JP2005166325A - Secondary battery and its manufacturing method - Google Patents

Secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005166325A
JP2005166325A JP2003400949A JP2003400949A JP2005166325A JP 2005166325 A JP2005166325 A JP 2005166325A JP 2003400949 A JP2003400949 A JP 2003400949A JP 2003400949 A JP2003400949 A JP 2003400949A JP 2005166325 A JP2005166325 A JP 2005166325A
Authority
JP
Japan
Prior art keywords
secondary battery
mesoporous
carbon
pores
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003400949A
Other languages
Japanese (ja)
Other versions
JP4048243B2 (en
Inventor
Gochin Shu
豪慎 周
Itaru Honma
格 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003400949A priority Critical patent/JP4048243B2/en
Publication of JP2005166325A publication Critical patent/JP2005166325A/en
Application granted granted Critical
Publication of JP4048243B2 publication Critical patent/JP4048243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a secondary battery equipped with a carbon system electrode material maintaining a high reversible ratio (R>90%) except for initial charge/discharge cycles, with a high capacity regained after several cycles in spite of loss due to a certain amount of irreversible capacity in the initial charge/discharge cycles, in manufacturing meso-porous carbon with a three-dimensional structure having microcrystal of graphite carbon in a framework of a porous structure. <P>SOLUTION: The secondary battery, constituted of electrodes made of meso-porous carbon with three-dimensionally uniform micropores regularly arrayed is provided with microcrystal of graphite of the order of several nanometers in the framework of a porous structure, with an average diameter of the micropores of 2 nm to 6 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、充電型電池、特にリチウム電池の負極として用いるカーボン系電極材料を備えた二次電池に関する。 The present invention relates to a rechargeable battery, particularly a secondary battery provided with a carbon-based electrode material used as a negative electrode of a lithium battery.

現在、世界で10兆円規模のリチウム電池、特に充電型(2次)リチウム電池の負極として、カーボン系が良く使われている。
従来型のカーボン系負極、特にグラファイト(黒鉛)型のカーボン系負極の容量は372mAh/g(Li)であり、さらに高容量のカーボン系負極が要求されている。
電池の性能をアップするためには、粒子或いは細孔の微細化及び高比表面積化が要求されるが、カーボン系材料も例外ではない。しかしながら、今日まで提案されている色々な負極用カーボン系材料は、安定な高容量までには至っていないのが、現状である。
Currently, carbon-based materials are often used as negative electrodes for lithium batteries with a scale of 10 trillion yen, particularly rechargeable (secondary) lithium batteries.
The capacity of a conventional carbon-based negative electrode, particularly a graphite (graphite) -type carbon-based negative electrode, is 372 mAh / g (Li 1 C 6 ), and a higher capacity carbon-based negative electrode is required.
In order to improve the performance of the battery, it is required to make particles or pores finer and increase the specific surface area, but carbon materials are no exception. However, various carbon materials for negative electrodes that have been proposed to date have not yet reached a stable high capacity.

最近、高容量のカーボン系材料を用いたリチウム電池用として、多層(multi-walled : MWNTs)カーボンナノチューブ又は単層(single-walled : SWNTs)カーボンナノチューブが注目されている。
しかし、いずれも高非可逆容量Cirr(460−1080mAh/g)及び相対的に低可逆容量Cre(100−400mAh/g)が観察された。また従来型のカーボン系材料と同様に、初期インターカレーション及びデインターカレーションプロセスの間に大きなヒステリシスが見られた。
Recently, multi-walled (MWNTs) carbon nanotubes or single-walled (SWNTs) carbon nanotubes have attracted attention as lithium batteries using high-capacity carbon-based materials.
However, both high irreversible capacity C irr (460-1080mAh / g) and a relatively low reversible capacity C re (100-400mAh / g) was observed. Also, similar to conventional carbon-based materials, large hysteresis was observed during the initial intercalation and deintercalation processes.

このようなことから、高可逆容量と優れたサイクル特性を有するカーボン系材料の合成が望まれている。
カーボン系材料の中に、メソポーラスカーボンが挙げられる。この規則配列した空孔を持つメソポーラスカーボンは、Ryoo等により1999年に報告されたものである(非特許文献1参照)。
このメソポーラスカーボンは多くの注目を集め、水素貯蔵材料、吸着剤、触媒の担体又は電気化学2層キャパシタ(EDLCs)としての用途が提案された。
しかし、このメソポーラスカーボンは最初の放電(還元)過程において、3100mAh/g程度の異常に大きい容量を示すが、最初の可逆(酸化)過程において、可逆容量Creは1100mAh/g程度になり、大きな容量ロスが発生する。
この非可逆容量Cirrは約2000mAh/gであり、その比(Cre/Cre+Cirr)は34%程度である。
R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743
For these reasons, it is desired to synthesize a carbon-based material having a high reversible capacity and excellent cycle characteristics.
Among the carbon-based materials, mesoporous carbon is exemplified. This mesoporous carbon having regularly arranged vacancies was reported by Ryoo et al. In 1999 (see Non-Patent Document 1).
This mesoporous carbon has received much attention and has been proposed for use as hydrogen storage materials, adsorbents, catalyst supports or electrochemical double layer capacitors (EDLCs).
However, in this mesoporous carbon initial discharge (reduction) process, it exhibits unusually large capacity of about 3100mAh / g, in the first reversible (oxidation) process, reversible capacity C re becomes approximately 1100mAh / g, a large Capacity loss occurs.
The irreversible capacity C irr is about 2000mAh / g, the ratio (C re / C re + C irr) is about 34%.
R. Ryoo, SH Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743

本発明で解決しようとする課題は、(1)ポーラス構造のフレームワークの中に黒鉛カーボンの微結晶を有する三次元構造を持つメソポーラスカーボンを製造すること、(2)その製造プロセスを簡単化すること、(3)初期充・放電サイクルにおいて一定の不可逆容量によりロスが有っても、数サイクル後には高い容量(Li: x=2.0〜4.0)を維持していること、(4)初期充・放電サイクルを除いて、高い可逆率(R>90%)を維持していること、を備えたカーボン系電極材料を備えた二次電池の開発である。 The problems to be solved by the present invention are as follows: (1) producing mesoporous carbon having a three-dimensional structure having graphite carbon microcrystals in a porous framework; and (2) simplifying the production process. (3) Even if there is a loss due to a certain irreversible capacity in the initial charge / discharge cycle, a high capacity (Li x C 6 : x = 2.0 to 4.0) is maintained after several cycles. (4) Development of a secondary battery provided with a carbon-based electrode material having a high reversibility rate (R> 90%) except for the initial charge / discharge cycle.

本発明は、上記メソポーラスカーボンの特性を活かし、二次電池への適用が可能であることの知見を得た。
本発明は、この知見にもとづいて、
1)3次元的に均一な細孔が規則的に配列したメソポーラスカーボンからなる電極で構成されていることを特徴とする二次電池、2)細孔の平均直径が2nm〜6nmであることを特徴とする1記載の二次電池、3)六方体又は立方体構造を持つメソポーラスカーボンのフレームワークの中に、数ナノオーダーのグラファイト(黒鉛)の微細結晶を備えていることを特徴とする1又は2記載の二次電池、4)フレームワークの壁の厚さが2〜9nmであることを特徴とする1〜3のいずれかに記載の二次電池、5)表面積が600〜1200m/gであることを特徴とする1〜4のいずれかに記載の二次電池、6)細孔の体積が0.7〜1.2cm/gであることを特徴とする1〜5のいずれかに記載の二次電池、7) 4〜6サイクルの初期充・放電サイクル後に、高可逆容量(Li: x=2.0〜4.0)を有していることを特徴とする1〜6のいずれかに記載の二次電池、8)最初のインタカーレショウンにおいて、高い充・放電容量(Li:x=6.0〜10)を有することを特徴とする1〜7のいずれかに記載の二次電池、9)5〜6サイクルの初期充・放電サイクル除き、高可逆率 (r>90%)を有していることを特徴とする1〜8のいずれかに記載の二次電池、10)リチウム二次電池であることを特徴とする1〜9のいずれかに記載の二次電池を提供する。
The present invention has obtained the knowledge that it can be applied to a secondary battery by taking advantage of the characteristics of the mesoporous carbon.
Based on this finding, the present invention
1) A secondary battery characterized in that it is composed of electrodes made of mesoporous carbon in which three-dimensionally uniform pores are regularly arranged. 2) The average diameter of the pores is 2 nm to 6 nm. The secondary battery according to 1 characterized in that 3) a mesoporous carbon framework having a hexagonal or cubic structure is provided with fine crystals of graphite (graphite) on the order of several nanometers 1 or 2. The secondary battery according to 2, 4) The secondary battery according to any one of 1 to 3, wherein the framework wall thickness is 2 to 9 nm, and 5) the surface area is 600 to 1200 m 2 / g. The secondary battery according to any one of 1 to 4, characterized in that 6) Any one of 1 to 5 characterized in that the pore volume is 0.7 to 1.2 cm 3 / g 7) 4 to 6 cycles After the initial charge-discharge cycles, high reversible capacity (Li x C 6: x = 2.0~4.0) rechargeable battery according to any one of 1 to 6, characterized in that it has a, 8) The secondary battery according to any one of 1 to 7, which has a high charge / discharge capacity (Li x C 6 : x = 6.0 to 10) in the first intercalation, 9 The secondary battery according to any one of 1 to 8, which has a high reversibility rate (r> 90%) except for 5 to 6 initial charge / discharge cycles, 10) lithium secondary The secondary battery according to any one of 1 to 9, wherein the secondary battery is a battery.

また、本発明は、11)3次元的なシリカなどのメソポーラス酸化物をテンプレートとして、砂糖などの有機物質をメソポーラスシリカの細孔に充填し、不活性雰囲気で炭化させ、その後フッ酸でメソポーラスシリカを除去することを特徴とするメソポーラスカーボンからなる電極で構成された二次電池の製造方法、12)3次元的なシリカなどのメソポーラス酸化物をテンプレートとして、砂糖などの有機物質をメソポーラスシリカの細孔に充填し、不活性雰囲気で炭化させ、その後フッ酸でメソポーラスシリカを除去することを特徴とする1〜10のいずれかに記載のメソポーラスカーボンからなる電極で構成された二次電池の製造方法を提供する。 Further, the present invention relates to 11) Mesoporous oxides such as three-dimensional silica as templates, and organic substances such as sugar are filled in pores of mesoporous silica, carbonized in an inert atmosphere, and then mesoporous silica with hydrofluoric acid. 12) A method for manufacturing a secondary battery composed of an electrode made of mesoporous carbon, characterized in that the organic substance such as sugar is used as a template for a mesoporous oxide such as three-dimensional silica. A method for producing a secondary battery comprising an electrode made of mesoporous carbon according to any one of 1 to 10, wherein the pore is filled, carbonized in an inert atmosphere, and then mesoporous silica is removed with hydrofluoric acid I will provide a.

本発明の三次元構造を有する3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンの製造方法は、極めて簡便な方法であるばかりでなく、ポーラス細孔のサイズと構造を制御することが可能であり、表面積が大きく、規則正しく整列した六方晶(ヘキサゴナル)又は立方晶(キュービック)構造を備えた3次元的に細孔のサイズと構造が制御された二次電池用負極材料としてのメソポーラスカーボンを得ることができる。
また、これによって5〜6サイクルの初期充・放電サイクル除き、高可逆率 (r>90%)を有し、容量が大きく、充放電サイクル特性に優れた二次電池を得ることができる。
The method for producing mesoporous carbon having a three-dimensional structure and controlled pore size and structure according to the present invention is not only a very simple method, but also controls the size and structure of the porous pores. As a negative electrode material for a secondary battery with a large surface area and a regularly arranged hexagonal or cubic structure with a controlled three-dimensional pore size and structure Carbon can be obtained.
In addition, a secondary battery having a high reversibility (r> 90%), a large capacity, and excellent charge / discharge cycle characteristics can be obtained except for 5 to 6 initial charge / discharge cycles.

以下に本発明の具体例を示すが、本発明はこれらの具体例になんら拘束されるものではない。
本発明の3次元的に均一な細孔(ポア)が規則的に配列したメソポーラスカーボン(CMK−3)からなる電極は、850〜1100mAh/gの高可逆容量を有している。
細孔の平均直径は2nm〜6nmであり、六方体又は立方体構造を持つメソポーラスカーボンのフレームワークの中に、数ナノオーダー(2〜5nm)のグラファイト(黒鉛)の微細結晶を有する。
図1に、本発明のメソポーラスカーボンの小角X線回折(XRD)パターンと広角X線回折パターンを示す。
小角X線回折(XRD)パターンでは、六方晶構造の(100)、(110)及び(200)の回折ピークが見られる。
Specific examples of the present invention are shown below, but the present invention is not limited to these specific examples.
The electrode made of mesoporous carbon (CMK-3) regularly arranged with three-dimensionally uniform pores (pores) of the present invention has a high reversible capacity of 850 to 1100 mAh / g.
The average diameter of the pores is 2 nm to 6 nm, and it has fine crystals of graphite (graphite) on the order of several nanometers (2 to 5 nm) in the framework of a mesoporous carbon having a hexagonal or cubic structure.
FIG. 1 shows a small-angle X-ray diffraction (XRD) pattern and a wide-angle X-ray diffraction pattern of the mesoporous carbon of the present invention.
In the small-angle X-ray diffraction (XRD) pattern, diffraction peaks of (100), (110) and (200) having a hexagonal crystal structure are observed.

また、広角X線回折パターンでは、グラファイト構造の(002)と(100)の2個のブロードな回折ピークが見られる。このようなブロードな回折ピークは、大きく積層したグラファイト結晶相が殆ど含まれていないことを示している。
(002)のd−スペースは約0.36nmであり、これは純グラファイトカーボン(約0.33nm)のそれよりやや大きい。
図2に、本発明の3次元的に均一な細孔(ポア)が規則的に配列したメソポーラスカーボン(CMK−3)の透過型電子顕微鏡で観察した結果を示す。約4nmの均一な細孔(ポア)を有する整列した六方体構造を有するメソポーラスカーボンが確認できる。
In the wide-angle X-ray diffraction pattern, two broad diffraction peaks of (002) and (100) having a graphite structure are observed. Such a broad diffraction peak indicates that the graphite crystal phase that is largely laminated is hardly contained.
The (002) d-space is about 0.36 nm, which is slightly larger than that of pure graphite carbon (about 0.33 nm).
FIG. 2 shows the result of observation of the mesoporous carbon (CMK-3) in which the three-dimensionally uniform pores (pores) of the present invention are regularly arranged with a transmission electron microscope. A mesoporous carbon having an aligned hexagonal structure having uniform pores (pores) of about 4 nm can be confirmed.

六方体構造を有するメソポーラスカーボンの一例を示すと、六方メソ構造の単位長さが約10.5nmであり、細孔の直径が3.9nmである。
したがって、フレームワークの壁の厚さは10.5−3.9=6.6nmである。そして、Brunauer-Emmett-Teller (BET)表面積は、約1030m/gであり、トータルの細孔(ポア)の体積が0.87cm/gである3次元的に均一な細孔が規則的に配列したメソポーラスカーボンを得ることができる。
An example of a mesoporous carbon having a hexagonal structure has a unit length of about 10.5 nm and a pore diameter of 3.9 nm.
Thus, the wall thickness of the framework is 10.5-3.9 = 6.6 nm. The Brunauer-Emmett-Teller (BET) surface area is about 1030 m 2 / g, and the volume of the total pores (pores) is 0.87 cm 3 / g. Can be obtained.

本発明の3次元的に規則的に配列した均一な細孔(ポア)を有するメソポーラスカーボン(CMK−3)の0.01V〜1.5V(vs.Li/Li)の電位におけるサイクリックボルタンメトリーを図3に示す。スキャン速度は0.1mV/sである。
また、3次元的に規則的に配列した均一な細孔(ポア)を有するメソポーラスカーボン(CMK−3)の定電流充・放電特性を図4に示す。電流は100mA/gである。定電流充放電することにより、リチウムのインターカレーション容量を測定することが出来る。
最初の放電(還元)プロセスでは、約3100mAh/gの異常に大きき容量を示す。Li: x=8.4であり非常に高い。しかし、この最初のプロセスにおける可逆容量(酸化)、すなわちCreは1100mAh/g(Li:x=3.0)だけである。
Cyclic voltammetry of mesoporous carbon (CMK-3) having uniform pores (pores) arranged three-dimensionally regularly according to the present invention at a potential of 0.01 V to 1.5 V (vs. Li / Li + ). Is shown in FIG. The scan speed is 0.1 mV / s.
FIG. 4 shows constant current charge / discharge characteristics of mesoporous carbon (CMK-3) having uniform pores (pores) regularly arranged three-dimensionally. The current is 100 mA / g. Lithium intercalation capacity can be measured by charging and discharging at constant current.
The first discharge (reduction) process shows an unusually large capacity of about 3100 mAh / g. Li x C 6 : x = 8.4, which is very high. However, the reversible capacity in the first process (oxidation), i.e. C re is 1100mAh / g (Li x C 6 : x = 3.0) is only.

この容量の大きなロスは不可逆容量Cirrと呼ばれ、約2000mAh/gである。その比(Cre/Cre+Cirr)は約34%である。
この不可逆容量Cirrは、本発明のメソポーラスカーボンCMK−3の表面([H]、[O]サイト、など)、固体電解質界面(SEI)、Liのコロージョン的反応に依存する。そして、充・放電プロセスのヒステリシスは大きい。これは、500〜700°Cの低温で製造された高容量カーボン系材料の共通の現象であり、カーボン系材料に含まれるヒステリシスの量は水素に比例する。
This large loss of capacity is called irreversible capacity Cirr and is about 2000 mAh / g. The ratio (C re / C re + C irr) is about 34%.
This irreversible capacity Cirr depends on the corrosive reaction of the surface ([H], [O] site, etc.), solid electrolyte interface (SEI), and Li x C 6 of the mesoporous carbon CMK-3 of the present invention. And the hysteresis of charging / discharging process is large. This is a phenomenon common to high-capacity carbon-based materials manufactured at a low temperature of 500 to 700 ° C., and the amount of hysteresis contained in the carbon-based material is proportional to hydrogen.

図5に、3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンのサイクル特性を示す。3、5回目以降では、放電容量(リチウムのインターカレーション)と充電容量(リチウムのデインターカレーション)は、ほぼ850〜1100mAh/g(Li=2.3〜3.0)前後であり、安定している。
2サイクル目で、(Cre/Cre+Cirr)は83%に増加し、4サイクル目及び5サイクル目ではそれぞれ90%〜93%に達する。
FIG. 5 shows the cycle characteristics of mesoporous carbon whose pore size and structure are controlled three-dimensionally. In the third and subsequent times, the discharge capacity (lithium intercalation) and the charge capacity (lithium deintercalation) are approximately 850 to 1100 mAh / g (Li x C 6 = 2.3 to 3.0). And is stable.
In the second cycle, (C re / C re + C irr) is increased to 83%, respectively reach 90% to 93% in the fourth cycle and the fifth cycle.

表1に、本発明のメソポーラスカーボンCMK−3と対比して、従来の材料、すなわちPVC700(poly vinyl chloride at 700°C)、OXY(Oxychem phenolic regin at 700°C)、MWNT(多層ナノチューブ)900、SWNT(単層ナノチューブ)の表面積、充・放電の際の可逆容量Cre、非可逆容量Cirr、5サイクル後の平均ロスχ等を示す。
表1に示すように、本発明のメソポーラスカーボンCMK−3は、5サイクル後には(Cre/Cre+Cirr)は94%に増加し、また平均ロスχは少なく、いずれの従来の材料に比べても優れた特性を示す。
Table 1 shows conventional materials such as PVC 700 (polyvinyl chloride at 700 ° C.), OXY (Oxychem phenolic regin at 700 ° C.), and MWNT (multi-walled nanotube) 900 in comparison with the mesoporous carbon CMK-3 of the present invention. , SWNT (single-walled nanotube) surface area, reversible capacity C re during charge / discharge, irreversible capacity C irr , average loss χ after 5 cycles, and the like.
As shown in Table 1, the mesoporous carbon CMK-3 of the present invention, after 5 cycles (C re / C re + C irr) is increased to 94%, the average loss χ is small, in any of the conventional materials Compared to excellent characteristics.

Figure 2005166325
Figure 2005166325

一般に、高容量の非グラファイト系カーボンは、サイクル数が増加しても高非可逆容量を示す。このような非グラファイト系カーボンと本発明の規則的な配列を有するメソポーラスカーボンCMK−3との差異は、細孔の平均直径が2nm〜6nm(3.9nm)であること、及び表面積が600〜1200m/g(1030m/g)に達することである。
メソポーラスカーボンCMK−3は、カーボンナノチューブと類似した細孔(ポア)を有する。しかし、メソポーラスカーボンCMK−3の細孔(ポア)三次元的に規則配列し、均一性に富むという極めて特異な構造を有している。他方、カーボンナノチューブはランダムな三次元の細孔(ポア)構造を有する。
In general, a high capacity non-graphite carbon exhibits a high irreversible capacity even when the number of cycles increases. The difference between such non-graphitic carbon and mesoporous carbon CMK-3 having the regular arrangement of the present invention is that the average diameter of the pores is 2 nm to 6 nm (3.9 nm), and the surface area is 600 to Reaching 1200 m 2 / g (1030 m 2 / g).
Mesoporous carbon CMK-3 has pores (pores) similar to carbon nanotubes. However, the pores of the mesoporous carbon CMK-3 are regularly arranged three-dimensionally and have a very unique structure that is rich in uniformity. On the other hand, carbon nanotubes have a random three-dimensional pore structure.

メソポーラスカーボンCMK−3の可逆容量が大きくなる機構というのは必ずしも明確ではない。しかし、本発明のメソポーラスカーボンCMK−3の充放電容量とサイクル特性は、カーボンナノチューブよりも優れていることが明らかとなった。
初期段階、特に第1回目の充放電サイクルにおける容量の大きなロス、すなわち不可逆容量Cirr約2000mAh/gは、もはや問題とならない。数サイクル後に充放電容量が安定することが極めて重要な要素であり、二次電池として有効である。
The mechanism by which the reversible capacity of mesoporous carbon CMK-3 increases is not always clear. However, it was revealed that the charge / discharge capacity and cycle characteristics of the mesoporous carbon CMK-3 of the present invention are superior to those of the carbon nanotubes.
The large loss of capacity in the initial stage, particularly in the first charge / discharge cycle, that is, the irreversible capacity Cirr of about 2000 mAh / g is no longer a problem. Stabilization of charge / discharge capacity after several cycles is an extremely important factor and is effective as a secondary battery.

本発明の規則的に配列されたメソポーラスカーボンは、3次元的なシリカなどのメソポーラス酸化物をテンプレートとして、砂糖などの有機物質をメソポーラスシリカの細孔に充填し、これを不活性雰囲気で炭化させ、その後フッ酸でメソポーラスシリカを除去することによってポーラス構造のフレームワークの中に黒鉛カーボンの微結晶を有する三次元構造を持つメソポーラスカーボン製造することができる。
この製造プロセスは、極めて簡単であり、コスト低減に貢献する。さらに、この製造工程によって、初期充・放電サイクルにおいて一定の不可逆容量によりロスが有っても、数サイクル後には高い容量(Li: x=2.0〜4.0)を維持させることができ、さらに初期充・放電サイクルを除いて、高い可逆率
(R>90%)を維持することができる。
The regularly arranged mesoporous carbon of the present invention uses mesoporous oxide such as three-dimensional silica as a template, fills the pores of mesoporous silica with an organic substance such as sugar, and carbonizes this in an inert atmosphere. Then, by removing the mesoporous silica with hydrofluoric acid, it is possible to produce mesoporous carbon having a three-dimensional structure having fine graphite carbon crystals in the framework of the porous structure.
This manufacturing process is extremely simple and contributes to cost reduction. Further, this manufacturing process maintains a high capacity (Li x C 6 : x = 2.0 to 4.0) after several cycles even if there is a loss due to a certain irreversible capacity in the initial charge / discharge cycle. In addition, a high reversibility rate (R> 90%) can be maintained except for the initial charge / discharge cycle.

本発明の三次元構造を有する3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンの製造方法は、極めて簡便であるばかりでなく、ポーラス細孔のサイズと構造を制御することが可能であり、表面積が大きく、規則正しく整列した六方晶(ヘキサゴナル)又は立方晶(キュービック)構造を備えた、3次元的に細孔のサイズと構造が制御された二次電池用負極材料としてのメソポーラスカーボンを得ることができる。
これによって、5〜6サイクルの初期充・放電サイクル除き、高可逆率 (r>90%)を有している容量が大きく、充放電サイクル特性に優れた二次電池を得ることができる。特に、リチウム二次電池に有効である。
The method for producing mesoporous carbon having three-dimensional pore size and structure controlled according to the present invention is not only very simple, but also allows control of the size and structure of the porous pores. A mesoporous carbon as a negative electrode material for a secondary battery having a large surface area and regularly arranged hexagonal or cubic structure with controlled pore size and structure Can be obtained.
As a result, a secondary battery having a high capacity with a high reversibility (r> 90%) and excellent charge / discharge cycle characteristics can be obtained except for the initial charge / discharge cycles of 5 to 6 cycles. In particular, it is effective for lithium secondary batteries.

3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンの小角X線回折パターンと広角X線回折パターンを示す図である。It is a figure which shows the small angle X-ray diffraction pattern and wide-angle X-ray diffraction pattern of the mesoporous carbon by which the size and structure of the pore were controlled three-dimensionally. 3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンの透過型電子顕微鏡で観察した結果を示す図である。It is a figure which shows the result observed with the transmission electron microscope of the mesoporous carbon in which the size and structure of the pore were controlled three-dimensionally. 3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンのサイクリックボルタモグラムである。It is a cyclic voltammogram of mesoporous carbon in which the pore size and structure are controlled three-dimensionally. 3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンの定電流充・放電特性を示す図である。It is a figure which shows the constant current charging / discharging characteristic of the mesoporous carbon by which the size and structure of the pore were controlled three-dimensionally. 3次元的に細孔のサイズと構造が制御されたメソポーラスカーボンのサイクル特性を示す図である。It is a figure which shows the cycling characteristics of the mesoporous carbon by which the size and structure of the pore were controlled three-dimensionally.

Claims (12)

3次元的に均一な細孔が規則的に配列したメソポーラスカーボンからなる電極で構成されていることを特徴とする二次電池。 A secondary battery comprising an electrode made of mesoporous carbon in which three-dimensionally uniform pores are regularly arranged. 細孔の平均直径が2nm〜6nmであることを特徴とする請求項1記載の二次電池。 The secondary battery according to claim 1, wherein the average diameter of the pores is 2 nm to 6 nm. 六方体又は立方体構造を持つメソポーラスカーボンのフレームワークの中に、数ナノオーダーのグラファイト(黒鉛)の微細結晶を備えていることを特徴とする請求項1又は2記載の二次電池。 The secondary battery according to claim 1 or 2, wherein a mesoporous carbon framework having a hexagonal or cubic structure is provided with fine crystals of graphite (graphite) on the order of several nanometers. フレームワークの壁の厚さが2〜9nmであることを特徴とする請求項1〜3のいずれかに記載の二次電池。 The thickness of the wall of a framework is 2-9 nm, The secondary battery in any one of Claims 1-3 characterized by the above-mentioned. 表面積が600〜1200m/gであることを特徴とする請求項1〜4のいずれかに記載の二次電池。 5. The secondary battery according to claim 1, wherein the surface area is 600 to 1200 m 2 / g. 細孔の体積が0.7〜1.2cm/gであることを特徴とする請求項1〜5のいずれかに記載の二次電池。 The secondary battery according to claim 1, wherein the volume of the pore is 0.7 to 1.2 cm 3 / g. 4〜6サイクルの初期充・放電サイクル後に、高可逆容量(Li: x=2.0〜4.0)を有していることを特徴とする請求項1〜6のいずれかに記載の二次電池。 It has a high reversible capacity (Li x C 6 : x = 2.0 to 4.0) after 4 to 6 cycles of initial charge / discharge cycles. The secondary battery as described. 最初のインタカーレショウンにおいて、高い充・放電容量(Li: x=6.0〜10)を有することを特徴とする請求項1〜7のいずれかに記載の二次電池。 The secondary battery according to claim 1, wherein the secondary battery has a high charge / discharge capacity (Li x C 6 : x = 6.0 to 10) in the first intercalation. 5〜6サイクルの初期充・放電サイクル除き、高可逆率 (r>90%)を有していることを特徴とする請求項1〜8のいずれかに記載の二次電池。 9. The secondary battery according to claim 1, wherein the secondary battery has a high reversibility rate (r> 90%) except for 5 to 6 cycles of initial charge / discharge cycles. リチウム二次電池であることを特徴とする請求項1〜9のいずれかに記載の二次電池。 The secondary battery according to claim 1, wherein the secondary battery is a lithium secondary battery. 3次元的なシリカなどのメソポーラス酸化物をテンプレートとして、砂糖などの有機物質をメソポーラスシリカの細孔に充填し、不活性雰囲気で炭化させ、その後フッ酸でメソポーラスシリカを除去することを特徴とするメソポーラスカーボンからなる電極で構成された二次電池の製造方法。 It is characterized in that mesoporous oxides such as three-dimensional silica are used as templates, organic substances such as sugar are filled in pores of mesoporous silica, carbonized in an inert atmosphere, and then mesoporous silica is removed with hydrofluoric acid. A method for producing a secondary battery comprising electrodes made of mesoporous carbon. 3次元的なシリカなどのメソポーラス酸化物をテンプレートとして、砂糖などの有機物質をメソポーラスシリカの細孔に充填し、不活性雰囲気で炭化させ、その後フッ酸でメソポーラスシリカを除去することを特徴とする請求項1〜10のいずれかに記載のメソポーラスカーボンからなる電極で構成された二次電池の製造方法。
A mesoporous oxide such as three-dimensional silica is used as a template, an organic substance such as sugar is filled in the pores of mesoporous silica, carbonized in an inert atmosphere, and then the mesoporous silica is removed with hydrofluoric acid. The manufacturing method of the secondary battery comprised with the electrode which consists of mesoporous carbon in any one of Claims 1-10.
JP2003400949A 2003-12-01 2003-12-01 Secondary battery and manufacturing method thereof Expired - Lifetime JP4048243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400949A JP4048243B2 (en) 2003-12-01 2003-12-01 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400949A JP4048243B2 (en) 2003-12-01 2003-12-01 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005166325A true JP2005166325A (en) 2005-06-23
JP4048243B2 JP4048243B2 (en) 2008-02-20

Family

ID=34725019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400949A Expired - Lifetime JP4048243B2 (en) 2003-12-01 2003-12-01 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4048243B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
WO2007126118A1 (en) * 2006-05-02 2007-11-08 Fumio Kurosaki Macroporous carbon material and mesoporous carbon material produced by using wood material as raw material, method for production of the carbon materials, porous metal carbon material, and method for production of the porous metal carbon material
JP2008013394A (en) * 2006-07-05 2008-01-24 Daido Metal Co Ltd Activated carbon and its manufacturing method
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
EP2105985A1 (en) * 2008-03-25 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Carbon Material for Negative Electrode, Electric Storage Device, and Product Having Mounted Thereon Electric Storage Device
CN101931077A (en) * 2010-05-31 2010-12-29 长沙星城微晶石墨有限公司 Anode material for lithium-ion battery and preparation method
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2016515287A (en) * 2013-03-04 2016-05-26 セラマテック・インク Alkali metal insertion materials as electrodes in electrolysis cells.
JP2019512157A (en) * 2016-02-23 2019-05-09 マックスウェル テクノロジーズ インコーポレイテッド Mixture of elemental metal and carbon for energy storage
US10355305B2 (en) 2012-01-16 2019-07-16 Enlighten Innovations Inc. Alkali metal intercalation material as an electrode in an electrolytic cell
US11888108B2 (en) 2017-02-21 2024-01-30 Tesla, Inc. Prelithiated hybridized energy storage device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
WO2007126118A1 (en) * 2006-05-02 2007-11-08 Fumio Kurosaki Macroporous carbon material and mesoporous carbon material produced by using wood material as raw material, method for production of the carbon materials, porous metal carbon material, and method for production of the porous metal carbon material
JP5094712B2 (en) * 2006-05-02 2012-12-12 株式会社和賀組 Macroporous carbon material and mesoporous carbon material made of wood as raw material and method for producing the same, and porous metal carbon material and method for producing the same
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
JP2008013394A (en) * 2006-07-05 2008-01-24 Daido Metal Co Ltd Activated carbon and its manufacturing method
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
JP2008162821A (en) * 2006-12-27 2008-07-17 Tokyo Institute Of Technology Carbon composite material and its manufacturing method
EP2105985A1 (en) * 2008-03-25 2009-09-30 Fuji Jukogyo Kabushiki Kaisha Carbon Material for Negative Electrode, Electric Storage Device, and Product Having Mounted Thereon Electric Storage Device
CN101931077B (en) * 2010-05-31 2012-10-03 长沙星城微晶石墨有限公司 Anode material for lithium-ion battery and preparation method
CN101931077A (en) * 2010-05-31 2010-12-29 长沙星城微晶石墨有限公司 Anode material for lithium-ion battery and preparation method
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
US9368796B2 (en) 2011-10-21 2016-06-14 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery
US10355305B2 (en) 2012-01-16 2019-07-16 Enlighten Innovations Inc. Alkali metal intercalation material as an electrode in an electrolytic cell
JP2016515287A (en) * 2013-03-04 2016-05-26 セラマテック・インク Alkali metal insertion materials as electrodes in electrolysis cells.
JP2019512157A (en) * 2016-02-23 2019-05-09 マックスウェル テクノロジーズ インコーポレイテッド Mixture of elemental metal and carbon for energy storage
US11527747B2 (en) 2016-02-23 2022-12-13 Tesla, Inc. Elemental metal and carbon mixtures for energy storage devices
JP7227766B2 (en) 2016-02-23 2023-02-22 テスラ・インコーポレーテッド Elemental metal and carbon mixtures for energy storage
US11901549B2 (en) 2016-02-23 2024-02-13 Tesla, Inc. Elemental metal and carbon mixtures for energy storage devices
US11888108B2 (en) 2017-02-21 2024-01-30 Tesla, Inc. Prelithiated hybridized energy storage device

Also Published As

Publication number Publication date
JP4048243B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
Forouzandeh et al. Two-dimensional (2D) electrode materials for supercapacitors
Xu et al. Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life
Li et al. Three-dimensional nanohybrids of Mn 3 O 4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries
Zuo et al. Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes
Pumera Graphene-based nanomaterials for energy storage
Wang et al. Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
Zhang et al. Supercapacitors based on reduced graphene oxide nanofibers supported Ni (OH) 2 nanoplates with enhanced electrochemical performance
Liang et al. Graphene-based electrode materials for rechargeable lithium batteries
Moosavifard et al. Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors
Lahiri et al. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper
Liu et al. A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries
Guo et al. Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries
Bai et al. A large-scale, green route to synthesize of leaf-like mesoporous CuO as high-performance anode materials for lithium ion batteries
Aref et al. Bimodal porous carbon cathode and prelithiated coalesced carbon onion anode for ultrahigh power energy efficient lithium ion capacitors
Kumar et al. Carbonaceous anode materials for lithium-ion batteries-the road ahead
CN104272506A (en) Sulfur-containing composite for lithium-sulfur battery, the electrode material and lithium-sulfur battery comprising said composite
Zhang et al. Facile microemulsion synthesis of porous CuO nanosphere film and its application in lithium ion batteries
Thomas et al. Sodium electrochemical insertion mechanisms in various carbon fibres
JP4048243B2 (en) Secondary battery and manufacturing method thereof
Du et al. Template-free preparation of hierarchical porous carbon nanosheets for Lithium–sulfur battery
Guo et al. Topotactic conversion-derived Li 4 Ti 5 O 12–rutile TiO 2 hybrid nanowire array for high-performance lithium ion full cells
Zaw et al. Clay-assisted hierarchical growth of metal-telluride nanostructures as an anode material for hybrid supercapacitors
JP7433907B2 (en) Polyvalent metal ion battery and manufacturing method
Tian et al. A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage
Li et al. Interpenetrating framework with three-dimensionally ordered macroporous carbon substrates and well-dispersed Co3O4 nanocrystals for supercapacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Ref document number: 4048243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term