JP2005158438A - Drive circuit for light-emitting diode for lighting - Google Patents

Drive circuit for light-emitting diode for lighting Download PDF

Info

Publication number
JP2005158438A
JP2005158438A JP2003394196A JP2003394196A JP2005158438A JP 2005158438 A JP2005158438 A JP 2005158438A JP 2003394196 A JP2003394196 A JP 2003394196A JP 2003394196 A JP2003394196 A JP 2003394196A JP 2005158438 A JP2005158438 A JP 2005158438A
Authority
JP
Japan
Prior art keywords
voltage
current
light emitting
power supply
emitting diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003394196A
Other languages
Japanese (ja)
Inventor
Mineo Mizukami
嶺雄 水上
Kenji Ueno
賢治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jamco Corp
Original Assignee
Jamco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jamco Corp filed Critical Jamco Corp
Priority to JP2003394196A priority Critical patent/JP2005158438A/en
Publication of JP2005158438A publication Critical patent/JP2005158438A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive circuit of light-emitting diode for lighting in which variation of luminous intensity due to LED drive circuit for each emission color of a polychromatic light-emitting diode is reduced, and the power supply efficiency can be improved. <P>SOLUTION: The drive circuit of light-emitting diode for lighting comprises a plurality of polychromatic light-emitting diodes D11-Dnp which have an anode in common, voltage dividers S of the same number as the number of emission colors m of the polychromatic light-emitting diodes, attenuators T of the product of the number n of vertical column stages of the polychromatic diodes and the number of emission colors m, and current amplifiers A of the same number as the attenuators T. The attenuators T having a ratio 1/1, ..., 1/n in order in vertical column direction from the power supply P side are inserted in the input side of the current amplifiers A. By impressing a voltage which becomes an input voltage in substance on the input side of the current amplifiers A, each of the current amplifier A on the vertical column n stage supplies the current proportionate to a control voltage Vc to the polychromatic light-emitting diodes D11-Dnp of each stage of the vertical column n stages connected in parallel to horizontal rows p stages. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、室内照明用として使用する多色発光ダイオードを駆動する照明用発光ダイオード駆動回路に関するものである。   The present invention relates to an illumination light emitting diode driving circuit for driving a multicolor light emitting diode used for indoor illumination.

発光ダイオード(LED;Light Emitting Diode)の高輝度化や青色LEDの実用化に伴い、室内照明用としてLEDを使用したものが最近出現してきた。
LED照明は、簡単に照度(光度)と色相を変えられるといった利点を持つ。
With the increase in the brightness of light emitting diodes (LEDs) and the practical use of blue LEDs, those using LEDs for interior lighting have recently emerged.
LED illumination has the advantage that illuminance (luminance) and hue can be easily changed.

また、航空機バーカウンターで使用する照明に発光ダイオードを使い、様々な発光色でその場の雰囲気を加味し出す要望が顧客よりあり、赤,緑,青の3色または2色を自由に組み合わせ発光させることで様々な色を発光させることができる多色発光ダイオードが市販されている。   In addition, there is a request from customers to use light emitting diodes for lighting used in aircraft bar counters and to add the atmosphere of the spot with various emission colors, and light emission can be freely combined with three colors or two colors of red, green and blue Multicolor light emitting diodes that can emit various colors by being used are commercially available.

一般に、LEDを照明に使用するための発光ダイオード駆動回路は、使う環境条件に合ったものがあれば最適であるが、安定で安価なものが絶対条件となる。
LEDの数や使用する電源の種類,電圧によってこの選択肢が狭まってくる。
In general, a light-emitting diode driving circuit for using an LED for illumination is optimal if it is suitable for the environmental conditions to be used, but a stable and inexpensive circuit is an absolute condition.
This choice is limited by the number of LEDs, the type of power supply used, and the voltage.

また、アノードまたはカソードが共通端子で構成されている多色発光ダイオードを自由に設定し、全体の明るさも自由に変えられるようにした発光ダイオード駆動回路は、さらに選択肢が狭まる。   In addition, the options of the LED driving circuit in which the multicolor light emitting diodes whose anodes or cathodes are configured by common terminals can be freely set and the overall brightness can be freely changed further narrow the options.

また、多色発光ダイオードは、LED同志のバラツキが色ムラ問題になるが、発光ダイオード駆動回路自身の駆動電流差に起因する発生色の色ムラも見過ごせない問題となる。   Further, in the multicolor light emitting diode, the variation among the LEDs becomes a problem of color unevenness, but the color unevenness of the color generated due to the drive current difference of the light emitting diode driving circuit itself cannot be overlooked.

従来から存在する一般的な発光ダイオードの駆動方法としては、駆動用直流電源からの供給電源電圧VsをLEDの最大端子電圧Vledmaxで割った数n(=Vs/Vledmax)以下の直列接続で駆動するのが定石となっている。
この方法は、電源効率を最も高くすることができる。
As a conventional method for driving a light-emitting diode, it is driven by series connection of a number n (= Vs / Vledmax) or less obtained by dividing the supply power supply voltage Vs from the driving DC power supply by the maximum terminal voltage Vledmax of the LED. Is a fixed stone.
This method can maximize the power supply efficiency.

直列回路には、電流制限抵抗や定電流回路や定電流素子等をLEDと直列に挿入する場合が普通である。
LEDの数を増やす場合には、縦列段数nのLEDの並列接続数pを増やすことによってn×pのLEDを使った構成の発光ダイオード駆動回路を実現させることができる。
In the series circuit, a current limiting resistor, a constant current circuit, a constant current element, or the like is usually inserted in series with the LED.
When increasing the number of LEDs, it is possible to realize a light emitting diode driving circuit having a configuration using n × p LEDs by increasing the number p of parallel connections of LEDs having n column stages.

LEDの光度(単位はカンデラ)は、LEDに流す電流に比例するが、ある値以上で飽和する。
飽和の一歩手前が所謂推奨(または定格)電流(一例:20mA程度)である。
その時のLEDの端子電圧は、LEDの種類,発光色によって大幅に異なっている。
The luminous intensity (unit: candela) of an LED is proportional to the current passed through the LED, but saturates above a certain value.
The so-called recommended (or rated) current (one example: about 20 mA) is just before the saturation.
The terminal voltage of the LED at that time varies greatly depending on the type of LED and the emission color.

また、LEDの光度の規定としては、規定電流のもとで一定範囲に入るように仕様書に書かれている。(発光ダイオード駆動方法として定電流方式が適している理由はここからきている。)
異なる発光色数mのLEDを使用する発光ダイオード駆動回路は、n×m×pのLEDを所定の電流で駆動させる必要がある。
ここで、同一色同志のLED電流は、全て一定であるが、色毎にLED電流を変えることにより、発光色を様々な色合に変えることができる。
よって、縦列段数nと横列段数pを1個の駆動回路で共用してしまい、発光色数m個の発光ダイオード駆動回路にて実現することができる。
Further, the specification of the luminous intensity of the LED is written in the specification so as to fall within a certain range under a specified current. (The reason why the constant current method is suitable as a light emitting diode driving method comes here.)
A light emitting diode driving circuit using LEDs with different emission colors m needs to drive n × m × p LEDs with a predetermined current.
Here, the LED currents of the same color are all constant, but the emission color can be changed to various colors by changing the LED current for each color.
Therefore, the column stage number n and the row stage number p are shared by one drive circuit, and can be realized by a light emitting diode drive circuit having m emission colors.

図3乃至図5は、照明用発光ダイオード駆動回路の一例を示す構成図である。
現在、発光ダイオード駆動回路として、図3に示すような、アノードセパレートの複数の多色発光ダイオードLEDを直列・並列に接続し、その両端にDC電源PのDC電圧を印加する方法が広く採用されている。
しかしながら、図3に示す発光ダイオード駆動回路では、アノード端子が共通になっている多色発光ダイオードLEDを直列・並列接続することは不可能で、図5に示すような、複雑な回路になってしまい、対応が難しかった。
3 to 5 are configuration diagrams showing an example of a light emitting diode driving circuit for illumination.
Currently, as a light emitting diode driving circuit, a method of connecting a plurality of anode-separated multicolor light emitting diodes LED in series and in parallel and applying a DC voltage of a DC power source P to both ends thereof as shown in FIG. 3 is widely adopted. ing.
However, in the light emitting diode driving circuit shown in FIG. 3, it is impossible to connect the multicolor light emitting diodes LED having the common anode terminal in series and in parallel, resulting in a complicated circuit as shown in FIG. The response was difficult.

このため、アノード共通発光ダイオード駆動回路として、図4に示すような、複数の多色発光ダイオードLEDを全て並列接続し、その両端にDC電源PのDC電圧を印加する方法を使う例が多かった。
しかしながら、図4に示す従来の発光ダイオード駆動回路では、DC電源PのDC電圧がLEDの特性で限定されてしまい、自由に設定することはできなかった。
したがって、電圧変換器を使用する分のコストアップとスペースファクタの悪化,電源効率の悪化,重量増大,EMI(Electro Magnetic Interference:電磁放射)ノイズの増大等の問題があった。
For this reason, as an anode common light emitting diode driving circuit, there are many examples in which a plurality of multicolor light emitting diodes LED as shown in FIG. 4 are all connected in parallel and a DC voltage of a DC power source P is applied to both ends thereof. .
However, in the conventional light emitting diode driving circuit shown in FIG. 4, the DC voltage of the DC power source P is limited by the characteristics of the LED, and cannot be set freely.
Therefore, there are problems such as an increase in cost due to the use of the voltage converter, a deterioration in space factor, a deterioration in power supply efficiency, an increase in weight, and an increase in EMI (Electro Magnetic Interference) electromagnetic noise.

さらに、発光ダイオード駆動回路として、図5に示すような、アノード共通の複数の多色発光ダイオードLEDを並列接続すると共に、複数の多色発光ダイオードLEDを赤LED電流制御器,緑LED電流制御器,青LED電流制御器を挟んで直列接続し、その両端にDC電源PのDC電圧を印加する方法もあるが、この場合、複数電流制御器をいかに均一に制御するかが課題であった。   Further, as a light-emitting diode drive circuit, a plurality of multi-color light-emitting diodes LED common to the anode as shown in FIG. There is also a method of connecting in series with a blue LED current controller and applying a DC voltage of a DC power source P to both ends thereof, but in this case, the problem is how to uniformly control a plurality of current controllers.

このような、図3に示す発光ダイオード駆動回路で、LED全体の明るさを変化させるには、各色間の電流配分比を一定に保持したまま、LED駆動電流を増減させることで達成できる。   In such a light emitting diode drive circuit shown in FIG. 3, the brightness of the entire LED can be changed by increasing or decreasing the LED drive current while keeping the current distribution ratio between the colors constant.

しかしながら、図5のように多色発光ダイオードのアノードまたはカソード端子が繋がった共通端子構造の発光ダイオードにおいては、図3のような発光ダイオード駆動回路をそのまま適用すると、n段毎にアノードまたはカソード共通端子で各色の電流が合流してしまうため、発光色を様々な色合に変えることができなくなってしまう。
このため、図5のように各発光色の電流配分比を維持しつつ、かつLED全体の電流の制御を行うには、LED直列接続数n毎に電流駆動回路を持つn×mの電流駆動回路が必要になる。
However, in the light emitting diode having a common terminal structure in which the anodes or cathode terminals of the multicolor light emitting diodes are connected as shown in FIG. 5, when the light emitting diode driving circuit as shown in FIG. Since the currents of the respective colors merge at the terminals, it becomes impossible to change the emission color to various hues.
Therefore, in order to control the current of the entire LED while maintaining the current distribution ratio of each emission color as shown in FIG. 5, n × m current drive having a current drive circuit for every n series connected LEDs. A circuit is required.

図5に示す発光ダイオード駆動回路では、アノード共通端子で合流した電流をLED電流配分比に応じて再度分配させるために、n×m個のフォトカプラを用意し、m色のLED電流配分比を保持することで実現することができる。
しかしながら、この駆動回路では、同一発光色LEDを駆動するn個のフォトカプラの電流伝達率(受光側電流/発光側電流×100で、単位は%で表している)がバラツキなく揃っていないと、段毎のLED駆動電流に差が出てきてしまい、LEDの光度が揃わなくなってしまう。
これが色ムラとして発覚する欠点があった。
In the LED driving circuit shown in FIG. 5, n × m photocouplers are prepared and the m-color LED current distribution ratio is set in order to redistribute the combined current at the anode common terminal according to the LED current distribution ratio. It can be realized by holding.
However, in this drive circuit, the current transmissibility of the n photocouplers that drive the same light emitting color LEDs (light receiving side current / light emitting side current × 100, the unit is expressed in%) must be uniform. As a result, a difference occurs in the LED driving current for each stage, and the luminous intensity of the LEDs is not uniform.
There was a drawback that this was detected as color unevenness.

本発明は、上述した問題点を解消するために、アノード共通端子の多色発光ダイオードの直列・並列接続した発光ダイオード駆動回路の一案について提案するものである。   The present invention proposes a light-emitting diode driving circuit in which multi-color light-emitting diodes having common anode terminals are connected in series and in parallel in order to solve the above-described problems.

そこで、本発明の目的は、上記の事情に鑑みてなされたものであって、アノードまたはカソード共通の多色発光ダイオードを従来のアノードセパレートの多色発光ダイオードと同様に直列接続して各色毎に電流制御することが可能となり、使用電源電圧に合った直列段数を選ぶことで、電源効率の向上とコストダウンを図ることができ、電流増幅器を負帰還回路を使った電流増幅器で構成することもでき、駆動電流のバラツキは抵抗の精度に依存することになり、抵抗の精度を向上させることは比較的簡単に達成できるため、電流増幅器を使ったLED駆動回路の電流のバラツキを抑え、電流を揃えることができ、LED駆動回路による多色発光ダイオードの各発光色毎のLED光度のバラツキを低減させることが可能な照明用発光ダイオード駆動回路を提供することにある。   Accordingly, an object of the present invention has been made in view of the above circumstances, and a multicolor light emitting diode common to an anode or a cathode is connected in series in the same manner as a conventional multicolor light emitting diode of an anode separate, for each color. It is possible to control the current, and by selecting the number of series stages suitable for the power supply voltage used, it is possible to improve the power supply efficiency and reduce the cost, and the current amplifier can be configured with a current amplifier using a negative feedback circuit. The variation in the drive current depends on the accuracy of the resistance, and improving the accuracy of the resistance can be achieved relatively easily. Therefore, the variation in the current of the LED drive circuit using the current amplifier is suppressed, and the current is reduced. The light emitting diode for illumination that can reduce the variation of the LED luminous intensity for each light emission color of the multicolor light emitting diode by the LED driving circuit. And to provide a driving circuit.

本発明の照明用発光ダイオード駆動回路は、アノードまたはカソードが共通端子で構成されている複数個の多色発光ダイオードを横列p段並列接続すると共に、前記複数個の多色発光ダイオードを電流増幅器を挟んで縦列n段直列接続した照明用発光ダイオード駆動回路であって、前記複数個の多色発光ダイオードに印加する供給電源電圧Vsと前記多色発光ダイオードの異なる各発光色の明るさを制御する制御電圧Vcとの差電圧ΔV(=Vs−Vc)を前記多色発光ダイオードの直列接続数nで等分割し、前記制御電圧Vcを含むn通りの分割電圧Vd1〜分割電圧Vdnを発生させる前記多色発光ダイオードの各発光色数mと同数の複数の電圧分割器と、前記電圧分割器で発生される前記供給電源電圧Vs側に近い最も高い分割電圧Vd1(=(Vs−Vc)×(n−1)/n+Vc)を前記電源側に最も近い1番目の前記電流増幅器へと、前記電圧分割器で発生される分割電圧Vd1の次に高い分割電圧Vd2(=(Vs−Vc)×(n−2)/n+Vc)を前記電源側から数えて2番目の前記電流増幅器へと、…、前記電圧分割器で発生される前記制御電圧Vc側に近い最も低い分割電圧Vdn(=Vc)を前記電源側から最も遠い前記電流増幅器へとなるように順次供給する複数の減衰器とを備え、前記電圧分割器と前記電源側に最も近い1番目の前記電流増幅器との間に1/1となる比率の減衰器を、前記電圧分割器と前記電源側から数えて2番目の前記電流増幅器との間に1/2となる比率の減衰器を、…、前記電圧分割器と前記電源側から最も遠い前記電流増幅器との間に1/nとなる比率の減衰器をそれぞれ挿入し、前記1/1となる比率の減衰器からの実質入力電圧Vi1(=Vc/n+Vs×(n−1)/n)になる電圧を前記電源側に最も近い1番目の前記電流増幅器の入力側に、前記1/2となる比率の減衰器からの実質入力電圧Vi2(=Vc/n+Vs×(n−2)/n)になる電圧を前記電源側から数えて2番目の前記電流増幅器の入力側に、…、前記1/nとなる比率の減衰器からの実質入力電圧Vin(=Vc/n)になる電圧を前記電源側から最も遠い前記電流増幅器の入力側にそれぞれ印加することにより、縦列n段の各電流増幅器が、前記制御電圧Vcに比例した電流を横列p段並列接続された縦列n段の各段の前記多色発光ダイオードに供給するようにしたことを特徴とする構成を有するものである。   The lighting LED driving circuit of the present invention includes a plurality of multicolor light emitting diodes each having an anode or a cathode configured as a common terminal connected in parallel in a row and p stages, and the plurality of multicolor light emitting diodes are connected to a current amplifier. A light emitting diode driving circuit for illumination connected in series with n stages in series, sandwiching the supply power supply voltage Vs applied to the plurality of multicolor light emitting diodes and the brightness of the different light emitting colors of the multicolor light emitting diodes The difference voltage ΔV (= Vs−Vc) with respect to the control voltage Vc is equally divided by the number n of serial connections of the multicolor light emitting diodes, and the n divided voltages Vd1 to Vdn including the control voltage Vc are generated. A plurality of voltage dividers of the same number as the number m of light emission colors of the multicolor light emitting diode, and the highest divided voltage V close to the supply power supply voltage Vs generated by the voltage divider 1 (= (Vs−Vc) × (n−1) / n + Vc) to the first current amplifier closest to the power supply side, the next higher divided voltage after the divided voltage Vd1 generated by the voltage divider Vd2 (= (Vs−Vc) × (n−2) / n + Vc) is counted from the power source side to the second current amplifier,..., Close to the control voltage Vc side generated by the voltage divider A plurality of attenuators that sequentially supply the lowest divided voltage Vdn (= Vc) to the current amplifier farthest from the power supply side, and the first divider closest to the power supply side An attenuator with a ratio of 1/1 between the current amplifier and an attenuator with a ratio of 1/2 between the voltage divider and the second current amplifier counted from the power supply side, The current amplifier farthest from the voltage divider and the power supply side Attenuators with a ratio of 1 / n are respectively inserted between the attenuators, and a voltage that becomes a substantial input voltage Vi1 (= Vc / n + Vs × (n−1) / n) from the attenuator with a ratio of 1/1. Becomes the actual input voltage Vi2 (= Vc / n + Vs × (n−2) / n) from the attenuator having a ratio of 1/2 to the input side of the first current amplifier closest to the power supply side. When the voltage is counted from the power supply side to the input side of the second current amplifier, the voltage that becomes the actual input voltage Vin (= Vc / n) from the attenuator with a ratio of 1 / n is supplied to the power supply side. Are applied to the input side of the current amplifier farthest from each other, so that each of the n-stage current amplifiers in the column has the current in proportion to the control voltage Vc in the p-stage in the n-stage column connected in parallel in the p-stage row. It is characterized by being supplied to the color light emitting diode And it has a formation.

上記に記載の本発明によれば、アノードまたはカソードが共通端子で構成されている複数個の多色発光ダイオードを電流増幅器を挟んで縦列n段直列接続したものを横列p段並列接続して使用する照明用発光ダイオード駆動回路において、複数の電圧分割器が電源からの供給電源電圧Vsと多色発光ダイオードの異なる各発光色の明るさを制御する制御電圧Vcとの差電圧ΔV(=Vs−Vc)を多色発光ダイオードの直列接続数nで等分割し、制御電圧Vcを含むn通りの分割電圧Vd1〜分割電圧Vdnを発生させ、供給電源電圧Vs側に近い最も高い分割電圧Vd1(=(Vs−Vc)×(n−1)/n+Vc)を電源側に最も近い電流増幅器へと、分割電圧Vd1の次に高い分割電圧Vd2(=(Vs−Vc)×(n−2)/n+Vc)を電源側から数えて2番目の電流増幅器へと、…、制御電圧Vc側に近い最も低い分割電圧Vdn(=Vc)を電源側から最も遠い電流増幅器へとなるように、分割電圧Vd1〜Vdnをそれぞれの電流増幅器に順次供給し、電源側に最も近い電流増幅器の入力側に1/1となる比率の減衰器を、2番目の電流増幅器の入力側に1/2となる比率の減衰器を、…、電源側から最も遠い電流増幅器の入力側に1/nとなる比率の減衰器をそれぞれ挿入し、電源側に最も近い電流増幅器の入力側に実質入力電圧Vi1(=Vc/n+Vs×(n−1)/n)になる電圧を、2番目の電流増幅器の入力側に実質入力電圧Vi2(=Vc/n+Vs×(n−2)/n)になる電圧を、…、電源側から最も遠い電流増幅器の入力側に実質入力電圧Vin(=Vc/n)になる電圧をそれぞれ印加することにより、縦列n段の各電流増幅器が制御電圧Vcに比例した電流を横列p段並列接続された縦列n段の各段の多色発光ダイオードに供給するようにしている。
この電流増幅器は、負帰還回路を使った電流増幅器で構成することができるため、駆動電流のバラツキは、抵抗の精度に依存することになる。
抵抗の精度を向上させることは比較的簡単に達成できるため、電流増幅器を使ったLED駆動回路の電流のバラツキを抑え、電流を揃えることができる。
その結果、LED駆動回路による各発光色毎のLED光度のバラツキを低減させることができる。
According to the present invention described above, a plurality of multicolor light emitting diodes each having an anode or a cathode formed of a common terminal and connected in series in n columns in series across a current amplifier are used in parallel connection in p rows in rows. In the lighting light emitting diode driving circuit, a plurality of voltage dividers have a difference voltage ΔV (= Vs−) between a power supply voltage Vs supplied from the power source and a control voltage Vc for controlling the brightness of each light emitting color of the multicolor light emitting diode. Vc) is equally divided by the number n of multi-color light emitting diodes connected in series to generate n divided voltages Vd1 to Vdn including the control voltage Vc, and the highest divided voltage Vd1 (= (Vs−Vc) × (n−1) / n + Vc) to the current amplifier closest to the power supply side, the divided voltage Vd2 (= (Vs−Vc) × (n−2) / n + Vc) next to the divided voltage Vd1 To the second current amplifier counted from the power supply side,..., And the divided voltages Vd1 to Vdn so that the lowest divided voltage Vdn (= Vc) close to the control voltage Vc side becomes the current amplifier farthest from the power supply side. Are sequentially supplied to each current amplifier, and an attenuator having a ratio of 1/1 is input to the input side of the current amplifier closest to the power supply side, and an attenuator having a ratio of 1/2 is input to the input side of the second current amplifier. ..., an attenuator having a ratio of 1 / n is inserted into the input side of the current amplifier farthest from the power supply side, and the actual input voltage Vi1 (= Vc / n + Vs × The voltage that becomes (n-1) / n) is applied to the input side of the second current amplifier, and the voltage that becomes the actual input voltage Vi2 (= Vc / n + Vs × (n-2) / n) is applied from the power supply side. The actual input voltage Vin on the input side of the farthest current amplifier = Vc / n) is applied to each of the n-stage current amplifiers in the column, and a current proportional to the control voltage Vc is applied to the multi-color light-emitting diodes in each of the n-stage columns connected in parallel in the p-stage rows. I am trying to supply.
Since this current amplifier can be composed of a current amplifier using a negative feedback circuit, the variation in drive current depends on the accuracy of the resistance.
Since improving the accuracy of the resistance can be achieved relatively easily, it is possible to suppress variations in the current of the LED drive circuit using the current amplifier and to equalize the current.
As a result, it is possible to reduce variations in LED luminous intensity for each emission color by the LED driving circuit.

以上に述べたように、本発明によれば、アノードまたはカソード共通の多色発光ダイオードを従来のアノードセパレートの多色発光ダイオードと同様に直列接続して各色毎に電流制御することが可能となり、使用電源電圧に合った直列段数を選ぶことで、電源効率の向上とコストダウンを図ることができ、電流増幅器を負帰還回路を使った電流増幅器で構成することできるため、駆動電流のバラツキは抵抗の精度に依存することになり、抵抗の精度を向上させることは比較的簡単に達成できるため、電流増幅器を使ったLED駆動回路の電流のバラツキを抑え、電流を揃えることができ、LED駆動回路による多色発光ダイオードの各発光色毎のLED光度のバラツキを低減させることが可能な照明用発光ダイオード駆動回路を得ることができる。   As described above, according to the present invention, it is possible to control the current for each color by connecting a multicolor light emitting diode common to an anode or a cathode in series like a conventional multicolor light emitting diode of an anode separate, By selecting the number of series stages that matches the power supply voltage used, it is possible to improve power supply efficiency and reduce costs, and the current amplifier can be configured with a current amplifier using a negative feedback circuit. Because it depends on the accuracy of the resistor, improving the accuracy of the resistance can be achieved relatively easily. Therefore, the variation in the current of the LED drive circuit using the current amplifier can be suppressed, and the current can be made uniform. It is possible to obtain a light emitting diode driving circuit for illumination that can reduce variation in LED luminous intensity for each emission color of a multicolor light emitting diode That.

以下、本発明を実施するための最良の形態を図面を参照して詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明に係る実施例の照明用発光ダイオード駆動回路を示す構成図である。
照明用発光ダイオード駆動回路は、図1に示すように、アノードが共通端子で構成されている赤,緑,青の3色の異なる発光色の多色発光ダイオードD11〜D1p,D21〜D2p,D31〜D3p,…,Dn1〜Dnpと、直流電源と、赤LED電流調整器K1と、緑LED電流調整器K2と、青LED電流調整器K3と、赤LED電圧分割器S1と、緑LED電圧分割器S2と、青LED電圧分割器S3と、減衰器T11〜T1n,減衰器T21〜T2n,減衰器T31〜T3nと、電流増幅器A11〜A1n,電流増幅器A21〜A2n,電流増幅器A31〜A3nとを備えている。
FIG. 1 is a configuration diagram showing an illumination light emitting diode driving circuit according to an embodiment of the present invention.
As shown in FIG. 1, the illumination light-emitting diode driving circuit includes multicolor light-emitting diodes D11 to D1p, D21 to D2p, and D31 having three different emission colors of red, green, and blue, each having an anode configured as a common terminal. ˜D3p,..., Dn1 to Dnp, DC power supply, red LED current regulator K1, green LED current regulator K2, blue LED current regulator K3, red LED voltage divider S1, and green LED voltage divider Attenuator S2, blue LED voltage divider S3, attenuators T11 to T1n, attenuators T21 to T2n, attenuators T31 to T3n, current amplifiers A11 to A1n, current amplifiers A21 to A2n, current amplifiers A31 to A3n I have.

アノード共通の多色発光ダイオードは、赤色を発光する赤LED(R)と、緑色を発光する緑LED(G)と、青色を発光する青LED(B)の各カソード端子を有する。   The multi-color light emitting diode common to the anode has cathode terminals of a red LED (R) that emits red light, a green LED (G) that emits green light, and a blue LED (B) that emits blue light.

多色発光ダイオードD11〜D1pの赤LED,緑LED,青LEDのアノード共通端子は、直流(DC)電源のプラスVs(+)側及び赤LED電圧分割器S1,緑LED電圧分割器S2,青LED電圧分割器S3にそれぞれ接続されている。
供給電源電圧Vsは、照明用発光ダイオード駆動回路に直流電圧を供給するものである。
The anode common terminals of the red LED, green LED, and blue LED of the multi-color light emitting diodes D11 to D1p are the plus Vs (+) side of the direct current (DC) power source and the red LED voltage divider S1, the green LED voltage divider S2, blue. Each is connected to the LED voltage divider S3.
The supply power supply voltage Vs supplies a DC voltage to the light emitting diode driving circuit for illumination.

多色発光ダイオードD11〜D1pの赤,緑,青の各カソード端子は、互いに同色同士のカソードが並列に接続されている。   The red, green, and blue cathode terminals of the multicolor light emitting diodes D11 to D1p are connected in parallel to each other in the same color.

並列接続された赤,緑,青の各カソード端子は、電流増幅器A11,電流増幅器A21,電流増幅器A31をそれぞれ介して1段目のリターン共通ラインに集合したのち多色発光ダイオードD21〜D2pのアノード共通端子に直列に接続されている。   The cathode terminals of red, green, and blue connected in parallel are assembled on the first return common line through the current amplifier A11, current amplifier A21, and current amplifier A31, respectively, and then the anodes of the multicolor light emitting diodes D21 to D2p. It is connected in series to the common terminal.

以下同様に、多色発光ダイオードD21〜D2pは、電流増幅器A12,A22,A32へ、多色発光ダイオードD31〜D3pは、電流増幅器A13,A23,A33へ、…、多色発光ダイオードDn1〜Dnpは、電流増幅器A1n,A2n,A3nへと直列に接続されている。   Similarly, the multicolor light emitting diodes D21 to D2p are to the current amplifiers A12, A22, A32, the multicolor light emitting diodes D31 to D3p are to the current amplifiers A13, A23, A33,. The current amplifiers A1n, A2n, and A3n are connected in series.

