JP2005155996A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005155996A
JP2005155996A JP2003393842A JP2003393842A JP2005155996A JP 2005155996 A JP2005155996 A JP 2005155996A JP 2003393842 A JP2003393842 A JP 2003393842A JP 2003393842 A JP2003393842 A JP 2003393842A JP 2005155996 A JP2005155996 A JP 2005155996A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
exchange chamber
heat transfer
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393842A
Other languages
Japanese (ja)
Inventor
Hiromichi Miwa
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003393842A priority Critical patent/JP2005155996A/en
Publication of JP2005155996A publication Critical patent/JP2005155996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of securing joint strength as a structure by reducing thermal stress. <P>SOLUTION: This heat exchanger is provided with heat exchange elements 10, 40 forming first and second heat exchange chambers 1, 2 and constituted to exchange heat between a low temperature fluid flowing in the first heat exchange chamber 1 and a second fluid flowing in the second heat exchange chamber. The heat exchange element 10 is provided with two plates 11, 12 of plate shape facing each other, rigid members 21, 22, 23 stuck between the respective plates 11, 12 to partition the first heat exchange chamber 1 inside, and a heat transfer accelerating member 31 clamped without being stuck between the respective plates 11, 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、平板状のプレートと波板状のフィンなどの伝熱促進部材を積層した熱交換器の改良に関するものである。   The present invention relates to an improvement of a heat exchanger in which a heat transfer promoting member such as a flat plate and a corrugated fin is laminated.

この種の熱交換器として、特許文献1に開示されたものは、2枚のプレートの間に2枚のフィンを重ねて介装し、各プレートに各フィンを固着する一方、重ねられた各フィンどうしを互いに固着することなく当接させている。   As this kind of heat exchanger, what is disclosed in Patent Document 1 is such that two fins are interposed between two plates, and each fin is fixed to each plate, while each stacked The fins are brought into contact with each other without being fixed to each other.

この場合、熱交換器の作動時に重ねられた各フィンどうしの当接部が変位することによって熱変形が吸収されるとしている。
特開2002−71288号公報
In this case, heat deformation is absorbed by the displacement of the abutting portions of the fins that are overlapped when the heat exchanger is operated.
Japanese Patent Laid-Open No. 2002-71288

しかしながら、このような従来の熱交換器にあっては、低温流体側と高温流体側にそれぞれ面するプレートの両面にフィンを固着した場合、高温側と低温側の温度差によってプレートとフィンの接合部に熱応力が発生する可能性があった。   However, in such a conventional heat exchanger, when fins are fixed to both surfaces of the plate facing the low temperature fluid side and the high temperature fluid side, the plate and the fin are joined due to the temperature difference between the high temperature side and the low temperature side. There was a possibility that thermal stress was generated in the part.

また、プレートとフィンを固着させない構造とすることも考えられるが、その場合、従来のプレートとフィンの積層方法では、構造体としての接合強度を得ることが難しいという問題があった。   In addition, a structure in which the plate and the fin are not fixed can be considered, but in that case, there is a problem that it is difficult to obtain a bonding strength as a structure by the conventional method of laminating the plate and the fin.

本発明は上記の問題点に鑑みてなされたものであり、熱応力を低減し、構造体としての接合強度を確保できる熱交換器を提供することを目的とする。   This invention is made | formed in view of said problem, and it aims at providing the heat exchanger which can reduce thermal stress and can ensure the joint strength as a structure.

本発明では、その内部に流体が流れる熱交換室を形成する熱交換エレメントを積層し、各熱交換室を流れる流体間で熱交換が行われる構成とした熱交換器において、熱交換エレメントは互いに対峙する平板状をした対のプレートと、各プレートの間に固着され内部に熱交換室を画成する剛性部材と、熱交換室内で各プレートの間に固着されることなく挟持される伝熱促進部材とを備える。   In the present invention, in a heat exchanger in which heat exchange elements that form heat exchange chambers through which fluid flows are stacked and heat exchange is performed between the fluids flowing through the heat exchange chambers, the heat exchange elements are mutually connected. A pair of flat plates facing each other, a rigid member fixed between the plates and defining a heat exchange chamber inside, and heat transfer sandwiched between the plates in the heat exchange chamber without being fixed between the plates And an accelerating member.

また、各プレートを略矩形に形成し、各プレートの四辺に沿って剛性部材を配置し、剛性部材の一部に熱交換室に流体を出入りさせる開口部を形成した。   Moreover, each plate was formed in the substantially rectangular shape, the rigid member was arrange | positioned along the four sides of each plate, and the opening part which makes fluid flow in and out of a heat exchange chamber was formed in a part of rigid member.

本発明によると、熱交換エレメントは伝熱促進部材が各プレートの間に固着されることなく挟持される構造のため、熱交換器の作動時に伝熱促進部材と各プレートとの当接部が変位することによって熱変形が吸収される。このため、伝熱促進部材と各プレートに作用する熱応力が低減され、信頼性が向上する。   According to the present invention, the heat exchange element has a structure in which the heat transfer promotion member is sandwiched without being fixed between the plates, so that the contact portion between the heat transfer promotion member and each plate is not activated when the heat exchanger is operated. The thermal deformation is absorbed by the displacement. For this reason, the thermal stress which acts on a heat-transfer acceleration | stimulation member and each plate is reduced, and reliability improves.

熱交換エレメントを製造する際、各部材を拡散接合などによって固着する際、剛性部材によって各プレートの支持剛性を高められ、組み立て精度を確保して強固に接合できるとともに、この部位にかかる熱応力のみを考慮した設計が可能となる。そして、伝熱促進部材は各プレートの間に挟持されることにより、位置ズレが生じない。これにより、製品の信頼性の向上がはかれる。   When manufacturing the heat exchange element, when fixing each member by diffusion bonding, etc., the rigid member can increase the support rigidity of each plate, ensuring the assembly accuracy and joining firmly, and only the thermal stress applied to this part Can be designed in consideration of And since a heat-transfer promotion member is clamped between each plate, position shift does not arise. As a result, the reliability of the product is improved.

また、剛性部材の一部に熱交換室に流体を出入りさせる開口部を形成したことにより、剛性部材を各プレートに接合する面を途絶えることなく連続させる構造とすることができる。このため、各剛性部材によって各プレートを挟持する接合面が連続した枠状に形成され、構造体としての接合強度を得ることができる。これにより、製品の信頼性の向上がはかれる。   In addition, by forming an opening through which a fluid enters and exits the heat exchange chamber in a part of the rigid member, the surface where the rigid member is joined to each plate can be continued without interruption. For this reason, the joining surface which clamps each plate by each rigid member is formed in the continuous frame shape, and the joining strength as a structure can be obtained. As a result, the reliability of the product is improved.

本発明の第1実施形態の構成を説明する。   The configuration of the first embodiment of the present invention will be described.

図1は、蒸発器などに適用される熱交換器を構成する高温側熱交換エレメント10を示す。この高温側熱交換エレメント10はその内外に第一、第二熱交換室1,2を区画形成する。   FIG. 1 shows a high temperature side heat exchange element 10 constituting a heat exchanger applied to an evaporator or the like. The high temperature side heat exchange element 10 defines first and second heat exchange chambers 1 and 2 inside and outside thereof.

箱形をした高温側熱交換エレメント10は、2枚のプレート11,12と、各プレート11,12の間に固着される剛性部材21〜24と、各プレート11,12の間に固着されることなく挟持される伝熱促進部材31とを備える。   The box-shaped high temperature side heat exchange element 10 is fixed between the two plates 11 and 12, the rigid members 21 to 24 fixed between the plates 11 and 12, and the plates 11 and 12. And a heat transfer promoting member 31 that is sandwiched without any problem.

熱交換器を構成する各部材は、例えばアルミニウム材のステンレス材やチタン材などの金属が用いられる。   For each member constituting the heat exchanger, for example, a metal such as an aluminum stainless steel or titanium material is used.

各プレート11,12は略矩形の薄板状に形成する。剛性部材21〜24はその断面が略矩形をした柱状に形成する。各プレート11,12の四辺に沿って各剛性部材21〜24を配置する。これにより高温側熱交換エレメント10はその内側に第一熱交換室1を区画形成する。   Each plate 11 and 12 is formed in a substantially rectangular thin plate shape. The rigid members 21 to 24 are formed in a columnar shape having a substantially rectangular cross section. The rigid members 21 to 24 are arranged along the four sides of the plates 11 and 12. Thereby, the high temperature side heat exchange element 10 forms the 1st heat exchange chamber 1 in the inside.

各剛性部材21〜24は中実構造とする。各剛性部材21〜24は各プレート11,12の端部間を隙間なく囲っている。剛性部材21,22は高温側熱交換エレメント10の長辺方向に延びる。剛性部材23,24は高温側熱交換エレメント10の短辺方向に延びる。   Each of the rigid members 21 to 24 has a solid structure. The rigid members 21 to 24 surround the end portions of the plates 11 and 12 without a gap. The rigid members 21 and 22 extend in the long side direction of the high temperature side heat exchange element 10. The rigid members 23 and 24 extend in the short side direction of the high temperature side heat exchange element 10.

第一熱交換室1に配置される伝熱促進部材31は波板状に湾曲したコルゲートフィンからなる。伝熱促進部材31の断面が三角状に曲折する多数の畝部32を有している。各畝部32は高温側熱交換エレメント10の短辺方向に延びる。   The heat transfer promotion member 31 disposed in the first heat exchange chamber 1 is formed of a corrugated fin curved in a corrugated plate shape. The cross section of the heat transfer promoting member 31 has a number of flanges 32 that bend in a triangular shape. Each flange 32 extends in the short side direction of the high temperature side heat exchange element 10.

剛性部材22には高温流体を第一熱交換室1に流入させる複数の開口部22aを貫通して形成する。剛性部材21に第一熱交換室1から高温流体を流出させる複数の開口部21aを貫通して形成する。各開口部21a,22aは高温側熱交換エレメント10の短辺方向に延びる通孔として形成する。各開口部21a,22aの断面形状は略矩形に形成し、それぞれの開口面積を十分に確保している。   The rigid member 22 is formed through a plurality of openings 22a through which high-temperature fluid flows into the first heat exchange chamber 1. The rigid member 21 is formed through a plurality of openings 21a through which the high-temperature fluid flows out from the first heat exchange chamber 1. Each of the openings 21 a and 22 a is formed as a through hole extending in the short side direction of the high temperature side heat exchange element 10. The cross-sectional shape of each opening 21a, 22a is formed in a substantially rectangular shape, and each opening area is sufficiently secured.

各剛性部材21,22に各開口部21a,22aを形成したことにより、各剛性部材21,22が各プレート11,12に接合する面が途絶えることなく連続して形成されている。   By forming the openings 21a and 22a in the rigid members 21 and 22, the surfaces where the rigid members 21 and 22 are joined to the plates 11 and 12 are continuously formed without interruption.

なお、各開口部21a,22aの開口面積、各開口部21a,22aの間に形成される支柱部21b,22bの形状などは任意に設定し、拡散接合による固着時にかかる荷重に対して十分な剛性が確保される。   In addition, the opening area of each opening 21a, 22a, the shape of support | pillar part 21b, 22b formed between each opening 21a, 22a, etc. are set arbitrarily, and it is enough with respect to the load applied at the time of fixation by diffusion bonding Rigidity is ensured.

剛性部材21,22、剛性部材23,24、各プレート11,12はそれぞれ同一形状とし、部品の共通化がはかられている。   The rigid members 21 and 22, the rigid members 23 and 24, and the plates 11 and 12 have the same shape, and parts are shared.

各プレート11,12と各剛性部材21〜24は例えば拡散接合によってそれぞれの接合部を固着する。なお、これに限らず、各プレート11,12と各剛性部材21〜24はろう付け、あるいは他の接合方法によって固着してもよい。   The plates 11 and 12 and the rigid members 21 to 24 are bonded to each other by, for example, diffusion bonding. Not limited to this, the plates 11 and 12 and the rigid members 21 to 24 may be fixed by brazing or other joining methods.

伝熱促進部材31は各プレート11,12、各剛性部材21〜24にそれぞれ当接し、各当接部が固着されることなく高温側熱交換エレメント10内に保持される。   The heat transfer promoting member 31 is in contact with the plates 11 and 12 and the rigid members 21 to 24, and is held in the high temperature side heat exchange element 10 without the contact portions being fixed.

伝熱促進部材31は圧縮された状態で各プレート11,12の間に挟持され、その弾性復元力によってその畝部32が各プレート11,12に当接している。   The heat transfer promoting member 31 is sandwiched between the plates 11 and 12 in a compressed state, and the flange portion 32 is in contact with the plates 11 and 12 by its elastic restoring force.

図2に示すように、熱交換器8は、高温側熱交換エレメント10と低温側熱交換エレメント40を積層して形成する。熱交換器8に要求される熱交換量に応じて、第3図に示すように積層数を増やすことが可能である。   As shown in FIG. 2, the heat exchanger 8 is formed by stacking a high temperature side heat exchange element 10 and a low temperature side heat exchange element 40. Depending on the amount of heat exchange required for the heat exchanger 8, the number of layers can be increased as shown in FIG.

熱交換器8は、第一熱交換室1と第二熱交換室2における流体流れが略直交したクロスフロー形となっている。   The heat exchanger 8 has a cross flow shape in which the fluid flows in the first heat exchange chamber 1 and the second heat exchange chamber 2 are substantially orthogonal.

箱形をした低温側熱交換エレメント40は、2枚のプレート11,12と、各プレート11,12の間に固着される各剛性部材41〜44と、各プレート11,12の間に固着されることなく挟持される伝熱促進部材51とを備える。   The box-shaped low-temperature side heat exchange element 40 is fixed between the two plates 11 and 12, the rigid members 41 to 44 fixed between the plates 11 and 12, and the plates 11 and 12. And a heat transfer promotion member 51 that is sandwiched without any problem.

各プレート11,12は高温側熱交換エレメント10と低温側熱交換エレメント40の間で共用される。   The plates 11 and 12 are shared between the high temperature side heat exchange element 10 and the low temperature side heat exchange element 40.

各剛性部材41〜44はその断面が略矩形をした柱状に形成する。各プレート11,12の四辺に沿って各剛性部材41〜44を配置する。これにより低温側熱交換エレメント40はその内側に第二熱交換室2を区画形成する。   Each of the rigid members 41 to 44 is formed in a columnar shape having a substantially rectangular cross section. The rigid members 41 to 44 are arranged along the four sides of the plates 11 and 12. Thereby, the low temperature side heat exchange element 40 forms the 2nd heat exchange chamber 2 in the inside.

各剛性部材41〜44は各プレート11,12の端部に隙間なく接合する。各剛性部材41,42は低温側熱交換エレメント40の短長辺方向に延びる。各剛性部材43,44は低温側熱交換エレメント40の長辺方向に延びる。各剛性部材41〜44は中実構造とする。   The rigid members 41 to 44 are joined to the end portions of the plates 11 and 12 without a gap. Each rigid member 41, 42 extends in the short long side direction of the low temperature side heat exchange element 40. Each rigid member 43, 44 extends in the long side direction of the low temperature side heat exchange element 40. Each of the rigid members 41 to 44 has a solid structure.

伝熱促進部材51は波板状に湾曲したコルゲートフィンからなる。伝熱促進部材31の断面が円弧状に湾曲する多数の畝部52を有している。各畝部52は低温側熱交換エレメント40の長辺方向に延びる。   The heat transfer promoting member 51 is made of a corrugated fin curved in a corrugated plate shape. The cross section of the heat transfer promoting member 31 has a number of flange portions 52 that are curved in an arc shape. Each flange 52 extends in the long side direction of the low temperature side heat exchange element 40.

剛性部材41に第二熱交換室2に低温流体を流入させる複数の開口部41aを通孔として形成する。剛性部材42に第二熱交換室2から低温流体を流出させる複数の開口部42aを通孔として形成する。各開口部41a,42aは低温側熱交換エレメント40の短辺方向に延びる通孔として形成する。各開口部41a,42aの断面形状は略矩形に形成し、それぞれの開口面積を十分に確保している。   A plurality of openings 41a through which the low-temperature fluid flows into the second heat exchange chamber 2 are formed in the rigid member 41 as through holes. A plurality of openings 42a through which the low-temperature fluid flows out from the second heat exchange chamber 2 are formed in the rigid member 42 as through holes. Each of the openings 41 a and 42 a is formed as a through hole extending in the short side direction of the low temperature side heat exchange element 40. The cross-sectional shape of each opening 41a, 42a is formed in a substantially rectangular shape, and each opening area is sufficiently secured.

各プレート11,12と各剛性部材41〜44は例えば拡散接合によってそれぞれの接合部を固着する。なお、この接合方法としては、拡散接合に限らず、ロウ付けや他の方法を用いてもよい。   The plates 11 and 12 and the rigid members 41 to 44 are bonded to each other by, for example, diffusion bonding. Note that this bonding method is not limited to diffusion bonding, and brazing or other methods may be used.

伝熱促進部材51は各プレート11,12、各剛性部材41〜44にそれぞれ当接し、各当接部が固着されることなく低温側熱交換エレメント40内に保持される。   The heat transfer promotion member 51 is in contact with the plates 11 and 12 and the rigid members 41 to 44, and is held in the low temperature side heat exchange element 40 without the contact portions being fixed.

熱交換器8を製造する際、高温側熱交換エレメント10と低温側熱交換エレメント40を積層して組み立て、熱と荷重を加え、拡散接合によって各プレート11,12、各剛性部材21〜24、各剛性部材41〜44の接合部を固着する。   When the heat exchanger 8 is manufactured, the high temperature side heat exchange element 10 and the low temperature side heat exchange element 40 are stacked and assembled, heat and load are applied, and each plate 11, 12, each rigid member 21 to 24, by diffusion bonding, The joint portions of the rigid members 41 to 44 are fixed.

この固着時にて、各プレート11,12はその四方に配置された各剛性部材21〜24、各剛性部材41〜44によって支持されているため、組み立て精度を確保して強固に接合できるとともに、この部位にかかる熱応力のみを考慮した設計が可能となり、信頼性の向上がはかれる。  At the time of fixing, the plates 11 and 12 are supported by the rigid members 21 to 24 and the rigid members 41 to 44 arranged on the four sides thereof. Design considering only the thermal stress applied to the part is possible, and reliability is improved.

これについて詳述すると、各剛性部材21,22,41,42に各開口部21a,22a,41a,42aを開口させたことにより、各剛性部材21,22,41,42が各プレート11,12に接合する面が途絶えることなく連続する。これにより、各剛性部材21〜24、各剛性部材41〜44によって各プレート11,12を挟持する面が連続した枠状に形成され、構造体としての接合強度や信頼性を得ることができる。   More specifically, the openings 21a, 22a, 41a, 42a are opened in the rigid members 21, 22, 41, 42, so that the rigid members 21, 22, 41, 42 are connected to the plates 11, 12, respectively. The surface to be joined is continuous without interruption. Thereby, the surface which clamps each plate 11 and 12 by each rigid member 21-24 and each rigid member 41-44 is formed in the continuous frame shape, and it can acquire the joint strength and reliability as a structure.

なお、各開口部21a,22a,41a,42aの開口面積、各開口部21a,22a,41a,42aの間に形成される支柱部21b,22b,41b,42bの形状などは、拡散接合による固着時にかかる荷重に対して十分な剛性が確保されるように決める。   In addition, the opening area of each opening 21a, 22a, 41a, 42a, the shape of support | pillar part 21b, 22b, 41b, 42b formed between each opening 21a, 22a, 41a, 42a, etc. are fixed by diffusion bonding. Decide so that sufficient rigidity is secured against the load that is sometimes applied.

さらに、固着時に加えられる荷重が各伝熱促進部材31,51にかかることが抑えられるため、各伝熱促進部材31,51が変形することを防止でき、各伝熱促進部材31,51および各プレート11,12の薄肉化がはかれる。   Furthermore, since it is suppressed that the load applied at the time of adhering is applied to each heat transfer promotion member 31,51, it can prevent that each heat transfer promotion member 31,51 deform | transforms, each heat transfer promotion member 31,51, and each Thinning of the plates 11 and 12 is achieved.

熱交換器8は以上のように構成される。高温側熱交換エレメント10内の第一熱交換室1に高温流体が流れ、低温側熱交換エレメント40内の第二熱交換室2に低温流体が流れ、この高温流体と低温流体の間で熱交換が行われる。   The heat exchanger 8 is configured as described above. A high temperature fluid flows in the first heat exchange chamber 1 in the high temperature side heat exchange element 10, and a low temperature fluid flows in the second heat exchange chamber 2 in the low temperature side heat exchange element 40, and heat is generated between the high temperature fluid and the low temperature fluid. Exchange is performed.

高温側熱交換エレメント10にて、高温流体は第一熱交換室1を流れる過程で放熱するので、第一熱交換室1の上流側から下流側にかけて次第に温度が低下する温度勾配が生じ、この温度勾配によって伝熱促進部材31が熱変形する。さらに、高温流体と低温流体の温度差によって各プレート11,12が熱変形する。   In the high temperature side heat exchange element 10, the high temperature fluid dissipates heat in the process of flowing through the first heat exchange chamber 1, so that a temperature gradient in which the temperature gradually decreases from the upstream side to the downstream side of the first heat exchange chamber 1 is generated. The heat transfer promotion member 31 is thermally deformed by the temperature gradient. Further, the plates 11 and 12 are thermally deformed due to a temperature difference between the high temperature fluid and the low temperature fluid.

高温側熱交換エレメント10は伝熱促進部材31が各プレート11,12の間に固着されることなく挟持される構造とすることにより、伝熱促進部材31、各プレート11,12に生じる熱変形が、伝熱促進部材31と各プレート11,12との当接部が変位することによって吸収される。このため、伝熱促進部材31と各プレート11,12に作用する熱応力が低減される。   The high temperature side heat exchange element 10 has a structure in which the heat transfer promotion member 31 is sandwiched between the plates 11 and 12 without being fixed, so that the heat transfer promotion member 31 and the plates 11 and 12 are thermally deformed. Is absorbed by the displacement of the contact portion between the heat transfer promoting member 31 and each of the plates 11 and 12. For this reason, the thermal stress which acts on the heat-transfer promotion member 31 and each plate 11 and 12 is reduced.

伝熱促進部材31は各プレート11,12、各剛性部材21〜24にそれぞれ当接することにより、高温側熱交換エレメント10内に保持され、位置ズレが生じない。   The heat transfer promotion member 31 is held in the high temperature side heat exchange element 10 by abutting against the plates 11 and 12 and the rigid members 21 to 24, respectively, and no positional deviation occurs.

なお、低温側熱交換エレメント40についても上記高温側熱交換エレメント10と同様の作用によって熱応力が低減されるとともに、伝熱促進部材51の位置ズレが生じない。   The low temperature side heat exchange element 40 is also reduced in thermal stress by the same action as the high temperature side heat exchange element 10, and the heat transfer promoting member 51 is not misaligned.

次に図4〜図6に示す第2実施形態を説明する。なお、前記実施の形態と同一構成部には同一符号を付す。   Next, a second embodiment shown in FIGS. 4 to 6 will be described. In addition, the same code | symbol is attached | subjected to the same structure part as the said embodiment.

図4に示すように、高温側熱交換エレメント10は、伝熱特性の異なる第一、第二伝熱促進部材32,33を備える。第一、第二伝熱促進部材32,33は各プレート11,12の間に固着されることなく挟持される。   As shown in FIG. 4, the high temperature side heat exchange element 10 includes first and second heat transfer promotion members 32 and 33 having different heat transfer characteristics. The first and second heat transfer promoting members 32 and 33 are sandwiched between the plates 11 and 12 without being fixed.

第一、第二伝熱促進部材32,33は第一熱交換室1にて低温流体の流れ方向に沿って直列に介装される。上流側に配置される第一伝熱促進部材32は、断面ハニカム状のハニカムフィンが用いられる。下流側に配置される第二伝熱促進部材33は、断面が三角に曲折したコルゲートフィンが用いられる。第一伝熱促進部材32の熱伝達特性は第二伝熱促進部材33より高い。   The first and second heat transfer promotion members 32 and 33 are interposed in series in the first heat exchange chamber 1 along the flow direction of the low-temperature fluid. As the first heat transfer promotion member 32 disposed on the upstream side, a honeycomb fin having a honeycomb section is used. As the second heat transfer promotion member 33 disposed on the downstream side, a corrugated fin having a triangular cross section is used. The heat transfer characteristic of the first heat transfer promoting member 32 is higher than that of the second heat transfer promoting member 33.

この場合、高温流体図中矢印で示す方向から第一熱交換室1にが流入し、第一熱交換室1の上流側に設けられた第一伝熱促進部材32を介して熱交換が行われ、続いて第一熱交換室1の下流側に設けられた第二伝熱促進部材33を介して比較的低温となった流体の熱交換が行われる。こうして、高温側熱交換エレメント10は、熱交換量を各部位毎に任意に設定することができる。   In this case, the first heat exchange chamber 1 flows in from the direction indicated by the arrow in the high-temperature fluid diagram, and heat exchange is performed via the first heat transfer promotion member 32 provided on the upstream side of the first heat exchange chamber 1. Then, heat exchange of the fluid having a relatively low temperature is performed via the second heat transfer promotion member 33 provided on the downstream side of the first heat exchange chamber 1. Thus, the high temperature side heat exchange element 10 can arbitrarily set the heat exchange amount for each part.

低温側熱交換エレメント40は、1本の仕切り部材45を介して低温流体がUターンする構成となっている。第二熱交換室2は仕切り部材45によって入口側流路部3と出口側流路部4に仕切られる。   The low temperature side heat exchange element 40 has a configuration in which the low temperature fluid makes a U-turn through one partition member 45. The second heat exchange chamber 2 is divided into an inlet-side channel portion 3 and an outlet-side channel portion 4 by a partition member 45.

低温側熱交換エレメント40は、2枚の各プレート11,12と、各プレート11,12の間に固着される剛性部材43,44,46,47と、各プレート11,12の間に固着されることなく挟持される伝熱促進部材52,53,54と、仕切り部材45とを備える。   The low temperature side heat exchange element 40 is fixed between the two plates 11 and 12, the rigid members 43, 44, 46 and 47 fixed between the plates 11 and 12, and the plates 11 and 12. The heat transfer facilitating members 52, 53, and 54 that are sandwiched without any problem and the partition member 45 are provided.

剛性部材47に複数の開口部47aを形成する。開口部47aは入口側流路部3に開口するものと、出口側流路部4に開口するものがあり、低温流体を低温側熱交換エレメント40内に出入りさせる。   A plurality of openings 47 a are formed in the rigid member 47. The opening 47 a has an opening at the inlet-side channel 3 and an opening at the outlet-side channel 4, and allows the low-temperature fluid to enter and exit the low-temperature side heat exchange element 40.

仕切り部材45は平板状に形成し、各プレート11,12の間に挟持する。仕切り部材45は低温側熱交換エレメント40の約中央部付近に配置される。仕切り部材45は剛性部材46,47と略直交している。   The partition member 45 is formed in a flat plate shape and is sandwiched between the plates 11 and 12. The partition member 45 is disposed near the center of the low temperature side heat exchange element 40. The partition member 45 is substantially orthogonal to the rigid members 46 and 47.

仕切り部材45には低温流体が通過する開口部45aを形成する。この開口部45aは剛性部材21と仕切り部材45の接合部近傍に配置する。これにより、開口部45aを通過する低温流体は剛性部材21に沿って流れて第二熱交換室2を入口側流路部3から出口側流路部4へと折り返すようになっている。   The partition member 45 is formed with an opening 45a through which a low-temperature fluid passes. The opening 45 a is disposed in the vicinity of the joint between the rigid member 21 and the partition member 45. As a result, the low-temperature fluid passing through the opening 45 a flows along the rigid member 21, and the second heat exchange chamber 2 is folded back from the inlet-side channel portion 3 to the outlet-side channel portion 4.

また、仕切り部材45に各開口部45aを開口させたことにより、仕切り部材45と各剛性部材43,44,46,47が各プレート11,12に接合する面が途絶えることなく連続する。これにより、仕切り部材45と各剛性部材43,44,46,47によって各プレート11,12を挟持する面が連続した枠状に形成され、構造体としての接合強度や信頼性を得ることができる。   Further, by opening the openings 45a in the partition member 45, the surfaces where the partition member 45 and the rigid members 43, 44, 46, and 47 are joined to the plates 11 and 12 are continuous without interruption. Thereby, the surface which clamps each plate 11 and 12 by the partition member 45 and each rigid member 43,44,46,47 is formed in the continuous frame shape, and it can acquire the joint strength and reliability as a structure. .

仕切り部材45の両端部を剛性部材46,47にそれぞれ固着する。なお、これに限らず、仕切り部材45の一端部のみを剛性部材46,47の一方に固着してもよい。また、仕切り部材45と剛性部材46,47を一体形成してもよい。   Both ends of the partition member 45 are fixed to the rigid members 46 and 47, respectively. Not limited to this, only one end of the partition member 45 may be fixed to one of the rigid members 46 and 47. Further, the partition member 45 and the rigid members 46 and 47 may be integrally formed.

入口側流路部3にはその上流部に発泡金属からなる第一伝熱促進部材52を介装し、その下流部にコルゲートフィンからなる第二伝熱促進部材53を介装する。出口側流路部4にはコルゲートフィンからなる第三伝熱促進部材54を介装する。   A first heat transfer promotion member 52 made of foam metal is interposed in the inlet-side flow path portion 3 at the upstream portion, and a second heat transfer promotion member 53 made of corrugated fin is interposed in the downstream portion. A third heat transfer promotion member 54 made of a corrugated fin is interposed in the outlet side flow path portion 4.

仕切り部材45から一対の位置決め部45bが突出する。各位置決め部45bは第二伝熱促進部材53の端部、第三伝熱促進部材54の端部にそれぞれ当接し、第一伝熱促進部材52、第二伝熱促進部材53、第三伝熱促進部材54の位置決めを行う。これにより、開口部45aが第二伝熱促進部材53、第三伝熱促進部材54によって塞がれることがない。   A pair of positioning portions 45 b protrude from the partition member 45. Each positioning part 45b is in contact with the end of the second heat transfer promoting member 53 and the end of the third heat transfer promoting member 54, respectively, and the first heat transfer promoting member 52, the second heat transfer promoting member 53, and the third heat transfer promoting member 53. The heat promoting member 54 is positioned. Thereby, the opening 45a is not blocked by the second heat transfer promoting member 53 and the third heat transfer promoting member 54.

仕切り部材45は図4に示す第一、第二伝熱促進部材32,33の分割部に対峙するように配置する。これにより、第一伝熱促進部材32は出口側流路部4に対峙し、第二伝熱促進部材33は入口側流路部3に対峙し、それぞれの領域で熱交換量を任意に設定することができる。   The partition member 45 is disposed so as to face the divided portions of the first and second heat transfer promotion members 32 and 33 shown in FIG. Thereby, the 1st heat transfer promotion member 32 faces the exit side flow path part 4, the 2nd heat transfer promotion member 33 faces the inlet side flow path part 3, and sets the heat exchange amount arbitrarily in each area | region. can do.

以上のように構成されて、次に作用について説明する。   Next, the operation will be described.

高温流体は図4に矢印で示すように、第一熱交換室1を直線状に流れ、開口部22a、第一伝熱促進部材32、第二伝熱促進部材33、開口部22aを順に通過する。   As indicated by arrows in FIG. 4, the high-temperature fluid flows linearly through the first heat exchange chamber 1 and sequentially passes through the opening 22a, the first heat transfer promoting member 32, the second heat transfer promoting member 33, and the opening 22a. To do.

高温流体はハニカム状の第一伝熱促進部材32を介して出口側流路部4を流れる低温流体を加熱し、続いてフィン状の第二伝熱促進部材33を介して入口側流路部3を流れる低温流体を加熱する。熱交換器8が低温流体(液体)を蒸発させる蒸発器として用いられる場合、ハニカム状の第一伝熱促進部材32を介して熱交換が促されることにより、低温流体を有効に加熱して過熱蒸気状態にすることができる。   The high-temperature fluid heats the low-temperature fluid flowing through the outlet-side flow passage portion 4 via the honeycomb-shaped first heat transfer promotion member 32, and then the inlet-side flow passage portion via the fin-like second heat transfer promotion member 33. The cryogenic fluid flowing through 3 is heated. When the heat exchanger 8 is used as an evaporator for evaporating a low-temperature fluid (liquid), heat exchange is promoted through the honeycomb-shaped first heat transfer promoting member 32 to effectively heat the low-temperature fluid and overheat. It can be in a vapor state.

低温流体は図5に矢印で示すように、第二熱交換室2をUターンして流れ、開口部47a、発砲金属からなる第一伝熱促進部材52、フィン状の第二伝熱促進部材53、開口部45a、フィン状の第三伝熱促進部材54、開口部47aを順に通過し、高温流体との間で熱交換が行われる。   As indicated by arrows in FIG. 5, the low-temperature fluid flows through the second heat exchange chamber 2 by making a U-turn, and the opening 47a, the first heat transfer promotion member 52 made of foam metal, and the fin-like second heat transfer promotion member. 53, the opening 45a, the fin-shaped third heat transfer promotion member 54, and the opening 47a in this order, and heat exchange is performed with the high-temperature fluid.

なお、各伝熱促進部材32,33,52〜54は、熱交換器8に要求される熱交換性能や、被加熱流体の特性等に応じて、図6の(a)〜(e)に示すように、それぞれの断面形状及び材質をそれぞれ任意に設定すればよい。   In addition, each heat-transfer acceleration | stimulation member 32,33,52-54 is shown to (a)-(e) of FIG. 6 according to the heat exchange performance requested | required of the heat exchanger 8, the characteristic of the to-be-heated fluid, etc. As shown, each cross-sectional shape and material may be arbitrarily set.

次に図7〜図10に示す第3実施形態を説明する。なお、前記実施の形態と同一構成部には同一符号を付す。   Next, a third embodiment shown in FIGS. 7 to 10 will be described. In addition, the same code | symbol is attached | subjected to the same structure part as the said embodiment.

図7に示すように、高温側熱交換エレメント10は、伝熱特性の異なる第一、第二伝熱促進部材36,37を備える。上流側に配置される第一伝熱促進部材36の熱伝達特性はは、下流側に配置される第二伝熱促進部材37の熱伝達特性より高い。高温流体は図中矢印で示すように第一熱交換室1を直進して流れる。   As shown in FIG. 7, the high temperature side heat exchange element 10 includes first and second heat transfer promotion members 36 and 37 having different heat transfer characteristics. The heat transfer characteristic of the first heat transfer promoting member 36 disposed on the upstream side is higher than the heat transfer characteristic of the second heat transfer promoting member 37 disposed on the downstream side. The high-temperature fluid flows straight through the first heat exchange chamber 1 as indicated by arrows in the figure.

図8に示すように、低温側熱交換エレメント40は、3本の仕切り部材45を備え、低温流体を図中矢印で示すように3回Uターンさせる構成となっている。仕切り部材45の本数は、要求される熱交換性能や、被加熱流体の特性等によって任意に設定すればよい。第二熱交換室2は各仕切り部材45によって入口側流路部3と中継流路部5,6と出口側流路部4に仕切られ、これらに伝熱促進部材61〜64がそれぞれ介装される。   As shown in FIG. 8, the low temperature side heat exchange element 40 includes three partition members 45 and has a configuration in which the low temperature fluid is U-turned three times as indicated by arrows in the drawing. The number of the partition members 45 may be arbitrarily set according to required heat exchange performance, characteristics of the fluid to be heated, and the like. The second heat exchange chamber 2 is partitioned by the partition members 45 into the inlet-side channel portion 3, the relay channel portions 5, 6 and the outlet-side channel portion 4, and the heat transfer promotion members 61 to 64 are interposed therebetween, respectively. Is done.

図9に示すように、熱交換器8は、高温側熱交換エレメント10と低温側熱交換エレメント40を積層して形成する。この積層数は熱交換器8に要求される熱交換量に応じて任意に設定する。   As shown in FIG. 9, the heat exchanger 8 is formed by stacking a high temperature side heat exchange element 10 and a low temperature side heat exchange element 40. This number of layers is arbitrarily set according to the amount of heat exchange required for the heat exchanger 8.

図10に示すように、熱交換器8のケーシング14に第一熱交換室1の出入口部を画成するディフューザ15,16を備える。高温流体は図中矢印で示すようにディフューザ15,16を介して第一熱交換室1を直進する。   As shown in FIG. 10, the casing 14 of the heat exchanger 8 includes diffusers 15 and 16 that define an inlet / outlet portion of the first heat exchange chamber 1. The high-temperature fluid goes straight through the first heat exchange chamber 1 via the diffusers 15 and 16 as indicated by arrows in the figure.

熱交換器8のケーシング14に第二熱交換室2の出入口部を画成するディフューザ17,18を備える。低温流体は図中矢印で示すようにディフューザ17,18を介して第二熱交換室2に出入りし、その途中で蛇行して流れる。この場合、ディフューザ17,18は同一方向に向いて開口している。   The casing 14 of the heat exchanger 8 is provided with diffusers 17 and 18 that define an inlet / outlet part of the second heat exchange chamber 2. The low temperature fluid enters and exits the second heat exchange chamber 2 through the diffusers 17 and 18 as indicated by arrows in the figure, and flows meandering along the way. In this case, the diffusers 17 and 18 are open in the same direction.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明は、例えば蒸発器をはじめ種々の熱交換器に適用できる。   The present invention can be applied to various heat exchangers such as an evaporator.

本発明の第1実施形態を示す高温側熱交換エレメントの斜視図。The perspective view of the high temperature side heat exchange element which shows 1st Embodiment of this invention. 同じく高温側熱交換エレメントおよび低温側熱交換エレメントの斜視図。The perspective view of a high temperature side heat exchange element and a low temperature side heat exchange element similarly. 同じく高温側熱交換エレメントおよび低温側熱交換エレメントの積層状態を示す斜視図。The perspective view which similarly shows the lamination | stacking state of a high temperature side heat exchange element and a low temperature side heat exchange element. 本発明の第2実施形態を示す高温側熱交換エレメントの斜視図。The perspective view of the high temperature side heat exchange element which shows 2nd Embodiment of this invention. 同じく高温側熱交換エレメントおよび低温側熱交換エレメントの斜視図。The perspective view of a high temperature side heat exchange element and a low temperature side heat exchange element similarly. 同じく(a)〜(e)は伝熱促進部材の断面図。Similarly (a)-(e) is sectional drawing of a heat-transfer acceleration | stimulation member. 本発明の第3実施形態を示す高温側熱交換エレメントの断面図。Sectional drawing of the high temperature side heat exchange element which shows 3rd Embodiment of this invention. 同じく低温側熱交換エレメントの断面図。Sectional drawing of a low temperature side heat exchange element similarly. 同じく高温側熱交換エレメントおよび低温側熱交換エレメントの積層状態を示す斜視図。The perspective view which similarly shows the lamination | stacking state of a high temperature side heat exchange element and a low temperature side heat exchange element. 同じくケーシングを示す側面図。The side view which similarly shows a casing.

符号の説明Explanation of symbols

1 第一熱交換室
2 第二熱交換室
8 熱交換器
10 高温側熱交換エレメント
11 プレート
12 プレート
21 剛性部材
21a 開口部
22 剛性部材
22a 開口部
23 剛性部材
24 剛性部材
40 低温側熱交換エレメント
45 仕切り部材
45a 開口部
DESCRIPTION OF SYMBOLS 1 1st heat exchange chamber 2 2nd heat exchange chamber 8 Heat exchanger 10 High temperature side heat exchange element 11 Plate 12 Plate 21 Rigid member 21a Opening part 22 Rigid member 22a Opening part 23 Rigid member 24 Rigid member 40 Low temperature side heat exchange element 45 Partition member 45a Opening

Claims (8)

その内部に流体が流れる各熱交換室を形成する熱交換エレメントを積層し、
前記各熱交換室を流れる流体の間で熱交換が行われる構成とした熱交換器において、
前記熱交換エレメントは互いに対峙する平板状をした対のプレートと、
前記各プレートの間に固着され内部に前記熱交換室を画成する剛性部材と、
前記熱交換室にて前記各プレートの間に固着されることなく挟持される伝熱促進部材と、
を備えたことを特徴とする熱交換器。
Laminate heat exchange elements that form each heat exchange chamber through which fluid flows,
In the heat exchanger configured to exchange heat between the fluids flowing through the heat exchange chambers,
The heat exchange element is a pair of flat plates facing each other;
A rigid member fixed between the plates and defining the heat exchange chamber therein;
A heat transfer facilitating member sandwiched without being fixed between the plates in the heat exchange chamber;
A heat exchanger characterized by comprising:
前記各プレートを略矩形に形成し、
前記各プレートの四辺に沿って前記剛性部材を配置し、
前記剛性部材の一部に前記熱交換室に流体を出入りさせる開口部を形成したことを特徴とする請求項1に記載の熱交換器。
Each plate is formed in a substantially rectangular shape,
Arranging the rigid member along the four sides of each plate;
The heat exchanger according to claim 1, wherein an opening for allowing fluid to enter and exit from the heat exchange chamber is formed in a part of the rigid member.
前記各プレートの間に配置される仕切り部材を備え、
この仕切り部材によって前記熱交換室における流体の流れ方向を制御する構成としたことを特徴とする請求項1に記載の熱交換器。
A partition member disposed between the plates;
The heat exchanger according to claim 1, wherein the partition member controls the flow direction of the fluid in the heat exchange chamber.
前記仕切り部材を前記剛性部材及び前記各プレートに接合し、
前記仕切り部材と前記剛性部材との接合部近傍に、流体を通過させる開口部を形成したことを特徴とする請求項3に記載の熱交換器。
The partition member is joined to the rigid member and the plates,
The heat exchanger according to claim 3, wherein an opening for allowing fluid to pass is formed in the vicinity of a joint between the partition member and the rigid member.
前記流体の流れ方向に沿って伝熱特性の異なる前記伝熱促進部材を配置したことを特徴とする請求項1から4のいずれか一つに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the heat transfer promoting members having different heat transfer characteristics are arranged along a flow direction of the fluid. 前記各伝熱促進部材はそれぞれの材質および断面形状のうち少なくとも一方が異なることを特徴とする請求項5に記載の熱交換器。   The heat exchanger according to claim 5, wherein each of the heat transfer promotion members is different in at least one of a material and a cross-sectional shape. 前記積層した熱交換エレメントによって高温流体が流れる第一熱交換室と低温流体が流れる第二熱交換室を画成し、
前記第一熱交換室の上流側に介装される前記伝熱促進部材の熱伝達特性を前記第一熱交換室の下流側に介装される前記伝熱促進部材の熱伝達特性より高くし、
前記第二熱交換室の上流側を流れる低温流体が前記第一熱交換室の下流側を流れる高温流体と交差して流れるとともに、前記第二熱交換室の下流側を流れる低温流体が第一熱交換室の上流側を流れる高温流体と交差して流れるように、前記切り部材によって前記第二熱交換室における流体の流れ方向を制御する構成としたことを特徴とする請求項3から6のいずれか一つに記載の熱交換器。
The stacked heat exchange elements define a first heat exchange chamber through which a high temperature fluid flows and a second heat exchange chamber through which a low temperature fluid flows,
The heat transfer characteristic of the heat transfer promotion member interposed upstream of the first heat exchange chamber is made higher than the heat transfer characteristic of the heat transfer promotion member interposed downstream of the first heat exchange chamber. ,
The low temperature fluid flowing upstream of the second heat exchange chamber flows across the high temperature fluid flowing downstream of the first heat exchange chamber, and the low temperature fluid flowing downstream of the second heat exchange chamber is the first The flow direction of the fluid in the second heat exchange chamber is controlled by the cutting member so as to cross and intersect with the high-temperature fluid flowing upstream of the heat exchange chamber. The heat exchanger as described in any one.
前記第二熱交換室に介装される前記仕切り部材を前記第一熱交換室に介装される熱伝達特性を有する前記各伝熱促進部材の分割部に対峙するように配置したことを特徴とする請求項3から7のいずれか一つに記載の熱交換器。   The partition member interposed in the second heat exchange chamber is disposed so as to face the divided portions of the heat transfer promotion members having heat transfer characteristics interposed in the first heat exchange chamber. The heat exchanger according to any one of claims 3 to 7.
JP2003393842A 2003-11-25 2003-11-25 Heat exchanger Pending JP2005155996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003393842A JP2005155996A (en) 2003-11-25 2003-11-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393842A JP2005155996A (en) 2003-11-25 2003-11-25 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005155996A true JP2005155996A (en) 2005-06-16

Family

ID=34720087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393842A Pending JP2005155996A (en) 2003-11-25 2003-11-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005155996A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085594A (en) * 2005-09-20 2007-04-05 Katsuya Tsuda Cross flow core type plate heat exchanger
JP2009052873A (en) * 2007-03-14 2009-03-12 Techno Frontier:Kk Total heat exchanger and its manufacturing method
JP2009110916A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Evaporator for fuel cell system
JP2009228916A (en) * 2008-03-19 2009-10-08 Toyota Motor Corp Heat exchanger
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same
JP2014507622A (en) * 2011-02-04 2014-03-27 ロッキード マーティン コーポレイション Heat exchanger with foam fins

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085594A (en) * 2005-09-20 2007-04-05 Katsuya Tsuda Cross flow core type plate heat exchanger
JP4738116B2 (en) * 2005-09-20 2011-08-03 勝也 津田 Cross flow core plate heat exchanger
JP2009052873A (en) * 2007-03-14 2009-03-12 Techno Frontier:Kk Total heat exchanger and its manufacturing method
JP2009110916A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Evaporator for fuel cell system
JP2009228916A (en) * 2008-03-19 2009-10-08 Toyota Motor Corp Heat exchanger
JP2013508657A (en) * 2009-10-23 2013-03-07 フォイト パテント ゲーエムベーハー Heat exchanger plate and evaporator having the same
JP2014507622A (en) * 2011-02-04 2014-03-27 ロッキード マーティン コーポレイション Heat exchanger with foam fins

Similar Documents

Publication Publication Date Title
JP4775287B2 (en) Heat exchanger
WO2017169410A1 (en) Heat exchanger
JP5194011B2 (en) Plate stack heat exchanger
JP5892453B2 (en) Heat exchanger
JP2010114174A (en) Core structure for heat sink
JPWO2009013801A1 (en) Plate stack heat exchanger
TW201315960A (en) Laminated heat sinks
JP6528283B2 (en) Heat exchanger
CN113424009B (en) Heat exchanger
KR20180060262A (en) Plate heat exchanger
JP2005155996A (en) Heat exchanger
JP2017106648A (en) Heat exchanger
JP3966134B2 (en) Heat exchanger
JP5316470B2 (en) Laminate heat exchanger
WO2012008348A1 (en) Heat exchanger
JP2013127341A (en) Heat exchanger
JP2005291546A (en) Heat exchanger
JP5341549B2 (en) heatsink
US20130056186A1 (en) Heat exchanger produced from laminar elements
WO2014077084A1 (en) Laminated heat exchanger
JP2006317026A (en) Stacked heat exchanger and its manufacturing method
US5909767A (en) Recuperative cross flow plate-type heat exchanger
JP2021081158A (en) Heat exchanger
JP6887074B2 (en) Heat exchanger
JP5154837B2 (en) Heat exchanger