JP2005163237A - High-strength nonwoven fabric - Google Patents

High-strength nonwoven fabric Download PDF

Info

Publication number
JP2005163237A
JP2005163237A JP2003406084A JP2003406084A JP2005163237A JP 2005163237 A JP2005163237 A JP 2005163237A JP 2003406084 A JP2003406084 A JP 2003406084A JP 2003406084 A JP2003406084 A JP 2003406084A JP 2005163237 A JP2005163237 A JP 2005163237A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
strength
polyketone
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003406084A
Other languages
Japanese (ja)
Other versions
JP4338507B2 (en
Inventor
Tatsu Taniguchi
龍 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2003406084A priority Critical patent/JP4338507B2/en
Publication of JP2005163237A publication Critical patent/JP2005163237A/en
Application granted granted Critical
Publication of JP4338507B2 publication Critical patent/JP4338507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonwoven fabric that has high penetration power and high tear strength that are achieved by improving the defects that are caused when a nonwoven fabric is produced by using high-strength fiber. <P>SOLUTION: The nonwoven fabric is composed of a polyketone represented by chemical formula (1) (wherein A is a 2-30C organic group), the polyketone fiber has a strength of ≥10 cN/dtex and the nonwoven fabric has a unit weight of 10 g/m<SP>2</SP>and a penetration power of ≥ 5 N. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高強度のポリケトン繊維を含有した貫通強力及び引裂強度に優れる不織布及びその製造方法に関する。   The present invention relates to a nonwoven fabric containing a high-strength polyketone fiber and excellent in penetration strength and tear strength and a method for producing the same.

近年、高付加価値を兼ね備えた繊維が開発されているが、中でも強度の高い繊維の開発はめざましいものがある。しかし、高強度繊維は、一般的には織物、編み物等に加工され、不織布化された例は少ない。
これら高強度繊維を用いた不織布は、ルーフィング基布、防錆テープ、各ケーブルの補強材や押さえ巻、自動車のクラッチ板や摩耗板、樹脂補強材やコンクリート補強材等の各種補強材、各種摩耗布等や隔離膜、分離膜、セパレータ等、外力がかかったり、軽量化が求められる用途への展開が期待されている。しかしながら、高強度繊維を用いた不織布では以下のような問題があった。
In recent years, fibers with high added value have been developed, but the development of high strength fibers is remarkable. However, high-strength fibers are generally processed into woven fabrics, knitted fabrics, and the like, and are rarely made into nonwoven fabrics.
Non-woven fabrics using these high-strength fibers are roofing base fabric, rust-proof tape, reinforcing materials and presser windings for each cable, automotive clutch plates and wear plates, various reinforcing materials such as resin reinforcing materials and concrete reinforcing materials, various wear Expansion to applications where external force is applied or weight reduction is required, such as cloth, isolation membranes, separation membranes, and separators, is expected. However, the nonwoven fabric using high-strength fibers has the following problems.

高強度繊維は高弾性率で剛直であるため、高いエネルギーをかけても繊維同士が絡み合い難く、たとえ不織布化できたとしても、その不織布は繊維同士の交絡性が弱いため糸が素抜けてしまい、引張りに対する強度が低い。この引張性能は、不織布の目付を高くすることによりある程度の強度を有する不織布が得られるが、その反面、不織布厚み方向の強さ(以下貫通強力と記す)が低く、引裂強度が低いものであった。
不織布の貫通強力及び引裂強度は、高強度繊維の弾性率を下げて繊維間の交絡を密にすることにより改善することはできるが、弾性率を下げた場合には同時に繊維の強度も低下するため、高強度が要求される用途に耐えうるほど十分な貫通強力及び引裂強度を有する不織布を得ることは困難であった。
High-strength fibers are highly elastic and rigid, so even if high energy is applied, the fibers are not easily entangled. The strength against tension is low. This tensile performance can be obtained by increasing the basis weight of the nonwoven fabric to obtain a nonwoven fabric having a certain degree of strength, but on the other hand, the strength in the thickness direction of the nonwoven fabric (hereinafter referred to as penetration strength) is low and the tear strength is low. It was.
The penetration strength and tear strength of the nonwoven fabric can be improved by lowering the elastic modulus of the high-strength fibers to close the entanglement between the fibers, but if the elastic modulus is lowered, the strength of the fibers also decreases at the same time For this reason, it has been difficult to obtain a nonwoven fabric having sufficient penetration strength and tear strength to withstand applications where high strength is required.

一方、新しい高強度繊維として、オレフィンと一酸化炭素とが交互共重合したポリケトン繊維が知られている。ポリケトン繊維は200℃を越える融点と、高強度、高弾性率及び高耐薬品性の特性を有し、次世代のスーパー繊維として期待されている。
特許文献1には、このポリケトン繊維を用いた不織布が提案されているが、高強度のポリケトン繊維を用いた不織布及びその特性に関しては何の示唆もなされていない。実際に、この特許文献で具体的に開示されているのは、極限粘度が1.2のエチレン/プロピレン/一酸化炭素共重合ポリマーを溶融成形した繊維であるが、このようなポリマーからは強度10cN/dtex以上のポリケトン繊維を得ることはできず、高強度のポリケトン繊維を用いた力学特性の優れる不織布、特に貫通強力及び引裂強度の優れる不織布とは異なるものである。
On the other hand, polyketone fibers in which olefins and carbon monoxide are alternately copolymerized are known as new high-strength fibers. Polyketone fiber has a melting point exceeding 200 ° C., high strength, high elastic modulus and high chemical resistance, and is expected as a next-generation super fiber.
Patent Document 1 proposes a nonwoven fabric using this polyketone fiber, but no suggestion has been made regarding the nonwoven fabric using a high-strength polyketone fiber and its properties. Actually, what is specifically disclosed in this patent document is a fiber obtained by melt-molding an ethylene / propylene / carbon monoxide copolymer having an intrinsic viscosity of 1.2. A polyketone fiber of 10 cN / dtex or more cannot be obtained, and is different from a nonwoven fabric excellent in mechanical properties using a high-strength polyketone fiber, particularly a nonwoven fabric excellent in penetration strength and tear strength.

特許文献2には、ポリケトン繊維を特定の目付の範囲で不織布化することにより高い引張強度の不織布が得られることが開示されている。しかしながら、この特許文献には、不織布に用いるポリケトン繊維の強度の重要性及びこれにより得られる不織布の特性、具体的には、高強度のポリケトン繊維を用いることによって初めて貫通強力及び引裂強度の優れる不織布が得られることについては一切記載されておらず、また、何の示唆も与えるものではない。   Patent Document 2 discloses that a non-woven fabric having high tensile strength can be obtained by making polyketone fibers into a non-woven fabric within a specific basis weight. However, in this patent document, the importance of the strength of the polyketone fiber used for the nonwoven fabric and the characteristics of the nonwoven fabric obtained thereby, specifically, the nonwoven fabric that has excellent penetration strength and tear strength only by using a high-strength polyketone fiber. Is not described at all, and no suggestion is given.

実際に、この特許文献の実施例に記載され用いられているポリケトン繊維は、極限粘度が1.1dl/gのエチレン/プロピレン/一酸化炭素共重合ポリマーを溶融紡糸した繊維、及び極限粘度が2.0dl/gのエチレン/一酸化炭素共重合ポリマーをヘキサフルオロイソプロパノールに1%濃度で溶解した溶液から湿式紡糸した繊維である。これらの製法で得られるポリケトン繊維の強度はたかだか5cN/dtexであり、このような強度の低いポリケトン繊維からは、引張強度が高い不織布は得られるが、貫通強力や引裂強度に優れる不織布を得ることはできない。   In fact, the polyketone fiber described and used in the examples of this patent document is a fiber obtained by melt spinning an ethylene / propylene / carbon monoxide copolymer having an intrinsic viscosity of 1.1 dl / g, and an intrinsic viscosity of 2 A fiber obtained by wet spinning from a solution of 0.0 dl / g ethylene / carbon monoxide copolymer polymer dissolved in hexafluoroisopropanol at a concentration of 1%. The strength of the polyketone fiber obtained by these production methods is at most 5 cN / dtex, and from such a low strength polyketone fiber, a nonwoven fabric with high tensile strength can be obtained, but a nonwoven fabric with excellent penetration strength and tear strength can be obtained. I can't.

ポリケトン繊維をその他の繊維素材と混合することにより、高強度の不織布を得ることが期待できる。例えば、ポリプロピレンやポリエチレンテレフタレート等の、強度が10cN/dtex未満の繊維素材と混合した場合には、交絡性の良い不織布を得ることができるが、ポリケトン繊維の強度が低い場合には、ポリケトン繊維の含有量をどのように変えても貫通強力や引裂強度に優れる不織布を得ることはできない。また、アラミド繊維等の高強度、高弾性率繊維と混合した場合には、交絡性を高めるためにポリケトン繊維の含有量を増加させる必要があるが、ポリケトン繊維の強度が低い場合には、やはり貫通強力や引裂強度に優れる不織布を得ることはできない。   By mixing polyketone fibers with other fiber materials, it can be expected to obtain a high-strength nonwoven fabric. For example, when mixed with a fiber material having a strength of less than 10 cN / dtex, such as polypropylene or polyethylene terephthalate, a nonwoven fabric with good entanglement can be obtained, but when the strength of the polyketone fiber is low, No matter how the content is changed, a nonwoven fabric excellent in penetration strength and tear strength cannot be obtained. In addition, when mixed with high-strength, high-modulus fibers such as aramid fibers, it is necessary to increase the content of polyketone fibers in order to increase confounding properties. A nonwoven fabric excellent in penetration strength and tear strength cannot be obtained.

以上のように、従来の技術では、ポリケトン繊維を用いて貫通強力及び引裂強度の優れた不織布は得られていない。
米国特許第4820578号明細書 特開平9−324355号公報
As described above, according to the conventional technique, a nonwoven fabric excellent in penetration strength and tear strength using a polyketone fiber has not been obtained.
U.S. Pat. No. 4,820,578 Japanese Patent Laid-Open No. 9-324355

本発明は、高強度、高弾性率繊維を用いた不織布の欠点である交絡性の不足を解消し、貫通強力及び引裂強度が高い不織布を提供とすることを目的とするものである。   An object of the present invention is to provide a non-woven fabric having high penetration strength and high tear strength by eliminating the shortage of entanglement, which is a drawback of non-woven fabrics using high-strength and high-modulus fibers.

本発明者らは、前記の課題を解決するために鋭意研究を重ねた結果、特定の強度を有するポリケトン繊維を用いてシートを作製し、特定の条件で交絡、接着させることにより、汎用繊維と同等以上の貫通強力及び引裂強度を有する不織布を製造することが可能であることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors made a sheet using polyketone fiber having a specific strength, and entangled and bonded under specific conditions, so that The inventors have found that it is possible to produce a nonwoven fabric having penetration strength and tear strength equal to or higher than that, and have completed the present invention.

すなわち、本発明は以下のとおりである。
(1) 化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有し、目付が10g/m以上、かつ、貫通強力が5N以上であることを特徴とする不織布。
That is, the present invention is as follows.
(1) It comprises a polyketone fiber composed of a polyketone represented by the chemical formula (1) and has a strength of 10 cN / dtex or more, a basis weight of 10 g / m 2 or more, and a penetration strength of 5 N or more. Characteristic nonwoven fabric.

