JP2005164221A - Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger - Google Patents

Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger Download PDF

Info

Publication number
JP2005164221A
JP2005164221A JP2004167560A JP2004167560A JP2005164221A JP 2005164221 A JP2005164221 A JP 2005164221A JP 2004167560 A JP2004167560 A JP 2004167560A JP 2004167560 A JP2004167560 A JP 2004167560A JP 2005164221 A JP2005164221 A JP 2005164221A
Authority
JP
Japan
Prior art keywords
tube
axis direction
heat exchanger
hole tube
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167560A
Other languages
Japanese (ja)
Inventor
Kihachiro Koga
喜八郎 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hidaka Seiki KK
Original Assignee
Hidaka Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hidaka Seiki KK filed Critical Hidaka Seiki KK
Priority to JP2004167560A priority Critical patent/JP2005164221A/en
Priority to PCT/JP2004/007935 priority patent/WO2005047798A1/en
Publication of JP2005164221A publication Critical patent/JP2005164221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/151Making tubes with multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-bore tube for a heat exchanger that can prevent reduction in heat exchanger effectiveness by deterring deposits of dust and waterdrops, and a tube expansion method that can easily and reliably expand such a multi-bore tube for a heat exchanger with a small device. <P>SOLUTION: The heat exchanger multi-bore tube 30 provided with a plurality of internal passages 31 has an oval outline in the tube section. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱交換器に用いられる熱交換器用チューブの内部に複数の流路が形成された熱交換器用多穴チューブ、およびこのような熱交換器用多穴チューブの拡管方法に関する。   The present invention relates to a multi-hole tube for a heat exchanger in which a plurality of flow paths are formed inside a tube for a heat exchanger used in a heat exchanger, and a method for expanding such a multi-hole tube for a heat exchanger.

家庭用や自動車用のクーラー等の熱交換器は、アルミニウム等の薄板で形成されている複数枚の熱交換器用フィンと、金属製の熱交換器用チューブとから構成されている。熱交換器用チューブ内には冷媒が流通し、フィンを介して熱交換が行なわれる。
このような熱交換器用チューブとして、図14に示すような多穴のチューブを用いることは従来から知られている(例えば特許文献1)。
図14に示したような熱交換器用多穴チューブ10は、内部に複数の流路11を仕切る仕切壁12が形成されているので、冷媒の接触面積が増加し、一穴のチューブと比較して熱交換効率が高い。
A heat exchanger such as a home or automobile cooler is composed of a plurality of heat exchanger fins formed of a thin plate of aluminum or the like, and a metal heat exchanger tube. A refrigerant flows through the heat exchanger tube, and heat exchange is performed through the fins.
As such a heat exchanger tube, it is conventionally known to use a multi-hole tube as shown in FIG. 14 (for example, Patent Document 1).
The multi-hole tube 10 for a heat exchanger as shown in FIG. 14 is formed with a partition wall 12 that partitions a plurality of flow paths 11 therein, so that the contact area of the refrigerant is increased, compared with a single-hole tube. High heat exchange efficiency.

かかる熱交換器用多穴チューブ10は、断面が扁平形状のものである。扁平な形状とすることによって、扁平の平面部分を空気の流通方向Aと平行となるように熱交換器用フィン(図示せず)に挿入して設ければ、熱交換器用多穴チューブ10が受ける空気抵抗を小さくすることができ、熱交換効率を上げることができるためである。   The heat exchanger multi-hole tube 10 has a flat cross section. By adopting a flat shape, if the flat flat portion is provided by being inserted into a heat exchanger fin (not shown) so as to be parallel to the air flow direction A, the heat exchanger multi-hole tube 10 receives. This is because air resistance can be reduced and heat exchange efficiency can be increased.

なお、多穴のチューブに限らず一般的に、熱交換器用チューブをフィンのカラー付き透孔に挿入した後、熱交換器用チューブとフィンを強固に接合し一体化させるには、熱交換器用チューブを拡管することが通常行なわれている。
ここで、熱交換器用チューブが多穴チューブではなく、一穴のチューブで有れば拡管ビュレット(例えば特許文献2参照)等を用いて容易に拡管することができる。しかし、多穴のチューブの場合には、各流路の形状が円形等ではなく、各流路をそれぞれどのように拡管させるかが問題となるため、この拡管ビュレットを用いる方法を採用することができず、高圧の流体を流通させて拡管させるという考え方が提案されていた。
In addition to the multi-hole tube, generally, after the heat exchanger tube is inserted into the through-hole with the collar of the fin, the heat exchanger tube and the fin are firmly joined and integrated. It is usual to expand the tube.
Here, if the heat exchanger tube is not a multi-hole tube but a single-hole tube, the tube can be easily expanded using a tube expansion burette (see, for example, Patent Document 2). However, in the case of a multi-hole tube, since the shape of each flow path is not circular or the like, it becomes a problem how to expand each flow path, so the method using this expanded burette can be adopted. However, the idea of expanding the pipe by circulating a high-pressure fluid has been proposed.

特開平8−73973号公報Japanese Patent Laid-Open No. 8-73973 特開平7−124670号公報Japanese Patent Laid-Open No. 7-124670

上述したような断面が扁平形状の熱交換器用多穴チューブでは、平面部分にゴミが堆積したり、あるいは水滴が付着したりするおそれも考えられる。かかる場合には、空気の流通が妨げられるために熱交換効率が悪くなってしまうという課題がある。   In the multi-hole tube for a heat exchanger having a flat cross section as described above, there is a possibility that dust accumulates on a flat portion or a water droplet adheres. In such a case, there is a problem that heat exchange efficiency is deteriorated because air circulation is hindered.

熱交換器用多穴チューブをフィンに一体化させる際の拡管方法では扁平管の短軸方向には拡管することはできても、長軸方向には拡管しにくい。このため、熱交換器用多穴チューブの長軸方向の端部においてはフィンと確実に接触することができずに熱交換効率が悪い可能性があるという課題がある。
さらに、液圧による拡管では、どのような液体を用いることが最適であるか見出すために今後様々な液体で実験を重ねていく必要性がある。
In the tube expansion method when the multi-hole tube for heat exchanger is integrated with the fin, the tube can be expanded in the short axis direction of the flat tube, but it is difficult to expand in the long axis direction. For this reason, there exists a subject that the heat exchange efficiency may be bad, since it cannot contact with a fin reliably in the edge part of the long-axis direction of the multi-hole tube for heat exchangers.
Furthermore, it is necessary to repeat experiments with various liquids in the future in order to find out what kind of liquid is optimal for the expansion by hydraulic pressure.

本発明者は上記課題を解決すべく検討した結果、熱交換器用多穴チューブを扁平ではない形状にし、内部の複数の流路の形状に工夫をこらすことで、上記課題を解決することができることを見出し、本発明に想到した。   As a result of studying the above problems to solve the above problems, the present inventor can solve the above problems by making the multi-hole tube for a heat exchanger into a non-flat shape and devising the shape of a plurality of internal flow paths. As a result, the present invention has been conceived.

そこで、本発明の目的は、ゴミや水滴が付着しにくく熱交換効率の低下を防止することができる熱交換器用多穴チューブ、およびこのような熱交換器用多穴チューブの拡管方法を提供することにある。   Accordingly, an object of the present invention is to provide a multi-hole tube for a heat exchanger capable of preventing dust and water droplets from adhering and preventing a decrease in heat exchange efficiency, and a method for expanding such a multi-hole tube for a heat exchanger. It is in.

本発明にかかる熱交換器用多穴チューブによれば、内部に複数の流路が形成された、熱交換器用多穴チューブにおいて、チューブ全体の断面の外形がオーバル形に形成されていることを特徴としている。
熱交換器用多穴チューブを断面オーバル形にすることで、チューブの外壁面にゴミや水滴が付着したりしても外壁面が曲面であるので、すぐに滑り落ちてしまい、ゴミや水滴の付着による熱交換効率の低下という事態を防ぐことができる。
なお、本明細書中でいうオーバルという意味は、卵形および楕円を含めた形状であり、少なくとも長軸および短軸と言える部分が存在し、且つ平面部分が存在し無い形状をいう。
According to the multi-hole tube for a heat exchanger according to the present invention, in the multi-hole tube for a heat exchanger, in which a plurality of flow paths are formed, the outer shape of the entire cross section of the tube is formed in an oval shape. It is said.
By making the multi-hole tube for heat exchanger into an oval cross section, even if dust or water droplets adhere to the outer wall surface of the tube, the outer wall surface is a curved surface. It is possible to prevent a situation in which the heat exchange efficiency is reduced due to.
The term “oval” in the present specification means a shape including an oval and an ellipse, and has a shape that has at least a major axis and a minor axis, and does not have a planar portion.

また、前記複数の流路は奇数個形成され、該奇数個の流路のうち断面積が最大の流路が、チューブ断面の長軸方向および短軸方向の中心に設けられていることを特徴としてもよい。
この構成によれば、長軸方向および短軸方向の中心に位置する流路からみて長軸方向両側には同数の流路が配置されているので、中心に存在する流路のみを拡管するようにすることで、チューブ断面の長軸方向に均一に拡管される。また、断面積が最大の流路のみを拡管すれば、チューブの外形を短軸側と長軸側に拡管することができる。
The odd number of the plurality of flow paths is formed, and the flow path having the largest cross-sectional area among the odd number of flow paths is provided at the center in the major axis direction and the minor axis direction of the tube cross section. It is good.
According to this configuration, since the same number of flow paths are arranged on both sides of the long axis direction as viewed from the flow paths located in the center in the long axis direction and the short axis direction, only the flow path existing in the center is expanded. As a result, the tube is uniformly expanded in the major axis direction of the tube cross section. Further, if only the flow path having the largest cross-sectional area is expanded, the outer shape of the tube can be expanded to the short axis side and the long axis side.

本発明にかかる熱交換器用チューブの製造方法によれば、請求項2記載の熱交換器用多穴チューブを拡管する方法であって、チューブ断面の長軸方向および短軸方向の中心に設けられている流路のみに拡管ビュレットを挿入し、チューブ断面の長軸方向および短軸方向の中心に設けられている流路を拡管することで、チューブ全体を拡管させることを特徴としている。
この方法を採用することによって、従来であれば多穴チューブの拡管は、流体によって行なわざるを得ないと考えられてきたが、長軸方向および短軸方向の中心に位置する流路のみを機械的に拡管できるようになった。
According to the method for manufacturing a heat exchanger tube according to the present invention, it is a method of expanding the multi-hole tube for a heat exchanger according to claim 2, wherein the tube is provided at the center in the major axis direction and minor axis direction of the tube cross section. The expanded tube burette is inserted only into the existing channel, and the entire tube is expanded by expanding the channel provided in the center of the major axis direction and the minor axis direction of the tube cross section.
By adopting this method, conventionally, it has been thought that the expansion of a multi-hole tube must be performed by a fluid. However, only the flow path located at the center in the long axis direction and the short axis direction is mechanically used. Can now be expanded.

本発明の熱交換器用多穴チューブによれば、断面をオーバル形にして平面部分を無くしたのでゴミや水滴が付着しにくく、熱交換効率の良い熱交換器とすることができる。
また、本発明の熱交換器用多穴チューブの拡管方法によれば、低コストで熱交換器を提供することができる。また、長軸方向にも確実に拡管することが可能となるので、フィンとの接触も確実に行なえるため熱交換効率の良い熱交換器の提供が可能となる。
According to the multi-hole tube for a heat exchanger of the present invention, since the cross section is oval and the flat portion is eliminated, dust and water droplets are hardly attached, and a heat exchanger with high heat exchange efficiency can be obtained.
Moreover, according to the method for expanding a multi-hole tube for a heat exchanger of the present invention, a heat exchanger can be provided at low cost. In addition, since it is possible to reliably expand the tube in the long axis direction, it is possible to reliably contact the fins, and thus it is possible to provide a heat exchanger with high heat exchange efficiency.

全体を断面オーバル形とした熱交換器用多穴チューブに、複数個の流路を形成した。このとき、複数個の流路はチューブ断面の長軸方向に沿って直列するように配置した。また、チューブ断面の長軸方向および短軸方向の中心に位置する流路は、断面の短軸方向に長い長方形の各四辺を円弧状に形成した形状である。
さらに具体的に説明すると、この流路の各辺は、長軸方向の対向する二辺が流路の外側に向けて凸となる円弧状であり、短軸方向の対向する二辺が流路の内側に向けて凸となる円弧状となるように形成されたものである。
A plurality of flow paths were formed in a multi-hole tube for a heat exchanger having an oval cross section as a whole. At this time, the plurality of flow paths were arranged in series along the long axis direction of the tube cross section. Moreover, the flow path located in the center of the major axis direction and the minor axis direction of the tube cross section has a shape in which each rectangular four sides long in the minor axis direction of the cross section are formed in an arc shape.
More specifically, each side of the flow path has an arc shape in which two opposite sides in the major axis direction are convex toward the outside of the flow path, and two opposite sides in the minor axis direction are the flow paths. It is formed so that it may become the circular arc shape which becomes convex toward the inside.

このような熱交換器用多穴チューブをフィンに接合する際に拡管する場合には、中心部に位置するほぼ四角形状の流路のみを拡管ビュレットを挿入することで拡管し、チューブ全体も拡管させるようにした。   When expanding such a multi-hole tube for a heat exchanger to a fin, only the substantially square channel located in the center is expanded by inserting an expanded burette, and the entire tube is expanded. I did it.

以下、熱交換器用多穴チューブの実施例について説明する。
図1に熱交換器用多穴チューブの全体構成を示す。熱交換器用多穴チューブ(以下、単に多穴チューブと称する)30は、熱交換器用フィン(図7参照:以下、単にフィンと称する)に挿入され、内部に冷媒を流通させるためのものである。多穴チューブ30は、内部に仕切壁32で仕切られた複数の流路31が形成されており、このため冷媒の接触面積を増加することによって熱交換効率を上げることができるという特性を有している。
Hereinafter, the Example of the multi-hole tube for heat exchangers is described.
FIG. 1 shows the overall configuration of a multi-hole tube for a heat exchanger. A heat exchanger multi-hole tube (hereinafter simply referred to as a multi-hole tube) 30 is inserted into a heat exchanger fin (see FIG. 7; hereinafter simply referred to as a fin) and is used for circulating a refrigerant therein. . The multi-hole tube 30 has a plurality of flow paths 31 partitioned by a partition wall 32 therein, and thus has a characteristic that heat exchange efficiency can be increased by increasing the contact area of the refrigerant. ing.

多穴チューブ30は、アルミニウム製や銅製であって、押出加工により形成される。したがって、多穴チューブ30の外周壁33と、内部の流路を形成するための各仕切壁32とは一体に形成されるものである。また、押出加工により成型された多穴チューブを熱処理(いわゆる焼鈍)により機械的性質を改善すると好適である。具体的には、アルミニウム製の多穴チューブの場合には押出加工後に400℃±50℃に加熱することで、チューブ断面の長軸方向にも良好に拡管できる。
なお、多穴チューブ30の製造方法自体については従来からよく知られているものであるため、ここでは詳述しない。
The multi-hole tube 30 is made of aluminum or copper and is formed by extrusion. Therefore, the outer peripheral wall 33 of the multi-hole tube 30 and each partition wall 32 for forming an internal flow path are integrally formed. In addition, it is preferable to improve the mechanical properties of the multi-hole tube formed by extrusion processing by heat treatment (so-called annealing). Specifically, in the case of a multi-hole tube made of aluminum, the tube can be well expanded in the long axis direction of the tube cross section by heating to 400 ° C. ± 50 ° C. after the extrusion process.
In addition, since the manufacturing method itself of the multi-hole tube 30 is well known conventionally, it is not explained in full detail here.

図2に本実施例の多穴チューブ30の断面を示す。多穴チューブ30は、全体の断面がオーバル形に形成されている。ここでは具体的に長軸方向Xの長さと短軸方向Yの長さの比が4:1程度の形状である。
このような全体の断面がオーバル形の多穴チューブ30の内部には、断面がオーバル形の流路31が5個形成されている。5個の流路のうち、最も径の大きい流路31aがチューブ断面の長軸方向Xの中心部に配置され、この流路31aの中心はチューブ断面の短軸方向Yの中心部と一致している。
流路31aの長軸方向両側に次に径の大きい流路31bがそれぞれ配置されている。さらに、その流路31bの長軸方向の端部側には最も小さい径の流路31cが配置されている。
FIG. 2 shows a cross section of the multi-hole tube 30 of this embodiment. The entire cross section of the multi-hole tube 30 is formed in an oval shape. Specifically, the shape is such that the ratio of the length in the major axis direction X to the length in the minor axis direction Y is about 4: 1.
Five channels 31 having an oval cross section are formed in the multi-hole tube 30 having an oval overall cross section. Of the five channels, the channel 31a having the largest diameter is disposed at the center in the long axis direction X of the tube cross section, and the center of the channel 31a coincides with the center of the tube cross section in the short axis direction Y. ing.
The flow paths 31b having the next largest diameter are respectively disposed on both sides in the long axis direction of the flow path 31a. Further, a channel 31c having the smallest diameter is arranged on the end side in the major axis direction of the channel 31b.

つまり、断面オーバル形の5個の流路31a〜31cは、チューブ全体の長軸方向Xに対して直列している。このとき、互いの仕切壁32がチューブ全体の長軸方向Xに接触して配置される。また、これら各仕切壁32は、チューブ全体の短軸方向Yにおいてチューブの内壁面35に接触して配置されている。   That is, the five flow paths 31a to 31c having an oval cross section are in series with respect to the major axis direction X of the entire tube. At this time, the partition walls 32 are arranged in contact with the long axis direction X of the entire tube. Each partition wall 32 is disposed in contact with the inner wall surface 35 of the tube in the short axis direction Y of the entire tube.

なお、このような多穴チューブ30の内部に形成されている流路としては、断面オーバル形や断面円形の流路31a〜31cだけでなく、その外側に存在する円形やオーバル形ではない部位31dも流路である。   In addition, as a flow path formed in the inside of such a multi-hole tube 30, not only the flow path 31a-31c of a cross-sectional oval shape or a cross-sectional circle but the site | part 31d which is not circular or an oval shape which exists in the outer side. Is also a flow path.

図3に多穴チューブの他の形態を示す。
この多穴チューブ40は、全体がオーバル形に形成されているが、その長軸方向Xの長さと短軸方向Yの長さの比が3:1程度の形状である。したがって、実施例1に示した多穴チューブ30よりも短軸方向Yに厚みを増したような形状となっている。
本実施例における、全体の断面がオーバル形の多穴チューブ40内部には、断面がオーバル形の流路41が5個形成されている。5個の流路のうち、最も径の大きい流路41aがチューブ全体の長軸方向Xの中心部に配置され、流路41aの中心は短軸方向Yの中心部と一致している。この流路41aの長軸方向両側に次に径の大きい流路41bがそれぞれ配置されている。さらに、その流路41bの長軸方向の端部側には最も小さい径の流路41cが配置されている。
FIG. 3 shows another form of the multi-hole tube.
The multi-hole tube 40 is formed in an oval shape as a whole, but has a shape in which the ratio of the length in the major axis direction X to the length in the minor axis direction Y is about 3: 1. Therefore, the shape is such that the thickness is increased in the minor axis direction Y as compared with the multi-hole tube 30 shown in the first embodiment.
In the present embodiment, five channels 41 having an oval cross section are formed in the multi-hole tube 40 having an oval overall cross section. Of the five channels, the channel 41a having the largest diameter is disposed at the center of the entire tube in the major axis direction X, and the center of the channel 41a coincides with the center of the minor axis direction Y. The flow paths 41b having the next largest diameter are respectively disposed on both sides in the long axis direction of the flow path 41a. Further, a channel 41c having the smallest diameter is disposed on the end side in the major axis direction of the channel 41b.

つまり、断面オーバル形の5個の流路41a〜41cは、チューブ全体の長軸方向Xに対して直列している。このとき、互いの仕切壁42がチューブ全体の長軸方向Xに接触して配置される。また、これら各仕切壁42は、チューブ全体の短軸方向Yにおいてチューブの内壁面45に接触して配置されている。
またこのような多穴チューブ40の内部に形成されている流路としては、断面オーバル形や断面円形の流路41a〜41cだけでなく、その外側に存在する円形やオーバル形ではない部位41dも流路である。
このような流路の配置形態も実施例1と同様である。
That is, the five flow paths 41a to 41c having an oval cross section are in series with respect to the major axis direction X of the entire tube. At this time, the partition walls 42 are arranged in contact with each other in the long axis direction X of the entire tube. Each partition wall 42 is disposed in contact with the inner wall surface 45 of the tube in the short axis direction Y of the entire tube.
Further, the flow path formed inside the multi-hole tube 40 is not only a flow path 41a to 41c having a cross-sectional oval shape or a circular cross section, but also a non-circular or oval portion 41d existing outside the cross-section oval shape or circular cross-section. It is a flow path.
The arrangement form of such a flow path is the same as that of the first embodiment.

図4に多穴チューブの他の形態を示す。
この多穴チューブ50は、全体がオーバル形に形成されているが、その長軸方向Xの長さと短軸方向Yの長さの比が3:1程度の形状である。したがって、実施例2に示した多穴チューブ40と全体形状としては同一である。
本実施例における、全体の断面がオーバル形の多穴チューブ50内部には、断面がオーバル形の流路51が3個形成されている。3個の流路51のうち、最も径の大きい流路51aがチューブ全体の長軸方向Xの中心部に配置され、流路51aの中心は短軸方向Yの中心部と一致している。流路51aの長軸方向両側に他の流路51bがそれぞれ配置されている。
FIG. 4 shows another form of the multi-hole tube.
This multi-hole tube 50 is formed in an oval shape as a whole, but has a shape in which the ratio of the length in the major axis direction X to the length in the minor axis direction Y is about 3: 1. Therefore, the overall shape is the same as that of the multi-hole tube 40 shown in the second embodiment.
In the present embodiment, three channels 51 having an oval cross section are formed inside the multi-hole tube 50 having an oval overall cross section. Of the three channels 51, the channel 51 a having the largest diameter is disposed at the center of the entire tube in the major axis direction X, and the center of the channel 51 a coincides with the center of the minor axis direction Y. Other flow paths 51b are disposed on both sides of the flow path 51a in the long axis direction.

断面オーバル形の3個の流路51a〜51bは、チューブ全体の長軸方向Xに対して直列している。このとき、互いの仕切壁52がチューブ全体の長軸方向Xに接触して配置される。また、これら各仕切壁52は、チューブ全体の短軸方向Yにおいてチューブの内壁面55に接触して配置されている。
またこのような多穴チューブ50の内部に形成されている流路としては、断面オーバル形や断面円形の流路51a〜51bだけでなく、その外側に存在する円形やオーバル形ではない部位51cも流路である。
The three flow paths 51a to 51b having an oval cross section are in series with respect to the major axis direction X of the entire tube. At this time, the partition walls 52 are arranged in contact with the long axis direction X of the entire tube. Each partition wall 52 is arranged in contact with the inner wall surface 55 of the tube in the short axis direction Y of the entire tube.
Further, the flow path formed inside the multi-hole tube 50 is not only a flow path 51a to 51b having a cross-sectional oval shape or a circular cross section, but also a portion 51c existing outside the circular or oval shape. It is a flow path.

実施例1から実施例3では、断面円形または断面オーバル形の流路を奇数個設け、これらを一直線上(チューブ断面の長軸方向Xに平行な線上)に配置した。断面円形または断面オーバル形の各流路は、流路と同じ形状の幅狭の仕切壁によって形成されており、この仕切壁がチューブ断面の長軸方向Xに互いに接触し、チューブ断面の短軸方向Y側にはチューブ外周壁の内壁面に当接するような形状を成している。
このように、断面円形または断面オーバル形の流路の数を奇数個にすることで、チューブの中心部に1個の流路を配置すると中心部の流路の両側には、同数の流路が配置されることとなる。したがって、中心部に配置された1個の流路のみを拡管するだけでチューブ全体をバランス良く均一に拡管することができるようになる。
In Example 1 to Example 3, an odd number of circular passages or oval cross-section flow paths were provided, and these were arranged on a straight line (on a line parallel to the long axis direction X of the tube cross section). Each flow path having a circular cross section or an oval cross section is formed by a narrow partition wall having the same shape as the flow path, and the partition walls are in contact with each other in the long axis direction X of the tube cross section. On the direction Y side, a shape is formed so as to abut against the inner wall surface of the tube outer peripheral wall.
In this way, by arranging an odd number of circular cross-section or oval cross-section flow paths, when one flow path is arranged at the center of the tube, the same number of flow paths are provided on both sides of the central flow path. Will be placed. Therefore, the entire tube can be expanded uniformly in a well-balanced manner by expanding only the single flow path disposed in the central portion.

図5および図6に、多穴チューブの他の形態を示す。
この多穴チューブ70は、全体の断面がオーバル形に形成されており、内部に複数の流路72a,72b・・が形成されている。複数の流路のうち、長軸方向Xおよび短軸方向Yの中心部に位置する流路72aは、その断面が円形やオーバル形ではない形状となっている。具体的な流路72aの断面形状は、短軸方向Yに長い長方形の各辺が円弧状(曲線)に形成されている形状である。
5 and 6 show another form of the multi-hole tube.
The entire cross section of the multi-hole tube 70 is formed in an oval shape, and a plurality of flow paths 72a, 72b,. Of the plurality of channels, the channel 72a located at the center in the major axis direction X and the minor axis direction Y has a cross-sectional shape that is not circular or oval. A specific cross-sectional shape of the flow path 72a is a shape in which each side of a rectangle that is long in the short-axis direction Y is formed in an arc shape (curve).

本実施例の流路72aの断面形状をさらに具体的に説明する。
中心に位置する流路72aの断面形状は、4つの円弧状の辺p、q、r、sから構成されている。4つの円弧状の辺のうち、長軸方向Xの対向する2辺p、qは、円弧が凸となる突出方向が外向きになっており、短軸方向Yの対向する2辺r、sは、円弧が凸となる突出方向が内向きとなっている。また、短軸方向Yの対向する2辺r、sは、長軸方向Xの対向する2辺p、qと比較してその長さが短くなっている。これら4辺p、q、r、sの曲率半径はそれぞれほぼ同じ程度である。
The cross-sectional shape of the flow path 72a of the present embodiment will be described more specifically.
The cross-sectional shape of the flow path 72a located at the center is composed of four arc-shaped sides p, q, r, and s. Of the four arc-shaped sides, the two opposite sides p and q in the major axis direction X are outward in the protruding direction in which the arc is convex, and the two opposite sides r and s in the minor axis direction Y are opposed to each other. The projecting direction in which the arc is convex is inward. Also, the two opposite sides r and s in the minor axis direction Y are shorter than the two opposite sides p and q in the major axis direction X. The radii of curvature of these four sides p, q, r, and s are approximately the same.

多穴チューブ70の長軸方向Xの中心部に位置する流路72aの長軸方向Xの両側には、複数の断面円形の流路72bが形成されている。流路72aの両側(長軸方向Xの端部側)にそれぞれ2つずつ、計4つの円形の流路72bが形成されている。これら断面円形の流路72bの径は全て同じ径に形成されている。   A plurality of circular channels 72b having a circular cross section are formed on both sides in the long axis direction X of the channel 72a located at the center in the long axis direction X of the multi-hole tube 70. A total of four circular flow paths 72b are formed, two on each side of the flow path 72a (on the end side in the long axis direction X). The diameters of the circular passages 72b having a circular cross section are all the same.

なお、上述してきた各実施例とは異なり、本実施例では各流路72a,72bは、肉薄の仕切壁によって仕切られて形成されているのではなく、全体がオーバル状に形成されているチューブをくりぬいて形成されたような形状を呈している。
したがって、仕切壁といえる部位は各流路の径と同程度の厚さであり、また中心部に位置する流路72aと円形の流路72b以外の部位(5箇所以外)には、流路は形成されない。
また、この多穴チューブ70の製造方法についても、上述した各実施例と同様に押出加工または引出加工により形成することができる。
Unlike the above-described embodiments, in this embodiment, the flow paths 72a and 72b are not formed by being partitioned by thin partition walls, but are entirely formed in an oval shape. It has a shape that is formed by hollowing out.
Therefore, the part which can be called a partition wall has the same thickness as the diameter of each flow path, and the flow path 72a located at the center and the flow path other than the circular flow path 72b (except for 5 places) Is not formed.
Also, the manufacturing method of the multi-hole tube 70 can be formed by extrusion or drawing as in the above-described embodiments.

以下、上述してきたような多穴チューブの拡管方法について説明する。
まず、多穴チューブの拡管の前提となる熱交換器の構成から説明する。
図7に示すように、熱交換器60は、金属製の薄板であるフィン36が複数枚積層され、多穴チューブ30が積層したフィン36のそれぞれを挿通するように設けられる。多穴チューブ30は、その全長にわたって拡管されることでフィン36に接合して一体化される。
Hereinafter, a method for expanding the multi-hole tube as described above will be described.
First, it demonstrates from the structure of the heat exchanger used as the premise of pipe expansion of a multi-hole tube.
As shown in FIG. 7, the heat exchanger 60 is provided so that a plurality of fins 36, which are metal thin plates, are stacked, and the fins 36 in which the multi-hole tubes 30 are stacked are inserted. The multi-hole tube 30 is joined and integrated with the fin 36 by being expanded over its entire length.

上記のように、多穴チューブ30の拡管は、多穴チューブ30をフィン36に接合する際に行なわれる。以下、フィンと多穴チューブとの接合について図8〜図9に基づいて説明する。ここで説明する多穴チューブは上述した実施例1で説明したものであるとする。
図8に示すように、フィン36は金属製の薄板であって、所定の箇所に多穴チューブ30を挿入可能な透孔38が形成されている。透孔38の周縁は一方方向に起立するように形成されたカラー39が設けられ、カラー付き透孔46として構成されている。多穴チューブ30は、このようなフィン36のカラー付き透孔46内に挿入される。カラー付き透孔46内に多穴チューブ30が挿入された後に多穴チューブ30が拡管されると、多穴チューブ30の外壁面がカラー39に密着し、図9のようにフィン36と一体化するのである。
As described above, the expansion of the multi-hole tube 30 is performed when the multi-hole tube 30 is joined to the fin 36. Hereinafter, joining of the fin and the multi-hole tube will be described with reference to FIGS. The multi-hole tube described here is assumed to have been described in the first embodiment.
As shown in FIG. 8, the fin 36 is a metal thin plate, and a through hole 38 into which the multi-hole tube 30 can be inserted is formed at a predetermined location. A collar 39 formed so as to stand upright in one direction is provided at the periphery of the through hole 38, and is configured as a through hole 46 with a collar. The multi-hole tube 30 is inserted into the collared through-hole 46 of such a fin 36. When the multi-hole tube 30 is expanded after the multi-hole tube 30 is inserted into the collared through-hole 46, the outer wall surface of the multi-hole tube 30 comes into close contact with the collar 39 and is integrated with the fin 36 as shown in FIG. To do.

本発明の多穴チューブの拡管方法の概略説明図を図10に示し、このときの多穴チューブの拡管の様子を図11に示す。図11では、破線部分が拡管前の状態で実線が拡管後の状態を表している。
以下、説明する多穴チューブ30は上記実施例1で説明した多穴チューブであり、全体の断面がオーバル形であり、内部には断面オーバル形の流路31が5個配置されているものである。さらに具体的には、全体の長軸方向Xの中心に断面オーバル形の流路のうち最大径のもの31aが配置され、長軸方向Xの端部側に向かうにしたがって徐々に小径の流路31b、31cが配置され、断面オーバル形の流路同士の互いの仕切壁32が接触し、長軸方向Xに沿って一直線に配置されている。また、断面オーバル形の各流路31は、全体の短軸方向Yでは多穴チューブ30の内壁面35に内接するように形成されている。
FIG. 10 shows a schematic explanatory diagram of the method for expanding the multi-hole tube of the present invention, and FIG. 11 shows the state of the multi-hole tube expansion at this time. In FIG. 11, the broken line portion represents the state before the tube expansion, and the solid line represents the state after the tube expansion.
Hereinafter, the multi-hole tube 30 to be described is the multi-hole tube described in the first embodiment, and the entire cross section is an oval shape, and five flow paths 31 having an oval cross section are arranged inside. is there. More specifically, a channel 31a having the maximum diameter among the flow channels having an oval cross section is arranged at the center of the entire major axis direction X, and gradually decreases in diameter toward the end in the major axis direction X. 31 b and 31 c are arranged, and the partition walls 32 of the flow paths having the oval cross section come into contact with each other, and are arranged in a straight line along the major axis direction X. Further, each flow path 31 having an oval cross section is formed so as to be inscribed in the inner wall surface 35 of the multi-hole tube 30 in the entire minor axis direction Y.

拡管は、内部に形成された断面オーバル形の流路31のうちの1つを拡管ビュレット66で拡管することで実行される。具体的には、長軸方向Xおよび短軸方向Yの中心に配置された流路31a(以下、中心流路と称する)内に拡管ビュレット66を挿入していくことで拡管が行なわれる。   The pipe expansion is performed by expanding one of the flow paths 31 having an oval cross section formed therein with a pipe expansion burette 66. Specifically, tube expansion is performed by inserting a tube expansion burette 66 into a flow channel 31a (hereinafter referred to as a central flow channel) disposed in the center of the long axis direction X and the short axis direction Y.

拡管ビュレット66を中心流路31aに挿入していくと、中心流路31aは周囲360度全方位にわたって全体的に拡管されるが、特に長軸方向Xに向く部位では、隣り合う流路31bを形成する仕切壁32b1を押圧する(図11の矢印B)。この仕切壁32b1が押圧されることで、中心流路31aに隣接する流路31bの中心位置が長軸方向Xの端部37側に移動するため、この流路31bの端部37側の仕切壁32b2がさらに端部37側に隣接する流路31cを形成する仕切壁32c1を押圧する(図11の矢印C)。この流路31cの端部37側の仕切壁32c2は、端部37付近に接触しているので、この仕切壁32c2が端部37付近を長軸方向Xに拡管する。   When the expanded pipe burette 66 is inserted into the central flow path 31a, the central flow path 31a is expanded as a whole over all 360 degrees of circumference. The partition wall 32b1 to be formed is pressed (arrow B in FIG. 11). When the partition wall 32b1 is pressed, the center position of the flow path 31b adjacent to the central flow path 31a moves to the end 37 side in the major axis direction X, and therefore the partition on the end 37 side of the flow path 31b. The wall 32b2 further presses the partition wall 32c1 that forms the channel 31c adjacent to the end 37 (arrow C in FIG. 11). Since the partition wall 32c2 on the end 37 side of the flow path 31c is in contact with the vicinity of the end 37, the partition wall 32c2 expands the vicinity of the end 37 in the major axis direction X.

一方、中心流路31aは周囲360度全方位にわたって全体的に拡管されるが、短軸方向Yに向く部位では、多穴チューブ30全体の外周壁33を押圧し(図11の矢印D)、チューブ全体を短軸方向Yにも拡管する。   On the other hand, the central flow path 31a is expanded as a whole over 360 degrees around the circumference, but at the portion facing the short axis direction Y, the outer peripheral wall 33 of the entire multi-hole tube 30 is pressed (arrow D in FIG. 11), The entire tube is expanded also in the minor axis direction Y.

なお、拡管ビュレット66は、従来から公知のものを採用することができる。
具体的には、拡管ビュレット66は、拡管後の多穴チューブ30の中心流路31aの内径と同径となるような所定の径を有しており、拡管マンドレル68の先端部に図示しない装着部材によって装着されている。
A conventionally known burette 66 can be used.
Specifically, the expanded burette 66 has a predetermined diameter that is the same as the inner diameter of the central flow path 31a of the multi-hole tube 30 after the expansion, and is attached to the distal end portion of the expanded tube mandrel 68 (not shown). It is attached by a member.

なお、上述した多穴チューブの拡管方法においては、断面オーバル形の流路が5個形成されているものを拡管した。しかし、断面オーバル形の流路の数は、5個に限定されるものではなく他の個数であってもよいが、奇数個であることが好ましい。   In the above-described method for expanding a multi-hole tube, a tube in which five flow paths having an oval cross section were formed was expanded. However, the number of flow paths having an oval cross section is not limited to five, but may be other numbers, but is preferably an odd number.

また、上述してきた実施例では、内部の流路の形状を断面オーバル形としたが、断面円形の流路としてもよい。   In the embodiment described above, the shape of the internal flow path is an oval cross section, but it may be a flow path having a circular cross section.

次に、図5と図6に示した多穴チューブを拡管する際の拡管方法について、図12および図13に基づいて説明する。
ここで説明する多穴チューブ70は、複数の流路のうち、長軸方向Xおよび短軸方向Yの中心部に位置する流路72aの断面形状が、短軸方向Yに長い長方形の各辺が円弧状に形成されており、4つの円弧状の辺のうち、長軸方向Xの対向する2辺p、qは、円弧が凸となる突出方向が外向きになっており、短軸方向Yの対向する2辺r、sは、円弧が凸となる突出方向が内向きとなっているものである。
Next, a method for expanding the multi-hole tube shown in FIGS. 5 and 6 will be described with reference to FIGS. 12 and 13.
The multi-hole tube 70 described here is a rectangular side in which the cross-sectional shape of the flow path 72a located in the center of the long axis direction X and the short axis direction Y is long in the short axis direction Y among the plurality of flow paths. Are formed in an arc shape, and the two opposing sides p and q in the major axis direction X of the four arc-shaped sides are such that the projecting direction in which the arc is convex is outward, and the minor axis direction The two opposite sides r and s of Y are such that the protruding direction in which the arc is convex is inward.

この流路72a内に公知の拡管ビュレット66を挿入することによって、多穴チューブ70全体が拡管される。
すなわち、拡管ビュレット66の径は、流路72aの長軸方向Xの幅h(すなわち、幅狭な方向の幅h)によりも大径に形成されている。拡管ビュレット66が流路72a内に挿入されると、流路72aが長軸方向Xおよび短軸方向Yに拡管され、流路72aは断面円形になる(図13の破線E部分)。流路72aが拡管されると、流路72aの周囲の肉が外側に広がり多穴チューブ70全体が拡管される(図13の破線F部分)。
The entire multi-hole tube 70 is expanded by inserting a known expanded burette 66 into the flow path 72a.
That is, the diameter of the expanded burette 66 is larger than the width h in the major axis direction X of the flow path 72a (that is, the width h in the narrow direction). When the pipe expansion burette 66 is inserted into the flow path 72a, the flow path 72a is expanded in the long axis direction X and the short axis direction Y, and the flow path 72a becomes circular in cross section (part indicated by a broken line E in FIG. 13). When the flow path 72a is expanded, the meat around the flow path 72a spreads outward and the entire multi-hole tube 70 is expanded (part indicated by a broken line F in FIG. 13).

以上本発明につき好適な実施例を挙げて種々説明したが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。   While the present invention has been described in detail with reference to a preferred embodiment, the present invention is not limited to this embodiment, and it goes without saying that many modifications can be made without departing from the spirit of the invention. .

熱交換器用多穴チューブの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the multi-hole tube for heat exchangers. 実施例1にかかる熱交換器用多穴チューブの断面図である。It is sectional drawing of the multi-hole tube for heat exchangers concerning Example 1. FIG. 実施例2にかかる熱交換器用多穴チューブの断面図である。It is sectional drawing of the multi-hole tube for heat exchangers concerning Example 2. FIG. 実施例3にかかる熱交換器用多穴チューブの断面図である。It is sectional drawing of the multi-hole tube for heat exchangers concerning Example 3. FIG. 実施例4にかかる熱交換器用多穴チューブの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the multi-hole tube for heat exchangers concerning Example 4. FIG. 実施例4にかかる熱交換器用多穴チューブの断面図である。It is sectional drawing of the multi-hole tube for heat exchangers concerning Example 4. FIG. 熱交換器の構造を示す説明図である。It is explanatory drawing which shows the structure of a heat exchanger. フィンの構造を示す説明図である。It is explanatory drawing which shows the structure of a fin. 図8のフィンに熱交換器用多穴チューブを挿通させたところを示す説明図である。It is explanatory drawing which shows the place which penetrated the multi-hole tube for heat exchangers to the fin of FIG. 実施例1に示した熱交換器用多穴チューブを拡管する方法を示す説明図である。It is explanatory drawing which shows the method of expanding the multi-hole tube for heat exchangers shown in Example 1. FIG. 実施例1に示した熱交換器用多穴チューブの拡管の様子を示す説明図である。It is explanatory drawing which shows the mode of the pipe expansion of the multi-hole tube for heat exchangers shown in Example 1. FIG. 実施例4に示した熱交換器用多穴チューブを拡管する方法を示す説明図である。It is explanatory drawing which shows the method of expanding the multi-hole tube for heat exchangers shown in Example 4. FIG. 実施例4に示した熱交換器用多穴チューブの拡管の様子を示す説明図である。It is explanatory drawing which shows the mode of the pipe expansion of the multi-hole tube for heat exchangers shown in Example 4. FIG. 従来の熱交換器用多穴チューブの構造について説明する説明図である。It is explanatory drawing explaining the structure of the conventional multi-hole tube for heat exchangers.

符号の説明Explanation of symbols

30,40,50,70 熱交換器用多穴チューブ(多穴チューブ)
31,41,51,72 流路
32,42,52 仕切壁
33 外周壁
35,45,55 内壁面
36 熱交換器用フィン(フィン)
37 長軸方向の端部
38 透孔
39 カラー
46 カラー付き透孔
60 熱交換器
66 拡管ビュレット
68 拡管マンドレル
X 長軸方向
Y 短軸方向
30, 40, 50, 70 Multi-hole tube for heat exchanger (multi-hole tube)
31, 41, 51, 72 Flow path 32, 42, 52 Partition wall 33 Outer peripheral wall 35, 45, 55 Inner wall surface 36 Heat exchanger fin (fin)
37 Ends in long axis direction 38 Through holes 39 Color 46 Colored through holes 60 Heat exchanger 66 Expanded burette 68 Expanded mandrel X Long axis direction Y Short axis direction

Claims (3)

内部に複数の流路が形成された、熱交換器用多穴チューブにおいて、
チューブ断面の外形がオーバル形に形成されていることを特徴とする熱交換器用多穴チューブ。
In the multi-hole tube for heat exchangers, in which a plurality of flow paths are formed,
A multi-hole tube for a heat exchanger, characterized in that the outer shape of the cross section of the tube is formed in an oval shape.
前記複数の流路は奇数個形成され、
該奇数個の流路のうち断面積が最大の流路が、チューブ断面の長軸方向および短軸方向の中心に設けられていることを特徴とする請求項1記載の熱交換器用多穴チューブ。
The odd number of the plurality of flow paths is formed,
The multi-hole tube for a heat exchanger according to claim 1, wherein the flow path having the largest cross-sectional area among the odd number of flow paths is provided at the center in the major axis direction and the minor axis direction of the tube cross section. .
請求項2記載の熱交換器用多穴チューブを拡管する方法であって、
チューブ断面の長軸方向および短軸方向の中心に設けられている流路のみに拡管ビュレットを挿入し、チューブ断面の長軸方向および短軸方向の中心に設けられている流路を拡管することで、チューブ全体を拡管させることを特徴とする熱交換器用多穴チューブの拡管方法。
A method for expanding a multi-hole tube for a heat exchanger according to claim 2,
Inserting a tube expansion burette only into the flow path provided at the center of the long axis direction and the short axis direction of the tube cross section, and expanding the flow path provided at the center of the long axis direction and the short axis direction of the tube cross section A method for expanding a multi-hole tube for a heat exchanger, wherein the entire tube is expanded.
JP2004167560A 2003-11-12 2004-06-04 Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger Pending JP2005164221A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004167560A JP2005164221A (en) 2003-11-12 2004-06-04 Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
PCT/JP2004/007935 WO2005047798A1 (en) 2003-11-12 2004-06-07 Multi-hole tube for heat exchanger and method of expanding tube therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003382853 2003-11-12
JP2004167560A JP2005164221A (en) 2003-11-12 2004-06-04 Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger

Publications (1)

Publication Number Publication Date
JP2005164221A true JP2005164221A (en) 2005-06-23

Family

ID=34593943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167560A Pending JP2005164221A (en) 2003-11-12 2004-06-04 Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger

Country Status (2)

Country Link
JP (1) JP2005164221A (en)
WO (1) WO2005047798A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
WO2009154047A1 (en) * 2008-06-19 2009-12-23 三菱電機株式会社 Heat exchanger and air conditioner having the heat exchanger
EP2228153A3 (en) * 2006-12-14 2010-12-15 CTA Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
JP2010286196A (en) * 2009-06-12 2010-12-24 Toshiba Carrier Corp Heat transfer tube, heat exchanger, and air conditioner having heat exchanger
JP2018112363A (en) * 2017-01-13 2018-07-19 三菱電機株式会社 Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548400B2 (en) * 1989-10-13 1996-10-30 松下冷機株式会社 Heat exchanger manufacturing method
JPH11320005A (en) * 1998-05-13 1999-11-24 Showa Alum Corp Heat exchanger and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228153A3 (en) * 2006-12-14 2010-12-15 CTA Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8336604B2 (en) 2006-12-14 2012-12-25 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8869874B2 (en) 2006-12-14 2014-10-28 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
WO2009154047A1 (en) * 2008-06-19 2009-12-23 三菱電機株式会社 Heat exchanger and air conditioner having the heat exchanger
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
US9322602B2 (en) 2008-06-19 2016-04-26 Mitsubishi Electric Corporation Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
JP2010286196A (en) * 2009-06-12 2010-12-24 Toshiba Carrier Corp Heat transfer tube, heat exchanger, and air conditioner having heat exchanger
JP2018112363A (en) * 2017-01-13 2018-07-19 三菱電機株式会社 Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger

Also Published As

Publication number Publication date
WO2005047798A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP2010002093A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2004225961A (en) Multi-flow type heat exchanger
JPWO2019189924A1 (en) Header plateless heat exchanger
US9151547B2 (en) Heat exchanger utilizing chambers with sub-chambers having respective medium directing inserts coupled therein
JP2004286431A (en) Heat exchanger
JP2005164221A (en) Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
JP2003314982A (en) Double pipe type heat exchanger
JP2009103404A (en) Heat exchanger
JP2008134003A (en) Tube type heat exchanger
JP2005090926A (en) Double pipe type heat exchanger
JP7244440B2 (en) Header plateless heat exchanger
JP2010243076A (en) Coolant heat exchanger
JP2005055064A (en) Double tube-type heat exchanger and its manufacturing method
JP4273483B2 (en) Heat exchanger tubes and heat exchangers
JP2007183062A (en) Heat exchanger
JP2000283677A (en) Heat exchanger
JP4536459B2 (en) Heat exchanger tubes and heat exchangers
JP2009092269A (en) Double tube-type heat exchanger
JP2004301455A (en) Header tank for heat exchanger
JP2006200862A (en) Flat tube for heat exchanger
JP2005172262A (en) Heat exchanger
JPH11230686A (en) Heat exchanger
JP2010255918A (en) Air heat exchanger
JP2007263472A (en) Micro-heat exchanger and manufacturing method thereof