JP2005160823A - Catheter type ultrasonic irradiation apparatus - Google Patents

Catheter type ultrasonic irradiation apparatus Download PDF

Info

Publication number
JP2005160823A
JP2005160823A JP2003405268A JP2003405268A JP2005160823A JP 2005160823 A JP2005160823 A JP 2005160823A JP 2003405268 A JP2003405268 A JP 2003405268A JP 2003405268 A JP2003405268 A JP 2003405268A JP 2005160823 A JP2005160823 A JP 2005160823A
Authority
JP
Japan
Prior art keywords
side electrode
catheter
piezoelectric element
ultrasonic irradiation
type ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003405268A
Other languages
Japanese (ja)
Other versions
JP4344794B2 (en
Inventor
Shinichi Takeuchi
真一 竹内
Takahiro Suzuki
崇洋 鈴木
Naoki Katsura
尚樹 桂
Toshio Sato
敏夫 佐藤
Norimichi Kawashima
徳道 川島
Mutsuo Ishikawa
睦生 石河
Minoru Kurosawa
実 黒澤
Etsuzo Ohira
悦三 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toin Gakuen
Original Assignee
Toin Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toin Gakuen filed Critical Toin Gakuen
Priority to JP2003405268A priority Critical patent/JP4344794B2/en
Publication of JP2005160823A publication Critical patent/JP2005160823A/en
Application granted granted Critical
Publication of JP4344794B2 publication Critical patent/JP4344794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic irradiation apparatus which prevents physical property from fluctuating by a rigid contact of a sonic waveguide and a piezoelectric element and is capable of easily achieving miniaturization. <P>SOLUTION: A catheter type ultrasonic irradiation apparatus is constituted of a flexible sonic waveguide of which one end is opened as a sonic irradiation face and of which the other end is coated with a titanium coating to form a ground side electrode, a sound receiving member composed of piezoelectric film formed by a direct contact with the titanium coating layer, and a signal side electrode composed of a metal layer formed on the piezoelectric element film, and has a structure where the titanium coating and the end portion having the piezoelectric film and the signal side electrode are liquid-tightly surrounded by a casing provided with a connector and the ground side electrode and the signal side electrode are respectively connected to a ground side electrode pin and a signal side electrode pin of the connector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は病気の診断、治療など医療分野において広く用いることができるカテーテル型超音波照射装置に関するものである。   The present invention relates to a catheter-type ultrasonic irradiation apparatus that can be widely used in the medical field such as diagnosis and treatment of diseases.

近年、病気の診断や治療を行う医療分野において、超音波照射装置が広く利用されている。そして、これまでにこのような超音波装置として、同心円状に分割され配列された複数の環状のトラックからなり、各トラックの周方向に複数のセクタに分割された二次元アレイ型超音波発生器と、このセクタを構成する素子を駆動する駆動回路と、その駆動信号の位相及び振幅を制御する位相振幅制御回路を備えた、悪性腫瘍の治療に好適な超音波照射装置(特許文献1参照)、すだれ状電極を備えた圧電薄板を非圧電基板の一方の板面に設け、液体又は粘液状の物質を介して前記非圧電基板の他方の板面と接触した物体中に超音波を照射する手段を備えた胆石破壊用超音波照射装置(特許文献2参照)、体内に治療用超音波を照射する超音波照射手段と、この体内にイメージング用超音波を送信するとともに体内からの反射波を受信するイメージング用超音波プローブとこれらの超音波からの信号を比較する手段を備えた結石破砕用超音波照射装置(特許文献3参照)、体内の所望の部位に超音波を照射する複数の超音波振動子から構成された超音波発生源と、体内の断層像を得るための超音波を送受信する画像診断用超音波プローブとを備えた治療用ヘッドを有する超音波照射装置(特許文献4参照)、加熱治療用集束超音波照射装置と患者体内組織の三次元画像を撮像して表示する画像診断装置と両者の間を患者の***を変えることなく移動させる移動装置を有する超音波治療装置(特許文献5参照)などが知られている。   In recent years, ultrasonic irradiation apparatuses have been widely used in the medical field for diagnosing and treating diseases. So far, as such an ultrasonic device, a two-dimensional array type ultrasonic generator composed of a plurality of annular tracks divided and arranged concentrically and divided into a plurality of sectors in the circumferential direction of each track And an ultrasonic irradiation apparatus suitable for the treatment of malignant tumor, comprising a drive circuit for driving elements constituting this sector and a phase amplitude control circuit for controlling the phase and amplitude of the drive signal (see Patent Document 1) A piezoelectric thin plate provided with interdigital electrodes is provided on one plate surface of a non-piezoelectric substrate, and an ultrasonic wave is applied to an object in contact with the other plate surface of the non-piezoelectric substrate via a liquid or viscous liquid substance. An ultrasonic irradiation device for gallstone destruction provided with means (refer to Patent Document 2), ultrasonic irradiation means for irradiating therapeutic ultrasonic waves in the body, and transmitting ultrasonic waves for imaging in the body and reflecting reflected waves from the body Receive Ultrasonic irradiation device for calculus crushing provided with means for comparing ultrasonic probes for merging and signals from these ultrasonic waves (refer to Patent Document 3), and a plurality of ultrasonic vibrations for irradiating a desired site in the body with ultrasonic waves An ultrasonic irradiation apparatus having a therapeutic head including an ultrasonic wave generation source composed of a child and an ultrasonic diagnostic probe for transmitting and receiving ultrasonic waves for obtaining a tomographic image in the body (see Patent Document 4); Ultrasound therapy apparatus including a focused ultrasound irradiation apparatus for heat treatment, an image diagnostic apparatus that captures and displays a three-dimensional image of a patient's body tissue, and a moving device that moves between both without changing the patient's body position (Patent Document) 5) is known.

このほか、超音波照射装置として、ガンの低侵襲治療や血栓の溶解治療を目的として、光ファイバのようなフレキシブルな音響導波路を利用したものが提案されているが、このように光ファイバを音響導波路として用いる場合は、体外で発生させた超音波振動を効率よく端面に入射させることが困難になる。   In addition, ultrasonic irradiation devices that use flexible acoustic waveguides such as optical fibers have been proposed for the purpose of minimally invasive treatment of cancer and thrombus dissolution treatment. When used as an acoustic waveguide, it is difficult to efficiently make ultrasonic vibrations generated outside the body incident on the end face.

また、従来の超音波照射装置においては、音響導波路とその上に設ける圧電素子膜とを導電性接着剤を用いて接着しているため密着が不均一になるため、物性が変動したり、経時的に密着性が低下したり、あるいは接着層の存在により小型化が制限を受けるという欠点があった。   In addition, in the conventional ultrasonic irradiation apparatus, the acoustic waveguide and the piezoelectric element film provided on the acoustic waveguide are bonded using a conductive adhesive, so the adhesion becomes non-uniform, and the physical properties fluctuate, There is a drawback that the adhesiveness deteriorates with time, or the downsizing is limited by the presence of the adhesive layer.

特開平7−184914号公報(特許請求の範囲その他)JP-A-7-184914 (Claims and others) 特開平7−313521号公報(特許請求の範囲その他)JP 7-313521 A (Claims and others) 特開平10−216143号公報(特許請求の範囲その他)JP-A-10-216143 (Claims and others) 特開2001−70333号公報(特許請求の範囲その他)JP 2001-70333 A (Claims and others) 特開2000−166950号公報(特許請求の範囲その他)JP 2000-166950 A (Claims and others)

本発明は、このような事情のもとで、音響導波路と圧電素子とを強固に密着させて、物性の変動を防止し、かつ容易に小型化を実現しうる超音波照射装置を提供することを目的としてなされたものである。   Under such circumstances, the present invention provides an ultrasonic irradiation apparatus that can tightly adhere an acoustic waveguide and a piezoelectric element, prevent fluctuations in physical properties, and easily realize downsizing. It was made for the purpose.

本発明者らは、音響導波路の所定の位置に、導電性接着剤を用いずに圧電素子を強固に密着させ、安定した物性を保証するとともに、小型化が可能な超音波照射装置を開発するために、種々研究を重ねた結果、音響導波路の所定の位置にチタン被覆を設け、この上に水熱反応を利用した化学蒸着により圧電素子膜を形成させることにより、その目的を達成しうることを見出し、この知見に基づいて本発明をなすに至った。   The present inventors have developed an ultrasonic irradiation apparatus capable of ensuring stable physical properties and miniaturization while firmly attaching a piezoelectric element to a predetermined position of an acoustic waveguide without using a conductive adhesive. As a result of various researches, a titanium coating is provided at a predetermined position of the acoustic waveguide, and a piezoelectric element film is formed thereon by chemical vapor deposition utilizing a hydrothermal reaction. Based on this finding, the present invention has been made.

すなわち、本発明は、一端を音響放射面として開放し、他端にチタン被覆を施して接地側電極(以下GND側電極という)を形成したフレキシブル音響導波路と、該チタン被覆層上に直接密着して設けられた圧電素子膜からなる受音子と、該圧電素子膜上に形成された金属層からなる信号側電極(以下HOT側電極という)とで構成され、かつ前記チタン被覆、圧電素子膜及び信号側電極を有する端部を、コネクタを付設した筐体で液密的に包囲するとともに、前記接地側電極及び信号側電極をそれぞれコネクタの接地側電極ピン及び信号側電極ピンに接続した構造を有するカテーテル型超音波照射装置を提供するものである。   That is, the present invention provides a flexible acoustic waveguide in which one end is opened as an acoustic radiation surface and a titanium coating is applied to the other end to form a ground side electrode (hereinafter referred to as a GND side electrode), and the titanium coating layer is directly adhered to the flexible acoustic waveguide. And a signal-side electrode (hereinafter referred to as a HOT-side electrode) made of a metal layer formed on the piezoelectric element film, and the titanium-coated, piezoelectric element. The end portion having the membrane and the signal side electrode is surrounded in a liquid-tight manner by a casing provided with a connector, and the ground side electrode and the signal side electrode are connected to the ground side electrode pin and the signal side electrode pin of the connector, respectively. A catheter-type ultrasonic irradiation apparatus having a structure is provided.

本発明におけるフレキシブル音響導波路としては、光ファイバを用いるのが好ましいが、所望ならば光ファイバ以外のプラスチックワイヤ、プラスチックロッド、金属ワイヤ、金属ロッドなどのフレキシブルな材料からなる線条体を用いることもできる。そして、上記の光ファイバとしては、サファイア製光ファイバ、アルミナ製光ファイバ、プラスチック製光ファイバなどが好ましい。   As the flexible acoustic waveguide in the present invention, an optical fiber is preferably used, but if desired, a linear body made of a flexible material such as a plastic wire other than the optical fiber, a plastic rod, a metal wire, or a metal rod is used. You can also. And as said optical fiber, a sapphire optical fiber, an alumina optical fiber, a plastic optical fiber etc. are preferable.

これらのフレキシブル音響導波路としてチタン以外の材料を用いた場合には、少なくともその圧電素子膜を付着させる部分にチタン被覆を設けることが必要である。このチタン被覆は、例えばスパッタリング、真空蒸着、溶着、めっきなど公知の金属被覆手段を用いて形成させることができる。   When a material other than titanium is used for these flexible acoustic waveguides, it is necessary to provide a titanium coating at least on the portion to which the piezoelectric element film is attached. This titanium coating can be formed using a known metal coating means such as sputtering, vacuum deposition, welding, or plating.

圧電素子膜は、このようにして形成されたチタン被覆の上に成膜されるが、この成膜は、例えば複数の撹拌羽根からなる撹拌手段を備えたオートクレーブ型反応容器において、少なくとも撹拌羽根の外側露出面及び反応容器内側面を耐アルカリ性材料で構成するとともに、上記撹拌羽根に取り付け溝を穿設し、その取り付け溝に、フレキシブル音響導波路の端部のみを露出させ、それ以外の部分を液密的に隔離して着脱自在に嵌合した圧電膜形成装置を用いて行うことができる。   The piezoelectric element film is formed on the titanium coating formed in this manner. This film formation is performed at least on the stirring blade in an autoclave type reaction vessel equipped with stirring means composed of a plurality of stirring blades, for example. The outer exposed surface and the inner surface of the reaction vessel are made of an alkali-resistant material, and a mounting groove is formed in the stirring blade, and only the end of the flexible acoustic waveguide is exposed to the mounting groove, and the other portions are exposed. It can be performed using a piezoelectric film forming apparatus that is liquid-tightly isolated and detachably fitted.

このようにして成膜される圧電素子としては、ジルコン酸チタン酸鉛のようなPZT系圧電体のほか、チタン酸バリウム、(Bi0.5Na0.5)TiO3−BaTiO3又は(Bi0.5Na0.5)TiO3−BaTiO3−SrTiO3などの非鉛系のものも用いることができる。 As the piezoelectric element thus formed, in addition to a PZT piezoelectric material such as lead zirconate titanate, barium titanate, (Bi 0.5 Na 0.5 ) TiO 3 —BaTiO 3 or (Bi 0.5 Na 0.5 ). Lead-free materials such as TiO 3 —BaTiO 3 —SrTiO 3 can also be used.

本発明は、音響導波路上に設けたチタン被覆表面に接着剤なしで水熱反応により直接圧電素子膜を密着させているので、従来の不安定要因であった光ファイバ端部に対する圧電素子膜との接着不良や使用時に水中に設置した放物面上の音響ミラーの焦点に合わせるため、光ファイバを患者体内に挿入する際、患者体内に装入する側と反対側の端部を配置するという煩雑かつむずかしい操作を省くことができるという利点がある。   In the present invention, since the piezoelectric element film is directly adhered to the surface of the titanium coating provided on the acoustic waveguide by a hydrothermal reaction without an adhesive, the piezoelectric element film for the end portion of the optical fiber, which has been a conventional instability factor. When the optical fiber is inserted into the patient body, the end opposite to the side to be loaded is placed in order to adjust the focus of the acoustic mirror on the paraboloid placed in the water during use. There is an advantage that the complicated and difficult operation can be omitted.

次に、添付図面に従って、本発明を実施するための最良の形態を説明する。
図1は、本発明のカテーテル型超音波照射装置の1例を示す縦断面図であって、フレキシブル材料からなる線条体1、好ましくは光ファイバの一端は音響放射面2に形成されており、他端にはチタン被覆3が設けられている。このチタン被覆3は、GND側電極としての役割を果たしている。このチタン被覆表面には、水熱反応により形成した圧電素子膜4、例えばPZT膜が設けられ、さらにその上にはスパッタリング、真空蒸着などで金属膜5が積層され、HOT側電極を構成している。このHOT側電極は、光ファイバ1の上のGND側電極3からは完全に隔離されている。
Next, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of a catheter-type ultrasonic irradiation apparatus of the present invention, in which a linear body 1 made of a flexible material, preferably one end of an optical fiber is formed on an acoustic radiation surface 2. The other end is provided with a titanium coating 3. The titanium coating 3 plays a role as a GND side electrode. A piezoelectric element film 4 formed by a hydrothermal reaction, for example, a PZT film, is provided on the titanium-coated surface, and a metal film 5 is further laminated thereon by sputtering, vacuum deposition, etc. to form a HOT side electrode. Yes. The HOT side electrode is completely isolated from the GND side electrode 3 on the optical fiber 1.

光ファイバ1のチタン被覆3、圧電素子膜4、金属膜5を有する端部は、コネクタ6を付設したシールドケース7により液密的にカバーされている。また、チタン被覆からなるGND側電極3とコネクタのGND側電極ピン8、及びHOT側電極5とコネクタのHOT側電極ピン9とは、それぞれ導線10により結ばれている。   An end portion of the optical fiber 1 having the titanium coating 3, the piezoelectric element film 4, and the metal film 5 is liquid-tightly covered by a shield case 7 provided with a connector 6. Further, the GND-side electrode 3 made of titanium coating and the GND-side electrode pin 8 of the connector, and the HOT-side electrode 5 and the HOT-side electrode pin 9 of the connector are respectively connected by a conductive wire 10.

図2は、チタン被覆3の表面に圧電素子膜4を形成させる場合に用いる装置の1例を示す側方断面図、図3はその中の撹拌羽根部分の側面図、図4はそのワイヤ取り付け部分の構造を示す断面図である。この装置は、オートクレーブ型反応容器11の内部にモーター12で回転する撹拌羽根13が配設された構造を有している。この反応容器11は、熱電対14、圧力計15及び減圧バルブ16を備え、かつ電熱線17により加熱しうるようになっている。   FIG. 2 is a side sectional view showing an example of an apparatus used when the piezoelectric element film 4 is formed on the surface of the titanium coating 3, FIG. 3 is a side view of the stirring blade portion, and FIG. It is sectional drawing which shows the structure of a part. This apparatus has a structure in which a stirring blade 13 that is rotated by a motor 12 is disposed inside an autoclave-type reaction vessel 11. The reaction vessel 11 includes a thermocouple 14, a pressure gauge 15, and a pressure reducing valve 16, and can be heated by a heating wire 17.

上記の撹拌羽根13には、その上面に複数の取り付け溝18,…が穿設され、その各取り付け溝に光ファイバ1が抑え板19、20及びネジ21、22により着脱自在に嵌合されている。   The agitating blade 13 has a plurality of mounting grooves 18,... On its upper surface, and the optical fiber 1 is detachably fitted into the mounting grooves by holding plates 19, 20 and screws 21, 22. Yes.

この取り付け溝18,…は図4に示す断面をもつ構造を有しており、光ファイバ1の端部1´が撹拌羽根の回転方向に向けて外に突出し、他の部分は液密的に外部から隔離された状態で取り付けられている。   4 has a structure having a cross section shown in FIG. 4, the end 1 'of the optical fiber 1 protrudes outward in the rotational direction of the stirring blade, and the other part is liquid-tight. It is installed in a state isolated from the outside.

この装置を用いて光ファイバの端部に圧電素子膜を形成させるには、反応容器11内に所要の金属イオン供給源を含むアルカリ水溶液を満たして水熱反応を行わせる必要があるので、反応容器内面11´及び撹拌羽根13はいずれも耐アルカリ性材料により形成されている。   In order to form a piezoelectric element film at the end of an optical fiber using this apparatus, it is necessary to fill a reaction vessel 11 with an alkaline aqueous solution containing a required metal ion supply source to cause a hydrothermal reaction. Both the container inner surface 11 ′ and the stirring blade 13 are made of an alkali-resistant material.

この耐アルカリ性材料としては、通常、フッ素樹脂、例えばポリテトラフルオロエチレンが用いられる。このようにして構成された反応装置の取り付け溝18,…にチタンワイヤを取り付け、チタンが露出した端面を撹拌羽根の回転方向と一致させ、アルカリ性水溶液中で回転させる。   As this alkali-resistant material, a fluororesin such as polytetrafluoroethylene is usually used. A titanium wire is attached to the mounting grooves 18 of the reactor thus configured, and the end surface where titanium is exposed is made to coincide with the rotation direction of the stirring blade, and is rotated in an alkaline aqueous solution.

この際の回転数としては、結晶核生成段階すなわち第1段階では10〜50rpm、結晶核成長段階すなわち第2段階では10〜1500rpm、好ましくは15〜300rpmの範囲内で選ぶのが好ましい。このようにして、0.1〜1.0MPa及び80〜200℃の条件下で10〜30時間水熱反応させると、第2段階の繰り返し回数に応じて、繰り返し回数1回当り約10μmとした場合、チタン端面に10〜300μmの厚さの圧電素子膜が形成される。   The number of rotations at this time is preferably selected within the range of 10 to 50 rpm in the crystal nucleus generation stage, that is, the first stage, and 10 to 1500 rpm, preferably 15 to 300 rpm, in the crystal nucleus growth stage, that is, the second stage. Thus, when hydrothermal reaction was performed for 10 to 30 hours under the conditions of 0.1 to 1.0 MPa and 80 to 200 ° C., the number of repetitions was about 10 μm per repetition according to the number of repetitions of the second stage. In this case, a piezoelectric element film having a thickness of 10 to 300 μm is formed on the titanium end face.

水熱反応は圧電素子形成成分、例えばPb2+イオン、Zr4+イオン、Ti4+イオンを含む水酸化アルカリ水溶液中に、線条体のチタンが露出した端部を浸漬し、かきまぜながら高温高圧下で反応させることによって行うことができる。 The hydrothermal reaction is carried out by immersing the ends of the striated titanium exposed in an aqueous alkali hydroxide solution containing piezoelectric element forming elements such as Pb 2+ ions, Zr 4+ ions, and Ti 4+ ions, and stirring them at high temperature. It can be performed by reacting under high pressure.

上記のPb2+イオン供給源としては、PbI2、PbO、PbCl2・PbO、Pb(SO42、Pb(NO32、PbHPO4、PbCO3、Pb(CH3COO)2・3H2Oのようなアルカリ可溶性鉛化合物が、Zr4+イオン供給源としては、ZrCl4,ZrOCl2、ZrCl2O・8H2O、Zr(CH3COO)4などのアルカリ可溶性ジルコニウム化合物が、またTi4+イオン供給源としては、TiCl4、TiBr4・6H2O、TiO2、TiO2・2H2O、TiS2、Ti(SO42、K2[TiO(C242]・2H2Oのようなアルカリ可溶性チタン化合物や金属チタンがそれぞれ用いられる。また、水酸化アルカリ水溶液としては、NaOH又はKOHの水溶液が用いられる。 As the Pb 2+ ion supply source, PbI 2 , PbO, PbCl 2 · PbO, Pb (SO 4 ) 2 , Pb (NO 3 ) 2 , PbHPO 4 , PbCO 3, Pb (CH 3 COO) 2 · 3H Alkali-soluble lead compounds such as 2 O, Zr 4 + ion sources include alkali-soluble zirconium compounds such as ZrCl 4 , ZrOCl 2 , ZrCl 2 O.8H 2 O, Zr (CH 3 COO) 4 , Ti 4+ ion supply sources include TiCl 4 , TiBr 4 .6H 2 O, TiO 2 , TiO 2 .2H 2 O, TiS 2 , Ti (SO 4 ) 2 , K 2 [TiO (C 2 O 4 ) 2. ] An alkali-soluble titanium compound such as 2H 2 O or titanium metal is used. Further, as the aqueous alkali hydroxide solution, an aqueous solution of NaOH or KOH is used.

これらの化合物は、0.1〜8.0mol/リットル濃度のアルカリ水溶液中に、鉛化合物を50〜500mmol/リットル濃度で、ジルコニウム化合物を10〜500mmol/リットル濃度で、チタン化合物を10〜500mmol/リットル濃度で混合して用いられる。   These compounds were prepared in an alkaline aqueous solution having a concentration of 0.1 to 8.0 mol / liter, a lead compound at a concentration of 50 to 500 mmol / liter, a zirconium compound at a concentration of 10 to 500 mmol / liter, and a titanium compound at a concentration of 10 to 500 mmol / liter. Used by mixing at a liter concentration.

これらの化合物を水熱反応させるには、例えばオートクレーブ中、0.1〜1.0MPa、好ましくは0.3〜0.5MPaの圧力下、80〜200℃、好ましくは120〜160℃の温度に加熱する。この水熱反応による成膜は、通常2段階に分かれ、第1段階で先ず圧電体の結晶核が生成し、第2段階で生成した結晶が成長する。そして、この第2段階の繰り返しによって厚膜化が進行する。   For hydrothermal reaction of these compounds, for example, in an autoclave, at a pressure of 0.1 to 1.0 MPa, preferably 0.3 to 0.5 MPa, and a temperature of 80 to 200 ° C., preferably 120 to 160 ° C. Heat. Film formation by this hydrothermal reaction is usually divided into two stages. First, crystal nuclei of the piezoelectric body are generated in the first stage, and crystals generated in the second stage grow. Then, the thickening proceeds by repeating this second stage.

本発明における圧電素子膜材料としては、ジルコン酸チタン酸鉛Pb(Ti,Zr)O3系のいわゆるPZTが好ましいが、それ以外のもの例えばチタン酸バリウム、(Bi0.5Na0.5)TiO3−BaTiO3系、(Bi0.5Na0.5)TiO3−BaTiO3−SrTiO3系のものを用いることもできる。このような非鉛系圧電体は、Pb2+イオン供給源の代わりにBa2+イオン供給源、Sr2+イオン供給源、Bi3+イオン供給源、Na+イオン供給源を用いて形成させることができる。 As the piezoelectric element film material in the present invention, lead zirconate titanate Pb (Ti, Zr) O 3 based so-called PZT is preferable, but other materials such as barium titanate, (Bi 0.5 Na 0.5 ) TiO 3 —BaTiO are used. A 3 type (Bi 0.5 Na 0.5 ) TiO 3 —BaTiO 3 —SrTiO 3 type can also be used. Such a lead-free piezoelectric material is formed using a Ba 2+ ion source, a Sr 2+ ion source, a Bi 3+ ion source, and an Na + ion source instead of the Pb 2+ ion source. be able to.

この水熱反応によりチタンが露出した端面に圧電素子膜を形成させる場合、所望に応じ、水熱反応を行うに先立って上記端面を粗面化処理しておくこともできる。このように粗面化処理後、水熱反応を行わせて圧電素子膜を生成させると、結晶生成用混合水溶液が粗面化処理により形成された凹部に容易に侵入するため、凹部に優先的に結晶核が生成され、結晶核の成長段階を経て、基板の凹凸にかかわらず、ほぼ一様に圧電素子膜が積層する。   When the piezoelectric element film is formed on the end face where titanium is exposed by this hydrothermal reaction, the end face can be roughened prior to the hydrothermal reaction, if desired. When the piezoelectric element film is generated by performing a hydrothermal reaction after the surface roughening treatment in this manner, the mixed aqueous solution for crystal generation easily penetrates into the concave portion formed by the surface roughening treatment. Crystal nuclei are generated, and through the crystal nucleus growth stage, the piezoelectric element films are laminated almost uniformly regardless of the unevenness of the substrate.

ところで、圧電縦効果による圧電素子膜の固有振動数は、膜厚に反比例することから、粗面化処理により水平方向に膜厚の異なる圧電素子膜が形成されると、膜厚差に基づく周波数帯域での超音波送信が可能になり、また同じ帯域での超音波受信も可能になるという利点を生じる。この粗面化処理は、旋盤、ドリル、プレス、フライス盤などによる機械加工、レーザ処理、サンドブラスト処理などの物理的加工、プラズマ処理、エッチング処理などの化学的加工によって行うことができる。   By the way, since the natural frequency of the piezoelectric element film due to the piezoelectric longitudinal effect is inversely proportional to the film thickness, when a piezoelectric element film having a different film thickness in the horizontal direction is formed by the roughening process, the frequency based on the film thickness difference. The advantage is that ultrasonic transmission in a band is possible and ultrasonic reception in the same band is also possible. This roughening treatment can be performed by mechanical processing such as lathe, drill, press, milling machine or the like, physical processing such as laser processing or sand blast processing, chemical processing such as plasma processing or etching processing.

本発明においては、このようにして形成される圧電素子膜の膜厚として、10〜200μm、好ましくは20〜50μmの範囲内が選ばれる。   In the present invention, the film thickness of the piezoelectric element film thus formed is selected within the range of 10 to 200 μm, preferably 20 to 50 μm.

本発明のカテーテル型超音波照射装置における圧電素子膜の形成は、以下のようにして行うのが特に好ましい。   The formation of the piezoelectric element film in the catheter-type ultrasonic irradiation apparatus of the present invention is particularly preferably performed as follows.

ポリ(テトラフルオロエチレン)で内張した図2に示す反応容器中に四塩化チタン1g、1モル濃度の塩化酸化ジルコニウム八水和物水溶液60ml及び1モル濃度の硝酸鉛水溶液200mlと、4モル濃度の水酸化カリウム水溶液200mlとを装入し、一端にチタン被覆を有する光ファイバ(径2mm、長さ200mm)を図3に示すようにして撹拌羽根に取り付け、内部温度160℃、圧力400kPaに保ち、15rpmで30分間かきまぜたのち、内部温度を140℃に降下させ、24時間、245rpmでかきまぜながら水熱反応を行わせた。   In a reaction vessel shown in FIG. 2 lined with poly (tetrafluoroethylene), 1 g of titanium tetrachloride, 60 ml of a 1 molar aqueous solution of zirconium oxide octahydrate and 200 ml of a 1 molar aqueous solution of lead nitrate, and a 4 molar concentration 200 ml of an aqueous potassium hydroxide solution, and an optical fiber (diameter 2 mm, length 200 mm) having a titanium coating on one end is attached to a stirring blade as shown in FIG. 3, and the internal temperature is maintained at 160 ° C. and the pressure is 400 kPa. After stirring at 15 rpm for 30 minutes, the internal temperature was lowered to 140 ° C., and a hydrothermal reaction was carried out while stirring at 245 rpm for 24 hours.

反応終了後、光ファイバを取り出し、水洗する。この際、減圧時に内部温度が80℃を経て常温まで冷却すると、80℃通過時に赤茶色の酸化鉛の膜が生成し、特性が劣化するので、反応温度のまま減圧バルブを開放し、内部のガスを大気圧まで減圧して、できるだけ速くチタンワイヤを取り出した。
このようにして、チタンワイヤの端部にのみPZT膜を付着させることができる。
After completion of the reaction, the optical fiber is taken out and washed with water. At this time, when the internal temperature is reduced to room temperature through 80 ° C. during decompression, a red-brown lead oxide film is formed when passing through 80 ° C., and the characteristics deteriorate. Therefore, the decompression valve is opened while maintaining the reaction temperature. The gas was depressurized to atmospheric pressure, and the titanium wire was taken out as quickly as possible.
In this way, the PZT film can be attached only to the end of the titanium wire.

このようにして得た光ファイバからなる音響導波路の圧電素子膜上に、銀を厚さ2μmで真空蒸着してHOT側電極を形成したのち、この端部をコネクタを付設したプラスチック製ケースにより液密的にシールドし、コネクタのGND側電極ピンとチタン被覆からなるGND電極との間及びコネクタのHOT側電極ピンと銀蒸着膜からなるHOT側電極とを導線で結ぶ。
このようにして、本発明のカテーテル型超音波照射装置を作製することができる。
このようにして得たカテーテル型超音波照射装置は従来のカテーテル型超音波照射装置と同様の性能を示すことが確認された。
After forming the HOT side electrode by vacuum-depositing silver with a thickness of 2 μm on the piezoelectric element film of the acoustic waveguide made of the optical fiber thus obtained, this end is formed by a plastic case provided with a connector. It shields liquid-tightly and connects between the GND side electrode pin of the connector and the GND electrode made of titanium coating, and the HOT side electrode pin of the connector and the HOT side electrode made of a silver vapor-deposited film with conductive wires.
In this way, the catheter type ultrasonic irradiation apparatus of the present invention can be produced.
It was confirmed that the catheter type ultrasonic irradiation apparatus thus obtained showed the same performance as the conventional catheter type ultrasonic irradiation apparatus.

本発明のカテーテル型超音波照射装置は、超音波診断装置、超音波治療器として利用することができる。   The catheter-type ultrasonic irradiation apparatus of the present invention can be used as an ultrasonic diagnostic apparatus and an ultrasonic treatment device.

本発明のカテーテル型超音波照射装置の1例の縦断面図。The longitudinal cross-sectional view of one example of the catheter type ultrasonic irradiation apparatus of this invention. 本発明の圧電素子膜を形成するための装置。The apparatus for forming the piezoelectric element film of this invention. 図2中の撹拌羽根部分の側面図。The side view of the stirring blade part in FIG. 図2の取り付け状態を示す断面図。Sectional drawing which shows the attachment state of FIG.

符号の説明Explanation of symbols

1 線条体
2 音響放射面
3 チタン被覆(GND側電極)
4 圧電素子膜
5 金属膜
6 コネクタ
7 シールドケース
8 GND側電極ピン
9 HOT側電極ピン
10 導線
11 オートクレーブ型反応容器
11´11の内面
12 モーター
13 撹拌羽根
14 熱電対
15 圧力計
16 減圧バルブ
17 電熱線
18 取り付け溝
19,20 抑え板
21,22 ネジ
1 Striated body 2 Acoustic radiation surface 3 Titanium coating (GND side electrode)
DESCRIPTION OF SYMBOLS 4 Piezoelectric element film 5 Metal film 6 Connector 7 Shield case 8 GND side electrode pin 9 HOT side electrode pin 10 Conductor 11 Autoclave type reaction vessel 11'11 inner surface 12 Motor 13 Stirring blade 14 Thermocouple 15 Pressure gauge 16 Pressure reducing valve 17 Electricity Heat wire 18 Mounting groove 19, 20 Holding plate 21, 22 Screw

Claims (9)

一端を音響放射面として開放し、他端にチタン被覆を施して接地側電極を形成したフレキシブル音響導波路と、該チタン被覆層上に直接密着して設けられた圧電素子膜からなる受音子と、該圧電素子膜上に形成された金属層からなる信号側電極とで構成され、かつ前記チタン被覆、圧電素子膜及び信号側電極を有する端部を、コネクタを付設した筐体で液密的に包囲するとともに、前記接地側電極及び信号側電極をそれぞれコネクタの接地側電極ピン及び信号側電極ピンに接続した構造を有するカテーテル型超音波照射装置。   A sound receiving element comprising a flexible acoustic waveguide having one end opened as an acoustic radiation surface and the other end coated with titanium to form a ground-side electrode, and a piezoelectric element film provided in direct contact with the titanium coating layer And a signal side electrode made of a metal layer formed on the piezoelectric element film, and an end portion having the titanium coating, the piezoelectric element film and the signal side electrode is liquid-tightened by a casing provided with a connector. A catheter-type ultrasonic irradiation apparatus having a structure in which the ground-side electrode and the signal-side electrode are connected to the ground-side electrode pin and the signal-side electrode pin of the connector, respectively. チタン被覆を圧電素子形成成分含有強アルカリ水溶液と接触させ、高温、高圧下に水熱反応させることにより、チタン被覆層上に圧電素子膜を直接密着させて設けた請求項1記載のカテーテル型超音波照射装置。   The catheter-type ultra-thin catheter according to claim 1, wherein the titanium coating is brought into direct contact with the titanium coating layer by bringing the titanium coating into contact with a strong alkaline aqueous solution containing a piezoelectric element forming component and causing a hydrothermal reaction at high temperature and high pressure. Sonic irradiation device. フレキシブル音響導波路が光ファイバからなる請求項1又は2記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation apparatus according to claim 1, wherein the flexible acoustic waveguide is made of an optical fiber. 光ファイバがサファイア製光ファイバである請求項3記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation device according to claim 3, wherein the optical fiber is a sapphire optical fiber. 光ファイバがアルミナ製光ファイバである請求項3記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation device according to claim 3, wherein the optical fiber is an alumina optical fiber. 光ファイバがプラスティック製光ファイバである請求項3記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation device according to claim 3, wherein the optical fiber is a plastic optical fiber. 圧電素子膜がジルコン酸チタン酸鉛からなる請求項1ないし6のいずれかに記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation apparatus according to any one of claims 1 to 6, wherein the piezoelectric element film is made of lead zirconate titanate. 圧電素子膜がチタン酸バリウムからなる請求項1ないし6のいずれかに記載のカテーテル型超音波照射装置。   The catheter-type ultrasonic irradiation apparatus according to claim 1, wherein the piezoelectric element film is made of barium titanate. 圧電素子膜が(Bi0.5Na0.5)TiO3−BaTiO3又は(Bi0.5Na0.5)TiO3−BaTiO3−SrTiO3からなる請求項1ないし6のいずれかに記載のカテーテル型超音波照射装置。
The catheter-type ultrasonic irradiation apparatus according to claim 1, wherein the piezoelectric element film is made of (Bi 0.5 Na 0.5 ) TiO 3 —BaTiO 3 or (Bi 0.5 Na 0.5 ) TiO 3 —BaTiO 3 —SrTiO 3 .
JP2003405268A 2003-12-03 2003-12-03 Catheter-type ultrasonic irradiation device Expired - Fee Related JP4344794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405268A JP4344794B2 (en) 2003-12-03 2003-12-03 Catheter-type ultrasonic irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405268A JP4344794B2 (en) 2003-12-03 2003-12-03 Catheter-type ultrasonic irradiation device

Publications (2)

Publication Number Publication Date
JP2005160823A true JP2005160823A (en) 2005-06-23
JP4344794B2 JP4344794B2 (en) 2009-10-14

Family

ID=34727982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405268A Expired - Fee Related JP4344794B2 (en) 2003-12-03 2003-12-03 Catheter-type ultrasonic irradiation device

Country Status (1)

Country Link
JP (1) JP4344794B2 (en)

Also Published As

Publication number Publication date
JP4344794B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
EP1470546B1 (en) Method and apparatus for focussing ultrasonic energy
JP6363097B2 (en) Focused rotation IVUS transducer using single crystal composite material
JP6857616B2 (en) Deformable ultrasonic arrays and systems
US10039938B2 (en) System and method for variable depth ultrasound treatment
US8460193B2 (en) System and method for ultra-high frequency ultrasound treatment
KR101354603B1 (en) Ultrasound Probe and Manufacturing Method thereof
US6190323B1 (en) Direct contact scanner and related method
US20070038111A1 (en) Micromachined imaging transducer
US20130060140A1 (en) Dual-Mode Piezocomposite Ultrasonic Transducer
KR101354604B1 (en) Ultrasound Probe and Manufacturing Method thereof
JP5949599B2 (en) Composite piezoelectric material manufacturing method, ultrasonic probe manufacturing method, composite piezoelectric material, ultrasonic probe, and ultrasonic diagnostic imaging apparatus
JPH06209930A (en) Curvilinear interleave type longitudinal mode ultrasonic wave converter
JP2006314474A (en) Ultrasonic probe, catheter using the same, and its manufacturing method
WO2019031047A1 (en) Ultrasonic transducer, diagnostic ultrasonic probe, surgical instrument, sheet type ultrasonic probe, and electronic device
CN108459085A (en) Ultrasonic probe
JP6257176B2 (en) Capacitance type transducer and manufacturing method thereof
JP4344794B2 (en) Catheter-type ultrasonic irradiation device
JP3258111B2 (en) Ultrasonic transmitting / receiving element, ultrasonic probe, and ultrasonic transmitter
JP4344822B2 (en) Underwater microphone and apparatus used for manufacturing the same
JP2006303874A (en) Ultrasonic probe
Zawada et al. Head-to-head comparison of acoustic properties of lead-free and PZT based HIFU transducers operating at 12 MHz
JP4430924B2 (en) Ultrasonic sonde
JP2021087493A (en) Ultrasonic probe and ultrasonic diagnostic device
US11998389B2 (en) Focused rotational IVUS transducer using single crystal composite material
Hsiao et al. A Wireless Capsule Ultrasound Endoscopy Using Electrowetting Liquid Lens Scanning Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees