JP2005158459A - Electrodeless discharge lamp lighting device and electrodeless discharge lamp device - Google Patents

Electrodeless discharge lamp lighting device and electrodeless discharge lamp device Download PDF

Info

Publication number
JP2005158459A
JP2005158459A JP2003394660A JP2003394660A JP2005158459A JP 2005158459 A JP2005158459 A JP 2005158459A JP 2003394660 A JP2003394660 A JP 2003394660A JP 2003394660 A JP2003394660 A JP 2003394660A JP 2005158459 A JP2005158459 A JP 2005158459A
Authority
JP
Japan
Prior art keywords
circuit
frequency
power supply
discharge lamp
electrodeless discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003394660A
Other languages
Japanese (ja)
Other versions
JP4206914B2 (en
Inventor
Shingo Masumoto
進吾 増本
Hiroshi Kido
大志 城戸
Shinji Makimura
紳司 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003394660A priority Critical patent/JP4206914B2/en
Publication of JP2005158459A publication Critical patent/JP2005158459A/en
Application granted granted Critical
Publication of JP4206914B2 publication Critical patent/JP4206914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce stress applied on components under abnormal conditions and prevent the occurrence of an overshoot in voltage across an induction coil. <P>SOLUTION: When an abnormality in supply of power from a high-frequency power circuit 2 to an electrodeless discharge lamp 3 has been detected, a protection circuit 4 acts to alternately repeat a protection period in which the high-frequency output to be supplied to the induction coil 30 is controlled to be of such magnitude that the electrodeless discharge lamp 3 will not light up and an operation period in which the output is controlled to be of such magnitude that the electrodeless discharge lamp 3 starts up. During a transition period for transition from the protection period to the operation period, an overshoot preventing circuit 5 controls the magnitude of the high-frequency output to be supplied to the induction coil 30 to fall between the magnitude in the protection period and the magnitude in the operation period, so as to prevent the occurrence of an overshoot in voltage across the induction coil 30 resulting from an abrupt rising of the high-frequency output to be supplied to the induction coil 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無電極放電灯点灯装置および無電極放電灯装置に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device and an electrodeless discharge lamp device.

一般に、図9に示すように、交流電源ACから電力供給され、無電極放電灯3を点灯させる無電極放電灯点灯装置が知られている。この無電極放電灯点灯装置は、交流電源ACから電力供給を受けて直流電圧を出力する直流電源回路1と、直流電源回路1を電源として動作し直流電圧を高周波出力に変換する高周波電源回路2とを備える。   In general, as shown in FIG. 9, there is known an electrodeless discharge lamp lighting device that is supplied with electric power from an AC power supply AC and lights an electrodeless discharge lamp 3. This electrodeless discharge lamp lighting device includes a DC power supply circuit 1 that receives power supply from an AC power supply AC and outputs a DC voltage, and a high-frequency power supply circuit 2 that operates using the DC power supply circuit 1 as a power source and converts the DC voltage into a high-frequency output. With.

高周波電源回路2は、MOSFETからなり直流電源回路1の出力電圧が印加されるスイッチング素子Q2およびスイッチング素子Q3の直列回路と、スイッチング素子Q2、Q3を高周波で交互にオンオフする駆動回路20とを備える。駆動回路20は、水晶振動子X1を備えた発振回路21と、2次側に各スイッチング素子Q2、Q3が夫々接続された駆動トランスT1およびMOSFETQ6を備え発振回路21の出力をC級増幅する増幅回路22とで構成される。高周波電源回路2は、スイッチング素子Q2、Q3を高周波で交互にオンオフすることによって無電極放電灯3を構成する誘導コイル30に高周波出力Vcoilを与える。   The high frequency power supply circuit 2 includes a series circuit of a switching element Q2 and a switching element Q3 that are made of MOSFETs and to which the output voltage of the DC power supply circuit 1 is applied, and a drive circuit 20 that alternately turns on and off the switching elements Q2 and Q3 at a high frequency. . The drive circuit 20 includes an oscillation circuit 21 including a crystal resonator X1, a drive transformer T1 and a MOSFET Q6 each having a switching element Q2 and Q3 connected to the secondary side, and amplification for amplifying the output of the oscillation circuit 21 in a class C manner. And circuit 22. The high frequency power supply circuit 2 gives a high frequency output Vcoil to the induction coil 30 constituting the electrodeless discharge lamp 3 by alternately turning on and off the switching elements Q2 and Q3 at a high frequency.

誘導コイル30は、放電ガスが封入されたバルブ31に近接して配置される形でバルブ31とともに無電極放電灯3を構成し、高周波電源回路2の出力を受けて数十kHzから数百MHzの高周波電流が流れることによって、バルブ31内の放電ガスに対して高周波電磁界を作用させて無電極放電灯3を点灯させる。放電ガスには、一般に、金属蒸気と不活性ガスとの混合気体が用いられる。   The induction coil 30 constitutes the electrodeless discharge lamp 3 together with the bulb 31 so as to be arranged in the vicinity of the bulb 31 filled with the discharge gas, and receives the output of the high-frequency power supply circuit 2 to several tens of kHz to several hundreds of MHz. When the high frequency current flows, the electrodeless discharge lamp 3 is turned on by applying a high frequency electromagnetic field to the discharge gas in the bulb 31. Generally, a mixed gas of a metal vapor and an inert gas is used as the discharge gas.

ところで、この無電極放電灯点灯装置は、高周波電源回路2から無電極放電灯3への電力供給に異常があるときに高周波電源回路2の出力が過大になることによって構成部品にかかるストレスを低減するために、図10に示すように、前記異常時に高周波電源回路2から誘導コイル30に与える高周波出力Vcoilを無電極放電灯3が点灯しない大きさにする保護期間Tp(図11参照)と無電極放電灯3が始動する大きさにする動作期間Tm(図11参照)とを交互に繰り返すように高周波電源回路2を制御する保護回路4を備える。ここに、高周波電源回路2から無電極放電灯3への電力供給の異常とは、無電極放電灯3の未装着や破損または無電極放電灯3の異常によるインピーダンスの変化の他に、高周波電源回路2の異常も含む。また、図9と図10とに夫々示した点A〜点Dは同符号同士が接続されている。   By the way, this electrodeless discharge lamp lighting device reduces the stress applied to the components by the output of the high frequency power supply circuit 2 being excessive when the power supply from the high frequency power supply circuit 2 to the electrodeless discharge lamp 3 is abnormal. Therefore, as shown in FIG. 10, there is a protection period Tp (see FIG. 11) in which the high-frequency output Vcoil given from the high-frequency power supply circuit 2 to the induction coil 30 at the time of abnormality is set so as not to light the electrodeless discharge lamp 3. A protection circuit 4 that controls the high-frequency power supply circuit 2 is provided so as to alternately repeat an operation period Tm (see FIG. 11) that is set to a size at which the electrode discharge lamp 3 is started. Here, the abnormality in the power supply from the high-frequency power supply circuit 2 to the electrodeless discharge lamp 3 includes the high-frequency power supply in addition to the change in impedance due to the non-attachment or breakage of the electrodeless discharge lamp 3 or the abnormality of the electrodeless discharge lamp 3. Including abnormalities in the circuit 2. In addition, the same reference numerals are connected to the points A to D shown in FIGS. 9 and 10, respectively.

保護回路4は、直流電源回路1の出力電流が流れるように接続される抵抗R16の両端間の電圧を監視する機能を有し、抵抗R16の両端間に接続される抵抗R17およびコンデンサC13の直列回路と、直流電源回路1の出力端子間に接続された電解コンデンサC14と、電解コンデンサC14の両端間に接続される抵抗R18および抵抗R19の直列回路とを備える。さらに、抵抗R18および抵抗R19の接続点の電圧を基準電圧として、抵抗R17およびコンデンサC13の接続点の電圧が基準電圧を越えると出力がHレベルになるコンパレータCP2を備える。   The protection circuit 4 has a function of monitoring the voltage across the resistor R16 connected so that the output current of the DC power supply circuit 1 flows, and the resistor R17 and the capacitor C13 connected across the resistor R16 are connected in series. A circuit, an electrolytic capacitor C14 connected between the output terminals of the DC power supply circuit 1, and a series circuit of a resistor R18 and a resistor R19 connected between both ends of the electrolytic capacitor C14. Further, a comparator CP2 having an output at an H level when the voltage at the connection point of the resistor R18 and the resistor R19 exceeds the reference voltage using the voltage at the connection point of the resistor R18 and the resistor R19 as a reference voltage is provided.

また、保護回路4は、高周波電源回路2のスイッチング素子Q3のゲートとソースとの間にダイオードD3および抵抗R16を介して接続されたMOSFETからなるスイッチング素子Q5を備える。スイッチング素子Q5は、コンパレータCP2の出力がHレベルの期間にオンになるようにコンパレータCP2の出力端子がダイオードD7を介してゲートに接続されている。   Further, the protection circuit 4 includes a switching element Q5 composed of a MOSFET connected between the gate and the source of the switching element Q3 of the high frequency power supply circuit 2 via a diode D3 and a resistor R16. In the switching element Q5, the output terminal of the comparator CP2 is connected to the gate via the diode D7 so that the output of the comparator CP2 is turned on during the H level period.

すなわち、高周波電源回路2から無電極放電灯3に供給される電力が大きくなり抵抗R16の両端間の電圧が抵抗R18、R19により設定された上記基準電圧に達すると、コンパレータCP2の出力がHレベルとなってスイッチング素子Q5をオンする。スイッチング素子Q5がオンの期間には、高周波電源回路2を構成するスイッチング素子Q3がオフに保持されるので、高周波電源回路2の動作が停止する。また、図10の保護回路4では、スイッチング素子Q5がオンの期間に増幅回路22を構成するMOSFETQ6もオフに保持するようにMOSFETQ6のゲートがダイオードD6を介してスイッチング素子Q5に接続されている。   That is, when the power supplied from the high frequency power supply circuit 2 to the electrodeless discharge lamp 3 increases and the voltage across the resistor R16 reaches the reference voltage set by the resistors R18 and R19, the output of the comparator CP2 becomes H level. The switching element Q5 is turned on. During the period when the switching element Q5 is on, the switching element Q3 constituting the high-frequency power circuit 2 is held off, so that the operation of the high-frequency power circuit 2 is stopped. In the protection circuit 4 of FIG. 10, the gate of the MOSFET Q6 is connected to the switching element Q5 via the diode D6 so that the MOSFET Q6 constituting the amplifier circuit 22 is also kept off while the switching element Q5 is on.

上述した無電極放電灯点灯装置の動作について説明する。前記異常時に高周波電源回路2の出力が大きくなると、直流電源回路1の出力電流が大きくなりスイッチング素子Q5がオンになるので高周波電源回路2の動作が停止する。高周波電源回路2の動作が停止すると抵抗R16に流れる電流が減少し、スイッチング素子Q5がオフされる。したがって、高周波電源回路2は動作を再開することになる。前記異常時にはこのスイッチング素子Q5のオンオフを繰り返すことによって、図11に示すように、保護期間Tpに高周波出力を停止し動作期間Tmに高周波出力を出力するように高周波電源回路2を間欠的に動作させる(たとえば特許文献1参照)。
特開2000−100589号公報(第3−4頁、図1−2)
The operation of the above electrodeless discharge lamp lighting device will be described. When the output of the high frequency power supply circuit 2 becomes large at the time of the abnormality, the output current of the DC power supply circuit 1 becomes large and the switching element Q5 is turned on, so that the operation of the high frequency power supply circuit 2 is stopped. When the operation of the high-frequency power supply circuit 2 is stopped, the current flowing through the resistor R16 decreases, and the switching element Q5 is turned off. Therefore, the high frequency power supply circuit 2 resumes operation. When the abnormality occurs, the switching element Q5 is repeatedly turned on and off to intermittently operate the high frequency power supply circuit 2 so that the high frequency output is stopped during the protection period Tp and the high frequency output is output during the operation period Tm as shown in FIG. (For example, refer to Patent Document 1).
Japanese Unexamined Patent Publication No. 2000-100589 (page 3-4, FIG. 1-2)

ところで、上述したような無電極放電灯点灯装置では、保護期間Tpから動作期間Tmに移行する際に消灯状態の無電極放電灯3の誘導コイル30に対して無電極放電灯3が始動する大きさの高周波出力Vcoilを与えることになる。結果的に、図11に示すように、保護期間Tpから動作期間Tmに移行する度に、誘導コイル30に与える高周波出力Vcoilを略ゼロから無電極放電灯3が始動する大きさまで急峻に立ち上げることになるので、立ち上がりの際に回路の制御が追従できずに誘導コイル30の両端間の電圧にオーバーシュートが発生し易く、構成部品にストレスがかかる可能性がある。   By the way, in the electrodeless discharge lamp lighting device as described above, the electrodeless discharge lamp 3 is started for the induction coil 30 of the electrodeless discharge lamp 3 in the extinguished state when the protection period Tp shifts to the operation period Tm. The high-frequency output Vcoil is provided. As a result, as shown in FIG. 11, the high frequency output Vcoil applied to the induction coil 30 is steeply raised from approximately zero to the magnitude at which the electrodeless discharge lamp 3 is started each time the protection period Tp shifts to the operation period Tm. As a result, the control of the circuit cannot follow at the time of start-up, and an overshoot is likely to occur in the voltage between both ends of the induction coil 30, which may cause stress on the component parts.

本発明は上記事由に鑑みて為されたものであって、高周波電源回路から無電極放電灯への電力供給に異常があるときに構成部品にかかるストレスを低減するとともに、誘導コイルの両端間の電圧にオーバーシュートが発生することを防止する無電極放電灯点灯装置および無電極放電灯装置を提供することを目的とする。   The present invention has been made in view of the above-described reason, and reduces stress applied to a component when there is an abnormality in power supply from a high-frequency power supply circuit to an electrodeless discharge lamp, and between both ends of an induction coil. An object of the present invention is to provide an electrodeless discharge lamp lighting device and an electrodeless discharge lamp device that prevent the occurrence of overshoot in the voltage.

請求項1の発明は、放電ガスを封入したバルブに誘導コイルを近接配置した無電極放電灯に対し高周波出力を誘導コイルに与える高周波電源回路と、高周波電源回路から無電極放電灯への電力供給の異常を検出したときに、誘導コイルに与える高周波出力の大きさを無電極放電灯が点灯しない大きさにする保護期間と無電極放電灯が始動可能な大きさにする動作期間とを交互に繰り返す保護回路と、保護期間から動作期間に移行する移行期間において誘導コイルに与える高周波出力の大きさを保護期間における大きさと動作期間における大きさとの間の大きさにするオーバーシュート防止回路とを備えることを特徴とする。   According to the first aspect of the present invention, there is provided a high-frequency power supply circuit that provides a high-frequency output to the induction coil with respect to an electrodeless discharge lamp in which an induction coil is disposed close to a bulb in which a discharge gas is sealed; When an abnormality is detected, the protection period in which the magnitude of the high-frequency output given to the induction coil is set so that the electrodeless discharge lamp does not light up and the operation period in which the electrodeless discharge lamp is set to a size that can be started alternately A protection circuit that repeats, and an overshoot prevention circuit that sets the magnitude of the high-frequency output applied to the induction coil during the transition period from the protection period to the operation period between the magnitude during the protection period and the magnitude during the operation period. It is characterized by that.

この構成では、高周波電源回路から無電極放電灯への電力供給に異常があるときに保護期間と動作期間とを交互に繰り返すことによって構成部品にかかるストレスを低減するとともに、保護期間から動作期間に移行する移行期間において誘導コイルに与える高周波出力の大きさを保護期間と動作期間との間の大きさにするものである。要するに、誘導コイルに与える高周波出力は移行期間において従来構成よりも緩やかに立ち上がることになるので、立ち上がりの際に誘導コイルの両端間の電圧に発生するオーバーシュートを防止でき、構成部品にストレスがかかることを防止できる。   In this configuration, when there is an abnormality in the power supply from the high frequency power supply circuit to the electrodeless discharge lamp, the stress applied to the component parts is reduced by alternately repeating the protection period and the operation period, and from the protection period to the operation period. The magnitude of the high-frequency output given to the induction coil during the transition period is set to a magnitude between the protection period and the operation period. In short, the high-frequency output given to the induction coil rises more slowly than the conventional configuration during the transition period, so that overshoot that occurs in the voltage across the induction coil during the rise can be prevented and stress is applied to the components. Can be prevented.

請求項2の発明は、請求項1の発明において、前記無電極放電灯とともに前記高周波電源回路の負荷回路を構成する共振回路を備え、前記オーバーシュート防止回路が、前記移行期間において前記高周波出力の周波数を前記保護期間よりも共振回路の共振周波数に近づけるように連続的に変化させる周波数設定回路を備えることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, a resonance circuit that forms a load circuit of the high-frequency power supply circuit together with the electrodeless discharge lamp is provided, and the overshoot prevention circuit outputs the high-frequency output during the transition period. A frequency setting circuit that continuously changes the frequency so as to be closer to the resonance frequency of the resonance circuit than the protection period is provided.

この構成によれば、オーバーシュート防止回路は誘導コイルに与える高周波出力の周波数を変化させることにより当該高周波出力の大きさを変化させるものであるから、周波数を制御するための簡単な回路構成で実現できる。   According to this configuration, since the overshoot prevention circuit changes the size of the high frequency output by changing the frequency of the high frequency output applied to the induction coil, it is realized with a simple circuit configuration for controlling the frequency. it can.

請求項3の発明は、請求項1の発明において、前記無電極放電灯とともに前記高周波電源回路の負荷回路を構成する共振回路を備え、前記オーバーシュート防止回路が、前記移行期間において前記高周波出力の周波数を前記保護期間よりも共振回路の共振周波数に近づけるように連続的に変化させる周波数設定回路を備えることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, a resonance circuit that forms a load circuit of the high-frequency power supply circuit together with the electrodeless discharge lamp is provided, and the overshoot prevention circuit is configured to output the high-frequency output during the transition period. A frequency setting circuit that continuously changes the frequency so as to be closer to the resonance frequency of the resonance circuit than the protection period is provided.

この構成によれば、オーバーシュート防止回路は高周波の周波数を不連続に切替える回路であればよいので簡単な回路構成で実現できる。   According to this configuration, the overshoot prevention circuit can be realized with a simple circuit configuration as long as it is a circuit that switches the high-frequency frequency discontinuously.

請求項4の発明は、請求項1ないし請求項3のいずれかの発明において、交流電源から電力供給され前記高周波電源回路に対して直流電圧を出力する直流電源回路を備え、前記保護回路が、直流電源回路の出力電圧を監視することによって高周波電源回路から前記無電極放電灯への電力供給の異常の有無を検出することを特徴とする。   The invention of claim 4 is the invention of any one of claims 1 to 3, comprising a DC power supply circuit that is supplied with power from an AC power supply and outputs a DC voltage to the high frequency power supply circuit, and the protection circuit comprises: By monitoring the output voltage of the DC power supply circuit, the presence or absence of an abnormality in power supply from the high frequency power supply circuit to the electrodeless discharge lamp is detected.

この構成によれば、保護回路は直流電圧の大きさを監視できるものであればよいので、簡単な比較回路で前記異常を検出することができる。   According to this configuration, since the protection circuit only needs to be able to monitor the magnitude of the DC voltage, the abnormality can be detected with a simple comparison circuit.

請求項5の発明は、放電ガスを封入したバルブに誘導コイルを近接配置した無電極放電灯と、交流電源から電力供給され直流電圧を出力する直流電源回路と、直流電源回路の出力を高周波出力に変換し当該高周波出力を誘導コイルに与えて無電極放電灯を点灯させる高周波電源回路と、高周波電源回路から無電極放電灯への電力供給の異常を検出したときに誘導コイルに与える高周波出力の大きさを無電極放電灯が点灯しない大きさにする保護期間と誘導コイルに与える高周波出力の大きさを無電極放電灯が始動する大きさにする動作期間とを交互に繰り返す保護回路と、保護期間から動作期間に移行する移行期間に誘導コイルに与える高周波出力の大きさを保護期間における大きさと動作期間における大きさとの間の大きさにするオーバーシュート防止回路とを備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided an electrodeless discharge lamp in which an induction coil is disposed close to a bulb filled with a discharge gas, a DC power supply circuit that outputs power from an AC power supply and outputs a DC voltage, and outputs the DC power supply circuit at high frequency. A high-frequency power circuit that turns on the electrodeless discharge lamp by applying the high-frequency output to the induction coil and a high-frequency output that is applied to the induction coil when an abnormality in power supply from the high-frequency power circuit to the electrodeless discharge lamp is detected. A protection circuit that alternately repeats a protection period that makes the electrodeless discharge lamp not lit and an operation period that makes the magnitude of the high-frequency output given to the induction coil start the electrodeless discharge lamp, and protection The high frequency output applied to the induction coil during the transition period from the period to the operation period is oversized between the protection period and the operation period. Characterized in that it comprises a chute preventing circuit.

この構成では、高周波電源回路から無電極放電灯への電力供給に異常があるときに保護期間と動作期間とを交互に繰り返すことによって構成部品にかかるストレスを低減するとともに、保護期間から動作期間に移行する移行期間において誘導コイルに与える高周波出力の大きさを保護期間と動作期間との間の大きさにするものである。要するに、誘導コイルに与える高周波出力は移行期間において従来構成よりも緩やかに立ち上がることになるので、立ち上がりの際に誘導コイルの両端間の電圧に発生するオーバーシュートを防止でき、構成部品にストレスがかかることを防止できる。   In this configuration, when there is an abnormality in the power supply from the high frequency power supply circuit to the electrodeless discharge lamp, the stress applied to the component parts is reduced by alternately repeating the protection period and the operation period, and from the protection period to the operation period. The magnitude of the high-frequency output given to the induction coil during the transition period is set to a magnitude between the protection period and the operation period. In short, the high-frequency output given to the induction coil rises more slowly than the conventional configuration during the transition period, so that overshoot that occurs in the voltage across the induction coil during the rise can be prevented and stress is applied to the components. Can be prevented.

本発明は、高周波電源回路から無電極放電灯への電力供給に異常があるときに保護期間と動作期間とを交互に繰り返すことによって構成部品にかかるストレスを低減するとともに、保護期間から動作期間に移行する移行期間において誘導コイルに与える高周波出力の大きさを保護期間と動作期間との間の大きさにするものである。要するに、誘導コイルに与える高周波出力は移行期間において従来構成よりも緩やかに立ち上がることになるので、立ち上がりの際に誘導コイルの両端間の電圧に発生するオーバーシュートを防止でき、構成部品にストレスがかかることを防止できるという利点がある。   The present invention reduces the stress applied to the components by alternately repeating the protection period and the operation period when there is an abnormality in the power supply from the high frequency power supply circuit to the electrodeless discharge lamp, and from the protection period to the operation period. The magnitude of the high-frequency output given to the induction coil during the transition period is set to a magnitude between the protection period and the operation period. In short, the high-frequency output given to the induction coil rises more slowly than the conventional configuration during the transition period, so that overshoot that occurs in the voltage across the induction coil during the rise can be prevented and stress is applied to the components. There is an advantage that can be prevented.

以下の各実施形態において、従来構成と同様の機能および構成については従来構成と同じ符号を用いて説明を省略する。   In the following embodiments, the same functions and configurations as those of the conventional configuration are denoted by the same reference numerals as those of the conventional configuration, and description thereof is omitted.

(実施形態1)
本実施形態の無電極放電灯点灯装置は、図1に示すように、無電極放電灯3とともに負荷回路を構成する共振回路6が高周波電源回路2の出力端子間に設けられている。共振回路6を備えることによって、高周波電源回路2から誘導コイル30に与えられる高周波出力Vcoilの大きさは、図2に示すように、共振回路6の共振周波数f0よりも高い周波数領域において高周波出力の周波数が高くなるに従って小さくなる。
(Embodiment 1)
In the electrodeless discharge lamp lighting device of this embodiment, as shown in FIG. 1, a resonance circuit 6 that constitutes a load circuit together with the electrodeless discharge lamp 3 is provided between output terminals of the high-frequency power supply circuit 2. By providing the resonance circuit 6, the magnitude of the high frequency output Vcoil given from the high frequency power supply circuit 2 to the induction coil 30 is high frequency output in a frequency region higher than the resonance frequency f 0 of the resonance circuit 6 as shown in FIG. It becomes smaller as the frequency becomes higher.

無電極放電灯3の点灯状態と消灯状態とでは誘導コイル30に与えられる高周波出力Vcoilの周波数特性が異なっており、点灯状態の周波数特性を図2中に実線で示し消灯状態の周波数特性を図2中に2点鎖線で示す。消灯状態の無電極放電灯3は誘導コイル30に与えられる高周波出力Vcoilが最低始動出力Vstminを越えることによって始動可能であって、点灯状態の無電極放電灯3は誘導コイル30に与えられる高周波出力Vcoilが最低維持出力Vonminを越えることによって点灯維持される。   The frequency characteristics of the high-frequency output Vcoil applied to the induction coil 30 differ between the lighting state and the non-lighting state of the electrodeless discharge lamp 3, and the frequency characteristics in the lighting state are indicated by solid lines in FIG. 2 is indicated by a two-dot chain line. The electrodeless discharge lamp 3 in the unlit state can be started when the high frequency output Vcoil applied to the induction coil 30 exceeds the minimum starting output Vstmin, and the electrodeless discharge lamp 3 in the lit state is high frequency output applied to the induction coil 30. When Vcoil exceeds the minimum sustain output Vonmin, the lighting is maintained.

無電極放電灯3を点灯させるには、図2に示すように、高周波電源回路2が周波数f1(>f0)の高周波出力を出力することによって最低始動出力Vstminより大きい始動出力Vstを誘導コイル30に与えて無電極放電灯3を始動し、その後、高周波電源回路2が周波数f2(>f1)の高周波出力を出力することによって最低維持出力Vonminより大きい維持出力Vonを誘導コイル30に与えて無電極放電灯3を点灯維持する。高周波出力を周波数f3(>f2)にすると、誘導コイル30に与える高周波出力Vcoilは最低維持出力Vonminより小さい予備出力Voffになり、無電極放電灯3を始動することも点灯維持することもできなくなるので、誘導コイル30に予備出力V0ffを与えた状態であれば、高周波電源回路2の動作を停止させなくても構成部品にかかるストレスを低減することができる。   In order to turn on the electrodeless discharge lamp 3, as shown in FIG. 2, the high-frequency power supply circuit 2 outputs a high-frequency output having a frequency f1 (> f0), whereby a starting output Vst larger than the minimum starting output Vstmin is generated. The electrodeless discharge lamp 3 is started, and then the high frequency power supply circuit 2 outputs a high frequency output of the frequency f2 (> f1), thereby giving the induction coil 30 a sustain output Von larger than the minimum sustain output Vonmin. The electrode discharge lamp 3 is kept on. When the high-frequency output is set to the frequency f3 (> f2), the high-frequency output Vcoil applied to the induction coil 30 becomes a preliminary output Voff smaller than the minimum maintenance output Vonmin, and the electrodeless discharge lamp 3 cannot be started or kept lit. Therefore, as long as the preliminary output V0ff is applied to the induction coil 30, it is possible to reduce stress applied to the components without stopping the operation of the high-frequency power supply circuit 2.

ところで、本実施形態は、誘導コイル30の両端間の電圧にオーバーシュートが発生することを防止するために、保護期間Tpから動作期間Tmに移行する際に誘導コイル30に与える高周波出力Vcoilの立ち上がりを従来構成よりも緩やかにするオーバーシュート防止回路5を備える点が従来構成と相違する。   By the way, in this embodiment, in order to prevent the voltage across the induction coil 30 from overshooting, the rising of the high frequency output Vcoil applied to the induction coil 30 when shifting from the protection period Tp to the operation period Tm. This is different from the conventional configuration in that an overshoot prevention circuit 5 is provided that makes the above-mentioned configuration gentler than the conventional configuration.

以下に本実施形態の具体回路を図3を参照して説明する。   A specific circuit of this embodiment will be described below with reference to FIG.

直流電源回路1は、交流電源ACを整流するダイオードブリッジからなる整流器DBと、昇圧チョッパ回路とで構成される。昇圧チョッパ回路は、整流器DBの出力端子間に、インダクタL1とMOSFETからなるスイッチング素子Q1との直列回路がインダクタL1を整流器DBの正極の出力端子に接続する形で接続され、スイッチング素子Q1の両端間に、平滑用コンデンサC1とダイオードD1との直列回路がダイオードD1のアノードをスイッチング素子Q1とインダクタL1との接続点に接続する形で接続された構成を有する。さらに、昇圧チョッパ回路は、スイッチング素子Q1を高周波でオンオフさせる出力制御部10を備える。直流電源回路1は、平滑用コンデンサC1の両端間に出力電圧VDCを出力するとともに、保護回路4およびオーバーシュート防止回路5の電源となる第2電源11を備え、第2電源11の出力端子間に第2の出力電圧Vcを出力する。   The DC power supply circuit 1 includes a rectifier DB composed of a diode bridge that rectifies the AC power supply AC, and a boost chopper circuit. The step-up chopper circuit is connected between the output terminals of the rectifier DB in such a manner that a series circuit of an inductor L1 and a switching element Q1 composed of a MOSFET connects the inductor L1 to the positive output terminal of the rectifier DB. A series circuit of a smoothing capacitor C1 and a diode D1 is connected between the anode of the diode D1 and the connection point of the switching element Q1 and the inductor L1. Further, the boost chopper circuit includes an output control unit 10 that turns on and off the switching element Q1 at a high frequency. The DC power supply circuit 1 outputs an output voltage VDC between both ends of the smoothing capacitor C1 and includes a second power supply 11 serving as a power supply for the protection circuit 4 and the overshoot prevention circuit 5, and between the output terminals of the second power supply 11 To output the second output voltage Vc.

高周波電源回路2は、直流電源回路1の出力端子間に直列に接続されたMOSFETからなる一対のスイッチング素子Q2、Q3と、スイッチング素子Q2、Q3を高周波で交互にオンオフする駆動回路20とを備える。スイッチング素子Q3の両端間には、共振回路6を構成するインダクタL2とコンデンサC2との直列回路が接続され、コンデンサC2の両端間にコンデンサC3を介して無電極放電灯3を構成する誘導コイル30が接続される。   The high frequency power supply circuit 2 includes a pair of switching elements Q2 and Q3 made of MOSFETs connected in series between the output terminals of the DC power supply circuit 1 and a drive circuit 20 that alternately turns on and off the switching elements Q2 and Q3 at a high frequency. . A series circuit of an inductor L2 and a capacitor C2 constituting the resonance circuit 6 is connected between both ends of the switching element Q3, and an induction coil 30 constituting the electrodeless discharge lamp 3 is connected between both ends of the capacitor C2 via the capacitor C3. Is connected.

一方、保護回路4は、従来構成と同様に、高周波電源回路2から無電極放電灯3への電力供給に異常があるときに高周波電源回路2を間欠的に動作させることによって保護期間Tpと動作期間Tmとを交互に繰り返すものである。ただし、従来構成のように直流電源回路1の出力電流を検出する構成ではなく、前記異常時に高周波電源回路2の出力が過大になることに着目して誘導コイル30の両端間の電圧を検出する構成を採用している。   On the other hand, the protection circuit 4 operates in the protection period Tp by intermittently operating the high frequency power supply circuit 2 when there is an abnormality in the power supply from the high frequency power supply circuit 2 to the electrodeless discharge lamp 3 as in the conventional configuration. The period Tm is alternately repeated. However, the output current of the DC power supply circuit 1 is not detected as in the conventional configuration, but the voltage across the induction coil 30 is detected by paying attention to the fact that the output of the high-frequency power supply circuit 2 becomes excessive at the time of the abnormality. The configuration is adopted.

保護回路4は、誘導コイル30の両端間に接続される抵抗R1とコンデンサC4との直列回路と、コンデンサC4の両端間に接続される抵抗R2と、第2電源11の出力端子間に接続される抵抗R3とコンデンサC5との直列回路と、コンデンサC5の両端間に接続される抵抗R4とを備える。さらに、第2電源11から電力供給されるコンデンサC5の両端間の電圧を基準電圧として、コンデンサC4の両端間の電圧が基準電圧を超えると出力がHレベルになるコンパレータCP1を備える。コンパレータCP1の出力端子と第2電源11の負極の出力端子との間には抵抗R5とコンデンサC6との直列回路が接続され、コンパレータCP1の出力がHレベルの期間にコンデンサC6を充電するようにしている。また、コンパレータCP1の出力がLレベルの期間にコンデンサC6に充電された電荷を放電するように、コンデンサC6と抵抗R5との接続点は抵抗R6とダイオードD2とを介してコンパレータCP1の出力端子に接続される。   The protection circuit 4 is connected between a series circuit of a resistor R1 and a capacitor C4 connected between both ends of the induction coil 30, a resistor R2 connected between both ends of the capacitor C4, and an output terminal of the second power supply 11. And a resistor R4 connected between both ends of the capacitor C5. Further, a comparator CP1 is provided in which the voltage across the capacitor C5 supplied with power from the second power supply 11 is used as a reference voltage, and the output becomes H level when the voltage across the capacitor C4 exceeds the reference voltage. A series circuit of a resistor R5 and a capacitor C6 is connected between the output terminal of the comparator CP1 and the negative output terminal of the second power supply 11, so that the capacitor C6 is charged while the output of the comparator CP1 is at the H level. ing. Further, the connection point between the capacitor C6 and the resistor R5 is connected to the output terminal of the comparator CP1 via the resistor R6 and the diode D2 so that the charge charged in the capacitor C6 is discharged during the period when the output of the comparator CP1 is at the L level. Connected.

保護回路4は、高周波電源回路2のスイッチング素子Q3をオフにすることによって高周波電源回路2の動作を停止できるようにスイッチング素子Q3のゲートにダイオードD3を介して接続された高周波停止回路40を備え、コンデンサC6と抵抗R5との接続点が高周波停止回路40のトリガ端子EN1に接続されることによって、コンデンサC6の両端間の電圧が高周波停止回路40のしきい値電圧に達すると高周波電源回路2の動作を停止させる。   The protection circuit 4 includes a high-frequency stop circuit 40 connected to the gate of the switching element Q3 via a diode D3 so that the operation of the high-frequency power circuit 2 can be stopped by turning off the switching element Q3 of the high-frequency power circuit 2. When the voltage between both ends of the capacitor C6 reaches the threshold voltage of the high-frequency stop circuit 40 by connecting the connection point between the capacitor C6 and the resistor R5 to the trigger terminal EN1 of the high-frequency stop circuit 40, the high-frequency power supply circuit 2 Stop the operation.

ところで、オーバーシュート防止回路5は、第2電源11の出力端子間に接続される抵抗R7とコンデンサC7との直列回路と、コンデンサC7の両端間に接続される抵抗R8と、抵抗R7とコンデンサC7の接続点が非反転入力端子に接続されたオペアンプOP1とを備える。オペアンプOP1は、反転入力端子と出力端子との間に抵抗R9およびコンデンサC8が並列に接続され、反転入力端子と第2電源11の負極の出力端子との間に抵抗R10が接続されることによって、非反転入力端子の電位が高くなると出力端子の電位を高くするように構成される。   By the way, the overshoot prevention circuit 5 includes a series circuit of a resistor R7 and a capacitor C7 connected between output terminals of the second power supply 11, a resistor R8 connected between both ends of the capacitor C7, a resistor R7, and a capacitor C7. Is connected to the non-inverting input terminal of the operational amplifier OP1. The operational amplifier OP1 has a resistor R9 and a capacitor C8 connected in parallel between the inverting input terminal and the output terminal, and a resistor R10 connected between the inverting input terminal and the negative output terminal of the second power supply 11. When the potential of the non-inverting input terminal is increased, the potential of the output terminal is increased.

また、オーバーシュート防止回路5は、高周波電源回路2の出力する高周波出力の周波数を決定する周波数設定回路50を備える。周波数設定回路50の制御端子Roscは、ダイオードD4と抵抗R11との直列回路を介してオペアンプOP1の出力端子に接続されるとともに、抵抗R12を介して第2電源11の負極の出力端子に接続される。周波数設定回路50は、制御端子RoscからダイオードD4および抵抗R11を介してオペアンプOP1の出力端子に流れる電流Iswが小さくなることによって高周波出力の周波数を低くするものである。   The overshoot prevention circuit 5 also includes a frequency setting circuit 50 that determines the frequency of the high-frequency output that is output from the high-frequency power supply circuit 2. The control terminal Rosc of the frequency setting circuit 50 is connected to the output terminal of the operational amplifier OP1 through a series circuit of the diode D4 and the resistor R11, and is connected to the negative output terminal of the second power supply 11 through the resistor R12. The The frequency setting circuit 50 lowers the frequency of the high frequency output by decreasing the current Isw flowing from the control terminal Rosc through the diode D4 and the resistor R11 to the output terminal of the operational amplifier OP1.

この構成によれば、第2電源11の出力によって充電されるコンデンサC7の両端間の電圧が上昇するとオペアンプOP1の出力端子の電位が上昇し電流Iswが低減するので、高周波出力の周波数は低くなるようにスイープする。ここで、オーバーシュート防止回路5は、コンデンサC7の両端間の電圧が略ゼロのときの高周波出力の周波数を図2に示した周波数f3より高い周波数fstにするとともに、コンデンサC7が飽和状態のときの高周波出力の周波数を図2に示した周波数f1にするように各部品の定数が設定される。したがって、誘導コイル30に与えられる高周波出力Vcoilは、コンデンサC7の両端間の電圧が略ゼロから飽和状態まで上昇することによって、略ゼロから始動出力Vstまで連続的に変化する。   According to this configuration, when the voltage between both ends of the capacitor C7 charged by the output of the second power supply 11 rises, the potential of the output terminal of the operational amplifier OP1 rises and the current Isw is reduced, so the frequency of the high frequency output is lowered. Sweep like so. Here, the overshoot prevention circuit 5 sets the frequency of the high-frequency output when the voltage across the capacitor C7 is substantially zero to a frequency fst higher than the frequency f3 shown in FIG. 2, and when the capacitor C7 is saturated. The constants of the components are set so that the frequency of the high-frequency output is the frequency f1 shown in FIG. Therefore, the high frequency output Vcoil applied to the induction coil 30 continuously changes from substantially zero to the starting output Vst as the voltage across the capacitor C7 increases from substantially zero to a saturated state.

また、誘導コイル30の両端間の電圧を分圧および整流した電圧をオペアンプOP1の反転入力端子に入力すれば、オペアンプOP1は誘導コイル30の両端間の電圧が大きくなると電流Iswを大きくするので、誘導コイル30の両端間の電圧が過大になることを防止できる。   Further, if a voltage obtained by dividing and rectifying the voltage across the induction coil 30 is input to the inverting input terminal of the operational amplifier OP1, the operational amplifier OP1 increases the current Isw as the voltage across the induction coil 30 increases. It is possible to prevent the voltage across the induction coil 30 from becoming excessive.

さらに、オーバーシュート防止回路5は、コンデンサC7に充電された電荷を放電するための電荷放電回路51を備える。電荷放電回路51は、コンデンサC7の両端間に抵抗R13を介して接続されるMOSFETからなるスイッチング素子Q4と、周波数設定回路50の制御出力端子OPoutと第2電源11の負極の出力端子との間に接続されたダイオードD5と抵抗R14と抵抗R15との直列回路とを備え、抵抗R14と抵抗R15との接続点にスイッチング素子Q4のゲートが接続される構成を有し、周波数設定回路50の制御出力端子OPoutがHレベルの期間にスイッチング素子Q4をオンすることによってコンデンサC7に充電された電荷を放電する。   The overshoot prevention circuit 5 further includes a charge discharge circuit 51 for discharging the charge charged in the capacitor C7. The charge discharge circuit 51 includes a switching element Q4 composed of a MOSFET connected between both ends of a capacitor C7 via a resistor R13, a control output terminal OPout of the frequency setting circuit 50, and a negative output terminal of the second power supply 11. And a series circuit of a resistor R14 and a resistor R15 connected to each other, and the gate of the switching element Q4 is connected to the connection point between the resistor R14 and the resistor R15, and the frequency setting circuit 50 is controlled. By turning on the switching element Q4 while the output terminal OPout is at the H level, the charge charged in the capacitor C7 is discharged.

本実施形態の動作を、図4(a)に示す高周波出力の周波数および図4(b)に示す誘導コイル30に与える高周波出力Vcoilの大きさを参照して説明する。図4は、横軸で時間を表すものであって、前記異常時に保護期間Tpと動作期間Tmとの組み合わせを3回繰り返す場合を示す。ここで、周波数設定回路50は、図4(c)に示すように、制御出力端子OPoutを保護期間Tpにおいて動作期間Tmに移行する直前の所定時間Hレベルにする機能を備えている。したがって、コンデンサC7の両端間の電圧は、保護期間Tpから動作期間Tmに移行する移行期間Ttにおいて、略ゼロから飽和状態まで上昇することになる。   The operation of this embodiment will be described with reference to the frequency of the high frequency output shown in FIG. 4A and the magnitude of the high frequency output Vcoil applied to the induction coil 30 shown in FIG. FIG. 4 shows time on the horizontal axis, and shows a case where the combination of the protection period Tp and the operation period Tm is repeated three times at the time of the abnormality. Here, as shown in FIG. 4C, the frequency setting circuit 50 has a function of setting the control output terminal OPout to the H level for a predetermined time immediately before shifting to the operation period Tm in the protection period Tp. Therefore, the voltage across the capacitor C7 rises from substantially zero to a saturated state in the transition period Tt in which the protection period Tp shifts to the operation period Tm.

本実施形態では、保護期間Tpから動作期間Tmに移行する移行期間TtにコンデンサC7の両端間の電圧が上昇することによって、図4(a)に示すように、高周波出力の周波数が周波数fstから周波数f1までスイープする。したがって、図4(b)に示すように、誘導コイル30に与える高周波出力Vcoilが略ゼロから始動出力Vstまで連続的に変化することになる。また、保護期間Tpの度にコンデンサC7に充電された電荷が放電されるので、2回目以降の移行期間Ttにおいても、1回目の移行期間Ttと同様に誘導コイル30に与える高周波出力Vcoilを変化させることができる。   In the present embodiment, as the voltage across the capacitor C7 rises during the transition period Tt during which the protection period Tp shifts to the operation period Tm, the frequency of the high frequency output is changed from the frequency fst as shown in FIG. Sweep to frequency f1. Therefore, as shown in FIG. 4B, the high frequency output Vcoil applied to the induction coil 30 continuously changes from substantially zero to the starting output Vst. Further, since the charge charged in the capacitor C7 is discharged every protection period Tp, the high-frequency output Vcoil applied to the induction coil 30 is changed in the second and subsequent transition periods Tt as in the first transition period Tt. Can be made.

要するに、本実施形態では、保護期間Tpから動作期間Tmに移行する際に誘導コイル30に与える高周波出力Vcoilが急峻に立ち上がる従来構成に比べて、オーバーシュート防止回路5を備えることによって誘導コイル30に与える高周波出力Vcoilの立ち上がりが緩やかになるので、誘導コイル30の両端間の電圧にオーバーシュートが発生することを防止でき、構成部品にストレスがかかることを防止できる。   In short, in the present embodiment, the induction coil 30 is provided with the overshoot prevention circuit 5 as compared with the conventional configuration in which the high-frequency output Vcoil applied to the induction coil 30 rises sharply when shifting from the protection period Tp to the operation period Tm. Since the rising of the applied high-frequency output Vcoil becomes gradual, it is possible to prevent overshoot from occurring in the voltage across the induction coil 30 and to prevent stress on the components.

なお、最低始動出力Vstminの大きさは一定でなく、上述したように誘導コイル30に与える高周波出力Vcoilを緩やかに立ち上げる場合には、誘導コイル30に与える高周波出力Vcoilを急峻に立ち上げる場合に比べて小さくなることが確認されており、たとえば、低温や暗所等の無電極放電灯3の始動が困難な環境においても本実施形態の無電極放電灯点灯装置を用いれば無電極放電灯3が始動し易くなる。また、保護回路4は、従来構成と同様に直流電源回路1の出力電流を検出するものであってもよい。さらに、オーバーシュート防止回路5は、経過時間に比例して周波数を変化させるものや、高周波電源回路2の動作が停止している時間に応じて周波数のスイープの緩急を変化させるものであってもよい。   Note that the magnitude of the minimum starting output Vstmin is not constant. As described above, when the high frequency output Vcoil applied to the induction coil 30 is gradually increased, the high frequency output Vcoil applied to the induction coil 30 is increased sharply. It has been confirmed that the electrodeless discharge lamp 3 can be used, for example, in an environment where it is difficult to start the electrodeless discharge lamp 3 such as a low temperature or in a dark place. Is easy to start. The protection circuit 4 may detect the output current of the DC power supply circuit 1 as in the conventional configuration. Furthermore, the overshoot prevention circuit 5 may change the frequency in proportion to the elapsed time, or may change the frequency sweep depending on the time during which the operation of the high frequency power supply circuit 2 is stopped. Good.

(実施形態2)
本実施形態の無電極放電灯点灯装置は、実施形態1のように誘導コイル30に与える高周波出力Vcoilを連続的に変化させるのではなく、図5(a)に示すように、誘導コイル30に与える高周波出力Vcoilの大きさを段階的に変化させるものである。
(Embodiment 2)
The electrodeless discharge lamp lighting device of this embodiment does not continuously change the high-frequency output Vcoil applied to the induction coil 30 as in the first embodiment, but instead of changing the induction coil 30 as shown in FIG. The magnitude of the high-frequency output Vcoil to be applied is changed stepwise.

本実施形態は、図3に示した実施形態1に対してオーバーシュート防止回路5を周波数設定回路50の他は全て省略し、周波数設定回路50の制御端子Roscと第2電源11の負極の出力端子との間に並列に接続される値の異なる2個の抵抗(図示せず)と、一定時間で当該抵抗を切替えるタイマー回路(図示せず)とを設けることによって、簡単な回路構成で実現することができる。   In the present embodiment, the overshoot prevention circuit 5 is omitted from the first embodiment shown in FIG. 3 except for the frequency setting circuit 50, and the control terminal Rosc of the frequency setting circuit 50 and the negative output of the second power source 11 are omitted. Realized with a simple circuit configuration by providing two resistors (not shown) with different values connected in parallel with the terminal and a timer circuit (not shown) that switches the resistors in a certain time. can do.

本実施形態では、移行期間Ttにおける高周波出力の周波数を誘導コイル30に与える高周波出力Vcoilが予備出力Voffになるような周波数f3(図2参照)にする。その結果、図5(b)に示すように、誘導コイル30に与える高周波出力Vcoilが、保護期間Tpにおいては略ゼロであって、移行期間Ttにおいては予備出力Voffであって、動作期間Tmにおいては始動出力Vstとなるように、保護期間Tpから動作期間Tmに移行する際に段階的に変化することになる。   In the present embodiment, the frequency of the high frequency output in the transition period Tt is set to a frequency f3 (see FIG. 2) such that the high frequency output Vcoil applied to the induction coil 30 becomes the preliminary output Voff. As a result, as shown in FIG. 5B, the high-frequency output Vcoil applied to the induction coil 30 is substantially zero in the protection period Tp, is the preliminary output Voff in the transition period Tt, and is in the operation period Tm. Changes in a stepwise manner when shifting from the protection period Tp to the operation period Tm so as to be the start output Vst.

すなわち、保護期間Tpから動作期間Tmに移行する際に、誘導コイル30に与える高周波出力Vcoilが略ゼロから予備出力Voffに立ち上がり、その後始動出力Vstに立ち上がるので、誘導コイル30に与える高周波出力Vcoilが略ゼロから始動出力Vstまで急峻に立ち上がる従来構成に比べて立ち上がりが小さくなり、結果的に、従来構成に比べて誘導コイル30の両端間の電圧にオーバーシュートが発生することを防止でき、構成部品にストレスがかかることを防止できる。   That is, when shifting from the protection period Tp to the operation period Tm, the high frequency output Vcoil given to the induction coil 30 rises from substantially zero to the preliminary output Voff and then rises to the starting output Vst. Compared to the conventional configuration in which the start voltage rises steeply from substantially zero to the starting output Vst, the rise is smaller, and as a result, it is possible to prevent overshoot from occurring in the voltage across the induction coil 30 as compared with the conventional configuration. Can be prevented from being stressed.

また、本実施形態の回路構成に加えて実施形態1のような周波数をスイープさせるための回路を設けることによって、図6(a)に示すように、移行期間Ttにおいて高周波出力の周波数をあるタイマー時間Tsだけ周波数f3にした後、周波数f1までスイープさせることもできる。この場合には、誘導コイル30に与える高周波出力Vcoilは、図6(b)に示すように、移行期間Ttにおいてタイマー時間Ts経過後に予備出力Voffから始動出力Vstまで連続的に変化する。   Further, by providing a circuit for sweeping the frequency as in the first embodiment in addition to the circuit configuration of the present embodiment, as shown in FIG. 6A, the frequency of the high frequency output is set to a certain timer in the transition period Tt. The frequency f3 can be swept up to the frequency f1 after the time Ts. In this case, as shown in FIG. 6 (b), the high frequency output Vcoil applied to the induction coil 30 continuously changes from the preliminary output Voff to the start output Vst after the timer time Ts elapses in the transition period Tt.

その他にも、上述したように移行期間Ttにおいて高周波出力の周波数を1つの周波数f3に固定するのではなく、移行期間Ttにおいて高周波出力の周波数を複数の周波数間で段階的に低下させるようにしてもよい。その他の構成および機能は実施形態1と同様である。   In addition, as described above, the frequency of the high-frequency output is not fixed to one frequency f3 in the transition period Tt, but the frequency of the high-frequency output is decreased stepwise between a plurality of frequencies in the transition period Tt. Also good. Other configurations and functions are the same as those of the first embodiment.

(実施形態3)
本実施形態の無電極放電灯点灯装置は、前記異常時にも高周波電源回路2の動作を停止させないものであって、図7(a)に示すように、保護期間Tp中にも誘導コイル30に与える高周波出力Vcoilが予備出力Voffになるような周波数f3(図2参照)の高周波出力を高周波電源回路2から出力し続ける。移行期間Ttには、高周波出力の周波数を周波数f3から周波数f1にスイープさせることによって、図7(b)に示すように、誘導コイル30に与える高周波出力Vcoilを予備出力Voffから始動出力Vstまでスイープさせる。
(Embodiment 3)
The electrodeless discharge lamp lighting device of the present embodiment does not stop the operation of the high-frequency power supply circuit 2 even in the event of an abnormality. As shown in FIG. The high-frequency power supply circuit 2 continues to output a high-frequency output having a frequency f3 (see FIG. 2) such that the given high-frequency output Vcoil becomes the preliminary output Voff. In the transition period Tt, by sweeping the frequency of the high frequency output from the frequency f3 to the frequency f1, the high frequency output Vcoil applied to the induction coil 30 is swept from the preliminary output Voff to the start output Vst as shown in FIG. Let

本実施形態は、図3に示した実施形態1における高周波停止回路40を省略し、保護回路4が前記異常を検出したときに周波数設定回路50によって高周波出力の周波数を変化させる構成にすることで実現できる。   In this embodiment, the high frequency stop circuit 40 in the first embodiment shown in FIG. 3 is omitted, and the frequency setting circuit 50 changes the frequency of the high frequency output when the protection circuit 4 detects the abnormality. realizable.

本実施形態では、高周波電源回路2が動作し続けることによって、高周波電源回路2が間欠的に動作することにより生じるノイズを無くすことができる。また、動作期間Tmから保護期間Tpに移行する際にも移行期間Ttと同様に高周波出力の周波数をスイープさせることによって、動作期間Tmから保護期間Tpに移行する際において高周波出力の周波数が不連続的に変化することによるノイズの発生を低減することも可能である。その他の構成および機能は実施形態1と同様である。   In the present embodiment, since the high frequency power supply circuit 2 continues to operate, noise caused by the high frequency power supply circuit 2 operating intermittently can be eliminated. Also, when shifting from the operation period Tm to the protection period Tp, the frequency of the high-frequency output is discontinuous when shifting from the operation period Tm to the protection period Tp by sweeping the frequency of the high-frequency output similarly to the transition period Tt. It is also possible to reduce the generation of noise due to a change in the temperature. Other configurations and functions are the same as those of the first embodiment.

(実施形態4)
ところで、上述した各実施形態の無電極放電灯点灯装置を実際に使用する際には、無電極放電灯点灯装置に無電極放電灯3を備えることによって無電極放電灯装置として使用する。この場合に、前記異常によって高周波電源回路2の出力端子間が無負荷状態になると、直流電源回路1から高周波電源回路2側をみた抵抗値が大きくなることによって、直流電源回路1の出力電圧VDCが低下するものが確認されている。
(Embodiment 4)
By the way, when the electrodeless discharge lamp lighting device of each embodiment described above is actually used, the electrodeless discharge lamp lighting device is provided with the electrodeless discharge lamp 3 to be used as an electrodeless discharge lamp device. In this case, if there is no load between the output terminals of the high frequency power supply circuit 2 due to the abnormality, the resistance value viewed from the DC power supply circuit 1 toward the high frequency power supply circuit 2 side increases, thereby causing the output voltage VDC of the DC power supply circuit 1 to increase. Has been confirmed to decrease.

そこで、本実施形態の無電極放電灯点灯装置は、この直流電源回路1の出力電圧VDCが所定値を下回ることによって前記異常を検出する構成を採用したものである。   Therefore, the electrodeless discharge lamp lighting device of the present embodiment employs a configuration that detects the abnormality when the output voltage VDC of the DC power supply circuit 1 falls below a predetermined value.

本実施形態は、図8に示すように、図3に示した実施形態1に対して、誘導コイル30の両端間に接続された抵抗R1と抵抗R2との直列回路を誘導コイル30の両端間に代えて直流電源回路1の出力端子間に接続するとともに、コンデンサC6の両端間の電圧が高周波停止回路40のしきい値電圧を下回ることにより高周波停止回路40が高周波電源回路2の動作を停止させるようにコンデンサC6と抵抗R5との接続点を高周波停止回路40のトリガ端子EN1に代えて反転トリガ端子EN2に接続することによって実現できる。   As shown in FIG. 8, the present embodiment is different from the first embodiment shown in FIG. 3 in that a series circuit of resistors R1 and R2 connected between both ends of the induction coil 30 is connected between both ends of the induction coil 30. Instead of connecting between the output terminals of the DC power supply circuit 1, the high frequency stop circuit 40 stops the operation of the high frequency power supply circuit 2 when the voltage across the capacitor C6 falls below the threshold voltage of the high frequency stop circuit 40. As described above, this can be realized by connecting the connection point between the capacitor C6 and the resistor R5 to the inversion trigger terminal EN2 instead of the trigger terminal EN1 of the high-frequency stop circuit 40.

本実施形態では、前記異常時に、直流電源回路1の出力電圧VDCが低下しコンパレータCP1の出力がLレベルになることによって、コンデンサC6に充電された電荷が抵抗R6およびダイオードD2を介して放電を開始する。コンデンサC6の両端間の電圧が高周波停止回路40のしきい値電圧を下回ると、高周波停止回路40が高周波電源回路2の動作を停止させる。その後、高周波電源回路2の動作が停止することによって直流電源回路1の出力電圧VDCが上昇するので、高周波電源回路2が動作を再開する。   In the present embodiment, when the abnormality occurs, the output voltage VDC of the DC power supply circuit 1 decreases and the output of the comparator CP1 becomes L level, so that the charge charged in the capacitor C6 is discharged through the resistor R6 and the diode D2. Start. When the voltage across the capacitor C6 falls below the threshold voltage of the high frequency stop circuit 40, the high frequency stop circuit 40 stops the operation of the high frequency power supply circuit 2. Thereafter, the operation of the high frequency power supply circuit 2 is stopped, so that the output voltage VDC of the DC power supply circuit 1 rises, so that the high frequency power supply circuit 2 resumes the operation.

この構成によれば、保護回路4は直流電圧の大きさを検出するので、交流電圧の大きさを検出する場合に比べると、平滑が不要であり容易に前記異常を検出できる。   According to this configuration, since the protection circuit 4 detects the magnitude of the DC voltage, smoothing is unnecessary and the abnormality can be easily detected as compared with the case where the magnitude of the AC voltage is detected.

また、直流電源回路1には、出力電圧VDCが異常に昇圧したり交流電源ACの瞬時停電や瞬時降圧に起因して異常に降圧したときに構成部品を保護するための電源保護回路(図示せず)を備えるものがある。そこで、この電源保護回路によって検出される直流電源回路1の出力電圧VDCを保護回路4に流用すれば、電圧を検出するための回路が保護回路4には不要になるので回路構成を簡略化できる。その他の構成および機能は実施形態1と同様である。   Further, the DC power supply circuit 1 includes a power protection circuit (not shown) for protecting components when the output voltage VDC is abnormally boosted or abnormally reduced due to an instantaneous power failure or instantaneous voltage drop of the AC power supply AC. )). Therefore, if the output voltage VDC of the DC power supply circuit 1 detected by the power supply protection circuit is applied to the protection circuit 4, a circuit for detecting the voltage is not necessary for the protection circuit 4, so that the circuit configuration can be simplified. . Other configurations and functions are the same as those of the first embodiment.

なお、上述した各実施形態では、誘導コイル30に与える高周波出力Vcoilの大きさを変化させるために高周波出力の周波数を変化させるようにしているが、他にも、直流電源回路1の出力電圧VDCを変化させるようにしてもよく、また、高周波出力の周波数と直流電源回路1の出力電圧VDCとの両方を変化させるようにしてもよい。   In each of the above-described embodiments, the frequency of the high frequency output is changed in order to change the magnitude of the high frequency output Vcoil applied to the induction coil 30, but the output voltage VDC of the DC power supply circuit 1 is also changed. Further, both the frequency of the high frequency output and the output voltage VDC of the DC power supply circuit 1 may be changed.

本発明の実施形態1の構成を示すブロック図である。It is a block diagram which shows the structure of Embodiment 1 of this invention. 同上の高周波出力の周波数特性を示す動作説明図である。It is operation | movement explanatory drawing which shows the frequency characteristic of a high frequency output same as the above. 同上の具体回路を示す回路図である。It is a circuit diagram which shows the specific circuit same as the above. 同上の動作を示すタイムチャートである。It is a time chart which shows operation | movement same as the above. 本発明の実施形態2の動作を示すタイムチャートである。It is a time chart which shows operation | movement of Embodiment 2 of this invention. 同上の他の例の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the other example same as the above. 本発明の実施形態3の動作を示すタイムチャートである。It is a time chart which shows operation | movement of Embodiment 3 of this invention. 本発明の実施形態4を示す回路図である。It is a circuit diagram which shows Embodiment 4 of this invention. 従来例を示す回路図である。It is a circuit diagram which shows a prior art example. 同上の保護回路を示す回路図である。It is a circuit diagram which shows a protection circuit same as the above. 同上の動作を示すタイムチャートである。It is a time chart which shows operation | movement same as the above.

符号の説明Explanation of symbols

1 直流電源回路
2 高周波電源回路
3 無電極放電灯
4 保護回路
5 オーバーシュート防止回路
6 共振回路
30 誘導コイル
31 バルブ
50 周波数設定回路
AC 交流電源
Tm 動作期間
Tp 保護期間
Tt 移行期間
Vcoil 高周波出力
DESCRIPTION OF SYMBOLS 1 DC power supply circuit 2 High frequency power supply circuit 3 Electrode discharge lamp 4 Protection circuit 5 Overshoot prevention circuit 6 Resonance circuit 30 Induction coil 31 Valve 50 Frequency setting circuit AC AC power supply Tm Operation period Tp Protection period Tt Transition period Vcoil High frequency output

Claims (5)

放電ガスを封入したバルブに誘導コイルを近接配置した無電極放電灯に対し高周波出力を誘導コイルに与える高周波電源回路と、高周波電源回路から無電極放電灯への電力供給の異常を検出したときに、誘導コイルに与える高周波出力の大きさを無電極放電灯が点灯しない大きさにする保護期間と無電極放電灯が始動可能な大きさにする動作期間とを交互に繰り返す保護回路と、保護期間から動作期間に移行する移行期間において誘導コイルに与える高周波出力の大きさを保護期間における大きさと動作期間における大きさとの間の大きさにするオーバーシュート防止回路とを備えることを特徴とする無電極放電灯点灯装置。   A high-frequency power supply circuit that provides a high-frequency output to the induction coil for an electrodeless discharge lamp in which an induction coil is placed close to a bulb filled with a discharge gas, and an abnormality in power supply from the high-frequency power supply circuit to the electrodeless discharge lamp A protection circuit that alternately repeats a protection period in which the magnitude of the high-frequency output applied to the induction coil is such that the electrodeless discharge lamp is not lit and an operation period in which the electrodeless discharge lamp is sized to start And an overshoot prevention circuit that adjusts the magnitude of the high-frequency output applied to the induction coil during the transition period from the operation period to the operation period between the protection period and the operation period. Discharge lamp lighting device. 前記無電極放電灯とともに前記高周波電源回路の負荷回路を構成する共振回路を備え、前記オーバーシュート防止回路は、前記移行期間において前記高周波出力の周波数を前記保護期間よりも共振回路の共振周波数に近づけるように連続的に変化させる周波数設定回路を備えることを特徴とする請求項1記載の無電極放電灯点灯装置。   A resonance circuit that constitutes a load circuit of the high-frequency power supply circuit together with the electrodeless discharge lamp is provided, and the overshoot prevention circuit brings the frequency of the high-frequency output closer to the resonance frequency of the resonance circuit in the transition period than in the protection period The electrodeless discharge lamp lighting device according to claim 1, further comprising a frequency setting circuit that continuously changes. 前記無電極放電灯とともに前記高周波電源回路の負荷回路を構成する共振回路を備え、前記オーバーシュート防止回路は、前記移行期間において前記高周波出力の周波数を前記保護期間よりも共振回路の共振周波数に近づけるように段階的に変化させる周波数設定回路を備えることを特徴とする請求項1記載の無電極放電灯点灯装置。   A resonance circuit that constitutes a load circuit of the high-frequency power supply circuit together with the electrodeless discharge lamp is provided, and the overshoot prevention circuit brings the frequency of the high-frequency output closer to the resonance frequency of the resonance circuit in the transition period than in the protection period 2. The electrodeless discharge lamp lighting device according to claim 1, further comprising a frequency setting circuit that changes stepwise. 交流電源から電力供給され前記高周波電源回路に対して直流電圧を出力する直流電源回路を備え、前記保護回路は、直流電源回路の出力電圧を監視することによって高周波電源回路から前記無電極放電灯への電力供給の異常の有無を検出することを特徴とする請求項1ないし請求項3のいずれか1項に記載の無電極放電灯点灯装置。   A DC power supply circuit that is supplied with power from an AC power supply and outputs a DC voltage to the high-frequency power supply circuit is provided, and the protection circuit monitors the output voltage of the DC power supply circuit, thereby allowing the high-frequency power supply circuit to the electrodeless discharge lamp. The electrodeless discharge lamp lighting device according to any one of claims 1 to 3, wherein the presence or absence of an abnormality in power supply is detected. 放電ガスを封入したバルブに誘導コイルを近接配置した無電極放電灯と、交流電源から電力供給され直流電圧を出力する直流電源回路と、直流電源回路の出力を高周波出力に変換し当該高周波出力を誘導コイルに与えて無電極放電灯を点灯させる高周波電源回路と、高周波電源回路から無電極放電灯への電力供給の異常を検出したときに誘導コイルに与える高周波出力の大きさを無電極放電灯が点灯しない大きさにする保護期間と誘導コイルに与える高周波出力の大きさを無電極放電灯が始動する大きさにする動作期間とを交互に繰り返す保護回路と、保護期間から動作期間に移行する移行期間に誘導コイルに与える高周波出力の大きさを保護期間における大きさと動作期間における大きさとの間の大きさにするオーバーシュート防止回路とを備えることを特徴とする無電極放電灯装置。   An electrodeless discharge lamp in which an induction coil is placed close to a bulb filled with a discharge gas, a DC power supply circuit that outputs power from an AC power supply and outputs a DC voltage, and converts the output of the DC power supply circuit into a high-frequency output. A high-frequency power supply circuit that turns on the electrodeless discharge lamp by applying it to the induction coil, and the amount of high-frequency output that is given to the induction coil when an abnormality in power supply from the high-frequency power supply circuit to the electrodeless discharge lamp is detected A protection circuit that alternately repeats a protection period that does not light up and an operation period in which the magnitude of the high-frequency output applied to the induction coil is such that the electrodeless discharge lamp starts, and a transition from the protection period to the operation period An overshoot prevention circuit that sets the magnitude of the high-frequency output applied to the induction coil during the transition period between the magnitude during the protection period and the magnitude during the operation period; An electrodeless discharge lamp device, characterized in that it comprises.
JP2003394660A 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device and electrodeless discharge lamp device Expired - Fee Related JP4206914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394660A JP4206914B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device and electrodeless discharge lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394660A JP4206914B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device and electrodeless discharge lamp device

Publications (2)

Publication Number Publication Date
JP2005158459A true JP2005158459A (en) 2005-06-16
JP4206914B2 JP4206914B2 (en) 2009-01-14

Family

ID=34720662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394660A Expired - Fee Related JP4206914B2 (en) 2003-11-25 2003-11-25 Electrodeless discharge lamp lighting device and electrodeless discharge lamp device

Country Status (1)

Country Link
JP (1) JP4206914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036995A1 (en) * 2005-09-28 2007-04-05 Matsushita Electric Works, Ltd. Electronic stabilizer capable of adjusting light for electrodeless discharge lamp and illumination device
JP2010055833A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device, and lighting fixture using the same
JP2010073646A (en) * 2008-09-22 2010-04-02 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire using the same
JP2010218733A (en) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352558B2 (en) 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
US7090946B2 (en) 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7440258B2 (en) 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036995A1 (en) * 2005-09-28 2007-04-05 Matsushita Electric Works, Ltd. Electronic stabilizer capable of adjusting light for electrodeless discharge lamp and illumination device
US7772783B2 (en) 2005-09-28 2010-08-10 Panasonic Electric Works Co., Ltd. Dimmable electronic ballast for electrodeless discharge lamp and luminaire
JP4720828B2 (en) * 2005-09-28 2011-07-13 パナソニック電工株式会社 Dimmable electronic ballast and lighting fixture for electrodeless discharge lamp
JP2010055833A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device, and lighting fixture using the same
JP2010073646A (en) * 2008-09-22 2010-04-02 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire using the same
JP2010218733A (en) * 2009-03-13 2010-09-30 Panasonic Electric Works Co Ltd Electrodeless discharge lamp lighting device and luminaire

Also Published As

Publication number Publication date
JP4206914B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4972151B2 (en) Discharge lamp lighting device, lighting device, and liquid crystal display device
JP4206914B2 (en) Electrodeless discharge lamp lighting device and electrodeless discharge lamp device
JP2010129234A (en) High-pressure discharge lamp lighting device, luminaire, and illuminating system
JP2005101016A (en) Discharge lamp lighting device and on-vehicle luminaire
JP2009026559A (en) Discharge lamp lighting apparatus and on-vehicle luminaire
JP3758292B2 (en) Discharge lamp lighting device
US7626341B2 (en) Discharge lamp lighting apparatus
US20090278468A1 (en) Device and Method for Operating a High-Pressure Discharge Lamp
JP2005197181A (en) Discharge lamp lighting device, illumination device, and projector
JP3820931B2 (en) Discharge lamp lighting device
JP5139738B2 (en) Discharge lamp lighting device and in-vehicle lighting apparatus
JP4752136B2 (en) Discharge lamp lighting device
JP3440726B2 (en) High pressure discharge lamp lighting device
JP4023114B2 (en) Discharge lamp lighting device
JP4186788B2 (en) Electrodeless discharge lamp lighting device
JP4178465B2 (en) High pressure discharge lamp lighting device and lighting fixture
JP3326955B2 (en) Discharge lamp lighting device
JP4321061B2 (en) Discharge lamp lighting device
JP4088049B2 (en) Discharge lamp lighting device
JP4206901B2 (en) Electrodeless discharge lamp lighting device
JP5547907B2 (en) Discharge lamp lighting device and in-vehicle headlamp lighting device using the same
JP4370821B2 (en) High pressure discharge lamp lighting device and lighting device
JP2004165006A (en) Method and apparatus for lighting discharge lamp
JP2005005185A (en) High-pressure discharge lamp lighting device and lighting equipment
JPH0997690A (en) Discharge lamp lighting device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees