JP2005156911A - Scanning optical device - Google Patents

Scanning optical device Download PDF

Info

Publication number
JP2005156911A
JP2005156911A JP2003395022A JP2003395022A JP2005156911A JP 2005156911 A JP2005156911 A JP 2005156911A JP 2003395022 A JP2003395022 A JP 2003395022A JP 2003395022 A JP2003395022 A JP 2003395022A JP 2005156911 A JP2005156911 A JP 2005156911A
Authority
JP
Japan
Prior art keywords
optical
scanning
elastic member
optical box
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003395022A
Other languages
Japanese (ja)
Inventor
Takayuki Mizuta
貴之 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003395022A priority Critical patent/JP2005156911A/en
Publication of JP2005156911A publication Critical patent/JP2005156911A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an optical performance by suppressing variations in positional accuracy of the part adjacent to scanning light arranged in an elastic member, and suppressing variations in the optical performance. <P>SOLUTION: The scanning optical device provided with a light source, a deflection means for deflection-scanning a luminous flux emitted from the light source, an image-forming lens for image-forming the scanning light on a photoreceptor, the elastic member for fixing the image-forming lens, an optical box for holding the above optical part, and a cover member for almost covering the optical box, is characterized in that the elastic member is provided with a part adjacent to the scanning light in the horizontal scanning direction, and is positioned by being held between the optical box and the cover member. Thus, the variations in the positional accuracy of the part adjacent to the luminous flux arranged for the elastic member are suppressed, and variations in the optical characteristic are also suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は走査光学装置に関し、特に光源から出射した光束を回転多面鏡で偏向させfθレンズを介して被走査面上に光走査して画像情報を記録するようにした、レーザービームプリンターやデジタル複写機等の走査光学装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical apparatus, and more particularly, to a laser beam printer or digital copying apparatus in which a light beam emitted from a light source is deflected by a rotating polygon mirror and optically scanned onto a scanned surface via an fθ lens. The present invention relates to a scanning optical device such as a machine.

従来、レーザービームプリンタやデジタル複写機等の用いられる走査光学装置においては、画像信号に応じて光源から光変調されて出射した光束を、例えば回転多面鏡等の光偏向器によって周期的に偏向走査させ、fθ特性を有する結像光学系によって感光ドラム上の結像面にスポット状に集束させる。結像面上のスポットは、偏向器による主走査と、感光ドラムの回転による副走査に伴って静電潜像を形成し、画像記録を行っている。   2. Description of the Related Art Conventionally, in a scanning optical device used for a laser beam printer, a digital copying machine, etc., a light beam modulated and emitted from a light source according to an image signal is periodically deflected and scanned by an optical deflector such as a rotating polygon mirror. And is focused in a spot shape on the imaging surface on the photosensitive drum by the imaging optical system having the fθ characteristic. The spot on the imaging surface forms an electrostatic latent image in accordance with main scanning by the deflector and sub-scanning by the rotation of the photosensitive drum, and image recording is performed.

図8は従来例による走査光学装置100を示すもので、光源101から放射した発散光束は、コリメータレンズ102によって略平行光束とされ、絞り103によって光束の光量を調整し、副走査方向にのみ屈折力を有するシリンドリカルレンズ104に入射する。   FIG. 8 shows a scanning optical apparatus 100 according to a conventional example. A divergent light beam emitted from a light source 101 is made into a substantially parallel light beam by a collimator lens 102, the amount of light beam is adjusted by a diaphragm 103, and refracted only in the sub-scanning direction. The light enters the cylindrical lens 104 having a force.

シリンドリカルレンズ104に入射した平行光束は、主走査断面内においてはそのまま略平行光束の状態で、副走査断面内においてのみ集束する光束として出射し、回転多面鏡105の反射面105aに線像として結像する。   The parallel light beam incident on the cylindrical lens 104 is emitted as a light beam that is converged only in the sub-scanning section in the state of a substantially parallel light beam in the main scanning section, and is formed as a line image on the reflecting surface 105a of the rotary polygon mirror 105. Image.

回転多面鏡105の回転によって偏向走査された光束は、fθ特性を有する結像光学素子であるfθレンズ106を経て感光ドラム120の結像面に上に結像する。結像面上に結像する点像(スポット)は、回転多面鏡105を矢印A方向に回転させることで、感光ドラム120上を矢印B方向に走査する。このような主走査と、感光ドラム120がその回転軸周りに回転することによる副走査を伴って、記録媒体である感光ドラム120上に画像記録を行っている。   The light beam deflected and scanned by the rotation of the rotary polygon mirror 105 forms an image on the imaging surface of the photosensitive drum 120 through an fθ lens 106 which is an imaging optical element having fθ characteristics. A point image (spot) imaged on the imaging surface is scanned on the photosensitive drum 120 in the arrow B direction by rotating the rotary polygon mirror 105 in the arrow A direction. Image recording is performed on the photosensitive drum 120, which is a recording medium, with such main scanning and sub-scanning due to the photosensitive drum 120 rotating around its rotation axis.

上記光学要素部品は弾性部材107等で光学箱152に固定される。fθレンズ106を弾性部材107で固定する方法などは特開平11-202234に示されている。特開平11-202234の例で紹介されている弾性部材をスナップフィット構造で光学箱に結像レンズを固定していることで、組立工数の削減や弾性部材を固定するネジ部品の削減等でコストダウンを行っている。   The optical element component is fixed to the optical box 152 by an elastic member 107 or the like. A method of fixing the fθ lens 106 with the elastic member 107 is disclosed in Japanese Patent Laid-Open No. 11-202234. The elastic member introduced in the example of JP-A-11-202234 has a snap-fit structure and the imaging lens is fixed to the optical box, thereby reducing the number of assembly steps and screw parts for fixing the elastic member. Going down.

また、回転多面鏡から発生した熱及び送風の影響を結像レンズに伝えにくくさせる遮蔽部材を弾性部材に設けた例が提案されている。これに、特開平11-202234と特開2001-13434を併用することで、光束を規制する絞りをスナップフィット構造の弾性部材に設けた例は類推できる。   In addition, an example has been proposed in which an elastic member is provided with a shielding member that makes it difficult to transmit the influence of heat and air generated from the rotary polygon mirror to the imaging lens. By combining this with Japanese Patent Laid-Open No. 11-202234 and Japanese Patent Laid-Open No. 2001-13434, an example in which a diaphragm for restricting the light beam is provided on the elastic member of the snap-fit structure can be analogized.

しかしながら、上記従来例では、弾性部材のスナップフィット構造で結像レンズを固定するため、結像レンズ固定時の反力で弾性部材が反る。これにより、弾性部材に設けられた回転多面鏡から発生した熱及び送風の影響を結像レンズに伝えにくくさせる光束と隣接するような壁形状や、光束と隣接する絞りでレンズ面の反射する光束を遮断する絞り形状の位置精度がばらつき、所望の特性を得られない場合がある。   However, in the above conventional example, since the imaging lens is fixed by the snap-fit structure of the elastic member, the elastic member is warped by a reaction force when the imaging lens is fixed. As a result, the shape of the wall adjacent to the light beam that makes it difficult to transmit the influence of heat and air generated from the rotary polygon mirror provided on the elastic member to the imaging lens, and the light beam reflected from the lens surface by the diaphragm adjacent to the light beam In some cases, the position accuracy of the aperture shape that blocks the aperture varies and desired characteristics cannot be obtained.

光源手段と、その光源手段から出射した光束を偏向走査する偏向手段と、走査光を感光体に結像させる結像レンズと、結像レンズを固定する弾性部材と、前記光学部品を収容する光学箱と、光学箱を略覆う蓋部材とを有する走査光学装置において、弾性部材は走査光と副走査方向で隣接する部位が設けられ、弾性部材は光学箱と蓋部材とで挟み込まれて位置決めされることを特徴とする。これにより、弾性部材に設けられた光束と隣接する部位の位置精度のばらつきを抑えることが出来、光学特性のばらつきを抑えることが出来る。   Light source means, deflecting means for deflecting and scanning a light beam emitted from the light source means, an imaging lens for forming an image of the scanning light on the photosensitive member, an elastic member for fixing the imaging lens, and an optical housing the optical component In a scanning optical device having a box and a lid member that substantially covers the optical box, the elastic member is provided with a portion adjacent to the scanning light in the sub-scanning direction, and the elastic member is sandwiched between the optical box and the lid member and positioned. It is characterized by that. As a result, it is possible to suppress variations in positional accuracy between portions adjacent to the light beam provided on the elastic member, and it is possible to suppress variations in optical characteristics.

また、光学箱と蓋部材を比較して光学箱の縦弾性係数が蓋部材の縦弾性係数より高いことを特徴とすることで、光学箱と蓋部材とが当接することで発生する光学箱の歪みを軽減することが出来る。   In addition, the optical box and the lid member are compared, and the longitudinal elastic modulus of the optical box is higher than the longitudinal elastic modulus of the lid member, so that the optical box generated by the contact between the optical box and the lid member Distortion can be reduced.

また、光学箱と、蓋部材を固定する部位で弾性部材が挟み込まれていることを特徴とすることで、光学箱と蓋部材、及び弾性部材を同時に固定でき、弾性部材をより安定した固定方法で固定することが可能となる。   In addition, the elastic member is sandwiched between the optical box and the portion for fixing the lid member, whereby the optical box, the lid member, and the elastic member can be fixed at the same time, and the elastic member is more stably fixed. It becomes possible to fix with.

本発明は上述のように構成されているので、以下に記載するような効果を有する。   Since this invention is comprised as mentioned above, it has an effect as described below.

走査光と隣接する部位を持つ弾性部材が光学箱と蓋部材で挟み込まれることで、弾性部材の姿勢を規制することが出来、光学性能の向上及びばらつきを抑えることが出来る。   Since the elastic member having a portion adjacent to the scanning light is sandwiched between the optical box and the lid member, the posture of the elastic member can be regulated, and the improvement and variation in optical performance can be suppressed.

また、光学箱の縦弾性係数が蓋部材の縦弾性係数より高いことで、光学箱と蓋部材とが当接することで発生する光学箱の歪みを軽減することが出来る。   In addition, since the longitudinal elastic modulus of the optical box is higher than the longitudinal elastic coefficient of the lid member, it is possible to reduce the distortion of the optical box that occurs when the optical box and the lid member come into contact with each other.

また、光学箱と、蓋部材を固定する部位で弾性部材が挟み込まれていることで、光学箱と蓋部材、及び弾性部材を同時に固定でき、弾性部材をより安定した固定方法で固定することが可能となる。   Further, since the elastic member is sandwiched between the optical box and the portion for fixing the lid member, the optical box, the lid member, and the elastic member can be fixed at the same time, and the elastic member can be fixed by a more stable fixing method. It becomes possible.

(第1の実施例)
図1は、本発明の走査光学装置の上面図を示す図である。
(First embodiment)
FIG. 1 is a diagram showing a top view of the scanning optical apparatus of the present invention.

同図において、1は光源であり、例えば半導体レーザーによって成り立っている。2はシリンドリカルレンズであり、光軸を含み主走査方向に直交する副走査方向のみ所定の屈折力を有している。   In the figure, reference numeral 1 denotes a light source, which is constituted by, for example, a semiconductor laser. A cylindrical lens 2 has a predetermined refractive power only in the sub-scanning direction including the optical axis and orthogonal to the main scanning direction.

5は光偏向器で回転多面鏡3より成っておりモーター等の駆動手段により矢印方向に回転している。6、7はfθ特性を有する結像光学系(fθレンズ)であり主走査方向と副走査方向とで互いに異なる曲率を持つレンズにより構成している。またこのレンズは光学用プラスッチク材料により成型されている。   An optical deflector 5 is composed of a rotating polygon mirror 3 and is rotated in the direction of the arrow by a driving means such as a motor. Reference numerals 6 and 7 denote imaging optical systems (fθ lenses) having fθ characteristics, which are constituted by lenses having different curvatures in the main scanning direction and the sub-scanning direction. This lens is molded from an optical plastic material.

光源1である半導体レーザーから出射したレーザ光はシリンドリカルレンズ2に入射する。このうち主走査方向の光束はそのまま光偏向器である回転多面鏡3に入射するが、副走査方向の光束はシリンドリカルレンズ2によって回転多面鏡3の反射面付近に結像される。したがって回転多面鏡3に入射する光束は主走査方向に長手の線像となる。   Laser light emitted from the semiconductor laser as the light source 1 enters the cylindrical lens 2. Among them, the light beam in the main scanning direction is directly incident on the rotary polygon mirror 3 which is an optical deflector, but the light beam in the sub-scanning direction is imaged near the reflecting surface of the rotary polygon mirror 3 by the cylindrical lens 2. Therefore, the light beam incident on the rotary polygon mirror 3 becomes a line image that is long in the main scanning direction.

光偏向器である回転多面鏡3に入射した光束は、モーターによる回転多面鏡3の矢印方向の回動によって偏向される。回転多面鏡3により偏向された光束はfθレンズ6、7に入射する。本実施例に於いてfθレンズ6、7の面形状は非球面である。fθレンズ6、7に入射した光束は折返しミラー9で折り返され、図示しない被走査面上に結像して、回転多面鏡3の回動により被走査面上を該光束で光走査する。弾性部材10はスナップフィット構造でfθレンズ6,7を光学箱8に固定する。図2にfθレンズ6,7回りの断面A-Aを示す。光学箱8は、上記光学要素部品を収納した後に蓋部材13で密閉される。蓋部材13はプラスチックの成型品である。蓋部材13には突き当て用のリブ14が設けられ、蓋部材13を光学箱8に組付けることで、弾性部材10を光学箱に設けられたリブ12と蓋部材13に設けられたリブ14で挟み込む。尚、蓋部材13は光学箱8より曲げ弾性率の低い材料を使用し、リブ12とリブ14で弾性部材10を挟み込む際には蓋部材13が撓み、光学箱8を撓ませにくい構造となっている。例えば光学箱8は曲げ弾性率が8000MPaとなり、蓋部材13は曲げ弾性率が2300MPaとなり、約3.5倍の曲げ弾性率違いで蓋部材を撓ませ、光学箱8の歪みを低減させることで光学性能の劣化を低減させる。   The light beam incident on the rotary polygon mirror 3 that is an optical deflector is deflected by the rotation of the rotary polygon mirror 3 in the direction of the arrow by the motor. The light beam deflected by the rotary polygon mirror 3 enters the fθ lenses 6 and 7. In this embodiment, the surface shape of the fθ lenses 6 and 7 is an aspherical surface. The light beams incident on the fθ lenses 6 and 7 are folded back by the folding mirror 9 and imaged on a scanning surface (not shown), and the scanning surface is optically scanned with the light beams by the rotation of the rotary polygon mirror 3. The elastic member 10 has a snap-fit structure and fixes the fθ lenses 6 and 7 to the optical box 8. FIG. 2 shows a cross section AA around the fθ lenses 6 and 7. The optical box 8 is sealed with a lid member 13 after housing the optical element component. The lid member 13 is a plastic molded product. The lid member 13 is provided with a rib 14 for abutment, and by attaching the lid member 13 to the optical box 8, the elastic member 10 is provided with the rib 12 provided on the optical box and the rib 14 provided on the lid member 13. Insert with. The lid member 13 is made of a material having a lower bending elastic modulus than the optical box 8, and when the elastic member 10 is sandwiched between the rib 12 and the rib 14, the lid member 13 is bent and the optical box 8 is hardly bent. ing. For example, the optical box 8 has a bending elastic modulus of 8000 MPa, the lid member 13 has a bending elastic modulus of 2300 MPa, and the optical member 8 is bent by a bending elastic modulus difference of about 3.5 times to reduce the distortion of the optical box 8 to improve the optical performance. Reduce deterioration.

弾性部材10にはfθレンズを固定する機構15以外に、回転多面鏡3が回転することで発生する熱及び送風を遮蔽するための遮蔽壁11が設けられている。この遮蔽壁11は光路L1に近いほど、fθレンズ6、7に影響する風を遮断することが出来る。   In addition to the mechanism 15 for fixing the fθ lens, the elastic member 10 is provided with a shielding wall 11 for shielding heat and air generated when the rotary polygon mirror 3 rotates. The closer the shielding wall 11 is to the optical path L1, the more the wind that affects the fθ lenses 6 and 7 can be blocked.

遮蔽壁11が設けてある弾性部材の従来例を図3に示す。ここで述べる走査光と隣接する部位は、回転多面鏡の回転で発生した熱及び送風をfθレンズに対し遮蔽することである。これにより、fθレンズに与える熱の影響を抑えることが出来る。   FIG. 3 shows a conventional example of an elastic member provided with a shielding wall 11. The portion adjacent to the scanning light described here is to shield the heat and air generated by the rotation of the rotary polygon mirror from the fθ lens. Thereby, the influence of heat on the fθ lens can be suppressed.

fθレンズ106は光学箱152に弾性部材100で固定される。弾性部材100は一体で構成され、fθレンズ106a,106bをスナップフィット構造で固定される。115は弾性部材100に設けられたfθレンズ106を固定するための部位であり、101は光路を規制するための遮蔽リブである。弾性部材100を組付ける際、fθレンズ106を固定するための部位115の反力で弾性部材100は図中のように反る。この反りは部位115の公差のばらつきで異なり、弾性部材に設けられている遮蔽リブ101の位置精度をばらつかせる要因となる。   The fθ lens 106 is fixed to the optical box 152 with the elastic member 100. The elastic member 100 is integrally formed, and the fθ lenses 106a and 106b are fixed with a snap fit structure. 115 is a part for fixing the fθ lens 106 provided on the elastic member 100, and 101 is a shielding rib for regulating the optical path. When the elastic member 100 is assembled, the elastic member 100 warps as shown in the figure by the reaction force of the portion 115 for fixing the fθ lens 106. This warpage varies depending on the tolerance variation of the portion 115, and causes a variation in the positional accuracy of the shielding rib 101 provided on the elastic member.

図4に規制リブ101の位置精度とfθレンズの温度上昇の関係を示す。横軸に時間を縦軸にfθレンズ上の温度を示している。規制リブ101がない場合はグラフ140のようになる。規制リブがある場合はグラフ141のようになり、規制リブの有無でfθレンズ上の温度と温度が飽和する時間に差が出る。規制リブ101の位置が図3記載の位置にある場合はグラフ142のようになる。そのため規制リブの位置精度がばらつくことはfθレンズ上の温度がばらつくことでfθレンズ特性がばらつき、スポット径の肥大を引き起こす。   FIG. 4 shows the relationship between the positional accuracy of the regulating rib 101 and the temperature rise of the fθ lens. The horizontal axis represents time, and the vertical axis represents the temperature on the fθ lens. When there is no restriction rib 101, the graph 140 is obtained. When there is a restriction rib, the graph is as shown in the graph 141, and there is a difference between the temperature on the f.theta. When the position of the restriction rib 101 is at the position shown in FIG. For this reason, the variation in the positional accuracy of the restriction ribs causes the variation in the fθ lens characteristics due to the variation in the temperature on the fθ lens, which causes an increase in the spot diameter.

熱及び送風を遮蔽するための遮蔽壁11の変わりに結像レンズのレンズ面で反射した光を感光体に向かわせない絞り形状が弾性部材に設けられている例を図5(a)、図5(b)に示す。   FIG. 5 (a), FIG. 5 (a) and FIG. 5 (a) are examples in which the elastic member has a diaphragm shape that does not direct the light reflected by the lens surface of the imaging lens toward the photosensitive member instead of the shielding wall 11 for shielding heat and air. Shown in 5 (b).

弾性部材10に結像レンズ6,7のレンズ面で反射した光L2を感光体に向かわないように遮蔽する開口部16が設けられている。この反射した光L2が感光体に向かった場合、走査方向で画像の濃度むらが発生する。その例を図6に示す。横軸に光走査方向の像高を示し、0は画像中央を示している。縦軸に光量を示し、像高別で光量分布がある場合は画像上で濃度むらが発生する。160は開口部16が設けられていない場合、161は開口部16が設けられている場合である。162は開口部16を設けることで局所部分の光量分布を低減できていることを示している。   The elastic member 10 is provided with an opening 16 that shields the light L2 reflected by the lens surfaces of the imaging lenses 6 and 7 so as not to go to the photosensitive member. When the reflected light L2 is directed to the photosensitive member, unevenness in image density occurs in the scanning direction. An example is shown in FIG. The horizontal axis indicates the image height in the optical scanning direction, and 0 indicates the center of the image. When the vertical axis indicates the amount of light and there is a light amount distribution for each image height, uneven density occurs on the image. 160 is the case where the opening 16 is not provided, and 161 is the case where the opening 16 is provided. 162 indicates that the light quantity distribution in the local portion can be reduced by providing the opening 16.

これにより、弾性部材に設けられた光束と隣接する部位の位置精度を規制でき、部位が担う光学性能の向上及びばらつきを抑えることが出来る。   Thereby, the positional accuracy of the part adjacent to the light beam provided on the elastic member can be regulated, and the improvement and variation in optical performance of the part can be suppressed.

(第2の実施例)
図7に本発明の第2の実施例を示す。光学箱8は、上記光学要素部品を収納した後に蓋部材13で密閉される。蓋部材13はプラスチックの成型品である。弾性部材10にはfθレンズを固定する機構15以外に、回転多面鏡3が回転することで発生する風を遮蔽するための遮蔽壁11が設けられている。この遮蔽壁11は光路L1に近いほど、fθレンズ6、7に影響する風を遮断することが出来る。光学箱8と蓋部材13を固定する部位が光学箱がわに設けられた21、及び蓋部材がわに設けられた22で弾性部材10を挟み込み、ビス23で固定する。これにより、光学箱、蓋部材、及び弾性部材を同時に固定でき、弾性部材をより安定した固定方法で固定することが可能となる。
(Second embodiment)
FIG. 7 shows a second embodiment of the present invention. The optical box 8 is sealed with a lid member 13 after housing the optical element component. The lid member 13 is a plastic molded product. In addition to the mechanism 15 for fixing the fθ lens, the elastic member 10 is provided with a shielding wall 11 for shielding the wind generated by the rotation of the rotary polygon mirror 3. The closer the shielding wall 11 is to the optical path L1, the more the wind that affects the fθ lenses 6 and 7 can be blocked. The elastic member 10 is sandwiched between the optical box 8 and the lid member 13 where the optical box 8 and the lid member 13 are fixed, and the lid member 13 is fixed to the optical box 8 and the lid 23. Thereby, an optical box, a cover member, and an elastic member can be fixed simultaneously, and it becomes possible to fix an elastic member by the more stable fixing method.

本発明の第1実施例を示した走査光学装置を説明する図である。1 is a diagram for explaining a scanning optical apparatus showing a first embodiment of the present invention. FIG. 本発明の第1実施例を示した走査光学装置を説明する図である。It is a figure explaining the scanning optical apparatus which showed 1st Example of this invention. 本発明の第1実施例を示した走査光学装置を説明する図である。1 is a diagram for explaining a scanning optical apparatus showing a first embodiment of the present invention. FIG. 本発明の第1実施例を示した走査光学装置を説明する図である。1 is a diagram for explaining a scanning optical apparatus showing a first embodiment of the present invention. FIG. 本発明の第1実施例を示した走査光学装置を説明する図である。It is a figure explaining the scanning optical apparatus which showed 1st Example of this invention. 本発明の第1実施例を示した走査光学装置を説明する図である。It is a figure explaining the scanning optical apparatus which showed 1st Example of this invention. 本発明の第1実施例を示した走査光学装置を説明する図である。It is a figure explaining the scanning optical apparatus which showed 1st Example of this invention. 従来例の走査光学装置を説明する図である。It is a figure explaining the scanning optical apparatus of a prior art example.

符号の説明Explanation of symbols

1 半導体レーザ
2 シリンドリカルレンズ
3 回転多面鏡
4 偏向面
5 光偏向器
6 fθレンズ
7 fθレンズ
8 光学箱
10 弾性部材
11 遮蔽部位
12 リブ
13 蓋部材
1 Semiconductor laser
2 Cylindrical lens
3 Rotating polygon mirror
4 Deflection surface
5 Optical deflector
6 fθ lens
7 fθ lens
8 Optical box
10 Elastic member
11 Shielded area
12 ribs
13 Lid member

Claims (3)

光源手段と、前記光源手段から出射した光束を偏向走査する偏向手段と、走査光を感光体に結像させる結像レンズと、前記結像レンズを固定する弾性部材と、前記光学部品を収容する光学箱と、前記光学箱を略覆う蓋部材とを有する走査光学装置において、
前記弾性部材は前記走査光と副走査方向に隣接して配置される部位が設けられ、前期弾性部材は前記光学箱と前記蓋部材とで挟み込まれて位置決めされることを特徴とする走査光学装置。
A light source means, a deflecting means for deflecting and scanning a light beam emitted from the light source means, an imaging lens for imaging the scanning light on a photosensitive member, an elastic member for fixing the imaging lens, and the optical component are accommodated. In a scanning optical device having an optical box and a lid member that substantially covers the optical box,
The elastic member is provided with a portion disposed adjacent to the scanning light in the sub-scanning direction, and the elastic member is sandwiched and positioned between the optical box and the lid member. .
前記光学箱と前記蓋部材と比較して前記光学箱の縦弾性係数が前記蓋部材の縦弾性係数より高いことを特徴とする請求項1記載の走査光学装置。   2. The scanning optical device according to claim 1, wherein a longitudinal elastic coefficient of the optical box is higher than a longitudinal elastic coefficient of the lid member as compared with the optical box and the lid member. 前記光学箱と、前記蓋部材を固定する部位で前記弾性部材が挟み込まれていることを特徴とする請求項1及び2記載の走査光学装置。
3. The scanning optical apparatus according to claim 1, wherein the elastic member is sandwiched between a portion where the optical box and the lid member are fixed.
JP2003395022A 2003-11-26 2003-11-26 Scanning optical device Withdrawn JP2005156911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395022A JP2005156911A (en) 2003-11-26 2003-11-26 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395022A JP2005156911A (en) 2003-11-26 2003-11-26 Scanning optical device

Publications (1)

Publication Number Publication Date
JP2005156911A true JP2005156911A (en) 2005-06-16

Family

ID=34720890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395022A Withdrawn JP2005156911A (en) 2003-11-26 2003-11-26 Scanning optical device

Country Status (1)

Country Link
JP (1) JP2005156911A (en)

Similar Documents

Publication Publication Date Title
US9720207B2 (en) Light scanning apparatus
US7782352B2 (en) Optical scanning device and image forming apparatus
KR101003004B1 (en) Optical scanning device and image forming apparatus using the same
JP5116273B2 (en) Optical scanning device, light shielding material, flare light shielding method, and image forming apparatus
JP3504899B2 (en) Optical scanning device
JP5116559B2 (en) Optical scanning device and image forming apparatus using the same
JP2006349925A (en) Optical unit and image forming apparatus
JP2010134434A (en) Scanning optical apparatus and image forming apparatus using the same
US6943926B2 (en) Optical scanner
JP5197045B2 (en) Optical scanning device and image forming apparatus using the same
JP2001183595A (en) Optical scanner, multibeam optical scanner, and image forming device using the same
US6950216B2 (en) Light source apparatus and optical scanner
JP2001177176A (en) Laser beam optical source
JP2001071553A (en) Laser beam light source
JP2005156911A (en) Scanning optical device
JP3470670B2 (en) Optical scanning device
JP4164501B2 (en) Scanning optical device
KR100601720B1 (en) Scanning optical lens for light scanning unit
JP4706628B2 (en) Optical scanning device
JP2005156773A (en) Optical scanner
JP2004054019A (en) Scanning optical device and image forming apparatus
JP4731722B2 (en) Optical scanning apparatus and image forming apparatus
JP2005156781A (en) Scanning optical apparatus and color image forming apparatus using the same
JP2005173601A (en) Optical scanner
JP2006308754A (en) Scanning optical system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206