JP2005163742A - Intake controller for internal combustion engine - Google Patents

Intake controller for internal combustion engine Download PDF

Info

Publication number
JP2005163742A
JP2005163742A JP2003407188A JP2003407188A JP2005163742A JP 2005163742 A JP2005163742 A JP 2005163742A JP 2003407188 A JP2003407188 A JP 2003407188A JP 2003407188 A JP2003407188 A JP 2003407188A JP 2005163742 A JP2005163742 A JP 2005163742A
Authority
JP
Japan
Prior art keywords
lift
intake valve
intake
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003407188A
Other languages
Japanese (ja)
Other versions
JP4238710B2 (en
Inventor
Takeshi Arinaga
毅 有永
Shinichi Takemura
信一 竹村
Shunichi Aoyama
俊一 青山
Susumu Ishizaki
晋 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003407188A priority Critical patent/JP4238710B2/en
Publication of JP2005163742A publication Critical patent/JP2005163742A/en
Application granted granted Critical
Publication of JP4238710B2 publication Critical patent/JP4238710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake controller for an internal combustion engine setting phase conversion speed of a phase variable mechanism in such a way that it depends on lift amount changed by a lift/operation angle variable mechanism. <P>SOLUTION: This intake controller for the internal combustion engine is provided with the lift/operation angle variable mechanism capable of continuously enlarging, contracting, and controlling lift/operation angle of an intake valve and the phase variable mechanism for delaying phase of lift central angle of the intake valve to control intake amount of the internal combustion engine by controlling lift/operation angle of the intake valve and lift central angle in accordance with engine operation conditions. Difference between advance angle speed and phase lag speed of lift central angle when lift amount of the intake valve is the same is changed in accordance with lift amount of the intake valve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の吸気制御装置に関する。   The present invention relates to an intake control device for an internal combustion engine.

特許文献1には、ポンピングロスを十分に低減させつつスロットル弁に依存しない吸気量の制御を実現するとともに、極低負荷域での燃焼悪化を回避するために、吸気弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構とを備えた内燃機関の吸気制御装置が開示されている。この特許文献1のように、リフト・作動角可変機構と、位相可変機構とを備えた内燃機関の吸気制御装置においては、低負荷から高負荷になるに従い、吸気弁のリフト量も大きく設定するのが一般的である。
特開2002−256905号公報。
In Patent Document 1, in order to realize a control of the intake air amount that does not depend on the throttle valve while sufficiently reducing the pumping loss, the lift / operating angle of the intake valve is set in order to avoid the deterioration of combustion in the extremely low load region. An intake control device for an internal combustion engine is disclosed that includes a lift / operating angle variable mechanism that can simultaneously and continuously expand and contract and a phase variable mechanism that delays the phase of the lift center angle of the intake valve. As in Patent Document 1, in an intake control device for an internal combustion engine that includes a lift / operating angle variable mechanism and a phase variable mechanism, the lift amount of the intake valve is set to increase as the load increases from a low load. It is common.
JP 2002-256905 A.

しかしながら、従来、上記位相可変機構の位相変換速度が、上記リフト・作動角可変機構によって変化するリフト量に依存することが明確になっていなかった。このため、リフト量の設定(負荷状態と言い換えてもよい)によっては、上記リフト・作動角可変機構と位相可変機構とを備えた内燃機関の吸気制御装置の性能を場合によっては悪化させてしまう可能性がある。   However, conventionally, it has not been clarified that the phase conversion speed of the phase variable mechanism depends on the lift amount changed by the lift / operating angle variable mechanism. For this reason, depending on the setting of the lift amount (which may be referred to as a load state), the performance of the intake control device for an internal combustion engine including the lift / operation angle variable mechanism and the phase variable mechanism may be deteriorated depending on circumstances. there is a possibility.

そこで、本発明は、吸気弁のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構とを備え、機関運転条件に応じて吸気弁のリフト・作動角及びリフト中心角の位相を制御することにより内燃機関の吸気量を制御するようにした内燃機関の吸気制御装置において、吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を、吸気弁のリフト量に応じて変化させることを特徴としている。   Therefore, the present invention includes a lift / working angle variable mechanism capable of continuously expanding and reducing the lift / working angle of the intake valve, and a phase variable mechanism for delaying the phase of the lift center angle of the intake valve, In an intake control device for an internal combustion engine in which the intake air amount of the internal combustion engine is controlled by controlling the phase of the lift / operating angle and lift center angle of the intake valve according to engine operating conditions, the lift amount of the intake valve is the same In this case, the difference between the advance speed and the retard speed of the lift center angle is changed according to the lift amount of the intake valve.

本発明によれば、吸気弁のリフト量に応じて吸気弁のリフト中心角の進角速度と遅角速度との差を変化させるので、適正な設定を行うことにより、燃費、あるいは過渡レスポンスを最適にすることができる。   According to the present invention, since the difference between the advance speed and the retard speed of the lift center angle of the intake valve is changed according to the lift amount of the intake valve, the fuel consumption or the transient response is optimized by performing an appropriate setting. can do.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。図1は,本発明のシステムの全体構成の概略を示す構成説明図であり、吸気弁1のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構10と、吸気弁1のリフト中心角の位相を進角もしくは遅角させる位相可変機構15とが組み合わされて構成されている。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the overall configuration of the system of the present invention. The lift / working angle variable mechanism 10 capable of continuously expanding and reducing the lift / working angle of the intake valve 1 and the intake valve. A phase variable mechanism 15 for advancing or retarding the phase of one lift center angle is combined.

リフト・作動角可変機構10は、シリンダヘッド(図示せず)にバルブガイド(図示せず)を介して摺動自在に設けられた吸気弁1と、クランクシャフト(図示せず)に連係された駆動軸2と、駆動軸2に圧入等により固定された駆動軸偏心部3と、駆動軸2と平行に配置された制御軸12と、制御軸12の偏心カム部18に揺動自在に支持されたロッカーアーム6と、吸気弁1の上端部に配置されたタペット11に当接する揺動カム9と、を備えている。駆動偏心部3とロッカアーム6とはリンク4によって連係されており、ロッカアーム6と揺動カム9とはリンク8によって連係されている。揺動カム9a,9bは、円筒状の筒部材25の外周に嵌合固定されている。また、筒部材25は、駆動軸2の外周に嵌合して回転自在に支持されている。   The lift / operating angle variable mechanism 10 is linked to an intake valve 1 slidably provided on a cylinder head (not shown) via a valve guide (not shown), and a crankshaft (not shown). A drive shaft 2, a drive shaft eccentric portion 3 fixed to the drive shaft 2 by press-fitting or the like, a control shaft 12 arranged in parallel to the drive shaft 2, and an eccentric cam portion 18 of the control shaft 12 are supported in a swingable manner. The rocker arm 6 and the swing cam 9 that contacts the tappet 11 disposed at the upper end of the intake valve 1 are provided. The drive eccentric portion 3 and the rocker arm 6 are linked by a link 4, and the rocker arm 6 and the swing cam 9 are linked by a link 8. The swing cams 9 a and 9 b are fitted and fixed to the outer periphery of a cylindrical tube member 25. The cylindrical member 25 is rotatably supported by being fitted to the outer periphery of the drive shaft 2.

駆動軸2は、タイミングチェーン(図示せず)もしくはタイミングベルト(図示せず)を介して機関のクランクシャフト(図示せず)によって駆動されるものである。   The drive shaft 2 is driven by an engine crankshaft (not shown) via a timing chain (not shown) or a timing belt (not shown).

駆動軸偏心部3は、円形外周面を有し、この外周面の中心が駆動軸2の軸心から所定量だけオフセットしていると共に、この外周面にリンク4の環状部4aが回転可能に嵌合している。   The drive shaft eccentric portion 3 has a circular outer peripheral surface, the center of the outer peripheral surface is offset from the shaft center of the drive shaft 2 by a predetermined amount, and the annular portion 4a of the link 4 can be rotated on the outer peripheral surface. It is mated.

ロッカアーム6は、略中央部が偏心カム部18によって支持されていると共に、その一端部にリンク4の延長部4bがピン5を介して連係していると共、他端部にリンク8の上端部がピン7を介して連係している。偏心カム部18は、制御軸12の軸心から偏心しており、従って、制御軸12の角度位置に応じてロッカアーム6の揺動中心は変化する。   The rocker arm 6 is supported at an approximately central portion by an eccentric cam portion 18, and an extension portion 4 b of the link 4 is linked to one end portion of the rocker arm 6 via a pin 5. The parts are linked via a pin 7. The eccentric cam portion 18 is eccentric from the axis of the control shaft 12, and accordingly, the rocking center of the rocker arm 6 changes according to the angular position of the control shaft 12.

揺動カム9aは、ピン17を介してリンク8の下端部に連係している。そして、揺動カム9は、揺動位置に応じてタペット11の上面に当接するようになっている。   The swing cam 9 a is linked to the lower end portion of the link 8 via a pin 17. The swing cam 9 comes into contact with the upper surface of the tappet 11 according to the swing position.

制御軸12は、一端部に設けられたリフト作動角制御用となるモータ等のアクチュエータ13によって、所定回転角度範囲内で回転するよう構成されている。このアクチュエータ13は、ECU(エンジンコントロールユニット)19からの制御信号に基づき制御されている。詳述すれば、制御軸12の回転角度位相は、位相検知センサ14で検知され、エンジン運転条件と合わせ、ECU19により最適に制御される。   The control shaft 12 is configured to rotate within a predetermined rotation angle range by an actuator 13 such as a motor for controlling a lift operation angle provided at one end. The actuator 13 is controlled based on a control signal from an ECU (engine control unit) 19. More specifically, the rotational angle phase of the control shaft 12 is detected by the phase detection sensor 14 and optimally controlled by the ECU 19 in accordance with the engine operating conditions.

このリフト・作動角可変機構10の作用を説明すると、駆動軸2の回転運動は、まずリンク4の並進(上下)運動に変換され、次いでこの並進(上下)運動がロッカアーム6の揺動運動に変換され、さらにこの揺動運動で揺動カム9が揺動される仕組みになっている。   The operation of the variable lift / operating angle mechanism 10 will be described. First, the rotational movement of the drive shaft 2 is converted into the translational (vertical) movement of the link 4, and this translational (vertical) movement is then converted into the rocking movement of the rocker arm 6. It is converted, and the swing cam 9 is swung by this swinging motion.

また、制御軸12の回転角度位相、制御軸偏心カム部18の回転角度位相は、ECU19からの制御信号に基づき、アクチュエータ13によって制御される。具体的には、ECU19からの指令に基づきアクチュエータ13を駆動することにより制御軸12の角度が変化(制御軸12が回転)すると、ロッカアーム6の初期位置が変化し、ひいては揺動カム9の初期揺動位置が変化することになる。これにより、吸気弁1のバルブリフトと作動角を高精度高応答に連続的に可変可能となっている。   Further, the rotation angle phase of the control shaft 12 and the rotation angle phase of the control shaft eccentric cam portion 18 are controlled by the actuator 13 based on a control signal from the ECU 19. Specifically, when the angle of the control shaft 12 changes by driving the actuator 13 based on a command from the ECU 19 (the control shaft 12 rotates), the initial position of the rocker arm 6 changes, and consequently the initial position of the swing cam 9. The swing position will change. Thereby, the valve lift and the operating angle of the intake valve 1 can be continuously varied with high accuracy and high response.

一方、クランクシャフト(図示せず)と駆動軸2との位相を可変とする位相可変機構15は、駆動軸2の一端部に設けられたスプロケット30と、このスプロケット30と駆動軸2とを所定の角度範囲内において、相対的に回転させる位相制御用油圧アクチュエータ21とから構成されている。そして、スプロケット30が、タイミングチェーン(図示せず)もしくはタイミングベルト(図示せず)を介してクランクシャフト(図示せず)に連係することにより、駆動軸2がクランクシャフト(図示せず)に連動する。   On the other hand, the phase variable mechanism 15 for changing the phase between the crankshaft (not shown) and the drive shaft 2 is provided with a sprocket 30 provided at one end of the drive shaft 2, and the sprocket 30 and the drive shaft 2 are predetermined. In this angle range, the phase control hydraulic actuator 21 is relatively rotated. The sprocket 30 is linked to a crankshaft (not shown) via a timing chain (not shown) or a timing belt (not shown), so that the drive shaft 2 is linked to the crankshaft (not shown). To do.

位相制御用油圧アクチュエータ21への油圧の供給は、位相検知センサ16の検出値とエンジン運転条件とに基づいたECU19からの制御信号によって制御されている。この位相制御用油圧アクチュエータへの油圧制御によって、スプロケット30と駆動軸2とが相対回転し、吸気弁1のリフト中心角が遅進する。   The supply of hydraulic pressure to the phase control hydraulic actuator 21 is controlled by a control signal from the ECU 19 based on the detection value of the phase detection sensor 16 and the engine operating conditions. By the hydraulic control to the phase control hydraulic actuator, the sprocket 30 and the drive shaft 2 are relatively rotated, and the lift center angle of the intake valve 1 is delayed.

以上のような機構により、吸気弁1のバルブリフト及び吸気弁1のバルブタイミングの両方を自由に変更することが可能となっている。   With the above mechanism, both the valve lift of the intake valve 1 and the valve timing of the intake valve 1 can be freely changed.

次に、図2を用いて,各負荷領域における最適な吸気弁1のバルブリフト及び吸気弁1のバルブタイミングについて説明する。アイドルのような極低負荷では、極小バルブリフトにより吸気量制御を行い、吸気弁1のリフト中心角の位相を遅角させ、かつ吸気弁閉時期を下死点近傍に設定することにより、有効圧縮比を確保し燃焼改善を図る。一方、燃焼が安定してくる低負荷以上では、吸気弁1のバルブリフトにより吸入抵抗を低減し、吸気弁1のバルブタイミングにより吸気量制御を行う。低負荷では、極小バルブリフトより大きなバルブリフトで吸気弁1のリフト中心角の位相を進角させ、吸気弁閉時期を早めることによりポンプ損失を低減し、燃費を向上させる。さらに負荷が大、燃焼が安定する中負荷では、吸気弁1のバルブリフトを増加させ、かつ吸気弁1のリフト中心角の位相を進角させ、内部EGRも利用し、燃焼改善、ポンプ損失低減を図る。尚、最大トルク(通常の全開性能に相当)時は、さらに吸気弁1のバルブリフトを増大させ、吸気弁1のリフト中心角の位相を最適なバルブタイミングとなる位相に設定する。   Next, the optimum valve lift of the intake valve 1 and the valve timing of the intake valve 1 in each load region will be described with reference to FIG. For extremely low loads such as idle, it is effective by controlling the intake air amount with a minimum valve lift, retarding the phase of the lift center angle of the intake valve 1 and setting the intake valve close timing near the bottom dead center Ensure compression ratio and improve combustion. On the other hand, at a low load or higher where the combustion is stabilized, the intake resistance is reduced by the valve lift of the intake valve 1 and the intake amount control is performed by the valve timing of the intake valve 1. At low loads, the phase of the lift center angle of the intake valve 1 is advanced by a valve lift larger than the minimum valve lift, and the intake valve closing timing is advanced to reduce pump loss and improve fuel efficiency. In addition, when the load is heavy and the combustion is stable, the valve lift of the intake valve 1 is increased, the phase of the lift center angle of the intake valve 1 is advanced, and internal EGR is also used to improve combustion and reduce pump loss. Plan. Note that at the maximum torque (corresponding to normal full-open performance), the valve lift of the intake valve 1 is further increased, and the phase of the lift center angle of the intake valve 1 is set to a phase that is the optimum valve timing.

図2において、バルブリフトが比較的小さいとき、すなわち一般的な負荷状態である極低負荷ないし中負荷状態からの減速時においては、よく知られているように、残留ガスの増大に伴う燃焼不安定を回避する必要がある。このため、減速動作の開始とともに、バルブタイミングを速やかに最遅角側に戻すことが要求される。一方、高負荷時、すなわちバルブリフトが大きい場合には、バルブタイミングを速やかに最進角側に進めることで、加速動作に対する良好なレスポンスを得られることが期待できる。   In FIG. 2, when the valve lift is relatively small, that is, when decelerating from a very low load or a medium load state, which is a general load state, as is well known, the combustion insufficiency accompanying the increase in residual gas is known. It is necessary to avoid stability. For this reason, it is required to quickly return the valve timing to the most retarded angle side with the start of the deceleration operation. On the other hand, when the load is high, that is, when the valve lift is large, it can be expected that a good response to the acceleration operation can be obtained by promptly moving the valve timing to the most advanced angle side.

このことから、吸気弁1のバルブリフトが小さいときには進角速度に対して遅角速度を大とし、吸気弁1のバルブリフトが大きいときには進角速度に対して遅角速度を小とすることが好ましい。   For this reason, it is preferable that the retarded speed is increased with respect to the advanced speed when the valve lift of the intake valve 1 is small, and the retarded speed is decreased with respect to the advanced speed when the valve lift of the intake valve 1 is large.

この特性を図に表したものが図3である。図3から明らかなように、バルブリフトが小さいほど遅角速度の方が大きくなり、バルブリフトが大きいほど進角速度の方が大きくなる特性である。すなわち、吸気弁1のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差が、吸気弁1のリフト量に応じて変化する特性となるよう設定する。詳述すれば、吸気弁1のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差が、吸気弁1のリフト量に応じて一定の傾向で単調に変化、より詳しくは吸気弁1のリフト量の増加に応じて単調増加する特性となるよう設定する。   This characteristic is shown in FIG. As is apparent from FIG. 3, the smaller the valve lift, the larger the retarded angular velocity, and the larger the valve lift, the larger the advanced angular velocity. That is, the difference between the advance speed and the retard speed of the lift center angle when the lift amount of the intake valve 1 is the same is set so as to change according to the lift amount of the intake valve 1. More specifically, when the lift amount of the intake valve 1 is the same, the difference between the advance speed and the retard speed of the lift center angle changes monotonously with a constant tendency according to the lift amount of the intake valve 1. Is set to have a characteristic that monotonously increases as the lift amount of the intake valve 1 increases.

さて、上述した図1のシステムにおいて、吸気弁1のバルブタイミングを変更するための具体的な機構は、位相可変動弁機構15である。そこで、以下、該機構に図3のごとき特性を付与するための具体的方法について述べる。   In the system of FIG. 1 described above, a specific mechanism for changing the valve timing of the intake valve 1 is a phase variable valve mechanism 15. Therefore, a specific method for imparting characteristics to the mechanism as shown in FIG. 3 will be described below.

位相可変動弁機構の代表的なものは、例えば、特開2000−356115号公報に示されるものであり、本発明を次のように適用する。   A typical variable phase valve mechanism is disclosed in, for example, Japanese Patent Laid-Open No. 2000-356115, and the present invention is applied as follows.

図4に示されるように、タイミングチェーンに取り付けられる部分であるスプロケット30に対して相対運動を生じないプレート31と、ベーン32との間に、スプリング33を取り付ける。すなわち、スプリング33の一端をプレート31に固定し、他端をベーン32に固定することにより、前記特性を付与することが可能となる。尚、スプリング33のばね定数ならびに初期の付勢方向は,前記要求が満たされるよう、対象とするシステムに見合ったものを選定すればよい。以上のように、現状広く用いられている位相可変動弁機構の仕組みを大幅に変更することなく、前記特性の付与が容易に可能となる。   As shown in FIG. 4, a spring 33 is attached between a plate 31 that does not cause relative movement with respect to the sprocket 30 that is a portion attached to the timing chain, and the vane 32. That is, by fixing one end of the spring 33 to the plate 31 and fixing the other end to the vane 32, the above characteristics can be imparted. Note that the spring constant and the initial biasing direction of the spring 33 may be selected in accordance with the target system so as to satisfy the above requirement. As described above, the above characteristics can be easily imparted without significantly changing the mechanism of the phase variable valve mechanism widely used at present.

以下、上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical ideas of the present invention that can be grasped from the above embodiments will be listed below together with the effects thereof.

(1) 吸気弁のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構とを備え、機関運転条件に応じて吸気弁のリフト・作動角及びリフト中心角の位相を制御することにより内燃機関の吸気量を制御するようにした内燃機関の吸気制御装置において、吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を、吸気弁のリフト量に応じて変化させる。これによって、吸気弁のリフト量に応じて吸気弁のリフト中心角の進角速度と遅角速度との差が変化するので、適正な設定を行うことにより、燃費、あるいは過渡レスポンスを最適にすることができる。   (1) Equipped with a variable lift / operating angle mechanism capable of continuously expanding and reducing the lift / operating angle of the intake valve and a phase variable mechanism for delaying the phase of the lift central angle of the intake valve, and engine operating conditions In the intake control device for an internal combustion engine that controls the intake air amount of the internal combustion engine by controlling the lift / working angle and the lift center angle of the intake valve in accordance with the lift amount of the intake valve is the same The difference between the advance speed and the retard speed of the lift center angle is changed according to the lift amount of the intake valve. As a result, the difference between the advance speed and the retard speed of the intake valve lift center angle changes according to the lift amount of the intake valve, so that appropriate settings can optimize fuel economy or transient response. it can.

(2) 上記(1)に記載の内燃機関の吸気制御装置は、より具体的には、吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を、吸気弁のリフト量に応じて一定の傾向で単調に変化させる。これによって、一般的な負荷状態である極低負荷ないし中負荷状態からの減速時、及び高負荷での加速時において、それぞれ燃費あるいは過渡レスポンスを最適にすることができる。   (2) More specifically, the intake control device for an internal combustion engine according to the above (1) calculates the difference between the advance speed and the retard speed of the lift center angle when the lift amount of the intake valve is the same. It changes monotonously with a certain tendency according to the lift amount of the valve. This makes it possible to optimize the fuel consumption or the transient response when decelerating from a very low load or a medium load state, which is a general load state, and during acceleration under a high load.

(3) 上記(1)または(2)に記載の内燃機関の吸気制御装置は、より具体的には、吸気弁のリフト量が同一である場合に、吸気弁のリフト量が小さいときには吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が大となり、吸気弁のリフト量が大きいときには吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角が遅角速度を小となる。これによって、一般的な負荷状態である極低負荷ないし中負荷状態からの減速時において、残留ガスの増大に伴う燃焼不安定を回避することができ、かつ高負荷での加速時において、加速動作に対する良好なレスポンスを得ることができる。   (3) The intake control device for an internal combustion engine according to (1) or (2), more specifically, when the lift amount of the intake valve is small when the lift amount of the intake valve is the same, the intake valve When the lift amount of the intake valve is large, the lift center angle of the intake valve is larger than the advance angle of the lift center angle. Decreases the retarding speed. This makes it possible to avoid combustion instability due to an increase in residual gas when decelerating from a very low load to a medium load state, which is a general load state, and to accelerate when accelerating at a high load. Good response to can be obtained.

(4) 上記(1)または(2)に記載の内燃機関の吸気制御装置は、より具体的には、吸気弁のリフト量が同一である場合に、内燃機関が低負荷ないし中負荷時には吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が大となり、内燃機関が高負荷時には吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が小となる。   (4) The intake control device for an internal combustion engine according to (1) or (2), more specifically, when the lift amount of the intake valve is the same, the intake control is performed when the internal combustion engine has a low load or a medium load. The retard speed of the lift valve center angle of the intake valve is larger than the advance speed of the lift valve center angle, and when the internal combustion engine is heavily loaded, the lift valve center angle of the intake valve is retarded relative to the advance speed of the lift valve center angle of the intake valve. Angular velocity is small.

(5) 上記(1)〜(4)のいずれかに記載の内燃機関の吸気制御装置は、より具体的には、内燃機関が中負荷時において、吸気弁と排気弁のオーバーラップ量が大となり、内燃機関が低負荷時においては、吸気弁と排気弁のオーバーラップ量が小となり、かつ吸気弁のリフト作動角が中負荷時よりも小となる。   (5) More specifically, the intake control device for an internal combustion engine according to any one of (1) to (4) described above has a large overlap amount between the intake valve and the exhaust valve when the internal combustion engine is at a medium load. Thus, when the internal combustion engine is under a low load, the amount of overlap between the intake valve and the exhaust valve is small, and the lift operating angle of the intake valve is smaller than that during a medium load.

(6) 上記(1)〜(5)のいずれかに記載の内燃機関の吸気制御装置は、より具体的には、吸気弁のリフト中心角の進角速度と吸気弁のリフト中心角の遅角速度が同一になる吸気弁のリフト量が、内燃機関の高負荷時に設定されている。   (6) The intake control device for an internal combustion engine according to any one of (1) to (5), more specifically, an advance speed of the lift center angle of the intake valve and a retard speed of the lift center angle of the intake valve The lift amount of the intake valve with the same is set at the time of high load of the internal combustion engine.

(7) 上記(1)〜(6)のいずれかに記載の内燃機関の吸気制御装置において、内燃機関は、吸入負圧が略一定に制御され、かつ吸気弁のバルブリフト特性で吸気量制御が行われるものである。これによって、オーバーラップをさらに大きく設定することができ、燃費のより一層の向上が見込まれる。   (7) In the intake control device for an internal combustion engine according to any one of (1) to (6), the internal combustion engine is configured such that the intake negative pressure is controlled to be substantially constant and the intake air amount is controlled by a valve lift characteristic of the intake valve. Is done. As a result, the overlap can be set larger, and further improvement in fuel consumption is expected.

(8) 上記(1)〜(7)のいずれかに記載の内燃機関の吸気制御装置において、位相可変機構は、油圧とスプリングのバネ力を駆動源として作動するものである。これによって、現状広く用いられている位相可変動弁機構の仕組みを大幅に変更することなく、容易に上述した(1)〜(7)に記載の内燃機関の吸気制御装置を実施、すなわち吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を吸気弁のリフト量に応じて変化させる動きを実現することが可能となる。   (8) In the intake control device for an internal combustion engine according to any one of (1) to (7), the phase variable mechanism operates using hydraulic pressure and spring force of a spring as drive sources. Thus, the intake control device for an internal combustion engine according to the above (1) to (7) can be easily implemented without significantly changing the mechanism of the phase variable valve mechanism that is widely used at present, that is, the intake valve. When the lift amount is the same, it is possible to realize a movement that changes the difference between the advance speed and the retard speed of the lift center angle according to the lift amount of the intake valve.

本発明に係る内燃機関の吸気制御装置の概略構成を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows schematic structure of the intake control device of the internal combustion engine which concerns on this invention. 内燃機関の運転状態と、運転条件に要求されるバルブリフト特性との関係を示す説明図。Explanatory drawing which shows the relationship between the driving | running state of an internal combustion engine, and the valve lift characteristic requested | required of driving | running conditions. 吸気弁のリフト中心角の進角速度と遅角速度との差と、吸気弁のバルブリフトとの相関性を示す説明図。Explanatory drawing which shows the correlation with the valve lift of an intake valve, and the difference of the advance speed and the retard speed of the lift center angle of an intake valve. 本発明に係る内燃機関の吸気制御装置における位相可変機構の一実施の形態を示す分解斜視図。1 is an exploded perspective view showing an embodiment of a phase variable mechanism in an intake control device for an internal combustion engine according to the present invention.

符号の説明Explanation of symbols

1…吸気弁
2…駆動軸
10…リフト・作動角可変機構
12…制御軸
15…位相可変機構
DESCRIPTION OF SYMBOLS 1 ... Intake valve 2 ... Drive shaft 10 ... Lift / operation angle variable mechanism 12 ... Control shaft 15 ... Phase variable mechanism

Claims (8)

吸気弁のリフト・作動角を連続的に拡大,縮小制御可能なリフト・作動角可変機構と、吸気弁のリフト中心角の位相を遅進させる位相可変機構とを備え、機関運転条件に応じて吸気弁のリフト・作動角及びリフト中心角の位相を制御することにより内燃機関の吸気量を制御するようにした内燃機関の吸気制御装置において、
吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を、吸気弁のリフト量に応じて変化させることを特徴とする内燃機関の吸気制御装置。
Equipped with a variable lift / operating angle mechanism that can continuously increase and decrease the lift / operating angle of the intake valve and a variable phase mechanism that retards the phase of the lift center angle of the intake valve, depending on engine operating conditions In the intake control device for an internal combustion engine, which controls the intake air amount of the internal combustion engine by controlling the phase of the lift / operating angle and lift center angle of the intake valve,
An intake control apparatus for an internal combustion engine, wherein a difference between an advance speed and a retard speed of a lift center angle when the lift amount of the intake valve is the same is changed according to the lift amount of the intake valve.
吸気弁のリフト量が同一である場合のリフト中心角の進角速度と遅角速度との差を、吸気弁のリフト量に応じて一定の傾向で単調に変化させることを特徴とする請求項1に記載の内燃機関の吸気制御装置。 The difference between the advance speed and the retard speed of the lift center angle when the lift amount of the intake valve is the same is monotonously changed with a constant tendency according to the lift amount of the intake valve. An intake control device for an internal combustion engine as described. 吸気弁のリフト量が同一である場合に、吸気弁のリフト量が小さいときには吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が大となり、吸気弁のリフト量が大きいときには吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角が遅角速度を小となることを特徴とする請求項1または2に内燃機関の吸気制御装置。 When the lift amount of the intake valve is the same, and the lift amount of the intake valve is small, the retard speed of the lift valve center angle of the intake valve is larger than the advance speed of the lift valve center angle of the intake valve, and the lift amount of the intake valve 3. The intake control apparatus for an internal combustion engine according to claim 1, wherein when the engine speed is large, the lift center angle of the intake valve has a smaller retard speed than the advance speed of the lift center angle of the intake valve. 吸気弁のリフト量が同一である場合に、内燃機関が低負荷ないし中負荷時には吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が大となり、内燃機関が高負荷時には吸気弁のリフト中心角の進角速度に対して吸気弁のリフト中心角の遅角速度が小となることを特徴とする請求項1または2に記載の内燃機関の吸気制御装置。 When the lift amount of the intake valve is the same, when the internal combustion engine is at a low load or medium load, the retard speed of the lift valve central angle of the intake valve is larger than the advance speed of the lift central angle of the intake valve, and the internal combustion engine is high. 3. The intake control device for an internal combustion engine according to claim 1, wherein the retard angle speed of the lift center angle of the intake valve is smaller than the advance speed of the lift center angle of the intake valve when a load is applied. 内燃機関が中負荷時においては、吸気弁と排気弁のオーバーラップ量が大となり、内燃機関が低負荷時においては、吸気弁と排気弁のオーバーラップ量が小となり、かつ吸気弁のリフト作動角が中負荷時よりも小となることを特徴とする請求項1〜4のいずれかに記載の内燃機関の吸気制御装置。 When the internal combustion engine is at a medium load, the overlap amount between the intake valve and the exhaust valve is large. When the internal combustion engine is at a low load, the overlap amount between the intake valve and the exhaust valve is small, and the intake valve is lifted. The intake control device for an internal combustion engine according to any one of claims 1 to 4, wherein the angle is smaller than that during medium load. 吸気弁のリフト中心角の進角速度と吸気弁のリフト中心角の遅角速度が同一になる吸気弁のリフト量が、内燃機関の高負荷時に設定されていることを特徴とする請求項1〜5のいずれかに記載の内燃機関の吸気制御装置。 6. The lift amount of the intake valve at which the advance speed of the lift center angle of the intake valve and the retard speed of the lift center angle of the intake valve are the same is set when the internal combustion engine is at a high load. An intake control device for an internal combustion engine according to any one of the above. 内燃機関は、吸入負圧が略一定に制御され、かつ吸気弁のバルブリフト特性で吸気量制御が行われるものであることを特徴とする請求項1〜6のいずれかに記載の内燃機関の吸気制御装置。 The internal combustion engine according to any one of claims 1 to 6, wherein the intake negative pressure is controlled to be substantially constant, and intake air amount control is performed by a valve lift characteristic of the intake valve. Intake control device. 位相可変機構は、油圧とスプリングのバネ力を駆動源として作動するものであることを特徴とする請求項1〜7のいずれかに記載の内燃機関の吸気制御装置。 The intake control apparatus for an internal combustion engine according to any one of claims 1 to 7, wherein the phase variable mechanism operates using hydraulic pressure and a spring force of a spring as a drive source.
JP2003407188A 2003-12-05 2003-12-05 Intake control device for internal combustion engine Expired - Fee Related JP4238710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407188A JP4238710B2 (en) 2003-12-05 2003-12-05 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407188A JP4238710B2 (en) 2003-12-05 2003-12-05 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005163742A true JP2005163742A (en) 2005-06-23
JP4238710B2 JP4238710B2 (en) 2009-03-18

Family

ID=34729310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407188A Expired - Fee Related JP4238710B2 (en) 2003-12-05 2003-12-05 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4238710B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084586A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Valve timing control method of internal combustion engine and internal combustion engine system
CN113944524A (en) * 2020-07-17 2022-01-18 深圳臻宇新能源动力科技有限公司 Valve gear of engine, control method of valve gear and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084586A (en) * 2008-09-30 2010-04-15 Mazda Motor Corp Valve timing control method of internal combustion engine and internal combustion engine system
CN113944524A (en) * 2020-07-17 2022-01-18 深圳臻宇新能源动力科技有限公司 Valve gear of engine, control method of valve gear and vehicle

Also Published As

Publication number Publication date
JP4238710B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3979081B2 (en) Combustion control system for internal combustion engine
JP3783589B2 (en) Variable valve operating device for internal combustion engine
JP4168872B2 (en) Control device for internal combustion engine
JP4749988B2 (en) Start control device for internal combustion engine
JP4858729B2 (en) Variable valve gear
JP4385509B2 (en) Control device for internal combustion engine for vehicle
JP2002285898A (en) Control device for internal combustion engine
JP2005098202A (en) Intake air control device of internal combustion engine
JP2002089341A (en) Control device for internal combustion engine in vehicle
JP2005240665A (en) Variable valve system for internal combustion engine
JP4168756B2 (en) Control device for internal combustion engine
JPH09170462A (en) Output controller for internal combustion engine
JP4366850B2 (en) Valve control device for internal combustion engine
JP5146354B2 (en) Control device for internal combustion engine
JP4899878B2 (en) Combustion control device for internal combustion engine
JP2001280167A (en) Intake and exhaust valve drive control device for internal combustion engine
JP4238710B2 (en) Intake control device for internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4706647B2 (en) Control device for internal combustion engine and internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP4604358B2 (en) Internal combustion engine and control system thereof
JP4655444B2 (en) Intake control device for internal combustion engine
JP4254130B2 (en) Variable valve operating device for internal combustion engine
JP2004011478A (en) Intake-air amount control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees