JP2005164554A - Gas sensor and its manufacturing method - Google Patents

Gas sensor and its manufacturing method Download PDF

Info

Publication number
JP2005164554A
JP2005164554A JP2003407823A JP2003407823A JP2005164554A JP 2005164554 A JP2005164554 A JP 2005164554A JP 2003407823 A JP2003407823 A JP 2003407823A JP 2003407823 A JP2003407823 A JP 2003407823A JP 2005164554 A JP2005164554 A JP 2005164554A
Authority
JP
Japan
Prior art keywords
comb
teeth
comb teeth
gas sensor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003407823A
Other languages
Japanese (ja)
Other versions
JP4068552B2 (en
Inventor
Hiroyuki Nishiyama
寛幸 西山
Shiro Kakimoto
志郎 柿元
Satoshi Sugaya
聡 菅谷
Hitoshi Yokoi
等 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003407823A priority Critical patent/JP4068552B2/en
Publication of JP2005164554A publication Critical patent/JP2005164554A/en
Application granted granted Critical
Publication of JP4068552B2 publication Critical patent/JP4068552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor capable of realizing preferably-shaped comb teeth, and showing excellent performance, and provide its manufacturing method. <P>SOLUTION: A pair of comb tooth-shaped electrodes 11, 13 are equipped with a plurality of lengthy comb teeth 31 arranged in parallel along the arrow Y direction, and screen printing is performed along the longitudinal direction (arrow Y direction) of the comb teeth 31. Especially, the dimension (distance in the arrow Y direction) of the width of the clearance 43 between each comb tooth 31 is approximately constant when measured at any position and has little dispersion, and the standard deviation to a mean value of the dimension of the width of the clearance 43 between each comb tooth 31 is ≤2%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、インピーダンス変化式(抵抗変化式も含む)や静電容量式等の検知方式により、被検知ガス中、例えば、排ガス中の排煙ダクト中の特定ガスの濃度、湿度等を検知するために用いられるガスセンサに関する。この種のガスセンサとして、例えば、アンモニアセンサは、内燃機関の排ガス中のアンモニア濃度を測定するために用いられ、特に、尿素を添加してNOxを浄化するNOx選択還元システムに好適に使用される。   The present invention detects the concentration, humidity, and the like of a specific gas in a gas to be detected, for example, a flue gas duct in exhaust gas, by a detection method such as an impedance change type (including a resistance change type) or a capacitance type. The present invention relates to a gas sensor used for the purpose. As this type of gas sensor, for example, an ammonia sensor is used to measure the ammonia concentration in the exhaust gas of an internal combustion engine, and is particularly preferably used in a NOx selective reduction system that purifies NOx by adding urea.

ガスセンサとして、基板上に一対の櫛歯電極を形成し、この櫛歯電極に接するように感応層を形成したガスセンサが知られている。例えば引用文献1に、櫛歯電極を用いたアンモニアセンサが開示されている。
米国特許第6069013号明細書 (第3頁、第2a図)
As a gas sensor, there is known a gas sensor in which a pair of comb electrodes are formed on a substrate and a sensitive layer is formed so as to be in contact with the comb electrodes. For example, Cited Document 1 discloses an ammonia sensor using comb electrodes.
US Pat. No. 6,690,913 (page 3, FIG. 2a)

しかしながら、前記特許文献1には、複数の櫛歯が互いに対向するように配置された一般的な櫛歯電極の記載はあるものの、櫛歯電極の詳しい形態やその形成方法に関しての開示はなく、実用上では必ずしも十分ではない。   However, in Patent Document 1, although there is a description of a general comb electrode in which a plurality of comb teeth are arranged to face each other, there is no disclosure regarding a detailed form of the comb electrode and a method for forming the comb electrode, In practice, this is not always sufficient.

具体的には、図10に示す様に、スクリーン印刷によって、支持基板100上に櫛歯電極101、103を形成する際に、印刷方向が長尺の櫛歯105の長手方向と直交する方向(矢印Y方向)となるように導体ペーストを印刷すると、図11に示す様に、にじみ(従来例1)やかすれ(従来例2)によって、所定形状の櫛歯105を実現できないという問題があった。   Specifically, as shown in FIG. 10, when the comb electrodes 101 and 103 are formed on the support substrate 100 by screen printing, the direction in which the printing direction is orthogonal to the longitudinal direction of the long comb teeth 105 ( When the conductor paste is printed so as to be in the direction of the arrow Y, as shown in FIG. 11, there is a problem that comb teeth 105 having a predetermined shape cannot be realized due to blurring (conventional example 1) or blurring (conventional example 2). .

つまり、長尺の櫛歯105に対して、その長手方向と直交する方向に印刷を行うので、形成される櫛歯105の形状が崩れたりすることがあり、それによって、にじみやかすれが生じていた。   In other words, since printing is performed on the long comb teeth 105 in a direction perpendicular to the longitudinal direction, the shape of the comb teeth 105 formed may be broken, thereby causing blurring or blurring. It was.

そして、櫛歯105ににじみがあると短絡が発生する可能性があり、また、かすれがあると断線が発生する可能性があるので、その対策が望まれている。
特に、抵抗変化やインピーダンス変化によってガス濃度を検知するガスセンサでは、電極と感応層との構成状態(特に境界部分の形状や面積)が、直接検知精度に影響を及ぼすことになるため、電極の形成が非常に重要な要素となる。
If the comb teeth 105 are blurred, a short circuit may occur, and if there is a blur, disconnection may occur. Therefore, a countermeasure is desired.
In particular, in a gas sensor that detects gas concentration by resistance change or impedance change, the configuration state of the electrode and the sensitive layer (especially the shape and area of the boundary portion) directly affects the detection accuracy. Is a very important factor.

本発明は、前記課題を解決するためになされたものであり、好ましい形状の櫛歯を実現でき、優れた性能を発揮できるガスセンサ及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas sensor that can realize a comb having a preferable shape and exhibit excellent performance, and a method for manufacturing the same.

(1)請求項1の発明は、支持基板(例えば絶縁基板)上に厚膜印刷(例えばスクリーン印刷)により形成され、互いに対向する長尺の櫛歯を有する一対の櫛歯電極と、該一対の櫛歯電極に接して設けられた感応部と、を有するガスセンサにおいて、前記櫛歯電極のうちの一対の櫛歯について、該櫛歯の長手方向と直交する方向の櫛歯間距離の平均値に対する標準偏差が2%以下であることを特徴とするガスセンサを要旨とする。   (1) The invention of claim 1 is a pair of comb electrodes formed by thick film printing (for example, screen printing) on a support substrate (for example, insulating substrate) and having long comb teeth facing each other, and the pair In the gas sensor having a sensitive portion provided in contact with the comb-teeth electrode, an average value of the inter-combination distance in a direction perpendicular to the longitudinal direction of the comb-teeth for the pair of comb-teeth of the comb-teeth electrode The gist of the present invention is a gas sensor having a standard deviation of 2% or less.

本発明では、櫛歯の長手方向と直交する方向の櫛歯間距離の平均値に対する標準偏差が2%以下であるので、対向する一対の櫛歯間の距離のばらつきが少なく、どの位置で測定しても櫛歯間の距離はほぼ一定である。つまり、形成された櫛歯には、にじみやかすれがなく、その間隔はほぼ一定であるので、短絡や断線が発生する可能性が極めて低いという効果がある。   In the present invention, since the standard deviation with respect to the average value of the distance between the comb teeth in the direction orthogonal to the longitudinal direction of the comb teeth is 2% or less, there is little variation in the distance between the pair of opposing comb teeth, and measurement is performed at any position. Even so, the distance between the comb teeth is almost constant. That is, the formed comb teeth are free from blurring or blurring, and the distance between the comb teeth is substantially constant, so that the possibility of occurrence of a short circuit or disconnection is extremely low.

特に、抵抗変化やインピーダンス変化によってガス濃度を検知するガスセンサに本発明を適用する場合には、電極の形状(従って電極と感応部との構造部分の形状)が崩れていない好ましい状態であるので、ガスセンサの検知精度が高いという効果がある。   In particular, when the present invention is applied to a gas sensor that detects a gas concentration by resistance change or impedance change, since the shape of the electrode (and thus the shape of the structure portion of the electrode and the sensitive portion) is in a preferable state, There is an effect that the detection accuracy of the gas sensor is high.

尚、前記互いに対向する長尺の櫛歯とは、長尺の櫛歯の長辺側同士が対向して配置された櫛歯を示す。また、櫛歯としては、櫛歯電極のうち、櫛歯状に伸びて互いに入り込む様に配置された櫛歯に限らず、他の櫛歯に対して互いに対向する長尺部分であって、他の櫛歯と同様な機能を有する部分が挙げられる(例えば、平行に配置される複数の櫛歯状の櫛歯より外側に配置された長尺部分)。   The long comb teeth facing each other indicate comb teeth arranged such that the long sides of the long comb teeth face each other. Further, the comb teeth are not limited to comb teeth that extend in a comb-teeth shape and are inserted into each other among comb-teeth electrodes. A portion having the same function as that of the comb teeth (for example, a long portion disposed outside a plurality of comb teeth disposed in parallel).

(2)請求項2の発明は、前記櫛歯電極が、Au、Pt、Pd、Ir、Rh、Agから選ばれる1種以上の金属を、50重量%以上含有することを特徴とする前記請求項1に記載のガスセンサを要旨とする。   (2) The invention of claim 2 is characterized in that the comb electrode contains 50% by weight or more of one or more metals selected from Au, Pt, Pd, Ir, Rh, and Ag. The gist of the gas sensor according to Item 1 is used.

本発明は、櫛歯電極の好ましい組成を例示したものであり、この組成の櫛歯電極を用いることにより、測定対象のガスの濃度等を精度良く検知することができる。
(3)請求項3の発明は、支持基板(例えば絶縁基板)上に厚膜印刷(例えばスクリーン印刷)により形成され、互いに対向する長尺の櫛歯を有する一対の櫛歯電極と、該一対の櫛歯電極に接して設けられた感応部と、を有するガスセンサの製造方法において、 前記櫛歯の長手方向に沿って、前記櫛歯電極となる導体ペーストを厚膜印刷することを特徴とするガスセンサの製造方法。
The present invention exemplifies a preferred composition of the comb electrode, and by using the comb electrode of this composition, the concentration of the gas to be measured can be detected with high accuracy.
(3) The invention of claim 3 is a pair of comb electrodes formed by thick film printing (for example, screen printing) on a support substrate (for example, insulating substrate) and having long comb teeth facing each other, and the pair And a sensitive part provided in contact with the comb-teeth electrode, wherein the conductor paste serving as the comb-teeth electrode is thick-film printed along the longitudinal direction of the comb tooth A method for manufacturing a gas sensor.

本発明では、櫛歯の長手方向に導電ペーストを厚膜印刷するので、櫛歯の形状が崩れることなく、所望の形状(例えば印刷方向と垂直な断面形状がシャープな矩形状)とすることができ、にじみやかすれの発生を防止することができる。それにより、櫛歯間の間隔はほぼ一定となるので、短絡や断線が発生する可能性が極めて低いという効果がある。   In the present invention, since the conductive paste is printed thick in the longitudinal direction of the comb teeth, the desired shape (for example, a rectangular shape having a sharp cross-sectional shape perpendicular to the printing direction) can be obtained without breaking the comb teeth shape. It is possible to prevent bleeding and blurring. As a result, the interval between the comb teeth is substantially constant, and thus there is an effect that the possibility of occurrence of a short circuit or disconnection is extremely low.

特に、抵抗変化やインピーダンス変化によってガス濃度を検知するガスセンサに本発明を適用する場合には、電極の形状(従って電極と感応部との構造部分の形状)が崩れていない好ましい状態となるので、ガスセンサの検知精度が高いという効果がある。   In particular, when the present invention is applied to a gas sensor that detects a gas concentration by resistance change or impedance change, since the electrode shape (and hence the shape of the structure portion of the electrode and the sensitive portion) is not broken, There is an effect that the detection accuracy of the gas sensor is high.

(4)請求項4の発明は、前記請求項1又は2に記載のガスセンサを製造することを特徴とする前記請求項3に記載のガスセンサの製造方法を要旨とする。
本発明により、櫛歯の長手方向と直交する方向の櫛歯間距離の平均値に対する標準偏差が2%以下のガスセンサを、容易に製造することができる。
(4) The invention of claim 4 is characterized in that the gas sensor according to claim 1 or 2 is manufactured, and the manufacturing method of the gas sensor according to claim 3 is summarized.
According to the present invention, it is possible to easily manufacture a gas sensor having a standard deviation of 2% or less with respect to the average value of the inter-comb distance in the direction orthogonal to the longitudinal direction of the comb teeth.

以下に、本発明のガスセンサ及びその製造方法を実施するための最良の形態(実施例)について説明する。   Hereinafter, the best mode (Example) for carrying out the gas sensor and the manufacturing method thereof of the present invention will be described.

ここでは、ガスセンサとしてアンモニアセンサを例に挙げて説明する。
a)まず、本実施例のアンモニアセンサの構成について説明する。尚、図1はアンモニアセンサの主要部分及びその分解した状態を示す斜視図である。
Here, an ammonia sensor will be described as an example of the gas sensor.
a) First, the configuration of the ammonia sensor of this embodiment will be described. FIG. 1 is a perspective view showing the main part of the ammonia sensor and its disassembled state.

図1に示す様に、本実施例のアンモニアセンサ1は、アンモニア濃度に応じてインピーダンス(Z)が変化する感ガス材料を用いたアンモニアセンサ1である。つまり、本実施例では、交流を印加したときに、アンモニア濃度に応じて感ガス材料のインピーダンス(Z)が変化するので、そのインピーダンスの変化に基づいてアンモニア濃度を検知する。   As shown in FIG. 1, the ammonia sensor 1 of the present embodiment is an ammonia sensor 1 using a gas-sensitive material whose impedance (Z) changes according to the ammonia concentration. That is, in the present embodiment, when alternating current is applied, the impedance (Z) of the gas sensitive material changes according to the ammonia concentration, so the ammonia concentration is detected based on the change in the impedance.

前記アンモニアセンサ1の要部を構成する素子部3は、絶縁基板5上に、以下の様に、順次各構成要素が積層されたものである。尚、各構成要素が積層された絶縁基板5をセンサ素子部材6と称し、図1ではその先端側のみを示している。   The element part 3 constituting the main part of the ammonia sensor 1 is formed by sequentially laminating each component on the insulating substrate 5 as follows. The insulating substrate 5 on which the respective constituent elements are stacked is referred to as a sensor element member 6 and only the tip side is shown in FIG.

つまり、アルミナ製の絶縁基板5上には、白金を主成分とする一対のリード部7、9が配置され、各リード部7、9には、一対の櫛歯電極11、13がそれぞれ接続され、櫛歯電極11、13の上には、櫛歯電極11、13の全てを覆うように前記感ガス材料からなる感応部(感応層)15が配置されている。   That is, on the insulating substrate 5 made of alumina, a pair of lead portions 7 and 9 mainly composed of platinum are arranged, and a pair of comb electrodes 11 and 13 are connected to the lead portions 7 and 9, respectively. A sensitive portion (sensitive layer) 15 made of the gas-sensitive material is disposed on the comb electrodes 11 and 13 so as to cover all the comb electrodes 11 and 13.

尚、絶縁基板5には、図示しないが、素子部3を加熱するヒータと、測温抵抗体である温度センサとが内蔵されている。このヒータは主として白金からなり、温度センサも主として白金からなる。   Although not shown, the insulating substrate 5 includes a heater that heats the element unit 3 and a temperature sensor that is a resistance temperature detector. This heater is mainly made of platinum, and the temperature sensor is also mainly made of platinum.

以下、各構成について、図2に基づいて説明する。尚、図2は、絶縁基板5上に形成された状態の櫛歯電極11、13を示す説明図である。
図2に示す様に、一対の櫛歯電極11、13は、長尺の絶縁基板5上に、絶縁基板5の長手方向(同図矢印Y方向)に沿って、厚膜印刷(スクリーン印刷)により形成された電極であり、櫛歯電極11、13の櫛歯23、25、27、29(31と総称する)が互いに入り込む様に、且つ、対向して櫛歯状に形成されている。
Hereinafter, each configuration will be described with reference to FIG. FIG. 2 is an explanatory diagram showing the comb electrodes 11 and 13 formed on the insulating substrate 5.
As shown in FIG. 2, the pair of comb electrodes 11 and 13 are formed on the long insulating substrate 5 along the longitudinal direction of the insulating substrate 5 (the arrow Y direction in the figure) by thick film printing (screen printing). The comb teeth 23, 25, 27, 29 (generally referred to as 31) of the comb-tooth electrodes 11, 13 are formed in a comb-tooth shape so as to enter each other.

つまり、一対の櫛歯電極11、13は、矢印Y方向に沿って平行に配置された複数の長尺の櫛歯31を備えており、これらの櫛歯31のそれぞれの長手方向(矢印Y方向)に沿って、スクリーン印刷が行われることにより形成されている。従って、本実施例では、絶縁基板5の長手方向と、各櫛歯31の長手方向と、スクリーン印刷の印刷方向とが、同じく矢印Y方向であり一致している。   That is, the pair of comb-teeth electrodes 11 and 13 includes a plurality of long comb teeth 31 arranged in parallel along the arrow Y direction, and each of the comb teeth 31 has a longitudinal direction (arrow Y direction). ), Screen printing is performed. Therefore, in this embodiment, the longitudinal direction of the insulating substrate 5, the longitudinal direction of each comb tooth 31, and the printing direction of screen printing are also in the arrow Y direction and coincide with each other.

詳しくは、前記一対の櫛歯電極11、13のうち、第1の櫛歯電極11には、矢印Y方向に沿って、短冊状の第1及び第2の櫛歯23、27が平行に設けられ、それらは、矢印Y方向と直交する方向(矢印X方向)に沿って伸びる短冊状の第1の連結部33にて連結されている。一方、第2の櫛歯電極13には、矢印Y方向に沿って、短冊状の第3及び第4の櫛歯25、29が平行に設けられ、それらは、矢印X方向に沿って伸びる短冊状の第2の連結部35にて連結されている。   Specifically, among the pair of comb electrodes 11 and 13, the first comb electrode 11 is provided with strip-shaped first and second comb teeth 23 and 27 in parallel along the arrow Y direction. They are connected by a strip-shaped first connecting portion 33 extending along a direction (arrow X direction) orthogonal to the arrow Y direction. On the other hand, the second comb-teeth electrode 13 is provided with strip-shaped third and fourth comb teeth 25 and 29 in parallel along the arrow Y direction, and these strips extend along the arrow X direction. Are connected by a second connecting portion 35 having a shape.

そして、第1の櫛歯電極11である第1の櫛歯23と第2の櫛歯27との間に、第2の櫛歯電極13である第3の櫛歯25が入り込む様に、また、第2の櫛歯電極13である第3の櫛歯25と第4の櫛歯29との間に、第1の櫛歯電極11である第2の櫛歯27が入り込む様に、且つ、各櫛歯31が対向する様に配置されている。各櫛歯31間には、第1〜第3の間隙37、39、41(43と総称する)が存在する。本実施例において、各櫛歯31の幅は、どの位置でもほぼ一定(例えば、100μm)であり、各間隙43の幅もほぼ一定(例えば、100μm)である。尚、各櫛歯31間の各間隙43が、両櫛歯電極11、13の間の間隙である。   Then, the third comb tooth 25, which is the second comb electrode 13, enters between the first comb tooth 23, which is the first comb tooth electrode 11, and the second comb tooth 27, and The second comb tooth 27, which is the first comb electrode 11, enters between the third comb tooth 25, which is the second comb tooth electrode 13, and the fourth comb tooth 29, and It arrange | positions so that each comb tooth 31 may oppose. Between each comb tooth 31, there are first to third gaps 37, 39, 41 (collectively referred to as 43). In this embodiment, the width of each comb tooth 31 is substantially constant (for example, 100 μm) at any position, and the width of each gap 43 is also substantially constant (for example, 100 μm). Each gap 43 between each comb tooth 31 is a gap between both comb electrodes 11 and 13.

特に本実施例では、各櫛歯31間の各間隙43の幅の寸法(矢印X方向の距離)は、どの位置で測定してもほぼ一定でバラツキが少ない。即ち、各櫛歯31間の各間隙43の幅の寸法の平均値(例えば、102.75μm)に対する標準偏差は2%以下(例えば1.75%)である。尚、ここでは、前記標準偏差に関しては、第1〜第3の各間隙43全体についてだけでなく、第1〜第3の各間隙43のいずれか1つについても、2%以下である。   In particular, in this embodiment, the width dimension (distance in the arrow X direction) of each gap 43 between each comb tooth 31 is substantially constant and has little variation regardless of the position measured. That is, the standard deviation with respect to the average value of the widths of the gaps 43 between the comb teeth 31 (for example, 102.75 μm) is 2% or less (for example, 1.75%). Here, the standard deviation is 2% or less not only for the entire first to third gaps 43 but also for any one of the first to third gaps 43.

また、前記櫛歯電極11、13は、膜厚約10〜30μmの電極であり、少なくともPt、Au、Pd、Ir、Rh、Agから選ばれる1種以上の金属を、50重量%以上含有する構成を採用できる。好ましくは、櫛歯電極11、13は、主として、AuとPtとの合金もしくは混合物からなり、AuとPtの合計100重量%としたときに、Auが1〜99重量%である。   The comb electrodes 11 and 13 are electrodes having a film thickness of about 10 to 30 μm, and contain at least 50% by weight of at least one metal selected from Pt, Au, Pd, Ir, Rh, and Ag. Configuration can be adopted. Preferably, the comb electrodes 11 and 13 are mainly made of an alloy or mixture of Au and Pt, and Au is 1 to 99% by weight when the total of Au and Pt is 100% by weight.

前記感応層15は、厚膜印刷(スクリーン印刷)により形成された膜厚約30μmの多孔質の感ガス材料、即ち固体超強酸物質からなる。この固体超強酸物質は、周囲の雰囲気のアンモニア濃度が変化すると、そのインピーダンス(又は抵抗)が変化する性質を有する物質である。   The sensitive layer 15 is made of a porous gas-sensitive material having a thickness of about 30 μm formed by thick film printing (screen printing), that is, a solid superacid material. This solid superacid substance is a substance having a property that its impedance (or resistance) changes when the ammonia concentration in the surrounding atmosphere changes.

具体的には、感応層15は、Fe23、TiO2、ZrO2、HfO2、SnO2、Al23、SiO2等から選ばれる酸化物を主成分(含有量:99〜75mol%)とし、少なくともSO4 2-、PO4 3-、WO3、MoO3、B23等から選ばれる副成分(含有量:1〜25mol%)を含むものである。 Specifically, the sensitive layer 15 is mainly composed of an oxide selected from Fe 2 O 3 , TiO 2 , ZrO 2 , HfO 2 , SnO 2 , Al 2 O 3 , SiO 2 and the like (content: 99 to 75 mol). %)) And at least a secondary component (content: 1 to 25 mol%) selected from SO 4 2− , PO 4 3− , WO 3 , MoO 3 , B 2 O 3 and the like.

尚、カーボン等のデポジットなどが櫛歯電極11、13や感応層15に付着することを防止するために、感応層15の表面全体を覆うように、厚膜印刷により形成された膜厚約30μmの保護層を形成しても良い。この保護層としては、例えば、主としてマグネシアアルミナスピネル(MgAl24)からなる多孔質の層が挙げられる。 In order to prevent deposits such as carbon from adhering to the comb electrodes 11 and 13 and the sensitive layer 15, the film thickness formed by thick film printing to cover the entire surface of the sensitive layer 15 is about 30 μm. A protective layer may be formed. Examples of the protective layer include a porous layer mainly composed of magnesia alumina spinel (MgAl 2 O 4 ).

b)次に、本実施例のアンモニアセンサ1(特にセンサ素子部材6)の製造方法について説明する。
(1)まず、絶縁基板5とリード部7、9とを同時に形成する。
b) Next, the manufacturing method of the ammonia sensor 1 (especially sensor element member 6) of a present Example is demonstrated.
(1) First, the insulating substrate 5 and the lead portions 7 and 9 are formed simultaneously.

具体的には、Al23のグリーンシート上に、リード部7、9の形状の開口を有するマスク(図示せず)を用い、Pt系ペーストを印刷し、120℃にて5分間乾燥した後、400℃にて4時間脱脂し、1520℃にて2時間焼成して、表面にリード部7、9を有した絶縁基板5を形成する。 Specifically, a Pt paste was printed on an Al 2 O 3 green sheet using a mask (not shown) having openings in the shape of lead portions 7 and 9, and dried at 120 ° C. for 5 minutes. Thereafter, degreasing is performed at 400 ° C. for 4 hours and baking is performed at 1520 ° C. for 2 hours to form the insulating substrate 5 having the lead portions 7 and 9 on the surface.

一方、櫛歯電極11、13を形成するために、櫛歯電極11、13の形状の開口部を有するマスク(図示せず)を用い、リード部7、9の端部と櫛歯電極11、13の端部とを重ねる様にして、粘度200〜300Pa・sの99Au−1Ptペーストを、前記矢印Y方向に沿ってスクリーン印刷し、120℃にて1時間乾燥し、1000℃で1時間焼成する。   On the other hand, in order to form the comb electrodes 11, 13, a mask (not shown) having openings in the shape of the comb electrodes 11, 13 is used and the ends of the lead portions 7, 9 and the comb electrodes 11, A 99Au-1Pt paste having a viscosity of 200 to 300 Pa · s is screen-printed along the arrow Y direction, and dried at 120 ° C. for 1 hour, and baked at 1000 ° C. for 1 hour. To do.

つまり、上述した様に、各櫛歯31のシャープな矩形形状を保持するために、櫛歯電極11、13の印刷方向は、各櫛歯31の長手方向と一致している。
(2)次に、櫛歯電極11、13を覆って、感応層15を形成する。
That is, as described above, in order to maintain the sharp rectangular shape of each comb tooth 31, the printing direction of the comb electrodes 11, 13 coincides with the longitudinal direction of each comb tooth 31.
(2) Next, the sensitive layer 15 is formed so as to cover the comb electrodes 11 and 13.

具体的には、オキシ硝酸ジルコニウムをH2Oに溶解させ、アンモニア水を加えてpH8に調整する。得られた水酸化ジルコニウムを吸引濾過し、洗浄する。その後、乾燥機にて、110℃で24時間乾燥後、電気炉にて、400℃で24時間焼成し、ZrO2粉末を得る。 Specifically, zirconium oxynitrate is dissolved in H 2 O and adjusted to pH 8 by adding ammonia water. The obtained zirconium hydroxide is suction filtered and washed. Then, after drying for 24 hours at 110 ° C. in a dryer, firing at 400 ° C. for 24 hours in an electric furnace to obtain ZrO 2 powder.

一方、タングステン酸アンモニウムをH2Oに溶解させ、アンモニア水を加えて、pH10〜11に調整された溶液(W溶液)を得る。
そして、前記の方法にて得られたZrO2粉末とW溶液とを用い、W量とZrO2量とを調整して、即ち、W量がWO3換算で(WO3量及びZrO2量の合計量を100重量%としたときに)2〜40重量%の範囲の所定値(例えば10重量%)となるように調整して、るつぼに入れる。その後、乾燥機にて、120℃で24時間乾燥後、電気炉にて、800℃で5時間焼成し、目的のWを含有したZrO2の粉末を得る。
On the other hand, ammonium tungstate is dissolved in H 2 O, and aqueous ammonia is added to obtain a solution (W solution) adjusted to pH 10-11.
Then, using the ZrO 2 powder and W solution obtained by the method as described above, by adjusting the W content and the ZrO 2 amount, i.e., the W content is in terms of WO 3 (WO 3 weight and ZrO 2 amount of Adjust to a predetermined value (for example, 10% by weight) in the range of 2 to 40% by weight (when the total amount is 100% by weight) and place in a crucible. Then, after drying for 24 hours at 120 ° C. in a dryer, baking is performed at 800 ° C. for 5 hours in an electric furnace to obtain ZrO 2 powder containing the target W.

次に、乳鉢に、前記主成分及び副成分からなる粉末(Wを含有したZrO2粉末)と有機溶剤と分散剤とを入れ、らいかい機で4時間分散混合した後、バインダーを添加し、更に4時間湿式混合を行ってスラリーとし、粘度調整を行ってペーストとする。 Next, in a mortar, the powder composed of the main component and the subcomponent (ZrO 2 powder containing W), an organic solvent, and a dispersing agent are added, and after 4 hours of dispersion mixing with a rough machine, a binder is added, Further, wet mixing is performed for 4 hours to form a slurry, and the viscosity is adjusted to obtain a paste.

そして、この感ガス材料のペーストを、前記櫛歯電極11、13を形成した絶縁基板5上にスクリーン印刷し、厚膜化する。その後、60℃で乾燥後、600℃で1時間焼成して、感ガス材料のペーストを絶縁基板5上に焼き付ける。   Then, this gas-sensitive material paste is screen-printed on the insulating substrate 5 on which the comb electrodes 11 and 13 are formed to increase the thickness. Then, after drying at 60 ° C., baking is performed at 600 ° C. for 1 hour, and a paste of the gas sensitive material is baked on the insulating substrate 5.

これにより、本実施例のアンモニアセンサ1のセンサ素子部材6が完成する。
c)次に、本実施例のアンモニアセンサ1の作用効果を説明する。
図3にアンモニアセンサ1を前記矢印X方向に破断した断面(図1のM−M’断面)を模式的に示す様に、櫛歯電極11、13間(詳しくは各櫛歯31間)で、インピーダンス変化に関与する部分は、同図のメッシュで示す有効部45、47、49(51と総称する)である。従って、センサ特性のばらつきを低減するためには、櫛歯電極11、13の膜厚や形状が重要である。
Thereby, the sensor element member 6 of the ammonia sensor 1 of the present embodiment is completed.
c) Next, the effect of the ammonia sensor 1 of the present embodiment will be described.
FIG. 3 schematically shows a cross section of the ammonia sensor 1 in the direction of the arrow X (MM ′ cross section in FIG. 1) between the comb electrodes 11 and 13 (specifically, between each comb tooth 31). The portions involved in the impedance change are effective portions 45, 47 and 49 (collectively referred to as 51) indicated by meshes in FIG. Therefore, in order to reduce variations in sensor characteristics, the film thickness and shape of the comb electrodes 11 and 13 are important.

そこで、本実施例では、上述した様に、櫛歯31の長手方向にスクリーン印刷することによって、櫛歯31の形状を所望の形状(印刷方向と垂直な断面形状がシャープな矩形状)とすることにより、好適なセンサ特性を得ることができる。   Therefore, in this embodiment, as described above, the shape of the comb teeth 31 is set to a desired shape (a rectangular shape having a sharp cross-sectional shape perpendicular to the printing direction) by screen printing in the longitudinal direction of the comb teeth 31. Thus, suitable sensor characteristics can be obtained.

具体的には、本実施例では、 櫛歯31間距離の平均値に対する標準偏差が2%以下であるので、対向する一対の櫛歯31間の距離のばらつきが少なく、どの位置で測定してもほぼ一定である。従って、形成された櫛歯31には、にじみやかすれがなく、その間隔はほぼ一定であるので、短絡や断線の発生を抑制することができる。   Specifically, in this embodiment, since the standard deviation with respect to the average value of the distance between the comb teeth 31 is 2% or less, there is little variation in the distance between the pair of opposing comb teeth 31, and measurement is performed at any position. Is almost constant. Therefore, the formed comb teeth 31 do not bleed or blur, and the interval between them is substantially constant, so that the occurrence of a short circuit or disconnection can be suppressed.

特に、本実施例の様なインピーダンス変化によってガス濃度を検知する様なアンモニアセンサ1においては、櫛歯電極11、13の形状(従って櫛歯31と感応層15との構造部分の形状)が崩れていない好ましい状態であることにより、アンモニアセンサ1の検知精度が高いという効果がある。   In particular, in the ammonia sensor 1 that detects the gas concentration by changing the impedance as in this embodiment, the shape of the comb electrodes 11 and 13 (and hence the shape of the structure portion of the comb tooth 31 and the sensitive layer 15) collapses. By being in a preferable state, there is an effect that the detection accuracy of the ammonia sensor 1 is high.

d)実験例
(実験例1)
本実験例1は、櫛歯電極の断面形状を調べたものである。
d) Experimental example (Experimental example 1)
In Experimental Example 1, the cross-sectional shape of the comb electrode is examined.

本実験例1では、本発明の範囲の実施例(本発明例)として、図4に櫛歯電極の平面形状を示す様に、前記実施例と同様な製造方法(即ち櫛歯の長手方向に印刷する方法)にて、絶縁基板上に櫛歯電極を形成した。即ち、櫛歯の長手方向と印刷方向とが一致する試料を製造した。   In Experimental Example 1, as an example within the scope of the present invention (example of the present invention), as shown in FIG. 4, the manufacturing method similar to the above example (that is, in the longitudinal direction of the comb teeth) is shown. In the printing method, comb-tooth electrodes were formed on an insulating substrate. That is, a sample in which the longitudinal direction of the comb teeth coincided with the printing direction was manufactured.

そして、その状態のアンモニアセンサに対して、櫛歯の長手方向に沿った(印刷方向と平行な)断面であるC−C’断面と、櫛歯の短手方向に沿った(印刷方向と垂直な)断面であるD−D’断面との形状を調べた、その結果を、図5に模式的に示す。   Then, with respect to the ammonia sensor in that state, a CC ′ cross section that is a cross section along the longitudinal direction of the comb teeth (parallel to the printing direction) and a short direction of the comb teeth (perpendicular to the printing direction). FIG. 5 schematically shows the result of examining the shape with the DD ′ section which is a section.

一方、本発明の範囲外の比較例として、図6に櫛歯電極の平面形状を示す様に、前記実施例と同様な製造方法(但し電極形状の違いにより印刷方向は櫛歯の短手方向)にて、絶縁基板上に櫛歯電極を形成した。即ち、櫛歯の長手方向と印刷方向とが直交する試料を製造した。   On the other hand, as a comparative example outside the scope of the present invention, as shown in FIG. 6, the manufacturing method is the same as that of the above-mentioned example as shown in the planar shape of the comb-teeth electrode. ), Comb-shaped electrodes were formed on the insulating substrate. That is, a sample in which the longitudinal direction of the comb teeth and the printing direction were orthogonal to each other was manufactured.

そして、その状態のアンモニアセンサに対して、櫛歯の長手方向に沿った(印刷方向と垂直な)断面であるA−A’断面と、櫛歯の短手方向に沿った(印刷方向と平行な)断面であるB−B’断面との形状を調べた、その結果を、図7に模式的に示す。   Then, with respect to the ammonia sensor in this state, the AA ′ cross section which is a cross section along the longitudinal direction of the comb teeth (perpendicular to the printing direction) and the short direction of the comb teeth (parallel to the printing direction). FIG. 7 schematically shows the result of examining the shape of the BB ′ cross section which is a cross section.

前記図5のC−C’断面から明らかな様に、本発明例では、櫛歯電極の櫛歯の長手方向に印刷するので、櫛歯電極の櫛歯の厚みは、印刷方向に沿ってどの部分でも、ほぼ一定である。また、同図のD−D’断面から明らかな様に、本発明例では、櫛歯の断面形状は、シャープな矩形状であり、印刷により崩れていないことが分かる。   As is clear from the CC ′ cross section of FIG. 5, in the present invention, printing is performed in the longitudinal direction of the comb teeth of the comb electrode, so that the thickness of the comb teeth of the comb electrode depends on the printing direction. Even in the part, it is almost constant. Further, as is clear from the D-D 'cross section in the figure, it can be seen that in the present invention example, the cross-sectional shape of the comb teeth is a sharp rectangular shape and is not broken by printing.

一方、前記図7のA−A’断面から明らかな様に、比較例では、櫛歯電極の櫛歯の短手方向に印刷するので、櫛歯の厚みは、印刷方向に沿って凹凸があり一定していない。また、同図のB−B’断面から明らかな様に、比較例では、櫛歯の断面形状は、(印刷の開始側の方の)角が取れた崩れた形状をしていることが分かる。   On the other hand, as is clear from the AA ′ cross section of FIG. 7, in the comparative example, printing is performed in the short direction of the comb teeth of the comb electrode, so that the thickness of the comb teeth is uneven along the printing direction. It is not constant. Further, as is clear from the BB ′ cross section of the figure, in the comparative example, it can be seen that the cross-sectional shape of the comb teeth has a broken shape (on the printing start side). .

従って、この実験例1から、本発明例は、比較例に比べて、櫛歯電極の櫛歯の形状(従って櫛歯と感応層との構造部分の形状)が崩れていない好ましい状態であり、よって、アンモニアセンサの検知精度が高くなることが分かる。
(実験例2)
本実験例2は、実際に櫛歯電極の対向する櫛歯間の幅の寸法(櫛歯間距離)を調べたものである。
Therefore, from Experimental Example 1, the present invention example is a preferable state in which the shape of the comb teeth of the comb-teeth electrode (and hence the shape of the structure portion of the comb teeth and the sensitive layer) is not collapsed compared to the comparative example. Therefore, it turns out that the detection accuracy of an ammonia sensor becomes high.
(Experimental example 2)
In this experimental example 2, the width dimension (inter-comb distance) between the comb teeth facing each other of the comb-teeth electrode was actually examined.

本実験例2では、前記実験例1と同様な本発明例及び比較例の試料(絶縁基板上に櫛歯電極を形成したもの)を製造し、実際に櫛歯間距離を測定した。
具体的には、前記図4に示す様な本発明例の試料に対して、櫛歯間距離c、dを測定した。また、前記図6に示す様な比較例の試料に対して、櫛歯間距離a、bを測定した。尚、測定位置に関しては、a〜dにおいて、それぞれランダムに20箇所にて間隙の幅の寸法を測定した。
In Experimental Example 2, samples of the present invention and comparative examples similar to Experimental Example 1 (comb electrodes formed on an insulating substrate) were manufactured, and the inter-comb distance was actually measured.
Specifically, the inter-comb distances c and d were measured for the sample of the present invention as shown in FIG. Further, intercombination distances a and b were measured for the comparative sample as shown in FIG. In addition, regarding the measurement position, the dimension of the width | variety of a gap | interval was measured at 20 places at random, respectively.

そして、各20箇所の寸法のデータの平均Avr.を求め、その標準偏差σ及び3σを算出した。その結果を、下記表1に記す。   And the average Avr. And the standard deviations σ and 3σ were calculated. The results are shown in Table 1 below.

Figure 2005164554
Figure 2005164554

この表1から、櫛歯の長尺側の間隙の寸法(本発明例のcと比較例のa)を見てみると、本発明例の櫛歯間距離cの標準偏差σ及び3σは、比較例の櫛歯間距離aの標準偏差σ及び3σよりも十分に小さく、櫛歯間距離のばらつきが小さいことが分かる。   From Table 1, when looking at the size of the gap on the long side of the comb teeth (c of the present invention example and a of the comparative example), the standard deviations σ and 3σ of the inter-comb distance c of the present invention example are: It can be seen that the standard deviations σ and 3σ of the inter-comb distance a in the comparative example are sufficiently smaller than the inter-comb distance.

特に本発明例では、対向する櫛歯においては、その櫛歯間距離cの標準偏差σ(1.80)は、平均値(102.75)の2%以下(1.75)であり、極めてばらつきが小さいことが分かる。
(実験例3)
本実験例3は、実際に櫛歯電極の櫛歯の高さを調べたものである。
Particularly, in the present invention example, in the opposing comb teeth, the standard deviation σ (1.80) of the inter-comb distance c is 2% or less (1.75) of the average value (102.75). It can be seen that the variation is small.
(Experimental example 3)
In Experimental Example 3, the height of the comb teeth of the comb electrode is actually examined.

本実験例3では、前記実験例1と同様な本発明例及び比較例の試料(絶縁基板上に櫛歯電極を形成したもの)を製造し、実際に櫛歯の高さを測定した。
具体的には、東京精密(株)製 SURFCOM/400-Dを用いて測定することにより、前記図4に示す本発明例の試料に対して、断面I、II、IIIにおける櫛歯の高さを測定した。また、前記図6に示す比較例の試料に対して、断面I、II、IIIにおける櫛歯の高さを測定した。尚、測定位置に関しては、I〜IIIにおいて、櫛歯の長手方向における位置は揃えるようにして、短手方向にランダムに20箇所にて櫛歯の高さを測定した。また、I〜IIIの配置は、櫛歯の長手方向において、櫛歯電極をほぼ4等分する位置とした。
In Experimental Example 3, samples of the present invention and comparative examples similar to Experimental Example 1 (comb electrodes formed on an insulating substrate) were manufactured, and the height of the comb teeth was actually measured.
Specifically, the height of the comb teeth in the sections I, II, and III with respect to the sample of the present invention example shown in FIG. 4 is measured by using SURFCOM / 400-D manufactured by Tokyo Seimitsu Co., Ltd. Was measured. Further, the heights of the comb teeth in the cross sections I, II and III were measured for the sample of the comparative example shown in FIG. In addition, regarding the measurement position, the height of the comb tooth was measured at 20 points at random in the short direction so that the positions in the longitudinal direction of the comb teeth were aligned in I to III. In addition, the arrangement of I to III was set at a position where the comb-teeth electrodes were divided into approximately four equal parts in the longitudinal direction of the comb teeth.

そして、I〜IIIのそれぞれについて、各20箇所の値(高さ)の平均Avr.、標準偏差σ及び3σを算出し、更にそれらの平均AAvr.を求めた。その結果を、下記表2に記す。   For each of I to III, the average Avr. The standard deviations σ and 3σ were calculated, and the average AAvr. The results are shown in Table 2 below.

Figure 2005164554
Figure 2005164554

この表2(特にAAvr.)から、本発明例の櫛歯の高さの標準偏差σ(0.31)及び3σ(0.92)は、比較例の櫛歯の高さの標準偏差σ(0.45)及び3σ(1.34)よりも十分に小さく、櫛歯の高さのばらつきが小さいことが分かる。
(実験例4)
本実験例4は、アンモニアセンサのセンサ出力の精度を調べたものである。
From this Table 2 (particularly AAvr.), The standard deviations σ (0.31) and 3σ (0.92) of the height of the comb teeth of the present invention example are the standard deviation σ ( 0.45) and 3σ (1.34) are sufficiently smaller, and it can be seen that the variation in the height of the comb teeth is small.
(Experimental example 4)
In Experimental Example 4, the accuracy of the sensor output of the ammonia sensor was examined.

本実験例4では、本発明例として、前記図4に示す櫛歯電極形状を有し且つ印刷方向が櫛歯の長手方向と一致するアンモニアセンサを20個製造した。
一方、比較例として、前記図6に示す櫛歯電極形状を有し且つ印刷方向が櫛歯の長手方向と直交するアンモニアセンサを20個製造した。
In Experimental Example 4, 20 ammonia sensors having the comb electrode shape shown in FIG. 4 and the printing direction coincided with the longitudinal direction of the comb teeth were manufactured as the present invention example.
On the other hand, as a comparative example, 20 ammonia sensors having the comb electrode shape shown in FIG. 6 and having a printing direction orthogonal to the longitudinal direction of the comb teeth were manufactured.

そして、評価装置として、モデルガス発生装置により発生したガスをアンモニアセンサで検知する構成とし、下記の測定条件を採用して、実験を行った。試験パターンとしては、200秒間隔で、(ベースガス)→(ベースガス+NH3)→(ベースガス)と切り換えた。 And it was set as the structure which detects the gas which generate | occur | produced with the model gas generator with the ammonia sensor as an evaluation apparatus, and it experimented by adopting the following measurement conditions. The test pattern was switched from (base gas) → (base gas + NH 3 ) → (base gas) at intervals of 200 seconds.

<測定条件>
ガス温 :280℃
ガス流量:18L/min
ベースガスの組成 :O2:10体積%、H2O:5体積%、CO2:5体積%、残部N2
アンモニア添加濃度:100ppm
そして、アンモニアセンサの両電極のリード部間に、所定電圧(2V)、所定の周波数(400Hz)の交流電圧を印加し、それによって両電極間に流れる電流値から、アンモニアセンサ(従って感応層)のインピーダンス(Z)を測定した。その結果を、下記表3と、図8(本発明例)及び図9(比較例)に示す。尚、両図では、インピーダンスの値が近いグラフは一部重複している。
<Measurement conditions>
Gas temperature: 280 ° C
Gas flow rate: 18L / min
Composition of base gas: O 2 : 10% by volume, H 2 O: 5% by volume, CO 2 : 5% by volume, balance N 2
Ammonia addition concentration: 100ppm
Then, an AC voltage having a predetermined voltage (2 V) and a predetermined frequency (400 Hz) is applied between the lead portions of both electrodes of the ammonia sensor, and from the current value flowing between both electrodes, the ammonia sensor (and therefore the sensitive layer). The impedance (Z) of was measured. The results are shown in Table 3 below, and FIG. 8 (invention example) and FIG. 9 (comparative example). In both figures, the graphs with similar impedance values partially overlap.

Figure 2005164554
Figure 2005164554

この表3及び図8から明らかな様に、本発明例では、ベースガスを供給した時のインピーダンスの平均Avrは、26.43[MΩ]で、その3σは1.06であり、また、ベースガスにアンモニアを100ppm添加したときの平均Avrは、9.02[MΩ]で、その3σは0.88であり、いずれも場合も、そのインピーダンスのばらつきが小さいことが分かる。   As is apparent from Table 3 and FIG. 8, in the example of the present invention, the average Avr of the impedance when the base gas is supplied is 26.43 [MΩ], and 3σ is 1.06. When 100 ppm of ammonia is added to the gas, the average Avr is 9.02 [MΩ] and the 3σ is 0.88. In both cases, it can be seen that the variation in impedance is small.

それに対して、表3及び図9から明らかな様に、比較例では、ベースガスを供給した時のインピーダンスの平均Avrは、24.14[MΩ]で、その3σは7.81であり、また、ベースガスにアンモニアを100ppm添加したときの平均Avrは、8.65[MΩ]で、その3σは4.63であり、いずれも場合も、そのインピーダンスのばらつきが大きいことが分かる。   On the other hand, as is clear from Table 3 and FIG. 9, in the comparative example, the average Avr of the impedance when the base gas is supplied is 24.14 [MΩ], and 3σ is 7.81. When 100 ppm of ammonia is added to the base gas, the average Avr is 8.65 [MΩ], and 3σ is 4.63. In either case, it can be seen that the variation in impedance is large.

つまり、本発明例は比較例と比べて、インピーダンスのばらつきが小さく、よって、アンモニアガスの濃度の測定精度が高いことが分かる。
尚、本発明は前記実施例になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の形態で実施しうることはいうまでもない。
That is, it can be seen that the inventive example has less variation in impedance than the comparative example, and thus the measurement accuracy of the ammonia gas concentration is high.
It is needless to say that the present invention is not limited to the above-described embodiments, and can be implemented in various forms without departing from the gist of the present invention.

例えば前記実施例の櫛歯電極の櫛歯の本数等に限定されることはない。
また、ガスセンサは、前記実施例のアンモニアセンサに限定されるものではなく、インピーダンス変化式(抵抗変化式も含む)、静電容量式等の検知方式により、特定ガス濃度、湿度等を検知するガスセンサに適用されることはいうまでもない。例えば、各種の感湿層を有した湿度センサや、感湿層に酸化物半導体を用いたガスセンサ等に適用可能である。
For example, the number of comb teeth of the comb electrode of the above embodiment is not limited.
Further, the gas sensor is not limited to the ammonia sensor of the above embodiment, and a gas sensor that detects a specific gas concentration, humidity, and the like by a detection method such as an impedance change type (including a resistance change type) or a capacitance type. Needless to say, the above applies. For example, the present invention can be applied to a humidity sensor having various moisture sensitive layers, a gas sensor using an oxide semiconductor for the moisture sensitive layer, and the like.

実施例のアンモニアセンサの素子部の全体及び分解した状態を示す説明図である。It is explanatory drawing which shows the whole element part of the ammonia sensor of an Example, and the decomposed | disassembled state. 実施例のアンモニアセンサの要部の平面を拡大して示す説明図である。It is explanatory drawing which expands and shows the plane of the principal part of the ammonia sensor of an Example. 実施例のアンモニアセンサの横方向の断面を拡大して模式的に示す説明図である。It is explanatory drawing which expands and shows the cross section of the horizontal direction of the ammonia sensor of an Example typically. 実験例1等における本発明例の櫛歯電極の平面形状を示す説明図である。It is explanatory drawing which shows the planar shape of the comb electrode of the example of this invention in Experimental example 1 grade | etc.,. 実験例1等における本発明例の櫛歯電極の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the comb-tooth electrode of the example of this invention in Experimental example 1 grade | etc.,. 実験例1等における比較例の櫛歯電極の平面形状を示す説明図である。It is explanatory drawing which shows the planar shape of the comb-tooth electrode of the comparative example in Experimental example 1 grade | etc.,. 実験例1等における比較例の櫛歯電極の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the comb-tooth electrode of the comparative example in Experimental example 1 grade | etc.,. 実験例4における本発明例のNH3濃度に対するインピーダンスの変化を示すグラフである。10 is a graph showing a change in impedance with respect to NH 3 concentration in an example of the present invention in Experimental Example 4. 実験例4における比較例のNH3濃度に対するインピーダンスの変化を示すグラフである。6 is a graph showing a change in impedance with respect to NH 3 concentration in a comparative example in Experimental Example 4. 従来技術の説明図である。It is explanatory drawing of a prior art. 従来技術の問題点を示す説明図である。It is explanatory drawing which shows the problem of a prior art.

符号の説明Explanation of symbols

1…アンモニアセンサ
3…素子部
5…絶縁基板
6…センサ素子部材
7、9…リード部
11、13…櫛歯電極
15…感応層
23、25、27、29、31…櫛歯
37、39、41、43…間隙
DESCRIPTION OF SYMBOLS 1 ... Ammonia sensor 3 ... Element part 5 ... Insulating substrate 6 ... Sensor element member 7, 9 ... Lead part 11, 13 ... Comb electrode 15 ... Sensitive layer 23, 25, 27, 29, 31 ... Comb tooth 37, 39, 41, 43 ... Gap

Claims (4)

支持基板上に厚膜印刷により形成され、互いに対向する長尺の櫛歯を有する一対の櫛歯電極と、該一対の櫛歯電極に接して設けられた感応部と、を有するガスセンサにおいて、
前記櫛歯電極のうちの一対の櫛歯について、該櫛歯の長手方向と直交する方向の櫛歯間距離の平均値に対する標準偏差が2%以下であることを特徴とするガスセンサ。
In a gas sensor having a pair of comb-tooth electrodes formed by thick film printing on a support substrate and having long comb teeth facing each other, and a sensitive portion provided in contact with the pair of comb-tooth electrodes,
A gas sensor having a standard deviation with respect to an average value of a distance between comb teeth in a direction orthogonal to a longitudinal direction of the comb teeth of a pair of comb teeth among the comb electrodes is 2% or less.
前記櫛歯電極が、Au、Pt、Pd、Ir、Rh、Agから選ばれる1種以上の金属を、50重量%以上含有することを特徴とする前記請求項1に記載のガスセンサ。   The gas sensor according to claim 1, wherein the comb electrode includes 50 wt% or more of one or more metals selected from Au, Pt, Pd, Ir, Rh, and Ag. 支持基板上に厚膜印刷により形成され、互いに対向する長尺の櫛歯を有する一対の櫛歯電極と、該一対の櫛歯電極に接して設けられた感応部と、を有するガスセンサの製造方法において、
前記櫛歯の長手方向に沿って、前記櫛歯電極となる導体ペーストを厚膜印刷することを特徴とするガスセンサの製造方法。
A method for manufacturing a gas sensor, comprising: a pair of comb electrodes formed by thick film printing on a support substrate and having long comb teeth facing each other; and a sensitive portion provided in contact with the pair of comb teeth electrodes In
A method for manufacturing a gas sensor, comprising: printing a conductor paste to be the comb-tooth electrode along the longitudinal direction of the comb-teeth in a thick film.
前記請求項1又は2に記載のガスセンサを製造することを特徴とする前記請求項3に記載のガスセンサの製造方法。   The gas sensor manufacturing method according to claim 3, wherein the gas sensor according to claim 1 is manufactured.
JP2003407823A 2003-12-05 2003-12-05 Manufacturing method of gas sensor Expired - Fee Related JP4068552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407823A JP4068552B2 (en) 2003-12-05 2003-12-05 Manufacturing method of gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407823A JP4068552B2 (en) 2003-12-05 2003-12-05 Manufacturing method of gas sensor

Publications (2)

Publication Number Publication Date
JP2005164554A true JP2005164554A (en) 2005-06-23
JP4068552B2 JP4068552B2 (en) 2008-03-26

Family

ID=34729752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407823A Expired - Fee Related JP4068552B2 (en) 2003-12-05 2003-12-05 Manufacturing method of gas sensor

Country Status (1)

Country Link
JP (1) JP4068552B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278867A (en) * 2006-04-07 2007-10-25 Ghitron Technology Co Ltd Electrode structure of humidity sensing part
KR101119565B1 (en) 2009-10-27 2012-03-07 경북대학교 산학협력단 SnO2 SENSOR AND MANUFACTURING METHOD AT THE SAME
DE102013205837A1 (en) 2012-04-27 2013-10-31 Denso Corporation PARTICLE DETECTION ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
CN103512928A (en) * 2013-10-21 2014-01-15 天津大学 Method for preparing tungsten trioxide film based room temperature gas sensor element
DE102013215123A1 (en) 2012-08-02 2014-02-06 Denso Corporation PARTICULATE MATERIAL DETECTION ELEMENT, DETECTOR SENSOR FOR PARTICULAR MATERIAL THEREFORE EQUIPPED, AND METHOD OF MANUFACTURING THEREOF
CN105074421A (en) * 2013-03-06 2015-11-18 贺利氏传感技术有限公司 Method for producing a soot sensor with a laser beam
CN108226235A (en) * 2016-12-21 2018-06-29 中国矿业大学 A kind of capacitive MEMS gas sensor
US10697925B2 (en) 2016-08-08 2020-06-30 Fujitsu Limited Gas sensor device, gas measuring equipment, and method for fabricating gas sensor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278867A (en) * 2006-04-07 2007-10-25 Ghitron Technology Co Ltd Electrode structure of humidity sensing part
KR101119565B1 (en) 2009-10-27 2012-03-07 경북대학교 산학협력단 SnO2 SENSOR AND MANUFACTURING METHOD AT THE SAME
DE102013205837A1 (en) 2012-04-27 2013-10-31 Denso Corporation PARTICLE DETECTION ELEMENT AND METHOD FOR THE PRODUCTION THEREOF
US9528971B2 (en) 2012-04-27 2016-12-27 Denso Corporation Particulate matter detection element and method of manufacturing same
DE102013215123A1 (en) 2012-08-02 2014-02-06 Denso Corporation PARTICULATE MATERIAL DETECTION ELEMENT, DETECTOR SENSOR FOR PARTICULAR MATERIAL THEREFORE EQUIPPED, AND METHOD OF MANUFACTURING THEREOF
CN103575628A (en) * 2012-08-02 2014-02-12 株式会社电装 Particle material detection element, particle material detection sensor having the element, and method making the element
CN105074421A (en) * 2013-03-06 2015-11-18 贺利氏传感技术有限公司 Method for producing a soot sensor with a laser beam
CN103512928A (en) * 2013-10-21 2014-01-15 天津大学 Method for preparing tungsten trioxide film based room temperature gas sensor element
US10697925B2 (en) 2016-08-08 2020-06-30 Fujitsu Limited Gas sensor device, gas measuring equipment, and method for fabricating gas sensor device
US10928355B2 (en) 2016-08-08 2021-02-23 Fujitsu Limited Gas sensor device, gas measuring equipment, and method for fabricating gas sensor device
CN108226235A (en) * 2016-12-21 2018-06-29 中国矿业大学 A kind of capacitive MEMS gas sensor
CN108226235B (en) * 2016-12-21 2020-12-15 中国矿业大学 Capacitive MEMS gas sensor

Also Published As

Publication number Publication date
JP4068552B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP5223905B2 (en) Particulate matter detection element
JP4262743B2 (en) NOx decomposition electrode and method of manufacturing NOx sensor
JP6131166B2 (en) Electrode for gas sensor and gas sensor element using the same
US6883371B2 (en) Humidity sensor
JP4068552B2 (en) Manufacturing method of gas sensor
JP2002310987A (en) Gas sensor element
WO2019088026A1 (en) Gas sensor
US20150268188A1 (en) Sensor element and gas sensor
JP2008286810A (en) Oxygen sensor element
JPH11153571A (en) Oxygen sensor element
US20120073970A1 (en) Amperometric Oxygen Sensor
JP2000146906A (en) Gas sensor element
JP2009198346A (en) Ammonia gas sensor
JP2009192518A (en) Gas sensor element and gas sensor
JP2005083817A (en) Ammonia sensor
JP3643709B2 (en) Gas concentration measuring device and gas concentration measuring method
JP2008281584A (en) Oxygen sensor element
JPH11337519A (en) Pump current stabilizing method for gas sensor
JP5749782B2 (en) Gas sensor
JP6769650B2 (en) Ceramic heater, sensor element and gas sensor
WO2020195080A1 (en) Gas sensor
JP2007322184A (en) Ammonia gas sensor
JP6584219B2 (en) Ceramic heater, sensor element and gas sensor
KR20160124384A (en) Sensor element for sensing particle concentration
JP7078584B2 (en) Ceramic heater, sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4068552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees