JP2005158643A - Inspection method for lithium secondary battery - Google Patents

Inspection method for lithium secondary battery Download PDF

Info

Publication number
JP2005158643A
JP2005158643A JP2003398777A JP2003398777A JP2005158643A JP 2005158643 A JP2005158643 A JP 2005158643A JP 2003398777 A JP2003398777 A JP 2003398777A JP 2003398777 A JP2003398777 A JP 2003398777A JP 2005158643 A JP2005158643 A JP 2005158643A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
battery
voltage drop
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003398777A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003398777A priority Critical patent/JP2005158643A/en
Publication of JP2005158643A publication Critical patent/JP2005158643A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method for a lithium secondary battery by which a defective battery can be surely selected in a short time. <P>SOLUTION: A lithium ion battery using lithium manganate as a positive electrode active material, amorphous carbon as a negative electrode active material, and a polyethylene film as a separator is prepared. After the lithium ion battery has been charged and discharged once, it is re-charged to an open-circuit voltage 3.9 V. After the re-charge, the lithium ion battery is left for a predetermined time in an ambient temperature of 45°C, and the voltage is measured to obtain a voltage drop. It is determined that conductive foreign materials exist in the lithium ion battery if the voltage drop per day is larger than a reference voltage drop. If there are conductive foreign materials in the lithium ion battery, an internal short circuit is made to occur within about 10 days. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリチウム二次電池の検査方法に係り、特に、正極活物質にリチウム遷移金属複酸化物を用いた正極と、負極活物質に炭素材を用いた負極とがポリオレフィン系セパレータを介して配置されたリチウム二次電池中の導電性異物の有無を検査するリチウム二次電池の検査方法に関する。   The present invention relates to an inspection method for a lithium secondary battery, and in particular, a positive electrode using a lithium transition metal double oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material are arranged via a polyolefin-based separator. The present invention relates to a method for inspecting a lithium secondary battery that inspects for the presence or absence of conductive foreign matter in the lithium secondary battery.

自動車産業界においては環境問題に対応すべく、排出ガスのない、動力源を完全に電池のみにした電気自動車、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、一部実用化の段階にきている。このような電気自動車の電源となる電池には当然高出力、高エネルギ−特性が要求され、これに応えるために大型のリチウム二次電池を用いる試みがなされている。更に、リチウム二次電池には、電気自動車の長期使用に耐えうる高い信頼性も要求される。   In the automobile industry, in order to deal with environmental problems, there are developments of electric vehicles that have no exhaust gas and that use only batteries as the power source, and hybrid (electric) vehicles that use both internal combustion engine and battery as power sources. Accelerated and partly at the stage of commercialization. A battery serving as a power source for such an electric vehicle is naturally required to have high output and high energy characteristics, and attempts to use a large lithium secondary battery have been made to meet this demand. Furthermore, the lithium secondary battery is also required to have high reliability that can withstand long-term use of an electric vehicle.

一般にリチウム二次電池では、正極活物質にリチウム遷移金属複酸化物、負極活物質にリチウムイオンを吸蔵放出可能な炭素材がそれぞれ用いられる。正負極は金属箔に活物質が必要に応じて導電材やバインダと共に塗着された薄型とされ、正負極を電気的に隔離するためにポリエチレンやポリプロピレンといったポリオレフィン系材質のフィルム状セパレータが用いられる。一般に、リチウム二次電池を高出力化するために、電極反応面積の拡大が求められ、大面積の正負極がセパレータを介して円筒状に捲回ないしは複数層に積層された電極群構造とされている。また、高容量、高出力のリチウム二次電池を得るためには、正負極活物質の塗着量を増やしたり、セパレータの厚さを薄くすることが通例である。   In general, in a lithium secondary battery, a lithium transition metal double oxide is used as a positive electrode active material, and a carbon material capable of occluding and releasing lithium ions is used as a negative electrode active material. The positive and negative electrodes are made thin by applying an active material to a metal foil together with a conductive material and a binder as necessary, and a film separator made of a polyolefin material such as polyethylene or polypropylene is used to electrically isolate the positive and negative electrodes. . In general, in order to increase the output of a lithium secondary battery, the electrode reaction area is required to be enlarged, and a large-area positive and negative electrode is wound into a cylindrical shape or laminated in multiple layers via a separator. ing. Further, in order to obtain a high capacity, high output lithium secondary battery, it is usual to increase the amount of positive and negative electrode active materials applied or to reduce the thickness of the separator.

ところが、リチウム二次電池に好適に用いられるポリオレフィン系材質のセパレータでは、樹脂材質の特性上強度的に限界がある。例えば、電池製造中に不慮の異物が正負極とセパレータとの間に混入した場合、電池の充放電に伴い正負極が膨張、収縮を繰り返すため、混入した異物が正負極とセパレータとの間の積層圧力又は捲回圧力により徐々にセパレータを突き破り、やがては対極に到達するほどの孔を開けることがある。特に、異物が金属であったり大粒径の正負極構成材であったりした場合には、異物が導電性を有するため、電池の内部短絡を招き、電池電圧が異常に低下する。   However, a polyolefin-based separator suitably used for a lithium secondary battery has a limit in strength due to the characteristics of the resin material. For example, if an unexpected foreign object is mixed between the positive and negative electrodes and the separator during battery manufacture, the positive and negative electrodes repeatedly expand and contract as the battery is charged and discharged. The separator is gradually broken by the stacking pressure or the winding pressure, and eventually a hole that reaches the counter electrode may be formed. In particular, when the foreign matter is a metal or a positive and negative electrode constituent material having a large particle size, the foreign matter has conductivity, causing an internal short circuit of the battery and abnormally lowering the battery voltage.

このような現象を回避するためには、電池製造工程をクリーン化したり、正負極の裁断工程等には脱落した正負極構成材を除去するための吸引装置を設置したりする等の異物混入対策が重要となる。これらの対策を施したとしても、電圧低下や寿命にバラツキが生ずるため、リチウム二次電池の使用中に許容範囲を越えて内部(微小)短絡を起こさないか検査することが要求される。例えば、正極に混入した金属異物を検査する方法として、金属異物を強制的に析出させることで電池の使用状況を再現して目視判定する技術が開示されている(特許文献1参照)。   In order to avoid such a phenomenon, measures to mix foreign substances, such as cleaning the battery manufacturing process and installing a suction device to remove the positive and negative electrode constituent materials in the positive and negative electrode cutting process, etc. Is important. Even if these countermeasures are taken, voltage drop and variations in life occur, so it is required to inspect whether an internal (micro) short-circuit occurs beyond the allowable range during use of the lithium secondary battery. For example, as a method for inspecting metal foreign matter mixed in a positive electrode, a technique for visually judging the state of use of a battery by forcibly depositing metal foreign matter (see Patent Document 1) is disclosed.

特開2001−345094号公報JP 2001-345094 A

しかしながら、特許文献1の技術では、内部短絡が徐々に進行するため、判定するまでに長時間を要する。また、リチウム二次電池の不良品選別検査をすると、容量や出力の低下を招くためバラツキのないリチウム二次電池を市場に供給する上での支障となる場合があるので、電池に対する検査方法にも確実性(電池の性能を低下させないこと)が必要となる。   However, in the technique of Patent Document 1, since an internal short circuit gradually proceeds, it takes a long time to make a determination. In addition, if a defective secondary lithium battery is selected and inspected, the capacity and output may be reduced, which may hinder the supply of non-uniform lithium secondary batteries to the market. However, certainty (not degrading battery performance) is required.

本発明は上記事案に鑑み、短時間で確実に不良電池を選別可能なリチウム二次電池の検査方法を提供することを課題とする。   An object of the present invention is to provide an inspection method for a lithium secondary battery that can reliably select defective batteries in a short time.

上記課題を解決するために、本発明は、正極活物質にリチウム遷移金属複酸化物を用いた正極と、負極活物質に炭素材を用いた負極とがポリオレフィン系セパレータを介して配置されたリチウム二次電池中の導電性異物の有無を検査するリチウム二次電池の検査方法であって、前記リチウム二次電池に少なくとも1回充電し、前記リチウム二次電池を45°C以上の環境温度下で所定時間放置後の電圧低下を求め、該求めた電圧低下が予め設定された電圧低下基準より大きいときに前記導電性異物が前記リチウム二次電池中に存在すると判定することを特徴とする。   In order to solve the above-described problems, the present invention provides a lithium battery in which a positive electrode using a lithium transition metal double oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material are disposed via a polyolefin separator. A method of inspecting a lithium secondary battery for inspecting the presence or absence of conductive foreign matter in a secondary battery, wherein the lithium secondary battery is charged at least once, and the lithium secondary battery is subjected to an environmental temperature of 45 ° C or higher. A voltage drop after being left for a predetermined time is obtained, and it is determined that the conductive foreign matter is present in the lithium secondary battery when the obtained voltage drop is larger than a preset voltage drop reference.

リチウム二次電池を45°C以上の環境温度下に所定時間放置することにより、正負極とセパレータとの間に導電性異物が存在していると導電性異物から導電性結晶の成長が進行する。このため、短時間で導電性異物がセパレータを貫通して内部短絡を引き起こすので、通常の電圧低下を越える電圧低下が発生する。本発明では、この原理に着目して、環境温度下で所定時間放置後の電圧低下を求め、求めた電圧低下が予め設定された電圧低下基準より大きいときに導電性異物がリチウム二次電池中に存在すると判定する。本発明によれば、45°C以上の環境温度下に置くことで、導電性異物が存在するときにはセパレータを貫通して内部短絡により所定以上の電圧低下が発生するので、導電性異物の存在を短時間かつ確実に検査することができる。   By leaving the lithium secondary battery at an environmental temperature of 45 ° C. or higher for a predetermined time, if conductive foreign matter exists between the positive and negative electrodes and the separator, the growth of conductive crystals from the conductive foreign matter proceeds. . For this reason, since a conductive foreign material penetrates the separator in a short time and causes an internal short circuit, a voltage drop exceeding a normal voltage drop occurs. In the present invention, paying attention to this principle, the voltage drop after being left for a predetermined time at the ambient temperature is obtained, and when the obtained voltage drop is larger than a preset voltage drop reference, the conductive foreign matter is contained in the lithium secondary battery. Is determined to exist. According to the present invention, when placed under an environmental temperature of 45 ° C. or more, when conductive foreign matter is present, a voltage drop of a predetermined level or more is caused by an internal short circuit through the separator. Inspection can be performed in a short time and with certainty.

この場合において、45°C以上のため電圧低下が小さくても容量の低下した電池が含まれる可能性があるので、所定時間放置後、更にリチウム二次電池の放電容量を測定し、電圧低下が予め設定された電圧低下基準より小さいときに、予め測定したリチウム二次電池の初期放電容量に対する放電容量の割合が所定値以下のときに前記リチウム二次電池が定格を満たさないと判定するようにすれば、容量不良のリチウム二次電池を排除することができる。また、リチウム二次電池を放電状態又は充電状態に対する開放電圧の特性曲線が最大変曲点以下の充電状態かつ3V以上の状態とし、環境温度を70°C以下とするようにすれば、検査に伴うリチウム二次電池のバラツキが低減するので、確実性を向上させることができる。また、負極活物質の炭素材に非晶質炭素を用いるようにしてもよい。   In this case, there is a possibility that a battery with reduced capacity may be included even if the voltage drop is small because it is 45 ° C or higher. Therefore, after leaving for a predetermined time, the discharge capacity of the lithium secondary battery is further measured to reduce the voltage drop. When the ratio of the discharge capacity with respect to the initial discharge capacity of the lithium secondary battery measured in advance is less than a predetermined value when the voltage drop standard is smaller than a preset voltage drop criterion, it is determined that the lithium secondary battery does not satisfy the rating. If so, a lithium secondary battery having a defective capacity can be eliminated. In addition, if the lithium secondary battery is in a charged state where the characteristic curve of the open-circuit voltage with respect to the discharged state or the charged state is not more than the maximum inflection point and not less than 3 V, and the environmental temperature is not more than 70 ° C., the inspection can be performed Since the variation of the accompanying lithium secondary battery is reduced, the reliability can be improved. Further, amorphous carbon may be used for the carbon material of the negative electrode active material.

本発明によれば、45°C以上の環境温度下に置くことで、導電性異物が存在するときにはセパレータを貫通して内部短絡により所定以上の電圧低下が発生するので、導電性異物の存在を短時間かつ確実に検査することができる、という効果を得ることができる。   According to the present invention, when placed under an environmental temperature of 45 ° C. or more, when conductive foreign matter is present, a voltage drop of a predetermined level or more is caused by an internal short circuit through the separator. The effect that it can test | inspect for a short time reliably can be acquired.

以下、図面を参照して、本発明に係るリチウム二次電池の検査方法の実施の形態について説明する。   Embodiments of a method for inspecting a lithium secondary battery according to the present invention will be described below with reference to the drawings.

(正極板の作製)
正極活物質には、充放電によりリチウムを放出、吸蔵するリチウム遷移金属複酸化物としてのマンガン酸リチウム(LiMn)を用いた。マンガン酸リチウム粉末と、導電剤として鱗片状黒鉛(平均粒径:5μm)と、結着剤としてポリフッ化ビニリデンとを質量比85:10:5で混合し、これに分散溶媒のN−メチル−2−ピロリドンを添加、混練したスラリを厚さ20μmのアルミニウム箔(正極集電体)の両面に塗布した。このとき、極板長寸方向の一方の側縁に幅50mmの未塗布部を残した。その後乾燥、プレス、裁断して正極活物質合剤層の幅300mm、長さ6000mm、厚さ(アルミニウム箔含む)230μmの正極板を得た。乾燥後の正極活物質合剤層の塗布量は、280g/mとした。未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。隣り合うリード片は、20mm間隔、リード片の幅を10mmとし、切り欠き部の未塗布部の幅は2mmとした。
(Preparation of positive electrode plate)
As the positive electrode active material, lithium manganate (LiMn 2 O 4 ) as a lithium transition metal double oxide that releases and occludes lithium by charging and discharging was used. Lithium manganate powder, flake graphite (average particle size: 5 μm) as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a mass ratio of 85: 10: 5, and this is mixed with N-methyl-as a dispersion solvent. A slurry in which 2-pyrrolidone was added and kneaded was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the longitudinal direction of the electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate having a positive electrode active material mixture layer with a width of 300 mm, a length of 6000 mm, and a thickness (including aluminum foil) of 230 μm. The coating amount of the positive electrode active material mixture layer after drying was 280 g / m 2 . A notch was cut in the uncoated part, and the remainder of the notch was used as a lead piece. Adjacent lead pieces were 20 mm apart, the width of the lead pieces was 10 mm, and the width of the uncoated part of the notch was 2 mm.

(負極板の作製)
負極活物質の非晶質炭素90重量部に結着剤として10重量部のポリフッ化ビニリデンを添加し、これに分散溶媒のN−メチル−2−ピロリドンを添加、混練したスラリを厚さ10μmの圧延銅箔(負極集電体)の両面に塗布した。このとき、極板長寸方向の一方の側縁に幅50mmの未塗布部を残した。その後乾燥、プレス、裁断して負極活物質合剤層の幅306mm、長さ6200mm、厚さ(銅箔含む)140μmの負極板を得た。乾燥後の負極活物質合剤層の塗布量は、66g/mとした。未塗布部に正極板と同様に切り欠きを入れ、切り欠き残部をリード片とした。隣り合うリード片は、20mm間隔、リード片の幅を10mmとし、切り欠き部の未塗布部の幅は2mmとした。
(Preparation of negative electrode plate)
10 parts by weight of polyvinylidene fluoride as a binder is added to 90 parts by weight of amorphous carbon of the negative electrode active material, and N-methyl-2-pyrrolidone as a dispersion solvent is added thereto, and the kneaded slurry is 10 μm thick. It applied to both surfaces of the rolled copper foil (negative electrode collector). At this time, an uncoated portion having a width of 50 mm was left on one side edge in the longitudinal direction of the electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate having a negative electrode active material mixture layer with a width of 306 mm, a length of 6200 mm, and a thickness (including copper foil) of 140 μm. The coating amount of the negative electrode active material mixture layer after drying was 66 g / m 2 . A notch was cut in the uncoated part in the same manner as the positive electrode plate, and the remaining part of the notch was used as a lead piece. Adjacent lead pieces were 20 mm apart, the width of the lead pieces was 10 mm, and the width of the uncoated part of the notch was 2 mm.

(電池組立)
図1に示すように、作製した正極板と負極板とを、厚さ40μmのポリエチレン製セパレータと共に捲回し捲回群6を作製した。このとき正極板のリード片と負極板のリード片とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。捲回群径は61±0.5mmとした。
(Battery assembly)
As shown in FIG. 1, the produced positive electrode plate and negative electrode plate were wound together with a polyethylene separator having a thickness of 40 μm to produce a wound group 6. At this time, the lead piece of the positive electrode plate and the lead piece of the negative electrode plate were respectively positioned on the opposite end surfaces of the winding group 6. The wound group diameter was 61 ± 0.5 mm.

正極板から導出されているリード片9を変形させ、その全てを、捲回群6の軸芯11のほぼ延長線上にある極柱(正極外部端子1)周囲から一体に張り出している鍔部7周面付近に集合結束、接触させた。接触させたリード片9と鍔部7周面とを超音波溶接してリード片9を鍔部7周面に接続し固定した。負極外部端子1’と負極板から導出されているリード片9との接続操作も、正極外部端子1と正極板から導出されているリード片9との接続操作と同様に実施した。   The lead piece 9 led out from the positive electrode plate is deformed, and all of the lead piece 9 is integrally extended from the periphery of the pole column (positive electrode external terminal 1) substantially on the extension line of the axis 11 of the winding group 6. Collective bundling and contact were made near the peripheral surface. The lead piece 9 and the circumferential surface of the collar portion 7 that were brought into contact were ultrasonically welded to connect and fix the lead piece 9 to the circumferential surface of the collar portion 7. The connection operation between the negative electrode external terminal 1 ′ and the lead piece 9 led out from the negative electrode plate was performed in the same manner as the connection operation between the positive electrode external terminal 1 and the lead piece 9 led out from the positive electrode plate.

正極外部端子1及び負極外部端子1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁被覆8は捲回群6外周面全周にも及ぼした。絶縁被覆8には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部7周面から捲回群6外周面に亘って何重にも巻いて絶縁被覆8とし、捲回群6を電池容器5内に挿入した。電池容器5には、外径67mm、内径66mmの容器を用いた。   An insulating coating 8 was applied to the entire circumference of the collar 7 peripheral surface of the positive external terminal 1 and the negative external terminal 1 ′. This insulating coating 8 also exerted on the entire outer periphery of the wound group 6. For the insulating coating 8, an adhesive tape in which the base material was polyimide and an adhesive made of hexamethacrylate was applied on one side thereof was used. This adhesive tape was wound several times from the circumferential surface of the collar portion 7 to the outer circumferential surface of the wound group 6 to form an insulating coating 8, and the wound group 6 was inserted into the battery container 5. As the battery container 5, a container having an outer diameter of 67 mm and an inner diameter of 66 mm was used.

第2のセラミックワッシャ3’(アルミナ製、電池蓋4裏面と当接する部分の厚さ2mm、内径16mm、外径25mm)を、先端が正極外部端子1を構成する極柱及び先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込んだ。また、平状の第1のセラミックワッシャ3(アルミナ製、厚さ2mm、内径16mm、外径28mm)を電池蓋4に載置し、正極外部端子1、負極外部端子1’をそれぞれ第1のセラミックワッシャ3に通した。その後円盤状電池蓋4周端面を電池容器5開口部に嵌合し、双方の接触部全域をレ−ザ溶接した。このとき、正極外部端子1、負極外部端子1’は、電池蓋4の中心にある穴を貫通して電池蓋4外部に突出している。第1のセラミックワッシャ3、金属製のナット2底面よりも平滑な金属ワッシャ14を、この順に正極外部端子1、負極外部端子1’にそれぞれ嵌め込んだ。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。開裂弁10の開裂圧は1.3〜1.8MPaとした。   The second ceramic washer 3 '(made of alumina, the thickness of the portion contacting the back surface of the battery lid 4 is 2 mm, the inner diameter is 16 mm, the outer diameter is 25 mm), the tip of the pole column constituting the positive electrode external terminal 1 and the tip of the negative electrode external terminal Each was fitted to the poles constituting 1 '. Further, a flat first ceramic washer 3 (made of alumina, thickness 2 mm, inner diameter 16 mm, outer diameter 28 mm) is placed on the battery lid 4, and the positive external terminal 1 and the negative external terminal 1 ′ are respectively connected to the first ceramic washer 3. Passed through a ceramic washer 3. Thereafter, the peripheral end surface of the disk-shaped battery lid 4 was fitted into the opening of the battery container 5, and the entire contact portions were laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ protrude through the hole at the center of the battery cover 4 and protrude outside the battery cover 4. The first ceramic washer 3 and the metal washer 14 smoother than the bottom surface of the metal nut 2 were fitted into the positive external terminal 1 and the negative external terminal 1 'in this order. The battery lid 4 is provided with a cleavage valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was 1.3 to 1.8 MPa.

次いでナット2を正極外部端子1、負極外部端子1’にそれぞれ螺着し、第2のセラミックワッシャ3’、第1のセラミックワッシャ3、金属ワッシャ14を介して電池蓋4を鍔部7とナット2の間で締め付けにより固定した。このときの締め付けトルク値は6.8N・mとした。締め付け作業が終了するまで金属ワッシャ14は回転しなかった。この状態では、電池蓋4裏面と鍔部7の間に介在させたゴム(EPDM)製Oリング16の圧縮により電池容器内部の発電要素は外気から遮断されている。   Next, the nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery cover 4 is connected to the flange portion 7 and the nut via the second ceramic washer 3 ′, the first ceramic washer 3, and the metal washer 14. It was fixed by tightening between the two. The tightening torque value at this time was 6.8 N · m. The metal washer 14 did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container is shut off from the outside air by compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the flange portion 7.

電池蓋4に設けられた注液口15から非水電解液480gを電池容器5内に注液し、注液口15を封止することにより円筒型リチウムイオン電池20を完成させた。非水電解液にはエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの体積比1:1:1の混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものを用いた。 A cylindrical lithium ion battery 20 was completed by injecting 480 g of a non-aqueous electrolyte into the battery container 5 from an injection port 15 provided in the battery lid 4 and sealing the injection port 15. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1 was used.

作製したリチウムイオン電池20について、充電状態(SOC)に対する開放電圧を測定して得た特性曲線から、開放電圧3V以上の範囲で最大変曲点を示すSOCは55%であり、これを開放電圧に変換した最大開放電圧は3.9Vであった。   From the characteristic curve obtained by measuring the open-circuit voltage with respect to the state of charge (SOC) of the manufactured lithium ion battery 20, the SOC showing the maximum inflection point in the range of the open-circuit voltage of 3 V or more is 55%. The maximum open-circuit voltage converted to was 3.9V.

(検査)
作製したリチウムイオン電池20を所定の条件で充放電した後、再充電を行い、再充電したリチウムイオン電池20を45°C以上70°C以下の環境温度下に所定時間放置して電圧低下を測定する。又は、再充電したリチウムイオン電池20の開放電圧を3V以上3.9V以下として所定の環境温度下に所定時間放置して電圧低下を測定する。測定した電圧低下が1日当たりの電圧低下2.7mV(電圧低下基準)より大きいときに導電性異物がリチウムイオン電池20中に存在すると判定する。更に、電圧低下が電圧低下基準より小さい(導電性異物が存在しない)と判定したリチウムイオン電池20の放電容量を測定し、検査前に予め測定した初期放電容量を100とした場合の放電容量比を求める。放電容量比が90%より小さいときは定格容量を満たさないため不良電池と判定する。
(Inspection)
The prepared lithium ion battery 20 is charged and discharged under predetermined conditions, and then recharged. The recharged lithium ion battery 20 is left at an environmental temperature of 45 ° C. or higher and 70 ° C. or lower for a predetermined time to reduce the voltage. taking measurement. Alternatively, the open voltage of the recharged lithium ion battery 20 is set to 3 V or more and 3.9 V or less and left at a predetermined environmental temperature for a predetermined time to measure a voltage drop. When the measured voltage drop is greater than 2.7 mV (voltage drop reference) per day, it is determined that conductive foreign matter is present in the lithium ion battery 20. Further, the discharge capacity of the lithium ion battery 20 determined that the voltage drop is smaller than the voltage drop reference (no conductive foreign matter is present), and the discharge capacity ratio when the initial discharge capacity measured in advance before inspection is set to 100 is measured. Ask for. When the discharge capacity ratio is smaller than 90%, the rated capacity is not satisfied, so that it is determined as a defective battery.

次に、本実施形態に従い、リチウムイオン電池20の検査を行った実施例について説明する。なお、比較のために行った比較例の検査についても併記する。また、各実施例及び比較例では、効果を明確にさせるため、リチウムイオン電池20には、意図的に、負極板とセパレータとの間に導電性異物として直径約100〜200μmのニッケル粉末を混入させた。ニッケル粉末の混入量は、負極活物質質量対比0.1ppmとした。   Next, examples in which the lithium ion battery 20 is inspected according to the present embodiment will be described. In addition, the inspection of the comparative example performed for comparison is also described. In each example and comparative example, in order to clarify the effect, the lithium ion battery 20 is intentionally mixed with nickel powder having a diameter of about 100 to 200 μm as a conductive foreign material between the negative electrode plate and the separator. I let you. The amount of nickel powder mixed was 0.1 ppm relative to the mass of the negative electrode active material.

(実施例1−1)
下表1に示すように、実施例1−1では、5個のリチウムイオン電池20を、以下の条件で充放電して初期放電容量を測定した後、4.1Vに再充電して、45°Cの環境温度下に保持し、電圧を監視し続けた。
充電:10A、4.2V定電流定電圧、終止電流1A、25±2°C、休止1時間
放電:10A、終止電圧2.8V、25±2°C、休止1時間
(Example 1-1)
As shown in Table 1 below, in Example 1-1, five lithium ion batteries 20 were charged and discharged under the following conditions to measure initial discharge capacity, and then recharged to 4.1 V. The temperature was kept under an ambient temperature of ° C and the voltage was continuously monitored.
Charge: 10A, 4.2V constant current constant voltage, end current 1A, 25 ± 2 ° C, rest 1 hour Discharge: 10A, end voltage 2.8V, 25 ± 2 ° C, rest 1 hour

(実施例1−2〜実施例1−3)
表1に示すように、実施例1−2〜実施例1−3では、環境温度を変える以外は実施例1−1と同様にした。実施例1−2では60°Cとし、実施例1−3では70°Cとした。
(Example 1-2 to Example 1-3)
As shown in Table 1, Examples 1-2 to 1-3 were the same as Example 1-1 except that the ambient temperature was changed. In Example 1-2, the temperature was set to 60 ° C, and in Example 1-3, the temperature was set to 70 ° C.

(比較例1−1〜比較例1−2)
表1に示すように、比較例1−1〜比較例1−2では、環境温度を変える以外は実施例1−1と同様にした。比較例1−1では40°Cとし、比較例1−2では75°Cとした。
(Comparative Example 1-1 to Comparative Example 1-2)
As shown in Table 1, Comparative Example 1-1 to Comparative Example 1-2 were the same as Example 1-1 except that the environmental temperature was changed. In Comparative Example 1-1, the temperature was 40 ° C., and in Comparative Example 1-2, the temperature was 75 ° C.

(実施例2−1)
下表2に示すように、実施例2−1では、5個のリチウムイオン電池20を、上述した充放電条件で初期放電容量を測定した後、開放電圧3.95Vに再充電して、45°Cの環境温度下に保持し、電圧を監視し続けた。
(Example 2-1)
As shown in Table 2 below, in Example 2-1, after measuring the initial discharge capacity of the five lithium ion batteries 20 under the above-described charge / discharge conditions, the battery was recharged to an open circuit voltage of 3.95V. The temperature was kept under an ambient temperature of ° C and the voltage was continuously monitored.

(実施例2−2〜実施例2−4)
表2に示すように、実施例2−2〜実施例2−4では、再充電したときの開放電圧を変える以外は実施例2−1と同様にした。実施例2−2では3.90Vとし、実施例2−3では3.50Vとし、実施例2−4では3.00Vとした。
(Example 2-2 to Example 2-4)
As shown in Table 2, Example 2-2 to Example 2-4 were the same as Example 2-1 except that the open circuit voltage when recharging was changed. In Example 2-2, it was 3.90 V, in Example 2-3, it was 3.50 V, and in Example 2-4, it was 3.00 V.

(比較例2)
表2に示すように、比較例2では、再充電したときの開放電圧を2.95Vとする以外は実施例2−1と同様にした。
(Comparative Example 2)
As shown in Table 2, Comparative Example 2 was the same as Example 2-1 except that the open circuit voltage when recharging was 2.95V.

(検査1)
実施例1−1〜実施例1−3及び比較例1−1〜比較例1−2の各環境温度下に保持した各5個の電池全てに電圧の異常な低下(内部短絡)が認められるまでの日数を調べた。その後、上述した充放電条件で放電容量を調べて放電容量比を求めた。内部短絡までの日数及び放電容量比の試験結果を下表3に示す。
(Inspection 1)
An abnormal drop in voltage (internal short circuit) is observed in each of the five batteries held at each environmental temperature of Example 1-1 to Example 1-3 and Comparative Example 1-1 to Comparative Example 1-2. The number of days until was examined. Thereafter, the discharge capacity ratio was determined by examining the discharge capacity under the charge / discharge conditions described above. Table 3 shows the test results of the days until the internal short circuit and the discharge capacity ratio.

表3に示すように、環境温度を40°Cとした比較例1−1の電池では内部短絡を検出するまでに26日と長期間を要しており、逆に、70°Cを超えて75°Cとした比較例1−2の電池では、内部短絡検出までの時間は短いが、放電容量比が低下し定格容量を満たさなかった。これに対して、環境温度を45°C〜70°Cとした実施例1−1〜実施例1−3の各電池では、11日以内に内部短絡を検出することができ、放電容量比も92〜97%の高い数値を示し定格容量を満たした。中でも、環境温度60〜70°Cとした実施例1−2〜実施例1−3の電池では、4日以内に検出することができた。従って、導電性異物混入による内部短絡の検査には環境温度を45°C以上とすることが好ましく、60°C以上70°C以下とすることがより好ましいことが判明した。   As shown in Table 3, the battery of Comparative Example 1-1 in which the ambient temperature was 40 ° C required a long period of 26 days to detect an internal short circuit, and on the contrary, exceeded 70 ° C. In the battery of Comparative Example 1-2 at 75 ° C., the time until the detection of the internal short circuit was short, but the discharge capacity ratio was reduced and the rated capacity was not satisfied. On the other hand, in each battery of Example 1-1 to Example 1-3 in which the environmental temperature is 45 ° C. to 70 ° C., an internal short circuit can be detected within 11 days, and the discharge capacity ratio is also A high value of 92-97% was shown and the rated capacity was satisfied. In particular, in the batteries of Example 1-2 to Example 1-3 in which the ambient temperature was 60 to 70 ° C., detection was possible within 4 days. Therefore, it has been found that the environmental temperature is preferably 45 ° C. or higher, and more preferably 60 ° C. or higher and 70 ° C. or lower, for inspection of internal short circuit due to contamination with conductive foreign matter.

(検査2)
実施例2−1〜実施例2−4及び比較例2の各々5個の電池全てに内部短絡による電圧低下が認められるまでの日数を調べた結果を下表4に示す。
(Inspection 2)
Table 4 below shows the results obtained by examining the number of days until a voltage drop due to an internal short circuit is observed in all five batteries of Example 2-1 to Example 2-4 and Comparative Example 2.

表4に示すように、開放電圧3.00Vを下回る2.95Vで保持した比較例2の電池では内部短絡を検出することが不可能であった。これに対して、開放電圧3.00V以上とした実施例2−1〜実施例2−4の電池では、10日以内に内部短絡を検出することができた。また、上述した最大開放電圧3.90V以下とした実施例2−2〜実施例2−4の電池では、6〜7日で内部短絡を検出することができた。従って、導電性異物混入の検査には、リチウムイオン電池は、再充電したときの開放電圧を最大開放電圧以下とすることが好ましく、開放電圧が3.00V未満では内部短絡の検出が不可能であることが判明した。   As shown in Table 4, it was impossible to detect an internal short circuit in the battery of Comparative Example 2 held at 2.95 V, which is lower than the open circuit voltage of 3.00 V. On the other hand, in the batteries of Example 2-1 to Example 2-4 having an open circuit voltage of 3.00 V or more, an internal short circuit could be detected within 10 days. Moreover, in the batteries of Example 2-2 to Example 2-4 having the maximum open circuit voltage of 3.90 V or less, an internal short circuit could be detected in 6 to 7 days. Therefore, for inspection of contamination with conductive foreign matter, it is preferable that the lithium ion battery has an open circuit voltage when it is recharged to a maximum open circuit voltage or less, and an internal short circuit cannot be detected if the open circuit voltage is less than 3.00V. It turned out to be.

検査するときの環境温度が45°Cに満たないと、リチウムイオン電池20を放置しても導電性異物から導電性結晶の成長が小さいため、負極とセパレータとの間に混入した導電性異物により内部短絡を発生するまでに長時間を要する。本実施形態では、リチウムイオン電池20を環境温度45°C以上に放置するため、導電性異物から導電性結晶の成長が進行する。このため、導電性異物が短時間でセパレータを貫通して内部短絡を発生させ電圧を低下させるので、電圧低下を検出することでリチウムイオン電池20中の導電性異物の有無を短時間で確実に判定することができる。また、環境温度を60°C以上とすることで内部短絡の進行が促進されるので、より短時間で判定することができる。一方、環境温度が70°Cを超えると、検査中にリチウムイオン電池20の劣化が進行し放電容量の低下を招く。本実施形態では、環境温度が70°C以下とされるため、検査に伴うリチウムイオン電池20の劣化が抑制されるので、放電容量比を向上させることができる。従って、検査後のリチウムイオン電池20は、定格容量を満たすので、製品として市場に供給することが可能となる。   If the environmental temperature at the time of inspection is less than 45 ° C., the growth of the conductive crystal from the conductive foreign matter is small even if the lithium ion battery 20 is left, so that the conductive foreign matter mixed between the negative electrode and the separator It takes a long time to generate an internal short circuit. In this embodiment, since the lithium ion battery 20 is left at an environmental temperature of 45 ° C. or higher, the growth of conductive crystals proceeds from the conductive foreign matter. For this reason, since the conductive foreign material penetrates the separator in a short time and generates an internal short circuit to reduce the voltage, the presence or absence of the conductive foreign material in the lithium ion battery 20 can be reliably detected in a short time by detecting the voltage drop. Can be determined. Moreover, since the progress of an internal short circuit is accelerated | stimulated by setting environmental temperature to 60 degreeC or more, it can determine in a shorter time. On the other hand, when the environmental temperature exceeds 70 ° C., the deterioration of the lithium ion battery 20 proceeds during the inspection, and the discharge capacity is reduced. In this embodiment, since environmental temperature shall be 70 degrees C or less, since deterioration of the lithium ion battery 20 accompanying a test | inspection is suppressed, discharge capacity ratio can be improved. Therefore, since the lithium ion battery 20 after the inspection satisfies the rated capacity, it can be supplied to the market as a product.

また、リチウムイオン電池20のSOCが高い状態で検査を行うと、SOCが高い領域では放電の進行(放電深度の進行)に伴う電圧降下が小さいため、導電性異物から導電性結晶の成長が内部短絡に進行したとしても、所定の電圧低下基準まで電圧が低下することを検知するのに比較的長時間がかかる。また、開放電圧3.00V以下の領域では、放電の進行(放電深度の進行)に伴う電圧降下が大きくなることから、内部短絡による電圧低下と自己放電による電圧降下との区別が難しくなると共に、開放電圧3V以下では放電容量の測定が実質的に不可能となる。本実施形態では、リチウムイオン電池20は、開放電圧の特性曲線から求めた最大変曲点の充電状態55%(最大開放電圧3.90V)以下、開放電圧3.00V以上の状態で45〜70°Cの環境温度下に放置される。このため、導電性異物が短時間で内部短絡を発生させるので、リチウムイオン電池20中の導電性異物の有無を短時間で確実に判定することができる。また、SOCが55%以下のため、検査中に過充電状態に到ることが防止されるので、電池性能の低下を抑制することができる。   Further, when the inspection is performed in a state where the SOC of the lithium ion battery 20 is high, the voltage drop accompanying the progress of discharge (the progress of the discharge depth) is small in the region where the SOC is high, so that the growth of the conductive crystal from the conductive foreign matter is internal. Even if the process proceeds to a short circuit, it takes a relatively long time to detect that the voltage has dropped to a predetermined voltage drop reference. In addition, in the region where the open circuit voltage is 3.00 V or less, the voltage drop with the progress of discharge (the progress of the discharge depth) becomes large, so that it becomes difficult to distinguish between the voltage drop due to internal short circuit and the voltage drop due to self-discharge, When the open circuit voltage is 3 V or less, the measurement of the discharge capacity is substantially impossible. In the present embodiment, the lithium ion battery 20 has a maximum inflection point obtained from the open-circuit voltage characteristic curve of 55% (maximum open-circuit voltage 3.90V) or less, and an open-circuit voltage of 3.00V or more in a state of 45-70. It is left under an ambient temperature of ° C. For this reason, since an electroconductive foreign material generates an internal short circuit in a short time, the presence or absence of the electroconductive foreign material in the lithium ion battery 20 can be determined reliably in a short time. Further, since the SOC is 55% or less, it is prevented from reaching an overcharged state during the inspection, so that it is possible to suppress a decrease in battery performance.

なお、本実施形態では、電気自動車用電源等に用いられる大形のリチウム二次電池を例示したが、本発明は、電池の大きさ、電池容量に制限されるものではなく、例えば、有底筒状容器(缶)に電池上蓋がかしめによって封口されている構造の電池であっても適用可能である。電気自動車用電源の電池は、比較的高容量、高出力な特性が要求されるため、本発明の適用により顕著な効果を発揮することが期待できる。電池の形状についても円筒型に限定されるものではなく、例えば、角形状であってもよい。また、捲回型の電極群でなくても例えば積層型の電極群構造であってもよい。   In the present embodiment, a large lithium secondary battery used for an electric vehicle power source or the like is illustrated, but the present invention is not limited to the size and battery capacity of the battery. Even a battery having a structure in which a battery upper lid is sealed by caulking in a cylindrical container (can) can be applied. Since a battery for an electric vehicle power supply is required to have a relatively high capacity and high output characteristics, it can be expected that a remarkable effect is exhibited by application of the present invention. The shape of the battery is not limited to the cylindrical shape, and may be, for example, a square shape. Further, for example, a stacked electrode group structure may be used instead of the wound electrode group.

また、本実施形態では、電圧低下基準を1日当たりの電圧低下2.7mVとし、容量不良の判定基準を放電容量比90%として判定する例を示したが、本発明はこれらに限定されるものではなく、リチウム二次電池の仕様、使用環境等により設定すればよい。 In the present embodiment, an example is shown in which the voltage drop reference is set to 2.7 mV per day and the capacity failure determination reference is determined to be 90% of the discharge capacity ratio, but the present invention is limited to these. Instead, it may be set according to the specifications of the lithium secondary battery, the usage environment, and the like.

更に、本実施形態では、セパレータの材質としてポリエチレンを例示したが、本発明はこれに限定されるものではなく、例えば、ポリプロピレン等のポリオレフィン系の材質を用いてもよい。また、複数の材質を組み合わせて用いてもよく、例えば、ポリエチレンとポリプロピレンとを積層したものでもよい。   Furthermore, in the present embodiment, polyethylene is exemplified as the material of the separator, but the present invention is not limited to this, and for example, a polyolefin material such as polypropylene may be used. Moreover, you may use combining several materials, for example, what laminated | stacked polyethylene and polypropylene may be used.

また更に、本実施形態では、正極活物質にマンガン酸リチウム、負極活物質に非晶質炭素、非水電解液にエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの体積比1:1:1の混合溶媒中へ6フッ化リン酸リチウムを1モル/リットル溶解したものを例示したが、本発明は、これらに制限されるものではなく、結着剤も通常用いられているいずれのものも使用可能である。   Furthermore, in this embodiment, lithium manganate is used as the positive electrode active material, amorphous carbon is used as the negative electrode active material, and a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1 is used as the nonaqueous electrolytic solution. Examples of lithium hexafluorophosphate dissolved therein at 1 mol / liter were exemplified, but the present invention is not limited to these, and any of binders that are usually used can be used. is there.

本実施形態以外で用いることができる正極活物質としては、リチウム遷移金属複酸化物であればよく、例えば、コバルト酸リチウムやニッケル酸リチウムを挙げることができ、また、マンガン、コバルト、ニッケルの複合酸化物や他元素をドープ又は置換した材料でも本発明の効果を妨げるものではない。また、正極活物質の結晶構造にも特に限定はなく、スピネル型結晶構造であっても層状型結晶構造であってもよい。   The positive electrode active material that can be used in other embodiments may be a lithium transition metal double oxide, such as lithium cobaltate or lithium nickelate, and a composite of manganese, cobalt, and nickel. Even a material doped or substituted with an oxide or other elements does not hinder the effects of the present invention. The crystal structure of the positive electrode active material is not particularly limited, and may be a spinel crystal structure or a layered crystal structure.

また、本実施形態以外で用いることのできるリチウムイオン電池用負極活物質としては、例えば、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Further, the negative electrode active material for lithium ion batteries that can be used in other than the present embodiment may be, for example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke, etc. There are no particular restrictions on the shape, sphere, fiber, lump, etc.

更に、非水電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液が用いられる。用いられるリチウム塩や有機溶媒は特に制限されるものではない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物が用いられる。また、本実施形態以外の非水電解液有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等又はこれら2種類以上の混合溶媒が用いられる。混合配合比についても限定されるものではない。 Further, as the non-aqueous electrolyte, a non-aqueous electrolyte obtained by using a general lithium salt as an electrolyte and dissolving it in an organic solvent is used. The lithium salt and organic solvent used are not particularly limited. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 6 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof is used. Further, as non-aqueous electrolyte organic solvents other than the present embodiment, propylene carbonate, ethylene carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3 -Dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these. The mixing ratio is not limited.

また更に、本実施形態以外で用いることのできるリチウムイオン電池用極板活物質結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、ビニルアルコール等の重合体及びこれらの混合体などが挙げられる。   Furthermore, as an electrode plate active material binder for lithium ion batteries that can be used in other embodiments, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, Examples thereof include polymers such as polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, vinyl alcohol, and mixtures thereof.

更にまた、本実施形態では、絶縁被覆8に、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いたが、本発明はこれに制限されるものではない。例えば、基材がポリプロピレンやポリエチレン等のポリオレフィンで、その片面又は両面にヘキサメタアクリレートやブチルアクリレート等のアクリル系粘着剤を塗布した粘着テープや、粘着剤を塗布しないポリオレフィンやポリイミドからなるテープ等を好適に使用することができる。   Furthermore, in this embodiment, although the base material is a polyimide and the adhesive tape which apply | coated the adhesive which consists of hexamethacrylates to the single side | surface was used for the insulation coating 8, this invention is not restrict | limited to this. . For example, the base material is a polyolefin such as polypropylene or polyethylene, and an adhesive tape in which an acrylic adhesive such as hexamethacrylate or butyl acrylate is applied on one or both sides, or a tape made of polyolefin or polyimide that does not apply an adhesive. It can be preferably used.

本発明に係るリチウム二次電池の検査方法によれば、短時間で確実に不良電池を選別可能なため、リチウム二次電池の製造、販売に寄与し、産業上利用可能である。   According to the method for inspecting a lithium secondary battery according to the present invention, a defective battery can be reliably selected in a short time, and therefore, it contributes to the manufacture and sale of a lithium secondary battery and can be used industrially.

本発明に係る実施形態の検査方法を適用した円筒型リチウムイオン電池の断面図である。It is sectional drawing of the cylindrical lithium ion battery to which the test | inspection method of embodiment which concerns on this invention is applied.

符号の説明Explanation of symbols

6 捲回群
20 円筒型リチウムイオン電池(リチウム二次電池)
6 Winding group 20 Cylindrical lithium ion battery (lithium secondary battery)

Claims (4)

正極活物質にリチウム遷移金属複酸化物を用いた正極と、負極活物質に炭素材を用いた負極とがポリオレフィン系セパレータを介して配置されたリチウム二次電池中の導電性異物の有無を検査するリチウム二次電池の検査方法であって、前記リチウム二次電池に少なくとも1回充電し、前記リチウム二次電池を45°C以上の環境温度下で所定時間放置後の電圧低下を求め、該求めた電圧低下が予め設定された電圧低下基準より大きいときに前記導電性異物が前記リチウム二次電池中に存在すると判定することを特徴とする検査方法。   Inspects the presence or absence of conductive foreign matter in a lithium secondary battery in which a positive electrode using a lithium transition metal complex oxide as a positive electrode active material and a negative electrode using a carbon material as a negative electrode active material are arranged via a polyolefin-based separator. A method for inspecting a lithium secondary battery, wherein the lithium secondary battery is charged at least once, and the voltage drop after leaving the lithium secondary battery at an environmental temperature of 45 ° C. or higher for a predetermined time is obtained, An inspection method comprising: determining that the conductive foreign matter is present in the lithium secondary battery when the obtained voltage drop is greater than a preset voltage drop reference. 前記所定時間放置後、更に前記リチウム二次電池の放電容量を測定し、前記求めた電圧低下が予め設定された電圧低下基準より小さいときに、予め測定した前記リチウム二次電池の初期放電容量に対する前記放電容量の割合が所定値以下のときに前記リチウム二次電池が定格を満たさないと判定することを特徴とする請求項1に記載の検査方法。   After leaving for the predetermined time, the discharge capacity of the lithium secondary battery is further measured, and when the obtained voltage drop is smaller than a preset voltage drop reference, the initial discharge capacity of the lithium secondary battery measured in advance is measured. The inspection method according to claim 1, wherein when the ratio of the discharge capacity is equal to or less than a predetermined value, it is determined that the lithium secondary battery does not satisfy a rating. 前記リチウム二次電池は、放電状態又は充電状態に対する開放電圧の特性曲線が最大変曲点以下の充電状態かつ3V以上の状態であり、前記環境温度が70°C以下であることを特徴とする請求項1又は請求項2に記載の検査方法。   The lithium secondary battery is characterized in that a characteristic curve of an open-circuit voltage with respect to a discharged state or a charged state is a charged state of a maximum inflection point or lower and a state of 3 V or higher, and the environmental temperature is 70 ° C. or lower. The inspection method according to claim 1 or 2. 前記炭素材が非晶質炭素であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の検査方法。   The inspection method according to any one of claims 1 to 3, wherein the carbon material is amorphous carbon.
JP2003398777A 2003-11-28 2003-11-28 Inspection method for lithium secondary battery Pending JP2005158643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398777A JP2005158643A (en) 2003-11-28 2003-11-28 Inspection method for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398777A JP2005158643A (en) 2003-11-28 2003-11-28 Inspection method for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005158643A true JP2005158643A (en) 2005-06-16

Family

ID=34723530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398777A Pending JP2005158643A (en) 2003-11-28 2003-11-28 Inspection method for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005158643A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
US20100300601A1 (en) * 2009-05-29 2010-12-02 Panasonic Ev Energy Co., Ltd. Separation method of secondary battery
WO2011111153A1 (en) 2010-03-08 2011-09-15 トヨタ自動車株式会社 Device for treatment of non-aqueous electrolyte secondary battery, and process for production of non-aqueous electrolyte secondary battery
WO2011122663A1 (en) * 2010-03-30 2011-10-06 三井金属鉱業株式会社 Positive electrode active material for lithium-ion battery and lithium-ion battery
JP2011238570A (en) * 2010-05-13 2011-11-24 Sony Corp Battery pack, electronic device, and inspection method of battery pack
JP2012221782A (en) * 2011-04-11 2012-11-12 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2012252839A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
WO2013061754A1 (en) * 2011-10-24 2013-05-02 日産自動車株式会社 Secondary battery inspection method
US9255972B2 (en) 2011-03-02 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method of testing secondary battery
KR101769182B1 (en) 2014-06-24 2017-08-30 주식회사 엘지화학 Method for detecting a secondary battery whose electrolyte is defectively impregnated
KR101812836B1 (en) * 2014-05-16 2017-12-27 주식회사 엘지화학 Apparatus for electrolyte impregnating test in rechargeable battery and method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
US8444717B2 (en) 2007-04-24 2013-05-21 Panasonic Corporation Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
US20100300601A1 (en) * 2009-05-29 2010-12-02 Panasonic Ev Energy Co., Ltd. Separation method of secondary battery
US8802260B2 (en) * 2009-05-29 2014-08-12 Panasonic Ev Energy Co., Ltd. Separation method of secondary battery
WO2011111153A1 (en) 2010-03-08 2011-09-15 トヨタ自動車株式会社 Device for treatment of non-aqueous electrolyte secondary battery, and process for production of non-aqueous electrolyte secondary battery
US10707533B2 (en) 2010-03-08 2020-07-07 Toyota Jidosha Kabushiki Kaisha Processing device of nonaqueous electrolyte secondary battery and manufacturing method thereof
GB2491535B (en) * 2010-03-30 2013-07-03 Mitsui Mining & Smelting Co Positive electrode active material for lithium-ion battery and lithium-ion battery
WO2011122663A1 (en) * 2010-03-30 2011-10-06 三井金属鉱業株式会社 Positive electrode active material for lithium-ion battery and lithium-ion battery
GB2491535A (en) * 2010-03-30 2012-12-05 Mitsui Mining & Smelting Co Positive electrode active material for lithium-ion battery and lithium-ion battery
US8728343B2 (en) 2010-03-30 2014-05-20 Mitsui Mining & Smelting Co., Ltd. Positive electrode active material for lithium-ion battery and lithium-ion battery
JP2011238570A (en) * 2010-05-13 2011-11-24 Sony Corp Battery pack, electronic device, and inspection method of battery pack
US9255972B2 (en) 2011-03-02 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method of testing secondary battery
JP2012221782A (en) * 2011-04-11 2012-11-12 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2012252839A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery
WO2013061754A1 (en) * 2011-10-24 2013-05-02 日産自動車株式会社 Secondary battery inspection method
KR101812836B1 (en) * 2014-05-16 2017-12-27 주식회사 엘지화학 Apparatus for electrolyte impregnating test in rechargeable battery and method thereof
KR101769182B1 (en) 2014-06-24 2017-08-30 주식회사 엘지화학 Method for detecting a secondary battery whose electrolyte is defectively impregnated

Similar Documents

Publication Publication Date Title
JP3541723B2 (en) Cylindrical lithium-ion battery
JP3368877B2 (en) Cylindrical lithium-ion battery
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2004006264A (en) Lithium secondary battery
KR20170003392A (en) Lithium ion secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2005158643A (en) Inspection method for lithium secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
US9261565B2 (en) Method of testing secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
WO2022163456A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery
EP1381098B1 (en) Non-aqueous electrolytic solution secondary battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP5503882B2 (en) Lithium ion battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2003243037A (en) Lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP3783503B2 (en) Lithium secondary battery
JP5254910B2 (en) Lithium ion secondary battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2001185154A (en) Lithium secondary battery
JP2004319308A (en) Lithium secondary battery