ferrite is dissolved in an abrasive suspension of diamond, cubic boron nitride, alumina or the like previously dispersed in water, and an alkali hydroxide is added to the abrasive. Abrasive grains such as diamond, cubic boron nitride, and alumina dispersed in water pre-added with alkali hydroxide are deposited and coated with spinel ferrite magnetic particles on the abrasive grain surface with the abrasive grains as nuclei. A metal salt aqueous solution capable of becoming spinel ferrite after precipitation is added to the suspension, and magnetic particles containing spinel ferrite are deposited and coated on the surface of the abrasive grains with the abrasive grains as nuclei. The apparatus required for production is only a general apparatus such as a container, a stirring blade, and a motor, and no special heating is required. The coating amount (deposition) and composition of the magnetic fine particles can be easily controlled by the input ratio of the abrasive grains and metal salts.

本発明の磁性砥粒は、ダイヤモンド,立方晶窒化ホウ素アルミナ等の砥粒の硬度を備えた一次粒子が磁性粒子そのものとして磁気研磨に有効に寄与し、残留磁化のないものである。In the magnetic abrasive grains of the present invention, primary particles having the hardness of abrasive grains such as diamond and cubic boron nitride alumina contribute effectively to magnetic polishing as magnetic particles themselves, and have no residual magnetization.

本発明の磁気研磨用砥粒の製造方法に使用される砥粒はダイヤモンド及び立方晶窒化ホウ素アルミナ等の研磨材砥粒である。研磨用途に用いられる市販合成ダイヤモンドミクロンパウダー、立方晶窒化ホウ素及び人造研磨材が最も安価に入手できる。粒子径には特に制限はないが、入手可能な0.1〜60μmの大きさが研磨用途に適する。市販合成ダイヤモンドミクロンパウダー、立方晶窒化ホウ素及び人造研磨材は、すでに高度な分級が施されており砥粒単体で加工スクラッチを生じることがないものを用いる。例えば、市販合成ダイヤモンドミクロンパウダーでは、松本油脂製薬(株)製ジェネシスKMmシリーズなどである。Abrasive grains used in the method for producing magnetic abrasive grains of the present invention are abrasive grains such as diamond and cubic boron nitride alumina. Commercially available synthetic diamond micron powders, cubic boron nitride and artificial abrasives used for polishing applications are the cheapest available. Although there is no restriction | limiting in particular in a particle diameter, The magnitude | size of 0.1-60 micrometers which can be obtained is suitable for a grinding | polishing use. As the commercially available synthetic diamond micron powder, cubic boron nitride and artificial abrasive, those that have already been subjected to a high degree of classification and do not cause processing scratches with a single abrasive grain are used. For example, commercially available synthetic diamond micron powders include Genesis KMm series manufactured by Matsumoto Yushi Seiyaku Co., Ltd.

本発明の磁気研磨用砥粒の製造に使用される析出磁性粒子は、スピネルフェライトである。このスピネルフェライト析出に用いる金属塩は硫酸塩、塩酸塩及び硝酸塩である。これらは、工業用に一般に市販されているものである。The precipitated magnetic particles used in the production of the abrasive grains for magnetic polishing of the present invention are spinel ferrite. Metal salts used for this spinel ferrite precipitation are sulfate, hydrochloride and nitrate. These are generally commercially available for industrial use.

上記金属塩からスピネルフェライトを析出させるには水酸化アルカリを用いる。水酸化アルカリは、金属塩を中和し、金属酸化物を析出させると共に該金属酸化物がスピネルフェライトとして析出するためのpH調整の役割も担う。
上記研磨材砥粒は、pH9以上の水酸化アルカリ溶液中に攪拌羽を回転攪拌させて懸濁させる。後に添加する金属塩溶液によって中和されることを考慮し、あらかじめpH11以上まであげておいてもよい。
Alkali hydroxide is used to precipitate spinel ferrite from the metal salt. Alkali hydroxide neutralizes a metal salt and precipitates a metal oxide, and also plays a role of pH adjustment for the metal oxide to precipitate as spinel ferrite.
The abrasive grains are suspended in an alkali hydroxide solution having a pH of 9 or more by rotating and stirring a stirring blade. In consideration of neutralization by a metal salt solution added later, the pH may be raised to 11 or more in advance.

上記懸濁液に上記金属塩を添加して析出させる磁性金属酸化物の重量は上記生成物重量の2〜40%の比率が最良である。少なすぎるとダイヤモンド表面を覆い尽くすことができず十分な磁気特性を得られず、多すぎると付着しない磁性粒子の量が増えかえって砥粒の磁気特性を悪化させる。The weight of the magnetic metal oxide deposited by adding the metal salt to the suspension is best at a ratio of 2 to 40% of the product weight. If the amount is too small, the surface of the diamond cannot be covered and sufficient magnetic properties cannot be obtained. If the amount is too large, the amount of magnetic particles that do not adhere increases and the magnetic properties of the abrasive grains are deteriorated.

本発明の磁気研磨用砥粒の製造方法における上記研磨材砥粒(核)に析出する磁性粒子中にはスピネルフェライト以外の金属酸化物が同時含有されていてもよい。
pHが8未満になるとスピネルフェライト以外の金属酸化物の生成が増え磁気特性に影響を与えることになる。金属塩の添加が終了するまでpHを9以上に保つことが望ましい。反応温度は、特に加熱冷却を必要とせず常温付近で行える。
上記析出スピネルフェライト及び金属酸化物の一次粒子の粒径は、50nm以下のサイズであり磁区のサイズにほぼ匹敵するため残留磁化のない超常磁性挙動に近い磁気特性を有することになる。
The magnetic particles precipitated on the abrasive grains (nuclei) in the method for producing abrasive grains for magnetic polishing of the present invention may contain a metal oxide other than spinel ferrite at the same time.
When the pH is less than 8, the production of metal oxides other than spinel ferrite increases and affects the magnetic properties. It is desirable to maintain the pH at 9 or higher until the addition of the metal salt is completed. The reaction temperature can be around room temperature without requiring heating or cooling.
The particle size of the primary particles of the precipitated spinel ferrite and metal oxide is 50 nm or less, which is almost equal to the size of the magnetic domain, and therefore has magnetic properties close to superparamagnetic behavior without residual magnetization.

以上の方法によって製造される磁気研磨用砥粒は、ほぼもとの研磨材砥粒と同サイズで、見掛け飽和磁化が5mT(ミリテスラ)以上、残留磁化はほぼゼロであり、磁気研磨用として用途が期待されるものである。The magnetic polishing abrasive grains produced by the above method are almost the same size as the original abrasive grains, the apparent saturation magnetization is 5 mT (millitesla) or more, and the residual magnetization is almost zero. Is expected.

以下に実施例を比較例とともに挙げ本発明の磁気研磨用砥粒の製造方法を具体的に説明する。Hereinafter, the method for producing the abrasive grains for magnetic polishing according to the present invention will be specifically described with reference to comparative examples.

(実施例1〜4)
純粋150mlに研磨材砥粒として所定サイズ(表1参照)のダイヤモンドを10g添加して攪拌懸濁させた後、アンモニア水を加えpH12とした。次いで攪拌しながらスピネルフェライトとしてマグネタイトを所定量析出(表1参照)させるための硫酸第一鉄と硫酸第二鉄を20mlの純水に溶解させたものを5分間かけて滴下させた。このときpHが9未満とならないよう適宜アンモニア水を追加した。その後、生成物を濾過し、乾燥した。得られた砥粒の磁気特性を次の表1に示した。磁気特性の内、見掛け飽和磁化は析出物が全てマグネタイトとした見掛け比重を用いてファラデー法で磁気天秤を使用して測定し、残留磁化はガウスメーターを用いて測定した。また、実施例1の製造物のSEM写真を次の図1に、磁気天秤のコイル電流に対する重量変化の実測値を次の[表2]に示した。
(Examples 1-4)
After adding 10 g of diamond having a predetermined size (see Table 1) as abrasive grains to 150 ml of pure material and stirring and suspending, ammonia water was added to adjust the pH to 12. Next, a solution of ferrous sulfate and ferric sulfate dissolved in 20 ml of pure water for precipitation of a predetermined amount of magnetite as spinel ferrite (see Table 1) was added dropwise over 5 minutes with stirring. At this time, ammonia water was appropriately added so that the pH did not become less than 9. The product was then filtered and dried. The magnetic properties of the obtained abrasive grains are shown in Table 1 below. Among the magnetic properties, the apparent saturation magnetization was measured using a magnetic balance by the Faraday method using the apparent specific gravity in which all precipitates were magnetite, and the residual magnetization was measured using a gauss meter. Moreover, the SEM photograph of the product of Example 1 is shown in the following FIG. 1, and the measured values of the weight change with respect to the coil current of the magnetic balance are shown in the following [Table 2].

(比較例1〜3)
析出粒子量及びpHの条件を変えた他は上記実施例と同様にして磁気研磨用砥粒の製造を行った。製造条件及び得られた砥粒の磁気特性を次の表1に示した。
(Comparative Examples 1-3)
Magnetic polishing abrasives were produced in the same manner as in the above example except that the amount of precipitated particles and the pH conditions were changed. The manufacturing conditions and the magnetic properties of the resulting abrasive grains are shown in Table 1 below.

Figure 2005171214
Figure 2005171214

表1より製造物の磁気特性(特に見掛け飽和磁化)に対して析出粒子量及び析出pH条件の効果的な範囲がわかる。また、残留磁化が全てゼロであることから、全ての条件で析出磁性粒子のサイズは磁区程度の大きさ以下であることがわかる。Table 1 shows the effective range of the amount of precipitated particles and the precipitation pH condition with respect to the magnetic properties (particularly apparent saturation magnetization) of the product. In addition, since the remanent magnetization is all zero, it can be seen that the size of the precipitated magnetic particles is less than the size of the magnetic domain under all conditions.

図1FIG.

図1より、製造物が出発原料砥粒とほぼ同サイズの5μm程度の個々の粒子であり、表面に磁性粒子群が付着していることも明らかである。付着磁性一次粒子のサイズは、SEMでは観察できないが表1及び表2の結果から50nm以下と推定できる。From FIG. 1, it is also clear that the product is individual particles of about 5 μm, which are approximately the same size as the starting raw material abrasive grains, and the magnetic particle group adheres to the surface. The size of the adhering magnetic primary particles cannot be observed by SEM, but can be estimated to be 50 nm or less from the results of Tables 1 and 2.

Figure 2005171214
Figure 2005171214

表2は、実施例1における見掛け飽和磁化を計算するため力学的に磁化を測定したものである。磁気天秤において1分毎に電磁石のコイル電流すなわち磁場を変化させた時に製造物が磁場に引きよせられる力と釣り合う天秤の重量変化を読み取っている。Table 2 shows the magnetization measured dynamically to calculate the apparent saturation magnetization in Example 1. In the magnetic balance, when the coil current of the electromagnet, that is, the magnetic field is changed every minute, the weight change of the balance is read that balances the force with which the product is attracted by the magnetic field.

表2より、磁場の変化に対して可逆的に力を受け、ヒステリシスがないことがわかる。これも磁性一次粒子が磁区程度の大きさ以下になっていることを示し残留磁化がないことを示している。From Table 2, it can be seen that the force is reversibly applied to the change of the magnetic field and there is no hysteresis. This also indicates that the magnetic primary particles are smaller than the size of the magnetic domain, indicating that there is no residual magnetization.

実施例1の磁性砥粒のSEM写真である。2 is a SEM photograph of magnetic abrasive grains of Example 1.

Claims (7)

非磁性砥粒表面を磁性粒子で被覆せしめることを特徴とする磁性砥粒及びその製造方法。A magnetic abrasive grain comprising a nonmagnetic abrasive grain surface coated with a magnetic grain and a method for producing the same. 該非磁性砥粒がダイヤモンド,立方晶窒化ホウ素、アルミナ、炭化珪素,セリア等の研磨材砥粒であることを特徴とする、請求項1の磁性砥粒及びその製造方法。2. The magnetic abrasive grains according to claim 1, wherein the non-magnetic abrasive grains are abrasive grains of diamond, cubic boron nitride, alumina, silicon carbide, ceria, or the like. 該磁性粒子成分にはMOFeのスピネルフェライト成分が含まれ、MがFe,Mn,Zn,Ni,Co1種または2種からなることを特徴とする、請求項1の磁性砥粒及びその製造方法。 2. The magnetic abrasive grain according to claim 1, wherein the magnetic particle component includes a spinel ferrite component of MOFe 2 O 3 and M is composed of one or two of Fe, Mn, Zn, Ni, and Co. Production method. 該非磁性砥粒の大きさが0.1〜200μmであるであることを特徴とする、請求項1の磁性砥粒及びその製造方法。2. The magnetic abrasive grains according to claim 1, wherein the non-magnetic abrasive grains have a size of 0.1 to 200 [mu] m. 該磁性粒子の一次粒子の大きさが50nm以下であることを特徴とする、請求項1の磁性砥粒及びその製造方法。The magnetic abrasive grains according to claim 1, wherein the size of the primary grains of the magnetic grains is 50 nm or less, and the method for producing the magnetic abrasive grains. 該磁性砥粒の内該研磨材砥粒成分が60〜98重量%であることを特徴とする、請求項1の磁性砥粒及びその製造方法。2. The magnetic abrasive grain according to claim 1, wherein the abrasive grain component of the abrasive is 60 to 98% by weight. 該磁性粒子をFe,Mn,Zn,Ni,Coの硫酸塩、塩酸塩、硝酸塩の複数混合溶液から水中中和析出せしめることを特徴とする、請求項1の磁性砥粒及びその製造方法。2. The magnetic abrasive grain according to claim 1, wherein the magnetic particles are neutralized and precipitated in water from a mixed solution of sulfate, hydrochloride and nitrate of Fe, Mn, Zn, Ni and Co.
JP2003436532A 2003-12-12 2003-12-12 Magnetic abrasive grain for magnetic grinding and its production process Pending JP2005171214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436532A JP2005171214A (en) 2003-12-12 2003-12-12 Magnetic abrasive grain for magnetic grinding and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436532A JP2005171214A (en) 2003-12-12 2003-12-12 Magnetic abrasive grain for magnetic grinding and its production process

Publications (1)

Publication Number Publication Date
JP2005171214A true JP2005171214A (en) 2005-06-30

Family

ID=34737075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436532A Pending JP2005171214A (en) 2003-12-12 2003-12-12 Magnetic abrasive grain for magnetic grinding and its production process

Country Status (1)

Country Link
JP (1) JP2005171214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000867A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Fine Technology Co Ltd Polishing liquid, its production method, and polishing method
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same
CN104191385A (en) * 2014-09-05 2014-12-10 南京航空航天大学 Ferromagnetic diamond abrasive material prepared by means of wet method
US11364591B2 (en) 2007-12-28 2022-06-21 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000867A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Fine Technology Co Ltd Polishing liquid, its production method, and polishing method
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
US11364591B2 (en) 2007-12-28 2022-06-21 Shin-Etsu Chemical Co., Ltd. Outer blade cutting wheel and making method
JP2013056805A (en) * 2011-09-08 2013-03-28 Vision Development Co Ltd Magnetic diamond microparticle and method for producing the same
CN104191385A (en) * 2014-09-05 2014-12-10 南京航空航天大学 Ferromagnetic diamond abrasive material prepared by means of wet method

Similar Documents

Publication Publication Date Title
EP4227379A1 (en) Magnetizable abrasive particle and method of making the same
JP5802224B2 (en) Magnetic recording medium
EP3571011A1 (en) Magnetically assisted transfer of magnetizable abrasive particles and methods, apparatuses and systems related thereto
WO2018136271A1 (en) Use of magnetics with magnetizable abrasive particles, methods, apparatuses and systems using magnetics to make abrasive articles
WO2019197948A1 (en) Magnetizable abrasive particle and method of making the same
TW201135760A (en) Ferromagnetic particle powder and manufacturing method thereof, and anisotropic magnet and bonded magnet
US11597860B2 (en) Magnetizable abrasive particle and method of making the same
KR20130106825A (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
CN110073448B (en) Iron-based nanoparticles and grains
JP2005171214A (en) Magnetic abrasive grain for magnetic grinding and its production process
EP3605237A1 (en) Carrier core material, and electrophotographic carrier and electrophotographic developer that use carrier core material
KR20140059046A (en) Preparation method of magnetic particle coated with abrasive anf the abrasive filler for magnetic abrasion
EP0247681B1 (en) Magnetic material, magnetic recording medium, and method of manufacturing a magnetic material
CA2039899A1 (en) Process for producing magnetic metal powder and coating for magnetic recording medium
JP2008254106A (en) Paste material
JP2004031792A (en) Magnetic carrier for binding nucleic acid and its manufacturing method
JP2002170791A (en) Particle diffusion type mixedly functional fluid and machining method using the same
GÖRNERT et al. Glass crystallized barium ferrite powders for magnetic recording media
JP4121273B2 (en) Iron oxide particles
JPH03104806A (en) Method for manufacturing magnetic fluid
JP3023795B2 (en) Water-based magnetic fluid and method for producing the same
JPS60122712A (en) Surface treated needlelike particle containing iron carbide and magnetic coating composition containing said particle
JPS62166964A (en) Magnetic powder for magnetic polishing
JP2002210648A (en) Machining method of magnetic material, and its device
JPS5860624A (en) Ferromagnetic powder and its preparation