赤LED電流調整器K1は、赤LED電圧分割器S1に、緑LED電流調整器K2は、緑LED電圧分割器S2に、青LED電流調整器K3は、青LED電圧分割器S3にそれぞれ接続されている。
これらの電流調整器は、多色発光ダイオードの赤,緑,青のLEDの電流配分を調整するものである。
The red LED current regulator K1 is connected to the red LED voltage divider S1, the green LED current regulator K2 is connected to the green LED voltage divider S2, and the blue LED current regulator K3 is connected to the blue LED voltage divider S3. ing.
These current regulators adjust the current distribution of the red, green, and blue LEDs of the multicolor light emitting diode.

赤LED電圧分割器S1は、減衰器T11,T12,T13,…,T1nを介して電流増幅器A11,A12,A13,…,A1nの入力側に、緑LED電圧分割器S2は、減衰器T21,T22,T23,…,T2nを介して電流増幅器A21,A22,A23,…,A2nの入力側に、青LED電圧分割器S3は、減衰器T31,T32,T33,…,T3nを介して電流増幅器A31,A32,A33,…,A3nの入力側にそれぞれ接続されている。   The red LED voltage divider S1 is connected to the input side of the current amplifiers A11, A12, A13,..., A1n via the attenuators T11, T12, T13,. .., T2n to the input side of the current amplifiers A21, A22, A23,..., A2n, the blue LED voltage divider S3 is connected to the current amplifiers via the attenuators T31, T32, T33,. , A3n are connected to the input sides of A31, A32, A33,.

各LED電圧分割器S1〜S3は、供給電源電圧Vsと各LED電流調整器K1〜K3からの制御電圧Vcとの差電圧ΔV(=Vs−Vc)を多色発光ダイオードの直列接続数nで等分割し、制御電圧Vcを含むn通りの分割電圧Vd1〜分割電圧Vdnを発生させるためのものである。   Each of the LED voltage dividers S1 to S3 determines the difference voltage ΔV (= Vs−Vc) between the supply power supply voltage Vs and the control voltage Vc from each of the LED current regulators K1 to K3 by the number n of multi-color light emitting diodes connected in series. This is for equally dividing to generate n divided voltages Vd1 to Vdn including the control voltage Vc.

減衰器T11,T21,T31は、LED電圧分割器S1,S2,S3で発生される最も高い分割電圧Vd1(=(Vs−Vc)×(n−1)/n+Vc)をVs(+)側に最も近い1番目の電流増幅器A11,A21,A31にそれぞれ供給するためのものである。   The attenuators T11, T21, T31 bring the highest divided voltage Vd1 (= (Vs−Vc) × (n−1) / n + Vc) generated by the LED voltage dividers S1, S2, S3 to the Vs (+) side. This is for supplying to the nearest first current amplifiers A11, A21, A31, respectively.

減衰器T12,T22,T32は、LED電圧分割器S1,S2,S3で発生される分割電圧Vd1の次に高い分割電圧Vd2(=(Vs−Vc)×(n−2)/n+Vc)をVs(+)側から数えて2番目の電流増幅器A12,A22,A32にそれぞれ供給するためのものである。   The attenuators T12, T22, and T32 convert the divided voltage Vd2 (= (Vs−Vc) × (n−2) / n + Vc), which is higher than the divided voltage Vd1 generated by the LED voltage dividers S1, S2, and S3, to Vs. The current is supplied to the second current amplifiers A12, A22, A32 counted from the (+) side.

減衰器T13,T23,T33は、LED電圧分割器S1,S2,S3で発生される分割電圧Vd3(=(Vs−Vc)×(n−3)/n+Vc)をVs(+)側から数えて3番目の電流増幅器A13,A23,A33にそれぞれ供給するためのものである。
以下同様で途中略する。
The attenuators T13, T23, and T33 count the divided voltage Vd3 (= (Vs−Vc) × (n−3) / n + Vc) generated by the LED voltage dividers S1, S2, and S3 from the Vs (+) side. This is for supplying to the third current amplifiers A13, A23, A33, respectively.
The same applies below.

減衰器T1n,T2n,T3nは、LED電圧分割器S1,S2,S3で発生される最も低い分割電圧Vdn(=Vc)をVs(+)側から最も遠い電流増幅器A1n,A2n,A3nにそれぞれ供給するためのものである。   The attenuators T1n, T2n, T3n supply the lowest divided voltage Vdn (= Vc) generated by the LED voltage dividers S1, S2, S3 to the current amplifiers A1n, A2n, A3n farthest from the Vs (+) side, respectively. Is to do.

各LED電圧分割器S1〜S3と電流増幅器A11,A21,A31との間には、1/1となる比率の減衰器T11,T21,T31が挿入され、各LED電圧分割器S1〜S3と電流増幅器A12,A22,A32との間には、1/2となる比率の減衰器T12,T22,T32が挿入され、各LED電圧分割器S1〜S3と電流増幅器A13,A23,A33との間には、1/3となる比率の減衰器T13,T23,T33が挿入されている。
以下同様で途中略する。
Between the LED voltage dividers S1 to S3 and the current amplifiers A11, A21, and A31, attenuators T11, T21, and T31 having a ratio of 1/1 are inserted, and the LED voltage dividers S1 to S3 and the currents are connected. Attenuators T12, T22, and T32 having a ratio of 1/2 are inserted between the amplifiers A12, A22, and A32, and between the LED voltage dividers S1 to S3 and the current amplifiers A13, A23, and A33. Are inserted with attenuators T13, T23, T33 at a ratio of 1/3.
The same applies below.

各LED電圧分割器S1〜S3と電流増幅器A1n,A2n,A3nとの間には、1/nとなる比率の減衰器T1n,T2n,T3nが挿入されている。   Attenuators T1n, T2n, T3n having a ratio of 1 / n are inserted between the LED voltage dividers S1 to S3 and the current amplifiers A1n, A2n, A3n.

減衰器T11,電流増幅器A11,減衰器T21,電流増幅器A21,減衰器T31,電流増幅器A31は、1段目のリターン共通ラインにそれぞれ接続されている。   The attenuator T11, the current amplifier A11, the attenuator T21, the current amplifier A21, the attenuator T31, and the current amplifier A31 are connected to the first return common line.

減衰器T12,電流増幅器A12,減衰器T22,電流増幅器A22,減衰器T32,電流増幅器A32は、2段目のリターン共通ラインにそれぞれ接続されている。
以下同様で途中略する。
The attenuator T12, the current amplifier A12, the attenuator T22, the current amplifier A22, the attenuator T32, and the current amplifier A32 are respectively connected to the second-stage return common line.
The same applies below.

減衰器T1n,電流増幅器A1n,減衰器T2n,電流増幅器A2n,減衰器T3n,電流増幅器A3nは、直流供給電圧のマイナスVs(−)側にそれぞれ接続されている。   The attenuator T1n, current amplifier A1n, attenuator T2n, current amplifier A2n, attenuator T3n, and current amplifier A3n are connected to the minus Vs (−) side of the DC supply voltage.

電流増幅器A11,A21,A31の入力側に1/1となる比率の減衰器T11,T21,T31からの実質入力電圧Vi1(=Vc/n+Vs×(n−1)/n)になる電圧をそれぞれ印加し、電流増幅器A12,A22,A32の入力側に1/2となる比率の減衰器T12,T22,T32からの実質入力電圧Vi2(=Vc/n+Vs×(n−2)/n)になる電圧をそれぞれ印加し、電流増幅器A13,A23,A33の入力側に1/3となる比率の減衰器T13,T23,T33からの実質入力電圧Vi3(=Vc/n+Vs×(n−3)/n)になる電圧をそれぞれ印加し、…、電流増幅器A1n,A2n,A3nの入力側に1/nとなる比率の減衰器T1n,T2n,T3nからの実質入力電圧Vin(=Vc/n)になる電圧をそれぞれ印加することにより、電流増幅器A11〜A1n,電流増幅器A21〜A2n,電流増幅器A31〜A3nは、制御電圧Vcに比例した電流を横列p段並列接続された縦列n段の各段の多色発光ダイオードD11〜D1p,D21〜D2p,D31〜D3p,…,Dn1〜Dnpに供給することができる。   A voltage that becomes a substantial input voltage Vi1 (= Vc / n + Vs × (n−1) / n) from the attenuators T11, T21, T31 having a ratio of 1/1 is input to the input side of the current amplifiers A11, A21, A31. When applied, the actual input voltage Vi2 (= Vc / n + Vs × (n−2) / n) from the attenuators T12, T22, T32 having a ratio of 1/2 is input to the input side of the current amplifiers A12, A22, A32. A voltage is applied, and the actual input voltage Vi3 (= Vc / n + Vs × (n−3) / n) from the attenuators T13, T23, T33 with a ratio of 1/3 to the input side of the current amplifiers A13, A23, A33. ) Are applied to the input side of the current amplifiers A1n, A2n, A3n, respectively, and the actual input voltage Vin (= Vc / n) from the attenuators T1n, T2n, T3n at a ratio of 1 / n is obtained. Voltage By applying each, the current amplifiers A11 to A1n, the current amplifiers A21 to A2n, and the current amplifiers A31 to A3n emit multicolor light emission in each of the n stages of columns connected in parallel in p rows of rows in parallel to the control voltage Vc. The diodes D11 to D1p, D21 to D2p, D31 to D3p,..., Dn1 to Dnp can be supplied.

このように、赤LED電圧分割器S1,緑LED電圧分割器S2,青LED電圧分割器S3が、供給電源電圧Vsと多色発光ダイオードD11〜D1p,多色発光ダイオードD21〜D2p,多色発光ダイオードD31〜D3p,…,多色発光ダイオードDn1〜Dnpの赤LED,緑LED,青LEDの発光色の明るさを制御する各色毎のコントロール(制御)電圧Vc(赤,緑,青供に100%とした場合)との差電圧ΔV(=Vs−Vc)を多色発光ダイオードの直列接続数nで等分割し、制御電圧Vcを含むn通りの分割電圧Vd1〜分割電圧Vdnを発生させる。   As described above, the red LED voltage divider S1, the green LED voltage divider S2, and the blue LED voltage divider S3 include the supply power voltage Vs, the multicolor light emitting diodes D11 to D1p, the multicolor light emitting diodes D21 to D2p, and the multicolor light emission. Diodes D31 to D3p,..., Control voltages Vc (100 for red, green, and blue) for each color that control the brightness of the emission colors of the red, green, and blue LEDs of the multicolor light emitting diodes Dn1 to Dnp. The difference voltage ΔV (= Vs−Vc) is divided equally by the number n of serially connected multicolor light emitting diodes to generate n divided voltages Vd1 to Vdn including the control voltage Vc.

また、供給電源電圧Vs側に近い最も高い分割電圧Vd1を直流電源P側に最も近い電流増幅器A11,A21,A31へと、…、コントロール電圧Vc側に近い最も低い分割電圧Vdnを直流電源P側から最も遠い電流増幅器A1n,A2n,A3nへとなるように、分割電圧Vd1〜Vdnをそれぞれの電流増幅器A11〜A1n,電流増幅器A21〜A2n,電流増幅器A31〜A3nに順次供給する。   Further, the highest divided voltage Vd1 close to the supply power supply voltage Vs side is supplied to the current amplifiers A11, A21, A31 closest to the DC power supply P side,..., And the lowest divided voltage Vdn close to the control voltage Vc side is supplied to the DC power supply P side. The divided voltages Vd1 to Vdn are sequentially supplied to the current amplifiers A11 to A1n, the current amplifiers A21 to A2n, and the current amplifiers A31 to A3n so that the current amplifiers A1n, A2n, and A3n are the farthest from the current.

この際、電流増幅器A11,A21,A31の入力側に1/1となる比率の減衰器T11,T21,T31を、電流増幅器A12,A22,A32の入力側に1/2となる比率の減衰器T12,T22,T32を、…、電流増幅器A1n,A2n,A3nの入力側に1/nとなる比率の減衰器T1n,T2n,T3nをそれぞれ挿入する。   At this time, an attenuator T11, T21, T31 with a ratio of 1/1 is input to the input side of the current amplifiers A11, A21, A31, and an attenuator with a ratio of 1/2 is input to the input side of the current amplifiers A12, A22, A32. T12, T22, T32 are inserted into the input side of the current amplifiers A1n, A2n, A3n, respectively, with attenuators T1n, T2n, T3n having a ratio of 1 / n.

この結果、各電流増幅器A11〜A1n,電流増幅器A21〜A2n,電流増幅器A31〜A3nの入力側にはVc/nの制御電圧とVs/nの整数倍の電圧が印加され、電流増幅器A11〜A1n,電流増幅器A21〜A2n,電流増幅器A31〜A3nは、制御電圧Vcに比例した電流を縦列n段の各段の並列接続された多色発光ダイオードD11〜D1p,多色発光ダイオードD21〜D2p,多色発光ダイオードD31〜D3p,…,多色発光ダイオードDn1〜Dnpのp個に供給することができる。   As a result, the control voltage of Vc / n and an integer multiple of Vs / n are applied to the input side of each of the current amplifiers A11 to A1n, current amplifiers A21 to A2n, and current amplifiers A31 to A3n, and the current amplifiers A11 to A1n , Current amplifiers A21 to A2n, current amplifiers A31 to A3n are multicolor light emitting diodes D11 to D1p, multicolor light emitting diodes D21 to D2p, and multicolor light emitting diodes D21 to D2p, which are connected in parallel to each of n stages in the column. The color light emitting diodes D31 to D3p,... Can be supplied to p multicolor light emitting diodes Dn1 to Dnp.

このように比較的簡単な照明用発光ダイオード駆動回路で、アノード共通の多色発光ダイオードを従来のアノードセパレートの多色発光ダイオードと同様に直列接続して各色毎に電流制御することが可能になり、使用電源電圧に合った直列接続する縦列段数を選ぶことで、主に電源効率の向上とコストダウンが期待できる。   In this way, with a relatively simple light emitting diode drive circuit for illumination, it becomes possible to control the current for each color by connecting a multicolor light emitting diode common to the anode in series in the same way as a conventional multicolor light emitting diode of an anode separate. By selecting the number of columns connected in series according to the power supply voltage used, improvement in power supply efficiency and cost reduction can be expected.

この方法では、供給電源電圧Vsが変化しても、制御電圧Vcが一定ならLED電流に変化が生じないため、LEDの照度(光度)は変わらない利点がある。   This method has an advantage that even if the power supply voltage Vs changes, the LED current does not change if the control voltage Vc is constant, so that the illuminance (luminance) of the LED does not change.

電圧変換器を使用する分のコストアップとスペースファクタの悪化,電源効率の悪化,重量増大,EMIノイズの増大等を防止することもできる。   It is also possible to prevent cost increase and space factor deterioration, power supply efficiency deterioration, weight increase, and EMI noise increase due to the use of the voltage converter.

また、供給電源電圧Vsが全波整流波形のようなリップルを含んだ電圧であっても、制御電圧Vcが安定であれば、基本動作に支障を来たすようなことが発生しない。
さらに、任意の少数の多色発光ダイオードの故障でLED端子が断線した場合でも、他の多色発光ダイオードに与える影響は僅かであり、基本的な動作に支障を来たすことがない利点を持っている。
Further, even if the supply power supply voltage Vs is a voltage including a ripple such as a full-wave rectified waveform, if the control voltage Vc is stable, the basic operation is not hindered.
Furthermore, even if the LED terminal is disconnected due to the failure of any small number of multi-color light emitting diodes, the effect on other multi-color light emitting diodes is negligible and has the advantage of not hindering basic operation. Yes.

図2は、本発明に係る実施例の照明用発光ダイオード駆動回路の一例を示す電気回路図である。
以下、縦列段数n=4,発光色数m=3,横列段数p=6の一実施例について説明する。
多色発光ダイオードLEDの数は、n×p=4×6=24個となる。
電流制御は、n×m=4×3=12箇所となる。
DC供給電源電圧Vsは、コネクタCN1の1番目と3番目ピンより15V〜35Vの電圧が供給される。
各多色発光ダイオードLEDの電流は、最大で約20mAで、多色発光ダイオードLEDの全最大電流は、20×3×6=360mAとなる。
FIG. 2 is an electric circuit diagram showing an example of an illumination light emitting diode driving circuit according to an embodiment of the present invention.
Hereinafter, an example of the number of column stages n = 4, the number of emission colors m = 3, and the number of row stages p = 6 will be described.
The number of multicolor light emitting diodes LED is n × p = 4 × 6 = 24.
The current control is n × m = 4 × 3 = 12.
The DC supply power voltage Vs is supplied with a voltage of 15V to 35V from the first and third pins of the connector CN1.
The maximum current of each multicolor light emitting diode LED is about 20 mA, and the total maximum current of the multicolor light emitting diode LED is 20 × 3 × 6 = 360 mA.

多色発光ダイオードLEDの赤LED,緑LED,青LEDの各制御電圧は、コネクタCN1の2番目ピンから入力される照明の明るさを制御する制御電圧Vcを可変抵抗VR1〜VR3にてそれぞれ最適に調整してから用いる。
例えば、可変抵抗VR1〜VR3を最大にして多色発光ダイオードLEDの赤LED:緑LED:青LEDの電流比率を全て100:100:100に設定すると、多色発光ダイオードLEDは、白色発光させることができる。
また、可変抵抗VR1〜VR3を調整して多色発光ダイオードLEDの赤LED:緑LED:青LEDの電流比率を100:50:30に設定すると、多色発光ダイオードLEDは、太陽光に近い色を発光させることができる。
The control voltage Vc for controlling the brightness of illumination input from the second pin of the connector CN1 is optimized by the variable resistors VR1 to VR3 for the control voltages of the red LED, the green LED, and the blue LED of the multi-color light emitting diode LED. Use after adjusting to.
For example, if the variable resistors VR1 to VR3 are maximized and the current ratios of the red LED: green LED: blue LED of the multicolor light emitting diode LED are all set to 100: 100: 100, the multicolor light emitting diode LED emits white light. Can do.
Further, when the variable resistors VR1 to VR3 are adjusted to set the current ratio of red LED: green LED: blue LED of the multicolor light emitting diode LED to 100: 50: 30, the multicolor light emitting diode LED is a color close to sunlight. Can emit light.

最上段の多色発光ダイオードD11〜D16のアノードは、互いに並列にVs(+)に接続されている。   The anodes of the uppermost multicolor light emitting diodes D11 to D16 are connected in parallel to Vs (+).

2段目の多色発光ダイオードD21〜D26のアノードは、互いに1段目のリターン共通ラインに並列に接続されている。   The anodes of the second-stage multicolor light emitting diodes D21 to D26 are connected in parallel to the first-stage return common line.

3段目の多色発光ダイオードD31〜D36のアノードは、互いに2段目のリターン共通ラインに並列に接続されている。   The anodes of the third stage multicolor light emitting diodes D31 to D36 are connected in parallel to the second stage return common line.

4段目の多色発光ダイオードD41〜D46のアノードは、互いに3段目のリターン共通ラインに並列に接続されている。   The anodes of the fourth-stage multicolor light emitting diodes D41 to D46 are connected in parallel to the third-stage return common line.

1段目の多色発光ダイオードD11〜D16の赤,緑,青のカソード端子は、保護抵抗RR11〜RR16,RG11〜RG16,RB11〜RB16をそれぞれ介し、電流増幅器A11,A21,A31をそれぞれ経由して1段目のリターン共通ラインに直列に接続されている。   The red, green, and blue cathode terminals of the first-stage multicolor light emitting diodes D11 to D16 pass through the protection resistors RR11 to RR16, RG11 to RG16, and RB11 to RB16, respectively, and the current amplifiers A11, A21, and A31, respectively. Are connected in series to the first return common line.

2段目の多色発光ダイオードD21〜D26の赤,緑,青のカソード端子は、保護抵抗RR21〜RR26,RG21〜RG26,RB21〜RB26をそれぞれ介し、電流増幅器A12,A22,A32をそれぞれ経由して2段目のリターン共通ラインに直列に接続されている。   The red, green, and blue cathode terminals of the second-stage multicolor light emitting diodes D21 to D26 go through the protection resistors RR21 to RR26, RG21 to RG26, and RB21 to RB26, respectively, and the current amplifiers A12, A22, and A32, respectively. Connected in series to the second return common line.

3段目の多色発光ダイオードD31〜D36の赤,緑,青のカソード端子は、保護抵抗RR31〜RR36,RG31〜RG36,RB31〜RB36をそれぞれ介し、電流増幅器A13,A23,A33をそれぞれ経由して3段目のリターン共通ラインに直列に接続されている。   The red, green, and blue cathode terminals of the third-stage multicolor light emitting diodes D31 to D36 go through the protection resistors RR31 to RR36, RG31 to RG36, and RB31 to RB36, respectively, and the current amplifiers A13, A23, and A33, respectively. Are connected in series to the third return common line.

4段目の多色発光ダイオードD41〜D46の赤,緑,青のカソード端子は、保護抵抗RR41〜RR46,RG41〜RG46,RB41〜RB46をそれぞれ介し、電流増幅器A14,A24,A34をそれぞれ経由して直流供給電源電圧のVs(−)に直列に接続されている。   The red, green, and blue cathode terminals of the fourth-stage multicolor light emitting diodes D41 to D46 go through the protection resistors RR41 to RR46, RG41 to RG46, and RB41 to RB46, respectively, and the current amplifiers A14, A24, and A34, respectively. Are connected in series to the DC supply voltage Vs (−).

赤LED電流調整器K1は、赤LED電圧分割器S1に、緑LED電流調整器K2は、緑LED電圧分割器S2に、青LED電流調整器K3は、青LED電圧分割器S3に接続されている。   The red LED current regulator K1 is connected to the red LED voltage divider S1, the green LED current regulator K2 is connected to the green LED voltage divider S2, and the blue LED current regulator K3 is connected to the blue LED voltage divider S3. Yes.

赤LED電圧分割器S1は、4つの抵抗RS11〜RS14の直流回路で構成され、供給電源電圧のVs(+)と赤LED電流調整器K1との間に接続され、各抵抗分割電圧Vd1,Vd2,Vd3,Vd4は、減衰器T11,T12,T13,T14を介して電流増幅器A11,A12,A13,A14にそれぞれ接続されている。   The red LED voltage divider S1 is constituted by a DC circuit of four resistors RS11 to RS14, and is connected between the supply power supply voltage Vs (+) and the red LED current regulator K1, and each of the resistor divided voltages Vd1, Vd2 is connected. , Vd3, Vd4 are connected to current amplifiers A11, A12, A13, A14 via attenuators T11, T12, T13, T14, respectively.

緑LED電圧分割器S2は、4つの抵抗RS21〜RS24の直流回路で構成され、供給電源電圧のVs(+)と緑LED電流調整器K2との間に接続され、各抵抗分割電圧Vd1,Vd2,Vd3,Vd4は、減衰器T21,T22,T23,T24を介して電流増幅器A21,A22,A23,A24にそれぞれ接続されている。   The green LED voltage divider S2 is composed of a DC circuit of four resistors RS21 to RS24, and is connected between the supply power supply voltage Vs (+) and the green LED current regulator K2, and each of the resistance divided voltages Vd1, Vd2 , Vd3, Vd4 are connected to current amplifiers A21, A22, A23, A24 via attenuators T21, T22, T23, T24, respectively.

青LED電圧分割器S3は、4つの抵抗RS31〜RS34の直流回路で構成され、供給電源電圧のVs(+)と青LED電流調整器K3との間に接続され、各抵抗分割電圧Vd1,Vd2,Vd3,Vd4は、減衰器T31,T32,T33,T34を介して電流増幅器A31,A32,A33,A34にそれぞれ接続されている。   The blue LED voltage divider S3 is constituted by a DC circuit of four resistors RS31 to RS34, and is connected between the supply power supply voltage Vs (+) and the blue LED current regulator K3, and each resistor divided voltage Vd1, Vd2 is connected. , Vd3, Vd4 are connected to current amplifiers A31, A32, A33, A34 via attenuators T31, T32, T33, T34, respectively.

各段の多色LEDのアノードとリターン共通ラインとの間には、抵抗Rb1〜Rb4が接続されており、多色LEDに流す電流が微少もしくはゼロの時に各段の多色LEDのアノードとリターン共通ライン間の電圧がVs/4に揃うようにしている。   Resistors Rb1 to Rb4 are connected between the anodes of the multi-color LEDs of each stage and the return common line. When the current flowing through the multi-color LEDs is very small or zero, the anodes and returns of the multi-color LEDs of each stage The voltage between the common lines is set to Vs / 4.

赤,緑,青のLED電流調整器K1〜K3は、可変抵抗VR1〜VR3とPNP型トランジスタQK1〜QK3のエミッタフォロワで構成されている。   The red, green, and blue LED current adjusters K1 to K3 are configured by variable resistors VR1 to VR3 and emitter followers of PNP transistors QK1 to QK3.

減衰器T11,T21,T31は、シリーズ抵抗RT11,RT21,RT31から構成され、ゲインは1となっている。   The attenuators T11, T21, T31 are composed of series resistors RT11, RT21, RT31, and the gain is 1.

減衰器T12,T22,T32は、シリーズ抵抗RT12,RT22,RT32と終端抵抗RT121,RT221,RT321とから構成され、ゲインは1/2となっている。   The attenuators T12, T22, T32 are composed of series resistors RT12, RT22, RT32 and termination resistors RT121, RT221, RT321, and the gain is ½.

減衰器T13,T23,T33は、シリーズ抵抗RT13,RT23,RT33と終端抵抗RT131,RT231,RT331とから構成され、ゲインは1/3となっている。   The attenuators T13, T23, T33 are composed of series resistors RT13, RT23, RT33 and termination resistors RT131, RT231, RT331, and the gain is 1/3.

減衰器T14,T24,T34は、シリーズ抵抗RT14,RT24,RT34と終端抵抗RT141,RT241,RT341とから構成され、ゲインは1/4となっている。   The attenuators T14, T24, T34 are composed of series resistors RT14, RT24, RT34 and termination resistors RT141, RT241, RT341, and the gain is 1/4.

減衰器T11,T21,T31は、各LED電圧分割器S1,S2,S3で発生される最も高い分割電圧Vd1(=(Vs−Vc)×3/4+Vc)を電流増幅器A11,A21,A31にそれぞれ供給するためのものである。   The attenuators T11, T21, and T31 apply the highest divided voltage Vd1 (= (Vs−Vc) × 3/4 + Vc) generated by the LED voltage dividers S1, S2, and S3 to the current amplifiers A11, A21, and A31, respectively. It is for supply.

減衰器T12,T22,T32は、各LED電圧分割器S1,S2,S3で発生される分割電圧Vd2(=(Vs−Vc)×1/2+Vc)を電流増幅器A12,A22,A32にそれぞれ供給するためのものである。   The attenuators T12, T22, T32 supply the divided voltages Vd2 (= (Vs−Vc) × 1/2 + Vc) generated by the LED voltage dividers S1, S2, S3 to the current amplifiers A12, A22, A32, respectively. Is for.

減衰器T13,T23,T33は、各LED電圧分割器S1,S2,S3で発生される分割電圧Vd3(=(Vs−Vc)×1/4+Vc)を電流増幅器A13,A23,A33にそれぞれ供給するためのものである。   The attenuators T13, T23 and T33 supply the divided voltages Vd3 (= (Vs−Vc) × 1/4 + Vc) generated by the LED voltage dividers S1, S2 and S3 to the current amplifiers A13, A23 and A33, respectively. Is for.

減衰器T14,T24,T34は、各LED電圧分割器S1,S2,S3で発生される最も低い分割電圧Vd4(=Vc)を電流増幅器A14,A24,A34にそれぞれ供給するためのものである。   The attenuators T14, T24, T34 are for supplying the lowest divided voltage Vd4 (= Vc) generated by the LED voltage dividers S1, S2, S3 to the current amplifiers A14, A24, A34, respectively.

電流増幅器A11〜A14,A21〜A24,A31〜A34は、NPN型トランジスタとエミッタ抵抗とで構成するエミッタ接地の定電流増幅回路となっている。
これらの電流増幅器は、負帰還回路を使った電流増幅器で構成することで、より精度を向上させることができる。
Each of the current amplifiers A11 to A14, A21 to A24, and A31 to A34 is a grounded-emitter constant current amplifier circuit composed of an NPN transistor and an emitter resistor.
These current amplifiers can be improved in accuracy by being constituted by current amplifiers using a negative feedback circuit.

このように、電流増幅器A11,A21,A31の入力側に1/1となる比率の減衰器T11,T21,T31からの実質入力電圧Vi1(=Vc/4+Vs×3/4)になる電圧をそれぞれ印加し、電流増幅器A12,A22,A32の入力側に1/2となる比率の減衰器T12,T22,T32からの実質入力電圧Vi2(=Vc/4+Vs×1/2)になる電圧をそれぞれ印加し、電流増幅器A13,A23,A33の入力側に1/3となる比率の減衰器T13,T23,T33からの実質入力電圧Vi3(=Vc/4+Vs×1/4)になる電圧をそれぞれ印加し、電流増幅器A14,A24,A34の入力側に1/4となる比率の減衰器T14,T24,T34からの実質入力電圧Vi4(=Vc/4)になる電圧をそれぞれ印加することにより、電流増幅器A11〜A14,A21〜A24,A31〜A34は、制御電圧Vcに比例した電流を横列6段並列接続された縦列4段の各段の多色発光ダイオードD21〜D44に供給する。   In this way, the voltages that become the actual input voltage Vi1 (= Vc / 4 + Vs × 3/4) from the attenuators T11, T21, T31 having a ratio of 1/1 are input to the input sides of the current amplifiers A11, A21, A31, respectively. Voltage applied to the input side of each of the current amplifiers A12, A22, A32 to become a substantial input voltage Vi2 (= Vc / 4 + Vs × 1/2) from the attenuators T12, T22, T32 having a ratio of 1/2. Then, a voltage that becomes the actual input voltage Vi3 (= Vc / 4 + Vs × 1/4) from the attenuators T13, T23, T33 having a ratio of 1/3 is applied to the input side of the current amplifiers A13, A23, A33, respectively. Then, voltages that become the actual input voltage Vi4 (= Vc / 4) from the attenuators T14, T24, and T34 having a ratio of 1/4 are applied to the input sides of the current amplifiers A14, A24, and A34, respectively. As a result, the current amplifiers A11 to A14, A21 to A24, A31 to A34 supply current proportional to the control voltage Vc to the multi-color light emitting diodes D21 to D44 in each of the four columns in the four columns connected in parallel in the six columns. .

次に、図2に示した照明用発光ダイオード駆動回路における動作について説明する。
まず、赤LED電圧分割器S1,緑LED電圧分割器S2,青LED電圧分割器S3が、供給電源電圧Vsと多色発光ダイオードD11〜D16の赤LED,緑LED,青LEDの発光色の明るさを制御する各色毎の制御電圧Vc(赤,緑,青)との差電圧ΔV(=Vs−Vc)を多色発光ダイオードの直列接続数4で等分割し、制御電圧Vcを含む4通りの分割電圧Vd1〜分割電圧Vd4を発生させる。
Next, the operation of the illumination light emitting diode drive circuit shown in FIG. 2 will be described.
First, the red LED voltage divider S1, the green LED voltage divider S2, and the blue LED voltage divider S3 are used to supply the supply power voltage Vs and the brightness of the red, green, and blue LEDs of the multicolor light emitting diodes D11 to D16. The difference voltage ΔV (= Vs−Vc) with respect to the control voltage Vc (red, green, blue) for each color for controlling the length is equally divided by the number of multi-color light emitting diodes connected in series, and four types including the control voltage Vc Divided voltages Vd1 to Vd4 are generated.

また、供給電源電圧Vs側に近い最も高い分割電圧Vd1を電流増幅器A11,A21,A31へと、分割電圧Vd2を電流増幅器A12,A22,A32へと、分割電圧Vd3を電流増幅器A13,A23,A33へと、制御電圧Vc側に近い最も低い分割電圧Vd4を電流増幅器A14,A24,A34へとなるように、分割電圧Vd1〜Vd4をそれぞれの電流増幅器A11〜A14,A21〜A24,A31〜A34に順次供給する。   Further, the highest divided voltage Vd1 close to the supply power supply voltage Vs side is supplied to the current amplifiers A11, A21, A31, the divided voltage Vd2 is supplied to the current amplifiers A12, A22, A32, and the divided voltage Vd3 is supplied to the current amplifiers A13, A23, A33. The divided voltages Vd1 to Vd4 are applied to the current amplifiers A11 to A14, A21 to A24, and A31 to A34 so that the lowest divided voltage Vd4 close to the control voltage Vc side becomes the current amplifiers A14, A24, and A34. Supply sequentially.

この際、電流増幅器A11,A21,A31の入力側に1/1となる比率の減衰器T11,T21,T31を、電流増幅器A12,A22,A32の入力側に1/2となる比率の減衰器T12,T22,T32を、電流増幅器A13,A23,A33の入力側に1/3となる比率の減衰器T13,T23,T33を、電流増幅器A14,A24,A34の入力側に1/4となる比率の減衰器T14,T24,T34をそれぞれ挿入する。   At this time, an attenuator T11, T21, T31 with a ratio of 1/1 is input to the input side of the current amplifiers A11, A21, A31, and an attenuator with a ratio of 1/2 is input to the input side of the current amplifiers A12, A22, A32. Attenuators T13, T23, and T33 having a ratio of 1/3 to the input side of the current amplifiers A13, A23, and A33 are set to 1/4 on the input side of the current amplifiers A14, A24, and A34. Insert ratio attenuators T14, T24, T34, respectively.

この結果、各電流増幅器A11〜A14,A21〜A24,A31〜A34の入力側にはVc/4の制御電圧とVs/4の整数倍の電圧が印加され、電流増幅器A11〜A14,A21〜A24,A31〜A34は、制御電圧Vcに比例した電流を、縦列4段の各段の並列接続された多色発光ダイオードD11〜D16と、多色発光ダイオードD21〜D26と、多色発光ダイオードD31〜D36と、多色発光ダイオードD41〜D46に供給することができる。   As a result, a control voltage of Vc / 4 and a voltage that is an integral multiple of Vs / 4 are applied to the input side of each of the current amplifiers A11 to A14, A21 to A24, A31 to A34, and the current amplifiers A11 to A14, A21 to A24. , A31 to A34, a current proportional to the control voltage Vc is applied to the multicolor light emitting diodes D11 to D16, multicolor light emitting diodes D21 to D26, and multicolor light emitting diodes D31 D36 and the multicolor light emitting diodes D41 to D46 can be supplied.

なお、負帰還回路を使わない電流増幅器のバラツキは、使用するトランジスタの特性のバラツキが抵抗の精度と共に依存するが、実用的に問題となるようなレベルではない。
フォトカプラの電流伝達率のバラツキは、フォトカプラ内部の発光素子と受光素子それぞれのバラツキの掛け算値になるためバラツキの範囲が大きい。
カソード共通型の多色発光ダイオードの場合は、ちょうど図2のVs(+)とVs(−)を逆にして、PNP型トランジスタをNPNに、NPN型トランジスタをPNPに変えることで、同様に実現が可能である。
Note that the variation of the current amplifier that does not use the negative feedback circuit depends on the variation of the characteristics of the transistor used together with the accuracy of the resistance, but is not at a level that causes a practical problem.
The variation of the current transfer rate of the photocoupler is a product of the variations of the light emitting element and the light receiving element inside the photocoupler, and thus the variation range is large.
In the case of the common cathode type multicolor light emitting diode, Vs (+) and Vs (-) in Fig. 2 are reversed and the PNP transistor is changed to NPN and the NPN transistor is changed to PNP. Is possible.

本発明に係る実施例の照明用発光ダイオード駆動回路を示す構成図。The block diagram which shows the light emitting diode drive circuit for illumination of the Example which concerns on this invention. 本発明に係る実施例の照明用発光ダイオード駆動回路の一例を示す電気回路図。1 is an electric circuit diagram showing an example of a light emitting diode drive circuit for illumination according to an embodiment of the present invention. アノードセパレート照明用発光ダイオード駆動回路の一例を示す構成図。The block diagram which shows an example of the light emitting diode drive circuit for anode separate illumination. アノード共通・並列型照明用発光ダイオード駆動回路の一例を示す構成図。The block diagram which shows an example of the light emitting diode drive circuit for anode common and parallel type | mold illumination. アノード共通・直並列型照明用発光ダイオード駆動回路の一例を示す構成図。The block diagram which shows an example of the light emitting diode drive circuit for anode common and series-parallel type illumination.

符号の説明Explanation of symbols

A11〜A1n 電流増幅器
A21〜A2n 電流増幅器
A31〜A3n 電流増幅器
A11〜A14 電流増幅器
A21〜A24 電流増幅器
A31〜A34 電流増幅器
CN1 コネクタ
D11〜D1p 多色発光ダイオード
D21〜D2p 多色発光ダイオード
D31〜D3p 多色発光ダイオード
Dn1〜Dnp 多色発光ダイオード
D11〜D16 多色発光ダイオード
D21〜D26 多色発光ダイオード
D31〜D36 多色発光ダイオード
D41〜D46 多色発光ダイオード
K1 赤LED電流調整器
K2 緑LED電流調整器
K3 青LED電流調整器
LED 多色発光ダイオード
P 直流電源
QK1〜QK3 PNP型トランジスタ
Q11〜Q14 NPN型トランジスタ
Q21〜Q24 NPN型トランジスタ
Q31〜Q34 NPN型トランジスタ
RS11〜RS14 抵抗
RS21〜RS24 抵抗
RS31〜RS34 抵抗
RT11〜RT14 抵抗
RT121,RT131,RT141 抵抗
RT21〜RT24 抵抗
RT221,RT231,RT241 抵抗
RT31〜RT34 抵抗
RT321,RT331,RT341 抵抗
Rb1〜Rb4 抵抗
RR11〜RR16 抵抗
RR21〜RR26 抵抗
RR31〜RR36 抵抗
RR41〜RR46 抵抗
RG11〜RG16 抵抗
RG21〜RG26 抵抗
RG31〜RG36 抵抗
RG41〜RG46 抵抗
RB11〜RB16 抵抗
RB21〜RB26 抵抗
RB31〜RB36 抵抗
RB41〜RB46 抵抗
RA11〜RA14 抵抗
RA21〜RA24 抵抗
RA31〜RA34 抵抗
S1 赤LED電圧分割器
S2 緑LED電圧分割器
S3 青LED電圧分割器
T11〜T1n 減衰器
T21〜T1n 減衰器
T31〜T3n 減衰器
T11〜T14 減衰器
T21〜T24 減衰器
T31〜T34 減衰器
Vc 制御電圧
Vd1〜Vd4 分割電圧
VR1,VR2,VR3 可変抵抗
Vs 供給電源電圧
A11-A1n Current amplifier A21-A2n Current amplifier A31-A3n Current amplifier A11-A14 Current amplifier A21-A24 Current amplifier A31-A34 Current amplifier CN1 Connector D11-D1p Multicolor light emitting diode D21-D2p Multicolor light emitting diode D31-D3p Many Color light emitting diodes Dn1 to Dnp Multicolor light emitting diodes D11 to D16 Multicolor light emitting diodes D21 to D26 Multicolor light emitting diodes D31 to D36 Multicolor light emitting diodes D41 to D46 Multicolor light emitting diodes K1 Red LED current regulator K2 Green LED current regulator K3 Blue LED current regulator LED Multicolor light emitting diode P DC power supply QK1 to QK3 PNP transistor Q11 to Q14 NPN transistor Q21 to Q24 NPN transistor Q31 to Q34 NP Type transistor RS11 to RS14 resistor RS21 to RS24 resistor RS31 to RS34 resistor RT11 to RT14 resistor RT121, RT131, RT141 resistor RT21 to RT24 resistor RT221, RT231, RT241 resistor RT31 to RT34 resistor RT321, RT331, RT341 resistor Rb1 to Rb4 resistor RR1 RR16 Resistor RR21 to RR26 Resistor RR31 to RR36 Resistor RR41 to RR46 Resistor RG11 to RG16 Resistor RG21 to RG26 Resistor RG31 to RG36 Resistor RG41 to RG46 Resistor RB11 to RB16 Resistor RB21 to RB26 Resistor RB31 to RB36 Resistor B RA21 to RA24 resistance RA31 to RA34 resistance S1 Red LED voltage divider 2 Green LED voltage divider S3 Blue LED voltage divider T11 to T1n Attenuator T21 to T1n Attenuator T31 to T3n Attenuator T11 to T14 Attenuator T21 to T24 Attenuator T31 to T34 Attenuator Vc Control voltage Vd1 to Vd4 Divided voltage VR1, VR2, VR3 Variable resistance Vs Supply voltage

Claims (1)

アノードまたはカソードが共通端子で構成されている複数個の多色発光ダイオードを横列p段並列接続すると共に、前記複数個の多色発光ダイオードを電流増幅器を挟んで縦列n段直列接続した照明用発光ダイオード駆動回路であって、
前記複数個の多色発光ダイオードに印加する供給電源電圧Vsと前記多色発光ダイオードの異なる各発光色の明るさを制御する制御電圧Vcとの差電圧ΔV(=Vs−Vc)を前記多色発光ダイオードの直列接続数nで等分割し、前記制御電圧Vcを含むn通りの分割電圧Vd1〜分割電圧Vdnを発生させる前記多色発光ダイオードの各発光色数mと同数の複数の電圧分割器と、前記電圧分割器で発生される前記供給電源電圧Vs側に近い最も高い分割電圧Vd1(=(Vs−Vc)×(n−1)/n+Vc)を前記電源側に最も近い1番目の前記電流増幅器へと、前記電圧分割器で発生される分割電圧Vd1の次に高い分割電圧Vd2(=(Vs−Vc)×(n−2)/n+Vc)を前記電源側から数えて2番目の前記電流増幅器へと、…、前記電圧分割器で発生される前記制御電圧Vc側に近い最も低い分割電圧Vdn(=Vc)を前記電源側から最も遠い前記電流増幅器へとなるように順次供給する複数の減衰器とを備え、前記電圧分割器と前記電源側に最も近い1番目の前記電流増幅器との間に1/1となる比率の減衰器を、前記電圧分割器と前記電源側から数えて2番目の前記電流増幅器との間に1/2となる比率の減衰器を、…、前記電圧分割器と前記電源側から最も遠い前記電流増幅器との間に1/nとなる比率の減衰器をそれぞれ挿入し、前記1/1となる比率の減衰器からの実質入力電圧Vi1(=Vc/n+Vs×(n−1)/n)になる電圧を前記電源側に最も近い1番目の前記電流増幅器の入力側に、前記1/2となる比率の減衰器からの実質入力電圧Vi2(=Vc/n+Vs×(n−2)/n)になる電圧を前記電源側から数えて2番目の前記電流増幅器の入力側に、…、前記1/nとなる比率の減衰器からの実質入力電圧Vin(=Vc/n)になる電圧を前記電源側から最も遠い前記電流増幅器の入力側にそれぞれ印加することにより、縦列n段の各電流増幅器は、前記制御電圧Vcに比例した電流を横列p段並列接続された縦列n段の各段の前記多色発光ダイオードに供給するようにしたことを特徴とする照明用発光ダイオード駆動回路。
A plurality of multicolor light emitting diodes, each having an anode or a cathode having a common terminal, are connected in parallel in p rows, and the plurality of multicolor light emitting diodes are connected in series in n columns in a row across a current amplifier. A diode drive circuit,
A difference voltage ΔV (= Vs−Vc) between a supply power supply voltage Vs applied to the plurality of multicolor light emitting diodes and a control voltage Vc for controlling the brightness of each light emitting color of the multicolor light emitting diode is represented by the multicolor. A plurality of voltage dividers equal in number to the number m of light emission colors of the multi-color light emitting diodes, which are equally divided by the number n of serially connected light emitting diodes and generate n divided voltages Vd1 to Vdn including the control voltage Vc. And the highest divided voltage Vd1 (= (Vs−Vc) × (n−1) / n + Vc) close to the power supply voltage Vs generated by the voltage divider is the first closest to the power supply. The second divided voltage Vd2 (= (Vs−Vc) × (n−2) / n + Vc) next to the divided voltage Vd1 generated by the voltage divider is counted from the power source side to the current amplifier. To the current amplifier ... A plurality of attenuators that sequentially supply the lowest divided voltage Vdn (= Vc) close to the control voltage Vc generated by the voltage divider so as to reach the current amplifier farthest from the power supply; An attenuator having a ratio of 1/1 between the voltage divider and the first current amplifier closest to the power supply side is a second current amplifier counted from the voltage divider and the power supply side. An attenuator with a ratio of 1/2 is inserted between the voltage divider and an attenuator with a ratio of 1 / n between the voltage amplifier and the current amplifier farthest from the power supply side. The voltage that becomes the actual input voltage Vi1 (= Vc / n + Vs × (n−1) / n) from the attenuator with a ratio of / 1 is applied to the input side of the first current amplifier closest to the power supply side. The actual input voltage Vi from the attenuator with a ratio of 1/2. 2 (= Vc / n + Vs × (n−2) / n) is counted from the power supply side to the input side of the second current amplifier, from the attenuator with a ratio of 1 / n. By applying a voltage at which the actual input voltage Vin (= Vc / n) is applied to the input side of the current amplifier farthest from the power supply side, each of the n-stage current amplifiers has a current proportional to the control voltage Vc. Is supplied to the multi-color light emitting diodes in each of the n columns in the n columns connected in parallel in the p rows.
JP2003394196A 2003-11-25 2003-11-25 Drive circuit for light-emitting diode for lighting Ceased JP2005158438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394196A JP2005158438A (en) 2003-11-25 2003-11-25 Drive circuit for light-emitting diode for lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394196A JP2005158438A (en) 2003-11-25 2003-11-25 Drive circuit for light-emitting diode for lighting

Publications (1)

Publication Number Publication Date
JP2005158438A true JP2005158438A (en) 2005-06-16

Family

ID=34720341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394196A Ceased JP2005158438A (en) 2003-11-25 2003-11-25 Drive circuit for light-emitting diode for lighting

Country Status (1)

Country Link
JP (1) JP2005158438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128654A2 (en) * 2008-04-17 2009-10-22 (주)파워에이앤디 Apparatus having an equal load control circuit for control of plural led lightings
JP2009240381A (en) * 2008-03-28 2009-10-22 Okamura Corp Illuminating device for merchandise display shelf
JP2011250967A (en) * 2010-06-01 2011-12-15 Takasago Electric Ind Co Ltd Game machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240381A (en) * 2008-03-28 2009-10-22 Okamura Corp Illuminating device for merchandise display shelf
WO2009128654A2 (en) * 2008-04-17 2009-10-22 (주)파워에이앤디 Apparatus having an equal load control circuit for control of plural led lightings
WO2009128654A3 (en) * 2008-04-17 2010-01-21 (주)파워에이앤디 Apparatus having an equal load control circuit for control of plural led lightings
JP2011250967A (en) * 2010-06-01 2011-12-15 Takasago Electric Ind Co Ltd Game machine

Similar Documents

Publication Publication Date Title
US10396659B2 (en) Load driving device, and lighting apparatus and liquid crystal display device using the same
US7714517B2 (en) LED driver with current sink control and applications of the same
KR100454134B1 (en) A drive circuit for an organic EL apparatus
US8373346B2 (en) Solid state lighting system and a driver integrated circuit for driving light emitting semiconductor devices
US9179509B2 (en) Light emitting diode assembly
EP2536254B1 (en) Light emitting device and illumination apparatus having same
US20090187925A1 (en) Driver that efficiently regulates current in a plurality of LED strings
US20090322234A1 (en) Led driver with multiple feedback loops
US10734896B2 (en) Load driving device, and lighting apparatus and liquid crystal display device using the same
US7045971B2 (en) Illuminating apparatus using full-color LEDs
WO2007055519A1 (en) Constant current pulse width modulation driving circuit for light emitting diode
US9030118B2 (en) Single inductor control of multi-color LED systems
US8115412B2 (en) Drive device for light-emitting element
US8547031B2 (en) Circuit configuration and method for operating at least one first and one second LED
JP2011108799A (en) Light emitting device, and lighting system and display device equipped with light emitting device
JP2005158438A (en) Drive circuit for light-emitting diode for lighting
JP5366221B2 (en) LED light source device and control method of LED light source device
JP2011514990A (en) Configuration of LED-based flexible video screen current regulator
JP2011113684A (en) Light emitting device, and lighting system and display device with the same
WO2019033265A1 (en) Lighting apparatus, driving circuit and driving method thererof
SK9708Y1 (en) Connection of the current source in a multi-channel LED system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20091027