Figure 2005163237
Figure 2005163237

(ただし、Aは炭素数が2〜30の有機基である。)
(2) 化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を50wt%以上含有することを特徴とする(1)に記載の不織布。
(3) 繰り返し単位の97モル%以上が化学式(2)で表される1−オキソトリメチレンであるポリケトンからなり、極限粘度が2.5〜10dl/g、かつ、強度が12cN/dtex以上であるポリケトン繊維を50wt%以上含有することを特徴とする(1)又は(2)に記載の不織布。
(However, A is an organic group having 2 to 30 carbon atoms.)
(2) The nonwoven fabric according to (1), comprising 50 wt% or more of polyketone fibers composed of a polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more.
(3) 97 mol% or more of the repeating unit is composed of a polyketone which is 1-oxotrimethylene represented by the chemical formula (2), has an intrinsic viscosity of 2.5 to 10 dl / g, and a strength of 12 cN / dtex or more. The non-woven fabric according to (1) or (2), which contains 50 wt% or more of a certain polyketone fiber.

Figure 2005163237
Figure 2005163237

(4) ポリケトン繊維の含有割合が80wt%以上であり、貫通強力が10N以上であることを特徴とする(1)〜(3)のいずれか1つに記載の不織布。
(5) 不織布を構成する繊維の単糸繊度が0.01〜2dtex、かつ、繊維の長さ(L)と直径(D)の比(L/D)が300〜5000であることを特徴とする(1)〜(4)のいずれか1つに記載の不織布。
(6) 不織布を構成する繊維が互いに3次元交絡しており、繊維交絡点間距離が400μm以下であることを特徴とする(1)〜(5)のいずれか1つに記載の不織布。
(7) 化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有するシートを形成した後、流体流処理により繊維を3次元的に交絡させて繊維交絡点間距離を400μm以下とする工程を含むことを特徴とする不織布の製造方法。
(4) The non-woven fabric according to any one of (1) to (3), wherein the polyketone fiber content is 80 wt% or more and the penetration strength is 10 N or more.
(5) The single yarn fineness of the fibers constituting the nonwoven fabric is 0.01 to 2 dtex, and the ratio (L / D) of the length (L) to the diameter (D) of the fibers is 300 to 5000. The nonwoven fabric according to any one of (1) to (4).
(6) The nonwoven fabric according to any one of (1) to (5), wherein fibers constituting the nonwoven fabric are three-dimensionally entangled and a distance between fiber entanglement points is 400 μm or less.
(7) After forming a sheet comprising a polyketone fiber composed of the polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more, the fiber is entangled three-dimensionally by fluid flow treatment. The manufacturing method of the nonwoven fabric characterized by including the process which makes the distance between entanglement points 400 micrometers or less.

Figure 2005163237
Figure 2005163237

(ただし、Aは炭素数が2〜30の有機基である。)
(8) 化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有するシートを形成した後、繊維同士を接着剤又は熱融着によって接合させる工程を含むことを特徴とする不織布の製造方法。
(However, A is an organic group having 2 to 30 carbon atoms.)
(8) A step of joining the fibers together by an adhesive or heat fusion, after forming a sheet comprising a polyketone fiber composed of the polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more. The manufacturing method of the nonwoven fabric characterized by including.

Figure 2005163237
Figure 2005163237

(ただし、Aは炭素数が2〜30の有機基である。)
(9) (7)で得られた不織布において、接着剤又は熱融着によって繊維同士を接合させる工程を含むことを特徴とする不織布の製造方法。
(However, A is an organic group having 2 to 30 carbon atoms.)
(9) A method for producing a nonwoven fabric characterized in that the nonwoven fabric obtained in (7) includes a step of joining fibers together by an adhesive or heat fusion.

本発明の不織布は、ポリケトン繊維を含有し耐熱性が良好で、なおかつ、貫通強力及び引裂強度が高いものである。この不織布は、ルーフィング基布、防錆テープ、各ケーブルの補強材や押さえ巻、自動車のクラッチ板や摩耗板、コンクリート補強材の各種補強材、各種摩耗布等や隔離膜、分離膜、セパレータ等用途に用いた場合に有効である。また耐薬品性が高く、酸やアルカリ等の特殊液体を用いる分野でも特に有効である。   The nonwoven fabric of the present invention contains polyketone fibers, has good heat resistance, and has high penetration strength and tear strength. This non-woven fabric includes roofing base fabric, rust-proof tape, reinforcing material and presser winding for each cable, automotive clutch plate and wear plate, various reinforcing materials for concrete reinforcing material, various wear cloths, isolating membrane, separation membrane, separator, etc. It is effective when used for applications. In addition, it has high chemical resistance and is particularly effective in the field using special liquids such as acids and alkalis.

本発明について、以下に詳細に説明する。
本発明の不織布に用いられる繊維は、化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維である。
The present invention will be described in detail below.
The fiber used for the nonwoven fabric of this invention is a polyketone fiber which consists of polyketone represented by Chemical formula (1), and whose intensity | strength is 10 cN / dtex or more.

Figure 2005163237
Figure 2005163237

(ただし、Aは炭素数が2〜30の有機基である。)
ポリケトンは、一酸化炭素と炭素数が2〜30の有機化合物が共重合したポリマーである。一酸化炭素との共重合に用いる有機化合物としては、炭素数が2〜30のエチレン性不飽和化合物(エチレン、またはエチレンの水素の少なくとも一つが有機化合物によって置換された構造を有する化合物)が好ましい。エチレン性不飽和化合物の炭素数が30を越えると反応性が低下し、工業的な製法で共重合体を製造することが困難となる。
(However, A is an organic group having 2 to 30 carbon atoms.)
A polyketone is a polymer obtained by copolymerizing carbon monoxide and an organic compound having 2 to 30 carbon atoms. As the organic compound used for copolymerization with carbon monoxide, an ethylenically unsaturated compound having 2 to 30 carbon atoms (a compound having a structure in which at least one of hydrogen of ethylene or ethylene is substituted with an organic compound) is preferable. . When the number of carbon atoms of the ethylenically unsaturated compound exceeds 30, the reactivity is lowered and it is difficult to produce a copolymer by an industrial production method.

エチレン性不飽和化合物としては、具体的には、エチレン、プロピレン、1―ブテン、1−ヘキセン、1−オクテン、1−デセン等のα−オレフィン、スチレン、α−メチルスチレン等のアルケニル芳香族化合物、シクロペンテン、ノルボルネン、5−メチルノルボルネン、テトラシクロドデセン、トリシクロデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン等の環状オレフィン、塩化ビニル等のハロゲン化ビニル、エチルアクリレート、メチルメタクリレート等のアクリル酸エステル、酢酸ビニル等が挙げられ、Aはこれらの不飽和化合物の二重結合がエチレン基になった構造となる。
また、Aの炭素数が2〜30の範囲であれば、上述の一酸化炭素とエチレン性不飽和化合物とが共重合した繰り返し単位の水素原子の一部が、炭化水素やカルボニル基、スルホン基、ホスホン基、エーテル基、エステル基、アミド基、水酸基、ハロゲン原子等を含有する有機化合物で置換された構造であってもよい。
Specific examples of the ethylenically unsaturated compound include α-olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-octene and 1-decene, and alkenyl aromatic compounds such as styrene and α-methylstyrene. Cyclic olefins such as cyclopentene, norbornene, 5-methylnorbornene, tetracyclododecene, tricyclodecene, pentacyclopentadecene and pentacyclohexadecene, vinyl halides such as vinyl chloride, acrylic esters such as ethyl acrylate and methyl methacrylate Vinyl acetate and the like, and A has a structure in which the double bond of these unsaturated compounds is an ethylene group.
If the carbon number of A is in the range of 2 to 30, some of the hydrogen atoms of the repeating unit obtained by copolymerizing the above-described carbon monoxide and the ethylenically unsaturated compound may be a hydrocarbon, a carbonyl group, or a sulfone group. , A structure substituted with an organic compound containing a phosphone group, an ether group, an ester group, an amide group, a hydroxyl group, a halogen atom, or the like.

共重合体の力学特性、耐熱性及び重合反応性の観点から、Aの炭素数は2〜6が好ましく、2〜3がより好ましく、最も好ましくは2である。
本発明に用いられる強度10cN/dtex以上のポリケトン繊維を得るためには、Aがエチレン基である1−オキソトリメチレン単位(化学式(2))を主体とするポリケトンが特に好ましい。
From the viewpoint of the mechanical properties, heat resistance and polymerization reactivity of the copolymer, the carbon number of A is preferably 2-6, more preferably 2-3, and most preferably 2.
In order to obtain a polyketone fiber having a strength of 10 cN / dtex or more used in the present invention, a polyketone mainly comprising a 1-oxotrimethylene unit (chemical formula (2)) in which A is an ethylene group is particularly preferable.

Figure 2005163237
Figure 2005163237

ポリケトン繊維の強度、弾性率及び耐熱性の観点から、好ましくは95モル%以上、より好ましくは100モル%が1−オキソトリメチレンから構成された交互共重合体からなるポリケトン繊維が用いられる。
本発明の不織布に用いるポリケトン繊維は、10cN/dtex以上の強度を持つことが極めて重要である。ポリケトン繊維の強度が10cN/dtex未満であると、本発明の不織布の特徴である引裂強度、耐切傷性及び貫通強力が低く、不十分な性能となる。ポリケトン繊維の強度が高いほど、不織布の引張強度、引裂強度及び貫通強力が高くなるため、ポリケトン繊維の強度は、好ましくは12cN/dtex以上、より好ましくは15cN/dtex以上、最も好ましくは18cN/dtex以上である。
From the viewpoint of the strength, elastic modulus, and heat resistance of the polyketone fiber, preferably used is a polyketone fiber made of an alternating copolymer in which 95 mol% or more, more preferably 100 mol% is composed of 1-oxotrimethylene.
It is extremely important that the polyketone fiber used in the nonwoven fabric of the present invention has a strength of 10 cN / dtex or more. When the strength of the polyketone fiber is less than 10 cN / dtex, the tear strength, cut resistance, and penetration strength, which are the characteristics of the nonwoven fabric of the present invention, are low, resulting in insufficient performance. The higher the strength of the polyketone fiber, the higher the tensile strength, tear strength and penetration strength of the nonwoven fabric. Therefore, the strength of the polyketone fiber is preferably 12 cN / dtex or more, more preferably 15 cN / dtex or more, most preferably 18 cN / dtex. That's it.

本発明の不織布の目付は10g/m以上であることが必要である。目付が10g/m未満の場合、高強度のポリケトン繊維を用いても貫通強力の高い不織布を得ることが困難となり、バリアー性が不足し、形態保持性が劣り、結果として溶融状態の基材樹脂の貫通やシワ発生などの不具合が生じる。目付の上限の制限はないが、不織布内部の交絡の均一性、不織布厚みの均一性、表面平滑性等の観点から500g/m以下が好ましく、より好ましくは20〜250g/mであり、最も好ましくは30〜100g/mである。
本発明の不織布は貫通強力が5N以上であることが必要である。貫通強力が5N未満では、加工時や加工後に、衝撃や突き当て等の外力に対して不織布が破損したり、孔があく等の不具合が起こりやすい。貫通強力は、好ましくは8N以上、より好ましくは10N以上、最も好ましくは15N以上である。
The basis weight of the nonwoven fabric of the present invention is required to be 10 g / m 2 or more. When the basis weight is less than 10 g / m 2, it becomes difficult to obtain a nonwoven fabric with high penetration strength even if high-strength polyketone fibers are used, barrier properties are insufficient, and shape retention is inferior, resulting in a molten base material. Problems such as resin penetration and wrinkling occur. There is no upper limit of the limitation of basis weight, but confounding uniformity of internal nonwoven, uniformity of the nonwoven fabric thickness, aspect preferably 500 g / m 2 or less from such surface smoothness, more preferably from 20 to 250 g / m 2, Most preferably, it is 30-100 g / m < 2 >.
The nonwoven fabric of the present invention needs to have a penetration strength of 5N or more. When the penetration strength is less than 5N, problems such as damage to the nonwoven fabric and perforation due to external forces such as impact and butting are likely to occur during and after processing. The penetration strength is preferably 8N or more, more preferably 10N or more, and most preferably 15N or more.

不織布の引裂強度は、シートの作成時及び加工時安定性の点から、5N/cm以上であることが好ましく、より好ましくは7N/cm以上、最も好ましくは10N/cm以上である。不織布の引裂強度が5N/cm未満であると、強度が弱いためシートの作製時や加工時にシートが引き裂けたり、また寸法安定性が劣る為、加工時にトラブルの発生原因となる場合がある。
また、繊維長が50mmを越える繊維が用いられ、サーマルボンド、ケミカルボンド等による交絡を有する不織布の場合には、繊維同士が化学的又は物理的に強固に結合しているためにポリケトン繊維の強度が十分に活かされ、より高い物性を発現可能となる。この場合、貫通強力は20N以上であることが好ましく、より好ましくは30N以上、最も好ましくは40N以上である。また、引裂強度としては20N/cm以上であることが好まく、より好ましくは30N/cm、最も好ましくは40N/cm以上である。
The tear strength of the nonwoven fabric is preferably 5 N / cm or more, more preferably 7 N / cm or more, and most preferably 10 N / cm or more, from the viewpoint of stability at the time of preparation and processing of the sheet. When the tear strength of the nonwoven fabric is less than 5 N / cm, the strength is so weak that the sheet is torn during the production or processing of the sheet, and the dimensional stability is poor, which may cause trouble during processing.
In addition, in the case of a nonwoven fabric in which fibers having a fiber length exceeding 50 mm are used and entangled by thermal bonds, chemical bonds, etc., the strength of the polyketone fiber is strong because the fibers are chemically or physically bonded to each other. Can be fully utilized, and higher physical properties can be expressed. In this case, the penetration strength is preferably 20 N or more, more preferably 30 N or more, and most preferably 40 N or more. Further, the tear strength is preferably 20 N / cm or more, more preferably 30 N / cm, and most preferably 40 N / cm or more.

本発明の不織布に含有されるポリケトン繊維を構成するポリケトンは、極限粘度が1.0dl/g以上であることが好ましい。極限粘度が1.0dl/g未満では、強度が10cN/dtex以上のポリケトン繊維を得ることが困難となる場合がある。一方、極限粘度が20dl/gを越えると、成形性が低下する場合があり、また、工業的な速度、生産性でポリケトン繊維を製造することが困難となる。ポリケトン繊維の強度及び生産性の観点から、ポリケトンの極限粘度は、より好ましくは2.5〜10dl/g、最も好ましくは3.0〜8.0dl/gである。
本発明の不織布を、ルーフィング基布、防錆テープのような保護テープ、自動車のクラッチ板や摩耗板等の用途に用いる場合は、耐熱性も要求されることから、ポリケトン繊維の融点は高いことが好ましい。不織布を構成する繊維の融点が200℃未満であると、熱溶融している樹脂が塗布される場合、糸の収縮が起こり、樹脂が通過したり、しみ出すという問題が生じる場合がある。そのため、ポリケトン繊維の融点は、好ましくは200℃以上、より好ましくは240℃以上、最も好ましくは260℃以上である。
The polyketone constituting the polyketone fiber contained in the nonwoven fabric of the present invention preferably has an intrinsic viscosity of 1.0 dl / g or more. If the intrinsic viscosity is less than 1.0 dl / g, it may be difficult to obtain a polyketone fiber having a strength of 10 cN / dtex or more. On the other hand, if the intrinsic viscosity exceeds 20 dl / g, moldability may be deteriorated, and it becomes difficult to produce polyketone fibers at industrial speed and productivity. From the viewpoint of the strength and productivity of the polyketone fiber, the intrinsic viscosity of the polyketone is more preferably 2.5 to 10 dl / g, and most preferably 3.0 to 8.0 dl / g.
When the nonwoven fabric of the present invention is used for a roofing base fabric, a protective tape such as a rust preventive tape, an automobile clutch plate or a wear plate, heat resistance is also required, so the polyketone fiber has a high melting point. Is preferred. When the melting point of the fibers constituting the nonwoven fabric is less than 200 ° C., when a heat-melted resin is applied, there is a problem that the yarn shrinks and the resin passes or oozes out. Therefore, the melting point of the polyketone fiber is preferably 200 ° C. or higher, more preferably 240 ° C. or higher, and most preferably 260 ° C. or higher.

本発明の不織布に含まれるポリケトン繊維の長さについては制限はなく、短繊維であっても長繊維であってもよい。繊維長が長すぎると、不織布にした場合、繊維同士が絡んで斑となって部分的にバリアー性が低下したり、抄造法によって得られるシートの目付の均一性が低下することがある。また、繊維長が短すぎると、繊維同士の交絡が不十分で素抜けが起こりやすく、十分な強度を発現できない場合がある。不織布の均一性及び成形性の観点から、繊維長が0.5〜75mmの短繊維であることが好ましく、より好ましい繊維長は1〜60mm、最も好ましくは10〜50mmである。
繊維長が50mm以下の短繊維から構成され、高速流体流処理、ニードルパンチ、ステッチボンド法等の物理的な交絡を有する不織布の場合、繊維交絡点間距離は400μm以下であることが好ましく、より好ましくは350μm以下、最も好ましくは300μm以下である。交絡点間距離が400μmを越えると、繊維の3次元的な交絡が不十分なため引張強度が不足し、特に引裂強度及び貫通強力が十分な不織布を得ることが困難な場合がある。また、シート作製時や加工時に破れる等、トラブルが発生しやすくなる。
There is no restriction | limiting about the length of the polyketone fiber contained in the nonwoven fabric of this invention, A short fiber or a long fiber may be sufficient. If the fiber length is too long, when the nonwoven fabric is used, the fibers may be entangled and become uneven, and the barrier property may be partially reduced, or the basis weight of the sheet obtained by the papermaking method may be reduced. On the other hand, if the fiber length is too short, the entanglement between the fibers is insufficient, and it is easy for the fibers to come off, and sufficient strength may not be exhibited. From the viewpoint of the uniformity and formability of the nonwoven fabric, the fiber length is preferably a short fiber of 0.5 to 75 mm, more preferably 1 to 60 mm, and most preferably 10 to 50 mm.
In the case of a nonwoven fabric composed of short fibers having a fiber length of 50 mm or less and having physical entanglement such as high-speed fluid flow treatment, needle punch, stitch bond method, the distance between fiber entanglement points is preferably 400 μm or less, more Preferably it is 350 micrometers or less, Most preferably, it is 300 micrometers or less. If the distance between the entanglement points exceeds 400 μm, the three-dimensional entanglement of the fibers is insufficient, so that the tensile strength is insufficient. In particular, it may be difficult to obtain a nonwoven fabric having sufficient tear strength and penetration strength. In addition, troubles such as tearing at the time of sheet production and processing are likely to occur.

本発明の不織布を構成するポリケトン繊維の単糸径についても特に制限はないが、繊維長が短い場合、単糸径が太すぎると十分な交絡がかからず、引裂強度や貫通強力の低下を招くため、好ましくは0.0001〜3.3dtex、より好ましくは0.01〜2dtexである。また、ポリケトン繊維をミキサーやミル等によって摩擦処理を行い、サブミクロンオーダーの径の繊細なフィブリルを発生させてもよい。このフィブリル化処理によって、不織布の比表面積が増大し、より緻密な交絡が可能となりむしろ好ましい。   There is no particular limitation on the single yarn diameter of the polyketone fiber constituting the nonwoven fabric of the present invention, but when the fiber length is short, if the single yarn diameter is too thick, sufficient entanglement will not occur, and the tear strength and penetration strength will decrease. Therefore, it is preferably 0.0001 to 3.3 dtex, more preferably 0.01 to 2 dtex. Further, the polyketone fiber may be subjected to a friction treatment by a mixer, a mill or the like to generate fine fibrils having a diameter of submicron order. This fibrillation treatment is preferable because it increases the specific surface area of the nonwoven fabric and enables more precise entanglement.

ポリケトン繊維を短繊維として用いる場合、短繊維の長さ(L)と短繊維の単糸の直径(D)の比L/Dは100〜6000であることが好ましく、300〜5000であることがより好ましく、最も好ましいくは350〜4500である。短繊維の単糸のL/Dは、短繊維相互の三次元交絡のし易さと重要な関係があり、L/Dが100未満の場合は、シートの引張強度及び引裂強度が低下する場合があり、6000を越える場合は、シートの均一性が悪化し、製造条件によっては目的とする不織布が得られない場合がある。また、短繊維の長さが20mm以下の場合には、不織布にした場合の交絡の均一性、シートの均一性及びバリアー性の観点から、L/Dが2000以下とすることが好ましい。   When the polyketone fiber is used as a short fiber, the ratio L / D of the short fiber length (L) to the short fiber single yarn diameter (D) is preferably 100 to 6000, and preferably 300 to 5000. More preferably, it is most preferably 350-4500. The L / D of the short fiber single yarn has an important relationship with the ease of three-dimensional entanglement between the short fibers. When L / D is less than 100, the tensile strength and tear strength of the sheet may decrease. If it exceeds 6000, the uniformity of the sheet deteriorates, and the intended nonwoven fabric may not be obtained depending on the production conditions. In addition, when the length of the short fiber is 20 mm or less, it is preferable that L / D is 2000 or less from the viewpoints of entanglement uniformity, sheet uniformity, and barrier properties when the nonwoven fabric is used.

本発明の不織布に含有される、強度が10cN/dtex以上のポリケトン繊維の割合には制限はないが、引裂強度及び貫通強力の観点から高いほど好ましい。具体的には、20wt%以上が好ましく、より好ましくは50wt%以上、さらに好ましくは80wt%以上、最も好ましくは90wt%以上である。
ポリケトン繊維以外の繊維や強度が10cN/dtex未満のポリケトン繊維を含有してもよい。ポリケトン繊維以外の繊維としては、例えば、ポリエステル繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリル繊維、セルロース繊維、酢酸セルロース繊維、アラミド繊維、ポリビニルアルコール繊維、ポリベンザゾール繊維等の合成繊維、綿、羊毛、麻、絹等の天然繊維など公知の繊維を使用することができる。必要に応じて、接着剤、添加剤、表面塗布剤、表面改質剤、樹脂、ゴム、フィルム等の繊維以外の成分を含んでいてもよい。
Although there is no restriction | limiting in the ratio of the polyketone fiber which the intensity | strength contained in the nonwoven fabric of this invention is 10 cN / dtex or more, it is so preferable that it is high from a viewpoint of tear strength and penetration strength. Specifically, 20 wt% or more is preferable, more preferably 50 wt% or more, still more preferably 80 wt% or more, and most preferably 90 wt% or more.
Fibers other than polyketone fibers and polyketone fibers having a strength of less than 10 cN / dtex may be contained. Examples of fibers other than polyketone fibers include polyester fibers, polyamide fibers, polyethylene fibers, polypropylene fibers, polyacryl fibers, cellulose fibers, cellulose acetate fibers, aramid fibers, polyvinyl alcohol fibers, and polybenzazole fibers. Known fibers such as natural fibers such as wool, hemp and silk can be used. As needed, components other than fibers, such as adhesives, additives, surface coating agents, surface modifiers, resins, rubbers, and films, may be included.

不織布にポリケトン繊維以外の繊維素材を併用する場合、その繊維長や繊度には制限はなく、繊維素材の構造、物性、目的、用途に応じて適宜選定できる。例えば、抄造法により不織布を製造する場合には、上述の理由から短繊維が好ましく、ポリケトン繊維との交絡性、均一性、不織布物性の観点から繊維長及び繊度はそれぞれ1〜100mm、0.01〜5.0dtexが好ましく、より好ましくは5〜50mm、0.1〜2dtexである。
また、スパンボンド法やスパンレース法により不織布を製造する場合には長繊維が好ましく、その場合ポリケトン繊維は短繊維として混合、交絡させることが好ましい。
When a fiber material other than polyketone fibers is used in combination with the nonwoven fabric, the fiber length and fineness are not limited, and can be appropriately selected according to the structure, physical properties, purpose, and use of the fiber material. For example, in the case of producing a nonwoven fabric by a papermaking method, short fibers are preferable for the above-mentioned reasons, and the fiber length and fineness are 1 to 100 mm and 0.01 mm, respectively, from the viewpoint of entanglement with polyketone fibers, uniformity, and physical properties of the nonwoven fabric. -5.0 dtex is preferable, More preferably, it is 5-50 mm and 0.1-2 dtex.
Moreover, when manufacturing a nonwoven fabric by the spunbond method or the spunlace method, a long fiber is preferable. In that case, it is preferable to mix and entangle a polyketone fiber as a short fiber.

本発明の不織布は、下記の方法によって製造することができるが、製造方法はこれに限定されるものではない。
本発明の不織布を作製するためのシート化方法は、湿式法、乾式法等、任意の方法を用いることができる。
湿式法を用いる場合、短繊維の長さが20mm以下であることが好ましく、短繊維の長さ(L)と短繊維の単糸の直径(D)の比L/Dが300〜2000を満たす特定形状の短繊維を、0.1〜3%濃度になるよう水に分散し、スラリーを調合する。この際、少量の分散剤を加えることが好ましい。このスラリーを長網型、丸網型などの抄造機で抄造シートを作成する。乾式法の場合は、繊維長が20mm以上であることが好ましく、L/Dが1000〜5000を満たす繊維を、カード法やクロスラッパー法、両者を組み合わせた方法等でシート化する。
Although the nonwoven fabric of this invention can be manufactured with the following method, a manufacturing method is not limited to this.
As a sheet forming method for producing the nonwoven fabric of the present invention, any method such as a wet method or a dry method can be used.
When the wet method is used, the length of the short fiber is preferably 20 mm or less, and the ratio L / D of the short fiber length (L) to the single fiber diameter (D) satisfies 300 to 2000. A short fiber having a specific shape is dispersed in water to a concentration of 0.1 to 3%, and a slurry is prepared. At this time, it is preferable to add a small amount of a dispersant. A papermaking sheet is prepared from this slurry by a papermaking machine such as a long net type or a round net type. In the case of the dry method, the fiber length is preferably 20 mm or more, and fibers satisfying L / D of 1000 to 5000 are formed into a sheet by a card method, a cross wrapper method, a method in which both are combined, or the like.

次いで、得られたシートを高速流体流処理、ニードルパンチ、ステッチボンド等、公知の方法によって短繊維を相互に三次元交絡させる。
以下に、高速流体処理法について説明する。
高速流体処理を行う場合、流体には、液体又は気体を用いることができるが、取り扱い易さ、コスト、衝突エネルギーの大きさなどの点から、水が最も好ましい。
水を用いる場合、水圧は、用いる繊維の種類、シートの目付量、処理速度等によって異なるが、充分に交絡させるには1〜27MPaが好ましく、より好ましくは2〜20MPaである。水流を噴出するノズルの径は0.05〜0.5mmが好ましい。ノズルの孔の間隔は0.2〜10mmになるよう配置することが好ましい。
Next, the short fibers are three-dimensionally entangled with each other by a known method such as high-speed fluid flow treatment, needle punching, stitch bonding, or the like.
The high speed fluid processing method will be described below.
In the case of performing high-speed fluid treatment, liquid or gas can be used as the fluid, but water is most preferable from the viewpoint of ease of handling, cost, impact energy, and the like.
When water is used, the water pressure varies depending on the type of fiber used, the basis weight of the sheet, the processing speed, and the like, but is preferably 1 to 27 MPa, more preferably 2 to 20 MPa for sufficient entanglement. The diameter of the nozzle that ejects the water flow is preferably 0.05 to 0.5 mm. It is preferable to arrange the nozzle holes so that the distance between them is 0.2 to 10 mm.

交絡を効果的に行い、交絡点間距離を小さくするには、シートに噴き当てられた水を除去することも重要である。このための方法としては、シートの下に目の細かい金網などの支持体を置き、その下から吸引脱水する。水流の軌跡形状は、シートの進行方向に対して平行な直線状であってもよいし、ノズルを取り付けたヘッダーを回転運動させたり、シートの進行方向に対して直角に往復運動させることによって得られる曲線状であってもよい。しかし、ヘッダーの回転運動や往復運動によって得られる曲線状軌跡の方が、ノズル1錘当たりのシートに対する水の噴射面積が大きくなり、繊維間距離を小さくするには効果的である。さらに、シートの優れた均一性を損なうことなく、水流軌跡が見えにくい点でも曲線状軌跡が好ましい。   In order to effectively entangle and reduce the distance between the entanglement points, it is also important to remove water sprayed on the sheet. As a method for this purpose, a support such as a fine wire mesh is placed under the sheet, and suction dewatering is performed from the bottom. The trajectory shape of the water flow may be a straight line parallel to the traveling direction of the sheet, or may be obtained by rotating the header to which the nozzle is attached or reciprocating at a right angle to the traveling direction of the sheet. It may be a curved shape. However, the curved trajectory obtained by the rotational movement and reciprocating movement of the header is effective in reducing the distance between fibers because the area of water sprayed onto the sheet per nozzle weight increases. Furthermore, a curved trajectory is preferable in that it is difficult to see the water flow trajectory without impairing the excellent uniformity of the sheet.

水流をシートに当てる順序は、表裏交互でも、片面だけに当てる方法でもよいが、繊維間距離を小さくし、かつ、表裏共に均一な表面を得る場合は、表裏交互に処理するのが好ましい。水圧を段階的に変化させことによって繊維間距離を小さくすると同時に水流軌跡を見え難くし、よりフラットで均一な表面を得ることができる。
前記のシート又は前記のシートを交絡して得られた不織布を、接着剤や樹脂によって繊維同士を接着させたり、繊維のガラス転移温度以上、融点以下の温度に加熱して繊維同士を融着させてもよい。接着剤、接着用樹脂としては、エポキシ樹脂、シリコン樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、尿素樹脂、フェノール樹脂、ホルマリン、グリオキザール等公知のものが使用できる。ポリケトン繊維同士を加熱融着させる場合には、100℃〜ポリケトン繊維の融点に加熱することが好ましく、ポリケトン繊維の融点―30℃〜ポリケトン繊維の融点−10℃がより好ましい。
The order in which the water flow is applied to the sheet may be alternate between front and back, or may be applied to only one side. However, when the distance between the fibers is reduced and a uniform surface is obtained on both sides, it is preferable to treat the front and back alternately. By changing the water pressure stepwise, the distance between the fibers can be reduced, and at the same time, the flow trajectory can be made difficult to see, and a flatter and more uniform surface can be obtained.
The sheet or the nonwoven fabric obtained by entanglement of the sheet is bonded to each other with an adhesive or a resin, or heated to a temperature not lower than the melting point and not higher than the glass transition temperature of the fiber, so that the fibers are fused. May be. As the adhesive and adhesive resin, known ones such as epoxy resin, silicon resin, acrylic resin, melamine resin, unsaturated polyester resin, urethane resin, urea resin, phenol resin, formalin, glyoxal can be used. When the polyketone fibers are heat-fused, it is preferably heated to 100 ° C. to the melting point of the polyketone fibers, more preferably from the melting point of the polyketone fibers to −30 ° C. to the melting point of the polyketone fibers to −10 ° C.

得られた不織布を、さらに必要に応じて表面改質や後加工処理をしてもよい。表面改質の場合、例えば、ポリケトンと反応性の化合物を接触させて化学的変性を施したり、電子線やプラズマ処理によって物理的改質を施す等、公知の方法を採用できる。このような方法として、例えば、アンモニアやジエチルアミン、エチレンジアミン、エチルアミン、ポリアルキルアミン、アミノピリジン、アミノアルキルピリジン、アルキルアニリン、アルキルアミノベンゾエート、エポキシアミン等のアミン化合物、エチレンオキサイド、エチレンオキサイドグリシジルエーテル等のオキシム化合物、硫酸、亜硫酸等の硫酸化合物等の化合物と反応させる方法、電子線照射後に酢酸ビニル、アリルスルホン酸、スチレン、スチレンスルホン酸等のビニル化合物やオキシム化合物と反応させる方法、水素化ホウ素ナトリウムやルテニウム化合物等を触媒として水素と接触させて水添する方法等が挙げられる。   The obtained non-woven fabric may be further subjected to surface modification or post-processing as necessary. In the case of surface modification, for example, a known method such as chemical modification by bringing a polyketone and a reactive compound into contact or physical modification by electron beam or plasma treatment can be employed. Examples of such methods include ammonia, diethylamine, ethylenediamine, ethylamine, polyalkylamine, aminopyridine, aminoalkylpyridine, alkylaniline, alkylaminobenzoate, and amine compounds such as epoxyamine, ethylene oxide, ethylene oxide glycidyl ether, and the like. Method of reacting with compounds such as oxime compounds, sulfuric acid compounds such as sulfuric acid and sulfurous acid, Method of reacting with vinyl compounds such as vinyl acetate, allyl sulfonic acid, styrene, styrene sulfonic acid and oxime compounds after electron beam irradiation, sodium borohydride And a method in which hydrogenation is carried out by contacting hydrogen with a ruthenium compound or the like as a catalyst.

後加工処理としては、接着剤や表面塗工剤を塗布したり、塩化亜鉛水溶液等の溶材に浸漬後プレスしたり、加熱下でプレスする方法等が公知の方法をそのまま、又は改良して用いることができる。   As a post-processing treatment, a known method may be used as it is or after modification, such as a method of applying an adhesive or a surface coating agent, pressing after being immersed in a solution such as an aqueous solution of zinc chloride, or pressing under heating. be able to.

次に、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
本発明に用いられる各測定値の測定方法は次の通りである。
(1)極限粘度[η]は、次の定義式に基づいて求められる値である。
[η]=lim(T−t)/(t・C) [dl/g]
C→0
式中のt及びTは、純度98%以上のヘキサフルオロイソプロパノール及びヘキサフルオロイソプロパノールに溶解したポリケトンの希釈溶液の25℃での粘度管の流過時間である。Cは上記溶液100ml中のグラム単位による溶質質量値である。
(2)繊維の繊度、力学特性
JIS−L−1013にしたがって測定する。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
The measuring method of each measured value used in the present invention is as follows.
(1) Intrinsic viscosity [η] is a value determined based on the following defining formula.
[Η] = lim (T−t) / (t · C) [dl / g]
C → 0
In the formula, t and T are the flow time of the viscosity tube at 25 ° C. of hexafluoroisopropanol having a purity of 98% or more and a polyketone diluted solution dissolved in hexafluoroisopropanol. C is the solute mass value in grams in 100 ml of the above solution.
(2) Fineness and mechanical properties of fiber Measured according to JIS-L-1013.

(3)繊維の融点
繊維5mgを窒素雰囲気下でアルミニウムパンに封入し、パーキンエルマー社製示差熱測定装置Pyris1(商標)を用いて、200ミリリットル/分の窒素気流下、昇温速度20℃/分で測定を行う。観察された吸発熱曲線において、200℃〜300℃の範囲に観測される最大の吸熱ピークのピークトップ点を融点とする。
(4)目付
JIS−L−1096にしたがって測定する。
(5)厚み
試験片の4ヶ所を、一定の測定面積(直径10mmの円面積)に、一定の圧力(5kPa)がかかる厚み計(ピーコック社製:モデルH)にて測定し、その平均値を厚みとする。
(6)密度
目付と厚みから算出する。
(3) Melting point of fiber 5 mg of fiber was sealed in an aluminum pan under a nitrogen atmosphere, and a temperature increase rate of 20 ° C / min under a nitrogen stream of 200 ml / min using a differential heat measuring device Pyris1 (trademark) manufactured by PerkinElmer. Measure in minutes. In the observed endothermic curve, the peak top point of the maximum endothermic peak observed in the range of 200 ° C. to 300 ° C. is defined as the melting point.
(4) Weight per unit area Measured according to JIS-L-1096.
(5) Thickness Four specimens were measured with a thickness meter (Peacock Co .: Model H) that applied a constant pressure (5 kPa) to a constant measurement area (circular area of 10 mm in diameter). Is the thickness.
(6) Density Calculated from the basis weight and thickness.

(7)引張強度
JIS−L−1096のストリップ法に基づいて、タテ(シートの進行方向)、ヨコ(シートの幅方向)それぞれの引張強度を測定する。
(8)引裂強度
JIS−L−1096のストリップ法にしたがって、タテ、ヨコを測定する。
(9)貫通強力
20cm×2.5cmの試験片1枚をハンディー圧縮試験機(カトーテック製、KES−G5)に取り付けられたステンレス製冶具(刃厚み0.3mmOLFA社製スクレーバーカッター刃を幅5.0mmに切断したもの)を25mm/secの速度で垂直に突き刺し、不織布を切断するのに要する力(貫通強力)を測定する。
(10)交絡点間距離
走査型電子顕微鏡で100倍の倍率で測定し、50個の平均値をとる。ここでいう交絡点間距離とは、特公昭58−191280号公報に記載の方法で測定した値のことであり、繊維相互の交絡密度を示す1つの尺度である。この数値が小さいほど交絡が緻密であることを示すものである。
(7) Tensile strength Based on the strip method of JIS-L-1096, the tensile strength of each of the vertical (sheet traveling direction) and the horizontal (sheet width direction) is measured.
(8) Tear strength Measure vertical and horizontal according to the strip method of JIS-L-1096.
(9) Penetrating strength Stainless steel jig (blade thickness: 0.3 mm, OLFA company scraper cutter blade) with a width of 5 mm and 2.5 cm test piece attached to a handy compression tester (Kato Tech, KES-G5) Is cut vertically at a rate of 25 mm / sec, and the force required to cut the nonwoven fabric (penetration strength) is measured.
(10) Distance between entanglement points Measured with a scanning electron microscope at a magnification of 100 times, and an average value of 50 pieces is taken. The distance between the entanglement points here is a value measured by the method described in Japanese Patent Publication No. 58-191280, and is one measure showing the entanglement density between the fibers. The smaller this value, the denser the entanglement.

図1は、本発明による不織布シートにおける構成繊維を表面から観察した時の拡大模式図である。構成繊維をf,f,f・・・とし、そのうち任意の2本の繊維f,fが交絡する点をaで、上になっている繊維fが他の繊維の下になる形で交差する点までたどっていき、その交差した点をaとする。同様に、a,a・・・とする。次に、この様にして求めた交絡点間の直線水平距離a〜a,a〜a・・・を測定し、これら多数の測定値の平均値を求め、これを交絡点間距離とする。 FIG. 1 is an enlarged schematic view when the constituent fibers in the nonwoven fabric sheet according to the present invention are observed from the surface. The constituent fibers are f 1 , f 2 , f 3 ..., And a point where any two fibers f 1 , f 2 are entangled is a 1 , and the upper fiber f 2 is another fiber. will follow until the point of intersection in the form of the bottom, to the point where the the intersection with a 2. Similarly, a 3 , a 4 . Next, the straight horizontal distances a 1 to a 2 , a 2 to a 3 ... Between the entangled points obtained in this way are measured, an average value of these many measured values is obtained, and this is obtained between the entangled points. Distance.

[参考例1]
極限粘度5.5dl/gのエチレン/一酸化炭素が完全交互共重合したポリケトンを、塩化亜鉛/塩化カルシウム/塩化リチウム/水溶液(重量比:22/30/10/38)にポリマー濃度が7.0wt%となるように添加し、50℃で8時間溶解してドープとした。このドープを80℃に加温し、直径0.2mm、250ホールの紡糸口金から10mmのエアギャップを経て、塩化亜鉛/塩化カルシウム/塩化リチウムを3.5/4.8/1.6wt%含有する水溶液(温度=2℃)中に吐出し凝固糸とした。
[Reference Example 1]
A polyketone obtained by completely alternating copolymerization of ethylene / carbon monoxide having an intrinsic viscosity of 5.5 dl / g is added to zinc chloride / calcium chloride / lithium chloride / water solution (weight ratio: 22/30/10/38) with a polymer concentration of 7. It added so that it might become 0 wt%, and it melt | dissolved at 50 degreeC for 8 hours, and was set as dope. This dope is heated to 80 ° C., and contains zinc chloride / calcium chloride / lithium chloride 3.5 / 4.8 / 1.6 wt% through a 10 mm air gap from a spinneret of 0.2 mm in diameter and 250 holes. And discharged into an aqueous solution (temperature = 2 ° C.) to obtain a coagulated yarn.

引き続き、1wt%の塩酸水溶液で洗浄した後に、水洗を行い簡易脱水した。次いで、IRGANOX(登録商標、チバスペシャリティケミカルス社製)565、アデカスタブ(登録商標、旭電化社製)AO23をそれぞれ0.05wt%(対ポリケトン)ずつ含浸させ、220℃で定長乾燥して未延伸糸とした。この未延伸糸を、240℃で6.2倍、253℃で1.5倍、263℃で1.3倍、267℃で1.25倍の4段延伸を行い巻き取った。
このポリケトン繊維は、融点が265℃、単糸繊度が1.1、強度が19.3cN/dtex、伸度が5.2%、弾性率が410cN/dtexの高強度繊維であった。
Subsequently, after washing with a 1 wt% hydrochloric acid aqueous solution, it was washed with water and simply dehydrated. Next, IRGANOX (registered trademark, manufactured by Ciba Specialty Chemicals) 565 and Adeka Stub (registered trademark, manufactured by Asahi Denka) AO23 were each impregnated by 0.05 wt% (with respect to polyketone), dried at 220 ° C. for constant length, and unstretched It was a thread. This undrawn yarn was wound by performing four-stage drawing at 240 ° C, 6.2 times, 253 ° C, 1.5 times, 263 ° C, 1.3 times, and 267 ° C, 1.25 times.
This polyketone fiber was a high-strength fiber having a melting point of 265 ° C., a single yarn fineness of 1.1, a strength of 19.3 cN / dtex, an elongation of 5.2%, and an elastic modulus of 410 cN / dtex.

[参考例2]
極限粘度2.5dl/gのエチレン/一酸化炭素が完全交互共重合したポリケトンを用い、ポリマー濃度を15.0wt%のドープとする以外は参考例1と同様にして紡糸、延伸を行った。
このポリケトン繊維は、融点が262℃、単糸繊度が2.1dtex、強度が12.3cN/dtex、伸度が5.6%、弾性率が385cN/dtexの高強度繊維であった。
[Reference Example 2]
Spinning and stretching were performed in the same manner as in Reference Example 1 except that a polyketone having an intrinsic viscosity of 2.5 dl / g of ethylene / carbon monoxide that was completely alternately copolymerized was used and the polymer concentration was 15.0 wt%.
This polyketone fiber was a high-strength fiber having a melting point of 262 ° C., a single yarn fineness of 2.1 dtex, a strength of 12.3 cN / dtex, an elongation of 5.6%, and an elastic modulus of 385 cN / dtex.

[参考例3]
極限粘度8.2dl/gのエチレン/一酸化炭素が完全交互共重合したポリケトンを用い、ポリマー濃度を4.9wt%のドープとする以外は参考例1と同様にして紡糸、延伸を行った。
このポリケトン繊維は、融点が263℃、単糸繊度が0.8dtex、強度が20.7cN/dtex、伸度が5.1%、弾性率が390cN/dtexの高強度繊維であった。
[Reference Example 3]
Spinning and stretching were carried out in the same manner as in Reference Example 1 except that a polyketone having an intrinsic viscosity of 8.2 dl / g of ethylene / carbon monoxide that was completely and alternately copolymerized was used and the polymer concentration was 4.9 wt%.
This polyketone fiber was a high-strength fiber having a melting point of 263 ° C., a single yarn fineness of 0.8 dtex, a strength of 20.7 cN / dtex, an elongation of 5.1%, and an elastic modulus of 390 cN / dtex.

[参考例4]
極限粘度2.0dl/gのエチレン/一酸化炭素が完全交互共重合したポリケトンを、ヘキサフルオロイソプロパノールにポリマー濃度1wt%で溶解し、直径1.5mm、6ホールの紡糸口金より押出し、アセトン浴を通してヘキサフルオロイソプロパノールを除去した。この糸を、240℃で6倍、255℃で2倍、265℃で1.3倍の3段延伸を行い巻き取った。
このポリケトン繊維は、融点が261℃、単糸繊度が4.5dtex、強度が4.9cN/dtex、伸度が2.5%、弾性率が250cN/dtexの繊維であった。
[Reference Example 4]
A polyketone of ethylene / carbon monoxide with an intrinsic viscosity of 2.0 dl / g completely alternatingly copolymerized is dissolved in hexafluoroisopropanol at a polymer concentration of 1 wt%, extruded from a spinneret having a diameter of 1.5 mm and 6 holes, and passed through an acetone bath. Hexafluoroisopropanol was removed. This yarn was wound by performing three-stage drawing of 6 times at 240 ° C, 2 times at 255 ° C, and 1.3 times at 265 ° C.
This polyketone fiber was a fiber having a melting point of 261 ° C., a single yarn fineness of 4.5 dtex, a strength of 4.9 cN / dtex, an elongation of 2.5%, and an elastic modulus of 250 cN / dtex.

[参考例5]
極限粘度が1.3dl/gのプロピレンが6モル%共重合したエチレン/プロピレン/一酸化炭素交互共重合ポリケトンを、カルシウムヒドロキシアパタイトを0.5wt%と265℃で溶融混合し、直径0.23mmの36個の孔の開いた一重配列の36個の孔を持つ紡口を用い、紡糸温度265℃、紡糸速度300m/分で紡糸して未延伸糸を作成した。次いで、得られた未延伸糸を200℃で6倍の延伸を行い、単糸繊度が2.3dtexの延伸糸を得た。
得られた延伸糸の強度は5.3cN/dtex、伸度は12%、弾性率が83cN/dtex、融点は225℃であった。
[Reference Example 5]
An ethylene / propylene / carbon monoxide alternating copolymer polyketone copolymerized with 6 mol% of propylene having an intrinsic viscosity of 1.3 dl / g was melt-mixed with 0.5 wt% of calcium hydroxyapatite at 265 ° C., and a diameter of 0.23 mm An undrawn yarn was prepared by spinning at a spinning temperature of 265 ° C. and a spinning speed of 300 m / min. Next, the obtained undrawn yarn was drawn 6 times at 200 ° C. to obtain a drawn yarn having a single yarn fineness of 2.3 dtex.
The obtained drawn yarn had a strength of 5.3 cN / dtex, an elongation of 12%, an elastic modulus of 83 cN / dtex, and a melting point of 225 ° C.

[参考例6]
参考例1において延伸倍率を240℃で5倍とする以外は同様にして紡糸を行い、単糸繊度が2.0dtex、強度が8.1cN/dtex、伸度が15%、弾性率が71cN/dtex、融点は258℃であった。
[Reference Example 6]
Spinning was performed in the same manner as in Reference Example 1 except that the draw ratio was 5 times at 240 ° C., the single yarn fineness was 2.0 dtex, the strength was 8.1 cN / dtex, the elongation was 15%, and the elastic modulus was 71 cN / dtex, melting point was 258 ° C.

[実施例1]
参考例1のポリケトン繊維を、長さ10mm(L/D=950)の短繊維とし、水中に分散させ1wt%濃度のスラリーとした。このスラリーを傾斜長網抄造機で抄造し、目付45g/mのシートを得た。
このシートを80メッシュの金網に載せ、ノズル径0.15mm、ノズル間ピッチ5mm、列数5列のノズルを装着したヘッダーを140rpmで円運動させながら、水圧10MPaで噴射水をシートに衝突させることにより、短繊維を交絡させた。この処理を表裏共各3開繰り返した。引き続き、水圧を4MPaに設定し表裏各1回処理した。その後、乾燥して不織布を得た。
この不織布は、目付斑が無く、貫通強力の高い不織布であり、ルーフィング基布、防錆テープ、各ケーブル押さえ巻き用途に充分有効なものである。またポリケトン繊維で構成されているため、耐薬品性が高く、酸やアルカリを使用する用途や高温で使用する用途に特に有効である。
実施例及び比較例の不織布の特性を表1にまとめて示す。
[Example 1]
The polyketone fiber of Reference Example 1 was made into a short fiber having a length of 10 mm (L / D = 950) and dispersed in water to give a slurry having a concentration of 1 wt%. This slurry was made with an inclined long net making machine to obtain a sheet having a basis weight of 45 g / m 2 .
This sheet is placed on an 80-mesh metal mesh, and the jet water is made to collide with the sheet at a water pressure of 10 MPa while the header equipped with nozzles having a nozzle diameter of 0.15 mm, a nozzle pitch of 5 mm, and five rows of nozzles is moved circularly at 140 rpm. Thus, the short fibers were entangled. This treatment was repeated 3 times on both sides. Subsequently, the water pressure was set to 4 MPa, and the front and back surfaces were treated once. Then, it dried and the nonwoven fabric was obtained.
This non-woven fabric is a non-woven fabric with no texture spots and a high penetration strength, and is sufficiently effective for roofing base fabric, anticorrosive tape, and each cable press winding application. In addition, since it is composed of polyketone fibers, it has high chemical resistance and is particularly effective for applications using acids and alkalis and applications using high temperatures.
Table 1 summarizes the properties of the nonwoven fabrics of the examples and comparative examples.

[実施例2]
参考例1のポリケトン短繊維の長さを5mm(L/D=480)の短繊維とする以外は、実施例1と同じ方法で目付46g/mのシートを得た。
このシートから、他は実施例1と同じ方法で処理して不織布を得た。不織布の物性を表1に示す。この不織布は、目付斑が無く、貫通強力、引裂強度が高い不織布であり、ルーフィング基布、防錆テープ、各ケーブル押さえ巻き用途に充分有効なものである。
[Example 2]
A sheet having a basis weight of 46 g / m 2 was obtained in the same manner as in Example 1 except that the length of the polyketone short fiber of Reference Example 1 was 5 mm (L / D = 480).
From this sheet, others were processed in the same manner as in Example 1 to obtain a nonwoven fabric. Table 1 shows the physical properties of the nonwoven fabric. This non-woven fabric is a non-woven fabric with no texture spots, high penetration strength and high tear strength, and is sufficiently effective for roofing base fabrics, rust preventive tapes, and cable press winding applications.

[実施例3]
参考例1のポリケトン繊維の長さを15mm(L/D=1430)の短繊維とする以外は、実施例1と同じ方法で目付46g/mのシートを得た。
このシートから、他は実施例1と同じ方法で処理して不織布を得た。不織布の物性を表1に示す。この不織布は、目付斑が無く、貫通強力、引裂強度が高い不織布であり、ルーフィング基布、防錆テープ、各ケーブル押さえ巻き用途に充分有効な物である。
[Example 3]
A sheet having a basis weight of 46 g / m 2 was obtained in the same manner as in Example 1 except that the length of the polyketone fiber in Reference Example 1 was 15 mm (L / D = 1430).
From this sheet, others were processed in the same manner as in Example 1 to obtain a nonwoven fabric. Table 1 shows the physical properties of the nonwoven fabric. This non-woven fabric is a non-woven fabric with no texture spots, high penetration strength and high tear strength, and is sufficiently effective for roofing base fabrics, anticorrosive tapes, and cable holding winding applications.

[実施例4]
参考例1のポリケトン繊維に長さ51mm(L/D=3500)の短繊維を用いて、カード法を用いてウエイビング化し、目付46g/mのシートを得た。
このシートから、他は実施例1と同じ方法で処理して不織布を得た。不織布の物性を表1に示す。この不織布は、目付斑が無く、貫通強力、引裂強度が高い不織布であり、ルーフィング基布、防錆テープ、各ケーブル押さえ巻き用途に充分有効なものである。
[Example 4]
A short fiber having a length of 51 mm (L / D = 3500) was used for the polyketone fiber of Reference Example 1 and was waved using a card method to obtain a sheet having a basis weight of 46 g / m 2 .
From this sheet, others were processed in the same manner as in Example 1 to obtain a nonwoven fabric. Table 1 shows the physical properties of the nonwoven fabric. This non-woven fabric is a non-woven fabric with no texture spots, high penetration strength and high tear strength, and is sufficiently effective for roofing base fabrics, rust preventive tapes, and cable press winding applications.

[実施例5]
参考例2のポリケトン繊維を用いる以外は実施例3と同様にして目付50g/mのシートを得た。このシートを実施例1と同じ方法で処理し不織布を得た。
[Example 5]
A sheet having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 3 except that the polyketone fiber of Reference Example 2 was used. This sheet was processed in the same manner as in Example 1 to obtain a nonwoven fabric.

[実施例6]
参考例3のポリケトン繊維を用いる以外は実施例3と同様にして目付52g/mのシートを得た。このシートを実施例1と同じ方法で処理し不織布を得た。
[Example 6]
A sheet having a basis weight of 52 g / m 2 was obtained in the same manner as in Example 3 except that the polyketone fiber of Reference Example 3 was used. This sheet was processed in the same manner as in Example 1 to obtain a nonwoven fabric.

[実施例7]
参考例1で作製したポリケトン繊維を長さ15mmにカットし、水に5wt%濃度で分散させた後にステンレス刃2枚が1000rpmで回転するミキサー中で30分間処理し、フィブリル化させた。この繊維を用いる以外は実施例3と同様にして目付51g/mのシートを作製、処理し不織布を得た。
[Example 7]
The polyketone fiber produced in Reference Example 1 was cut to a length of 15 mm, dispersed in water at a concentration of 5 wt%, and then treated for 30 minutes in a mixer in which two stainless steel blades were rotated at 1000 rpm, to be fibrillated. A non-woven fabric was obtained by producing and treating a sheet having a basis weight of 51 g / m 2 in the same manner as in Example 3 except that this fiber was used.

[実施例8]
実施例7で作製したポリケトン不織布を、55Lのステンレス製の容器中で150℃でp−エチルアミノベンゾエートに浸漬し10分間加熱した。加熱後、アセトン洗浄、水洗浄を行った。この不織布中のポリケトン繊維をH−NMRで分析したところ、繰り返し単位の1.5モル%が、ポリケトンにp−エチルアミノベンゾエートが反応したアミノ変性ポリケトンとなっていることが確認された。
[Example 8]
The polyketone nonwoven fabric prepared in Example 7 was immersed in p-ethylaminobenzoate at 150 ° C. in a 55 L stainless steel container and heated for 10 minutes. After heating, acetone washing and water washing were performed. When the polyketone fiber in this nonwoven fabric was analyzed by 1 H-NMR, it was confirmed that 1.5 mol% of the repeating units were amino-modified polyketone in which p-ethylaminobenzoate was reacted with polyketone.

[実施例9]
参考例1のポリケトン繊維を長さ60mm(L/D=5720)の短繊維として、カード法を用いて目付103g/mのシートを得た。このシートをニードルパンチングマシンに通しニードリングし、繊維を交絡させて不織布を得た。
[Example 9]
The polyketone fiber of Reference Example 1 was used as a short fiber having a length of 60 mm (L / D = 5720) to obtain a sheet having a basis weight of 103 g / m 2 using a card method. This sheet was passed through a needle punching machine, and the fibers were entangled to obtain a nonwoven fabric.

[実施例10]
参考例1のポリケトン繊維を200本の紙管に巻き取って10×20のクリール台に配置した。この糸をエアーサッカーにてエアージェット牽引、解繊し、金属板に打ち付けた後に、コンベアネット上に分散、堆積させ長繊維不織布ウェブを得た。このウェブをニードルパンチングマシンに通してニードリングし、さらに自己架橋型アクリル樹脂とメラミン樹脂からなる接着剤水溶液に浸漬した。次いで、ニップロールを通し、110℃で乾燥した後に、200℃で熱硬化処理を行い、不織布を得た。
[Example 10]
The polyketone fiber of Reference Example 1 was wound around 200 paper tubes and placed on a 10 × 20 creel table. This yarn was pulled by air jet with air soccer, defibrated, beaten on a metal plate, and then dispersed and deposited on a conveyor net to obtain a long fiber nonwoven web. This web was passed through a needle punching machine, and then dipped in an aqueous adhesive solution composed of a self-crosslinking acrylic resin and a melamine resin. Next, after passing through a nip roll and drying at 110 ° C., a thermosetting treatment was performed at 200 ° C. to obtain a nonwoven fabric.

[実施例11]
参考例1のポリケトン繊維を長さ60mm(L/D=5720)と強度4.5cN/dtex、単糸繊度2.2dtexのポリプロピレン繊維(繊維長=60mm(L/D=4040))を重量比8/2で混合し、カード法を用いて目付50g/mのシートを得た。このシートをニードルパンチングマシンに通しニードリングした後に120℃で1分間の熱処理をして不織布を得た。
[Example 11]
Weight ratio of polyketone fiber of Reference Example 1 having a length of 60 mm (L / D = 5720), a strength of 4.5 cN / dtex, and a single fiber fineness of 2.2 dtex (fiber length = 60 mm (L / D = 4040)) The mixture was mixed at 8/2, and a sheet having a basis weight of 50 g / m 2 was obtained using the card method. This sheet was passed through a needle punching machine and then subjected to heat treatment at 120 ° C. for 1 minute to obtain a nonwoven fabric.

[実施例12]
参考例1のポリケトン繊維を長さ60mm(L/D=5720)と強度5.5cN/dtex、単糸繊度1.1dtexのポリエチレンテレフタレート繊維(繊維長=60mm(L/D=5720))を重量比4/6で混合し、カード法を用いて目付51g/mのシートを得た。このシートをニードルパンチング法により交絡処理し不織布を得た。
[Example 12]
Weight of polyketone fiber of Reference Example 1 having a length of 60 mm (L / D = 5720), a strength of 5.5 cN / dtex, and a single yarn fineness of 1.1 dtex (fiber length = 60 mm (L / D = 5720)) Mixing was performed at a ratio of 4/6, and a sheet having a basis weight of 51 g / m 2 was obtained using a card method. This sheet was entangled by a needle punching method to obtain a nonwoven fabric.

[実施例13]
参考例1のポリケトン繊維を長さ15mm(L/D=1430)と強度5.5cN/dtex、単糸繊度1.1dtexのポリエチレンテレフタレート繊維(繊維長=15mm(L/D=1430))を重量比7/3で混合し、実施例1と同様にしてシート化、交絡処理を行い不織布を得た。
[Example 13]
Polyketone fiber of Reference Example 1 having a length of 15 mm (L / D = 1430), a strength of 5.5 cN / dtex, and a single yarn fineness of 1.1 dtex of polyethylene terephthalate fiber (fiber length = 15 mm (L / D = 1430)) by weight The mixture was mixed at a ratio of 7/3, and sheeted and entangled in the same manner as in Example 1 to obtain a nonwoven fabric.

[実施例14]
参考例1のポリケトン繊維を長さ15mm(L/D=1430)と強度20.6cN/dtex、単糸繊度1.7dtexのp−アラミド短繊維(商標、デュポン社製)(繊維長=15mm(L/D=1150))を重量比9/1で混合し、実施例1と同様にしてシート化、交絡処理を行い不織布を得た。
[Example 14]
The polyketone fiber of Reference Example 1 has a length of 15 mm (L / D = 1430), a strength of 20.6 cN / dtex, and a single yarn fineness of 1.7 dtex, p-aramid short fiber (trademark, manufactured by DuPont) (fiber length = 15 mm ( L / D = 1150)) was mixed at a weight ratio of 9/1, and sheeted and entangled in the same manner as in Example 1 to obtain a nonwoven fabric.

[比較例1]
参考例4のポリケトン繊維を短繊維長15mm(L/D=510)として用いる以外は実施例3と同様にして目付41g/mのシート、さらに不織布を得た。この不織布は、同様の条件で作製した不織布(実施例3)と比較して、引張強度はまずまずであったが、貫通強力は不十分なものであった。
[Comparative Example 1]
A sheet having a basis weight of 41 g / m 2 and a nonwoven fabric were obtained in the same manner as in Example 3 except that the polyketone fiber of Reference Example 4 was used with a short fiber length of 15 mm (L / D = 510). Compared with the nonwoven fabric produced in the same conditions (Example 3), this nonwoven fabric had a reasonable tensile strength but an insufficient penetration strength.

[比較例2]
参考例5のポリケトン繊維を短繊維長15mm(L/D=710)として用いる以外は実施例3と同様にして目付40g/mのシート、さらに不織布を得た。この不織布は、同様の条件で作製した不織布(実施例3)と比較して、引張強度はまずまずであったが、貫通強力は不十分なものであった。
[Comparative Example 2]
A sheet having a basis weight of 40 g / m 2 and a nonwoven fabric were obtained in the same manner as in Example 3 except that the polyketone fiber of Reference Example 5 was used with a short fiber length of 15 mm (L / D = 710). Compared with the nonwoven fabric produced in the same conditions (Example 3), this nonwoven fabric had a reasonable tensile strength but an insufficient penetration strength.

[比較例3]
参考例6のポリケトン繊維を短繊維長15mm(L/D=1060)として用いる以外は実施例3と同様にして目付41g/mのシート、さらに不織布を得た。この不織布は、同様の条件で作製した不織布(実施例3)と比較して、引張強度はまずまずであったが、貫通強力は不十分なものであった。
[Comparative Example 3]
A sheet having a basis weight of 41 g / m 2 and a nonwoven fabric were obtained in the same manner as in Example 3 except that the polyketone fiber of Reference Example 6 was used with a short fiber length of 15 mm (L / D = 1060). Compared with the nonwoven fabric produced in the same conditions (Example 3), this nonwoven fabric had a reasonable tensile strength but an insufficient penetration strength.

[比較例4]
参考例4のポリケトン繊維を短繊維長51mm(L/D=1730)として用いる以外は実施例4と同様にして目付70g/mのシート、さらに不織布を得た。この不織布は引張強度はまずまずであったが、引裂強度、貫通強力は共に不十分なものであった。
[Comparative Example 4]
A sheet having a basis weight of 70 g / m 2 and a nonwoven fabric were obtained in the same manner as in Example 4 except that the polyketone fiber of Reference Example 4 was used with a short fiber length of 51 mm (L / D = 1730). Although this nonwoven fabric had a reasonable tensile strength, both the tear strength and penetration strength were insufficient.

[比較例5]
参考例5のポリケトン繊維を短繊維長51mm(L/D=2430)として用いる以外は実施例1と同様にして目付48g/mのシート、さらに不織布を得た。この不織布は引張はまずまずであったが、引裂強度、貫通強力は共に不十分なものであった。
[Comparative Example 5]
A sheet having a basis weight of 48 g / m 2 and a nonwoven fabric were obtained in the same manner as in Example 1 except that the polyketone fiber of Reference Example 5 was used with a short fiber length of 51 mm (L / D = 2430). Although this nonwoven fabric was moderately pulled, both the tear strength and penetration strength were insufficient.

[比較例5]
参考例1のポリケトン繊維を、長さ15mm(L/D=1430)の短繊維とする以外は実施例1と同じ方法で目付270g/mのシートを得た、このシートの処理を、噴射水の条件のみを変更し、他は実施例1と同じ方法で処理し不織布を得た。なお噴射水の水圧は20Mpaで表裏各3回処理後、5Mpaで表裏各1回処理した。この不織布の物性を表1に示す。この不織布は、目付が高いため高速流体流処理を行ってもシート表面の繊維しか交絡しておらず、シート厚み中心部分から剥離してしまうものであり貫通強力、引裂強度とも弱いものであった。
[Comparative Example 5]
A sheet having a basis weight of 270 g / m 2 was obtained in the same manner as in Example 1 except that the polyketone fiber of Reference Example 1 was a short fiber having a length of 15 mm (L / D = 1430). Only the water conditions were changed, and the others were processed in the same manner as in Example 1 to obtain a nonwoven fabric. The water pressure of the jet water was treated 3 times for each of the front and back surfaces at 20 Mpa, and then treated once for each of the front and back surfaces at 5 Mpa. Table 1 shows the physical properties of this nonwoven fabric. Since this nonwoven fabric has a high basis weight, only fibers on the surface of the sheet are entangled even when high-speed fluid flow treatment is performed, and the sheet peels off from the central part of the sheet thickness, and the penetration strength and tear strength are weak. .

[比較例6]
繊維強度20.6cN/dtex、長さ15mm、単糸繊度1.7dtexのp−アラミド短繊維(デュポン社:商品名ケブラー)から実施例1と同じ方法で目付48g/mの抄造シートを得た。さらに実施例1と同じ方法で不織布を得た。この不織布の物性を表1に示す。この不織布は、目付斑は無いものの、引張強度や引裂強度は低く、また高強度繊維にもかかわらず繊維の交絡不足により引裂強度及び貫通強力が本発明品に比べ低いもので有った。
[Comparative Example 6]
A paper sheet having a basis weight of 48 g / m 2 is obtained from p-aramid short fibers (Du Pont: trade name Kevlar) having a fiber strength of 20.6 cN / dtex, a length of 15 mm, and a single yarn fineness of 1.7 dtex in the same manner as in Example 1. It was. Further, a nonwoven fabric was obtained in the same manner as in Example 1. Table 1 shows the physical properties of this nonwoven fabric. Although this nonwoven fabric has no unevenness, it has low tensile strength and tear strength, and despite the high-strength fibers, the tear strength and penetration strength are lower than those of the present invention due to insufficient fiber entanglement.

[比較例7]
繊維強度5.5cN/dtex、長さ10mm、単糸繊度1.1デシテックスのポリエチレンテレフタレート短繊維から実施例1と同じ方法で目付48g/mの抄造シートを得た。さらに実施例1と同じ方法で不織布を得た。この不織布の物性を表1に示す。この不織布は、目付斑は無いものの、引張強度や引裂強度は高いが、貫通強力が本発明品に比べ極端に低くルーフィング基布や防錆テープ、各ケーブル押さえ巻き用途には不十分なものであった。
[Comparative Example 7]
A paper sheet having a basis weight of 48 g / m 2 was obtained from polyethylene terephthalate short fibers having a fiber strength of 5.5 cN / dtex, a length of 10 mm, and a single yarn fineness of 1.1 dtex in the same manner as in Example 1. Further, a nonwoven fabric was obtained in the same manner as in Example 1. Table 1 shows the physical properties of this nonwoven fabric. Although this non-woven fabric has no spot weight, its tensile strength and tear strength are high, but its penetration strength is extremely low compared to the present invention product, which is not sufficient for roofing base fabric, rust-proof tape, and each cable press winding application. there were.

Figure 2005163237
Figure 2005163237

本発明の不織布は、例えば、衣料部材、ディスポ衣料、靴部材等の衣料用途、保護衣、防護用品等の防護用途、手術着、マスク、ハップ材基布等の医療用途、ルーフィング、タフト・カーペット基布、結露防止シート等の建築用途、補強材、保護材、地中埋設管の補修材等の土木用途、自動車内装、自動車部品等の車両用途、救急用品、洗浄用品、おしぼり等の衛生用途、カーペット、家具部材、壁紙等の家具・インテリア用途、ウェットワイパー、クリーニング材等のワイパー用途、空気フィルター、バグフィルター、エレクトレットフィルター等のフィルター用途、布団、布団袋、枕カバー等の寝装用途、べた掛けシート、防草シート、園芸プランター等の農業・園芸用途、収納用品、包装資材、台所用品等の生活資材用途、電気材料、製品材料、機器部材等の工業資材用途等に用いられる。特に耐薬品性を必要とする用途には好適である。   Non-woven fabrics of the present invention include, for example, apparel items such as apparel members, disposable apparel, shoe members, protective apparel, protective apparel items such as protective clothing, surgical apparel, masks, hap material base fabrics, roofing, tufted carpets, etc. Building use such as base fabric, anti-condensation sheet, etc., civil engineering use such as reinforcing material, protective material, repair material for underground pipe, automobile interior, vehicle use such as auto parts, hygiene use such as emergency supplies, cleaning supplies, hand towels, etc. , Carpet / furniture parts, wallpaper / furniture / interior use, wet wiper, cleaning material / wiper use, air filter, bag filter, electret filter / filter use, bedding, futon bag, pillow cover, etc. Agricultural and horticultural applications such as solid sheet, grass protection sheet, garden planter, storage materials, packaging materials, household materials such as kitchen materials, electrical materials, Goods materials, used in industrial materials applications such equipment members such. It is particularly suitable for applications that require chemical resistance.

本発明の不織布の構成繊維を表面から観察した拡大模式図である。It is the expansion schematic diagram which observed the constituent fiber of the nonwoven fabric of this invention from the surface.

Claims (9)

化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有し、目付が10g/m以上、かつ、貫通強力が5N以上であることを特徴とする不織布。
Figure 2005163237
(ただし、Aは炭素数が2〜30の有機基である。)
It comprises a polyketone fiber composed of a polyketone represented by the chemical formula (1), has a strength of 10 cN / dtex or more, has a basis weight of 10 g / m 2 or more, and has a penetration strength of 5 N or more. Non-woven fabric.
Figure 2005163237
(However, A is an organic group having 2 to 30 carbon atoms.)
化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を50wt%以上含有することを特徴とする請求項1記載の不織布。   The nonwoven fabric according to claim 1, comprising 50 wt% or more of a polyketone fiber made of a polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more. 繰り返し単位の97モル%以上が化学式(2)で表される1−オキソトリメチレンであるポリケトンからなり、極限粘度が2.5〜10dl/g、かつ、強度が12cN/dtex以上であるポリケトン繊維を50wt%以上含有することを特徴とする請求項1又は2記載の不織布。
Figure 2005163237
A polyketone fiber comprising a polyketone in which 97 mol% or more of the repeating unit is 1-oxotrimethylene represented by the chemical formula (2), an intrinsic viscosity of 2.5 to 10 dl / g, and a strength of 12 cN / dtex or more The nonwoven fabric according to claim 1 or 2, characterized by containing 50 wt% or more.
Figure 2005163237
ポリケトン繊維の含有割合が80wt%以上であり、貫通強力が10N以上であることを特徴とする請求項1〜3のいずれか1項記載の不織布。   The content rate of polyketone fiber is 80 wt% or more, and penetration strength is 10 N or more, The nonwoven fabric of any one of Claims 1-3 characterized by the above-mentioned. 不織布を構成する繊維の単糸繊度が0.01〜2dtex、かつ、繊維の長さ(L)と直径(D)の比(L/D)が300〜5000であることを特徴とする請求項1〜4のいずれか1項記載の不織布。   The single yarn fineness of the fibers constituting the nonwoven fabric is 0.01 to 2 dtex, and the ratio (L / D) of the length (L) to the diameter (D) of the fibers is 300 to 5000. The nonwoven fabric of any one of 1-4. 不織布を構成する繊維が互いに3次元交絡しており、繊維交絡点間距離が400μm以下であることを特徴とする請求項1〜5のいずれか1項記載の不織布。   6. The nonwoven fabric according to claim 1, wherein the fibers constituting the nonwoven fabric are three-dimensionally entangled, and the distance between the fiber entanglement points is 400 [mu] m or less. 化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有するシートを形成した後、流体流処理により繊維を3次元的に交絡させて繊維交絡点間距離を400μm以下とする工程を含むことを特徴とする不織布の製造方法。
Figure 2005163237
(ただし、Aは炭素数が2〜30の有機基である。)
After forming a sheet comprising a polyketone fiber composed of a polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more, the fibers are three-dimensionally entangled by fluid flow treatment to form a space between the fiber entanglement points. The manufacturing method of the nonwoven fabric characterized by including the process of making distance into 400 micrometers or less.
Figure 2005163237
(However, A is an organic group having 2 to 30 carbon atoms.)
化学式(1)で表されるポリケトンからなり、かつ、強度が10cN/dtex以上であるポリケトン繊維を含有するシートを形成した後、繊維同士を接着剤又は熱融着によって接合させる工程を含むことを特徴とする不織布の製造方法。
Figure 2005163237
(ただし、Aは炭素数が2〜30の有機基である。)
Including a step of forming a sheet containing a polyketone fiber composed of a polyketone represented by the chemical formula (1) and having a strength of 10 cN / dtex or more and then bonding the fibers together by an adhesive or heat fusion. The manufacturing method of the nonwoven fabric characterized.
Figure 2005163237
(However, A is an organic group having 2 to 30 carbon atoms.)
請求項7で得られた不織布において、接着剤又は熱融着によって繊維同士を接合させる工程を含むことを特徴とする不織布の製造方法。   The method for producing a nonwoven fabric characterized in that the nonwoven fabric obtained in claim 7 includes a step of joining fibers together by an adhesive or heat fusion.
JP2003406084A 2003-12-04 2003-12-04 High strength nonwoven fabric Expired - Fee Related JP4338507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406084A JP4338507B2 (en) 2003-12-04 2003-12-04 High strength nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406084A JP4338507B2 (en) 2003-12-04 2003-12-04 High strength nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2005163237A true JP2005163237A (en) 2005-06-23
JP4338507B2 JP4338507B2 (en) 2009-10-07

Family

ID=34728568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406084A Expired - Fee Related JP4338507B2 (en) 2003-12-04 2003-12-04 High strength nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4338507B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013010A (en) * 2005-07-01 2007-01-18 Asahi Kasei Chemicals Corp Capacitor and electrode separator therefor
JP2007015135A (en) * 2005-07-05 2007-01-25 Asahi Kasei Chemicals Corp Tissue paper for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper
JP2008144290A (en) * 2006-12-07 2008-06-26 Asahi Kasei Fibers Corp Polyketone paper and separator
JP2008150723A (en) * 2006-12-15 2008-07-03 Asahi Kasei Fibers Corp Polyketone fiber paper
JP2014013212A (en) * 2012-07-05 2014-01-23 Toyobo Co Ltd Decontamination method of construction and weedproofing sheet therefor
KR101602386B1 (en) * 2014-11-14 2016-03-10 주식회사 효성 Polyketone nanofiber non woven fabric
KR20160139395A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone non-woven fabric including polyketone fiber method for manufacturing the same
KR20160139396A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone spunbond non-woven including polyketone fiber method for manufacturing the same
KR20160139385A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone geotextile including polyketone fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952859A (en) * 2014-04-17 2014-07-30 深圳市中纺滤材无纺布有限公司 Production method of high-efficiency and low-resistance fiber composite filter materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013010A (en) * 2005-07-01 2007-01-18 Asahi Kasei Chemicals Corp Capacitor and electrode separator therefor
JP2007015135A (en) * 2005-07-05 2007-01-25 Asahi Kasei Chemicals Corp Tissue paper for thermosensitive stencil printing base paper and thermosensitive stencil printing base paper
JP2008144290A (en) * 2006-12-07 2008-06-26 Asahi Kasei Fibers Corp Polyketone paper and separator
JP2008150723A (en) * 2006-12-15 2008-07-03 Asahi Kasei Fibers Corp Polyketone fiber paper
JP2014013212A (en) * 2012-07-05 2014-01-23 Toyobo Co Ltd Decontamination method of construction and weedproofing sheet therefor
KR101602386B1 (en) * 2014-11-14 2016-03-10 주식회사 효성 Polyketone nanofiber non woven fabric
KR20160139395A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone non-woven fabric including polyketone fiber method for manufacturing the same
KR20160139396A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone spunbond non-woven including polyketone fiber method for manufacturing the same
KR20160139385A (en) * 2015-05-27 2016-12-07 주식회사 효성 Polyketone geotextile including polyketone fiber
KR101695743B1 (en) * 2015-05-27 2017-01-12 주식회사 효성 Polyketone geotextile including polyketone fiber
KR101725815B1 (en) * 2015-05-27 2017-04-11 주식회사 효성 Polyketone non-woven fabric including polyketone fiber method for manufacturing the same
KR101725816B1 (en) * 2015-05-27 2017-04-11 주식회사 효성 Polyketone spunbond non-woven including polyketone fiber method for manufacturing the same

Also Published As

Publication number Publication date
JP4338507B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP2596947B2 (en) Polyethylene Plexi Fiber piercing sheet
US6468651B2 (en) Nonwoven fabric containing fine fiber, and a filter material
JPS6356343B2 (en)
JP4338507B2 (en) High strength nonwoven fabric
JP2008101315A (en) Porous body and method for producing the same
WO2012090130A2 (en) Nonwoven composite including regenerated cellulose fibers
KR20090061656A (en) Leather-like sheet and process for production thereof
WO1988010330A1 (en) Reticulate polypropylene fibers, process for their production, and reticulate fiber nonwoven fabric
WO1994008083A1 (en) Nonwoven cloth of ultrafine fibers and method of manufacturing the same
JP2013540212A (en) Wet wrap compositions and related methods
JP2006089851A (en) Nonwoven fabric composed of extra-fine continuous fiber and production process and application thereof
JP2006348438A (en) Nonwoven fabric
US20130157537A1 (en) Nonwoven composite including regenerated cellulose fibers
JP2004511665A (en) Melt-processable perfluoropolymer foam
JP5254720B2 (en) Method for producing fibrillated molten liquid crystal polymer fiber
JP2003508646A (en) Melt-processable perfluoropolymer foam
JPH10331063A (en) Composite nonwoven fabric and its production
JP2012092466A (en) Wet-laid nonwoven fabric and textile product
JP3725716B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP5812607B2 (en) Split type composite fiber and fiber assembly using the same
JPH0491224A (en) Nonwoven fabric having excellent water absorbing performance
JP5069691B2 (en) Embroidery base fabric and manufacturing method thereof
JP5249713B2 (en) Heat resistant nonwoven fabric
JP5191811B2 (en) Method for producing spunlace nonwoven fabric containing vinylon short fibers
JPH07119073A (en) Wet nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R150 Certificate of patent or registration of utility model

Ref document number: 4338507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees