JP2005155776A - Flat pressure vessel and manufacturing method for flat pressure vessel - Google Patents

Flat pressure vessel and manufacturing method for flat pressure vessel Download PDF

Info

Publication number
JP2005155776A
JP2005155776A JP2003395110A JP2003395110A JP2005155776A JP 2005155776 A JP2005155776 A JP 2005155776A JP 2003395110 A JP2003395110 A JP 2003395110A JP 2003395110 A JP2003395110 A JP 2003395110A JP 2005155776 A JP2005155776 A JP 2005155776A
Authority
JP
Japan
Prior art keywords
wall
arc
pressure vessel
flat
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395110A
Other languages
Japanese (ja)
Inventor
Kiichi Shimizu
喜一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2003395110A priority Critical patent/JP2005155776A/en
Publication of JP2005155776A publication Critical patent/JP2005155776A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0152Lobes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat pressure vessel mounted in a predetermined loading space and having excellent gas loading efficiency and to provide a manufacturing method for the flat pressure vessel. <P>SOLUTION: The inside of this flat pressure vessel 1 is composed of a flat cylindrical barrel part 2 constituted by forming a plurality of cylindrical main storage zones 3, 3 in the direction of width by a longitudinal bulkhead 5 in parallel and a platelike mirror part 6 for forming a communicating region 8 communicating each main storage zone inside it. This vessel 1 is provided with at least one filling valve and one discharge valve or at least one input/output valve to provide excellent gas loading efficiency for the predetermined loading space. This flat pressure vessel 1 is manufactured by performing a molding process for molding a side part circular arc wall 4, the longitudinal bulkhead 5, and the platelike mirror part, respectively, and then performing a join process for welding a join end part of the side part cylindrical wall 4 on both join parts 7a of the longitudinal bulkhead 5 to form the flat cylindrical barrel part 2 and welding the platelike mirror part 6 on both end openings 38. Consequently, the flat pressure vessel 1 can be easily and properly manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスや液化ガス等を蓄える圧力容器及びその製造方法に関し、詳しくは所定の搭載スペースを有効に利用し得る扁平圧力容器及び扁平圧力容器の製造方法に関するものである。   The present invention relates to a pressure vessel that stores gas, liquefied gas, and the like and a manufacturing method thereof, and more particularly to a flat pressure vessel that can effectively use a predetermined mounting space and a manufacturing method of the flat pressure vessel.

内部にガスや液化ガス等を蓄える圧力容器にあっては、例えば、LPG(液化石油ガス)やCNG(圧縮天然ガス)等の高圧ガスを燃料とする自動車の燃料タンクに利用されている(図15(イ)参照)。このような燃料タンク用の圧力容器としては、図17(イ)のように、円筒形状の胴部71の両開口に、半球状の鏡部72が連成されたシリンダー形状の圧力容器(以下、シリンダー型圧力容器)70が一般的である。尚、このシリンダー型圧力容器70は、強度や充填容量等の、圧力容器に必要な特性を充分に満足できる適正な形状である。   In a pressure vessel that stores gas, liquefied gas, or the like, it is used, for example, in a fuel tank of an automobile that uses high pressure gas such as LPG (liquefied petroleum gas) or CNG (compressed natural gas) as fuel (see FIG. 15 (a)). As a pressure vessel for such a fuel tank, as shown in FIG. 17 (a), a cylindrical pressure vessel (hereinafter referred to as a cylindrical pressure vessel) in which a hemispherical mirror portion 72 is coupled to both openings of a cylindrical barrel portion 71. Cylinder type pressure vessel) 70 is common. The cylinder pressure vessel 70 has an appropriate shape that can sufficiently satisfy the characteristics required for the pressure vessel such as strength and filling capacity.

ここで、LPGやCNGを燃料とする自動車にあって、燃料タンクである圧力容器は、車体下部やトランク等に設けられた比較的限られた搭載スペースに配置されるようになっている(図15(イ)参照)。この搭載スペースは、奥行きが深くかつ高さが低い略直方体状である場合が多い。そのため、上記したシリンダー型圧力容器は、複数本を該搭載スペースに並列状態で配置される。しかし、このような略直方体状の搭載スペースでは、シリンダー型圧力容器の積載可能本数が該スペースの寸法により制限を受けると共に、該圧力容器のシリンダー形状と搭載スペースの略直方体状との隙間、いわゆるデッドスペースが比較的大きくなる(図17(ロ)、(ハ)参照)。而して、搭載スペースの体積に対する、搭載された圧力容器に充填できる最大充填容量の割合、いわゆる燃料の積載効率が低いという問題があった。   Here, in a vehicle using LPG or CNG as fuel, a pressure vessel as a fuel tank is arranged in a relatively limited mounting space provided in a lower part of a vehicle body, a trunk, or the like (see FIG. 15 (a)). In many cases, the mounting space has a substantially rectangular parallelepiped shape with a deep depth and a low height. Therefore, a plurality of the cylinder type pressure vessels described above are arranged in parallel in the mounting space. However, in such a substantially rectangular parallelepiped mounting space, the number of cylinder pressure vessels that can be loaded is limited by the size of the space, and the clearance between the cylinder shape of the pressure vessel and the substantially rectangular parallelepiped shape of the mounting space, so-called The dead space becomes relatively large (see FIGS. 17B and 17C). Thus, there is a problem that the ratio of the maximum filling capacity that can be filled in the mounted pressure vessel with respect to the volume of the mounting space, that is, the so-called fuel loading efficiency is low.

このような燃料の積載効率を改善するため、例えば、図18(イ)のように、上記のシリンダー形状の一周部を長手方向に沿って平面とする片側扁平形状の側型胴部79及び側型鏡部80を備えた側型圧力容器77,77と、シリンダー形状の対向する両側の周部を長手方向に沿って平面とした両側扁平形状の内型胴部81及び内型鏡部82を備えた内型圧力容器78とを、内型圧力容器78の両平面に側型圧力容器77,77の各平面が重なるように接合し、全体として略扁平形状の複合型圧力容器75が提案されている(例えば、特許文献1)。このような扁平形状の複合型圧力容器75を、上述した搭載スペースFに搭載すると、シリンダー型圧力容器を複数本搭載した場合(図17(ロ)参照)に比して、デッドスペースXを減少することとなる(図18(ロ)参照)。而して、ガスの最大充填容量が増加し、燃料の積載効率が向上することとなる。
米国特許第5577630号明細書
In order to improve the fuel loading efficiency, for example, as shown in FIG. 18 (a), the one-side flat-shaped side mold body 79 and the side having the one-round portion of the cylinder shape as a plane along the longitudinal direction. Side-type pressure vessels 77 and 77 having a mold mirror part 80, and a cylindrical inner mold body 81 and an inner mold mirror part 82 which are flat on both sides of the cylinder-shaped opposite sides are flat along the longitudinal direction. The inner pressure vessel 78 provided is joined so that both planes of the side type pressure vessels 77, 77 overlap with both planes of the inner pressure vessel 78, and a generally flat combined pressure vessel 75 is proposed. (For example, Patent Document 1). When such a flat composite pressure vessel 75 is mounted in the mounting space F described above, the dead space X is reduced as compared with the case where a plurality of cylinder pressure vessels are mounted (see FIG. 17B). (See FIG. 18 (b)). Thus, the maximum filling capacity of gas is increased, and the fuel loading efficiency is improved.
US Pat. No. 5,577,630

ところで、自動車の燃料は、充填一回当りの走行距離を伸ばすため、制限された搭載スペースにできるだけ多く積載できることが望ましい。そのため、上述した従来の、側型圧力容器と内型圧力容器とからなる複合型圧力容器は、シリンダー型圧力容器に比して最大充填容量を増加させたものである。しかしながら、この複合型圧力容器であっても、搭載スペースの体積に比して、燃料の積載効率が充分でなく、さらなる最大充填容量の増加が求められている。また、この複合型圧力容器は、同じ搭載スペースに、上述したシリンダー型圧力容器を搭載した場合に比して、全体として胴部の面積と鏡部の面積とが増加することとなるため、重量が増加するという問題が生じている。さらにまた、この複合型圧力容器は、側型圧力容器と内型圧力容器とがそれぞれ独立した容器として形成されているものであるから、各容器毎に、ガスを充填する充填バルブや排出する排出バルブ、内容量計等が設置されている。したがって、充填バルブや排出バルブを取り付ける各バルブ座や、内容量計を取り付けるための内容量計座等を、各容器に設置するための製造工程が必要となること、及び各部品費用と取り付け費用が生じることとなる。さらに、各バルブや内容量計等の設置数に従って重量が増加することとなる。これらは、製造工程の改善や容器自体の軽量化等を進めても低減できないという問題がある。一方、液化ガスを充填する複合型圧力容器にあっては、側型圧力容器と内型圧力容器とを連通する連通孔を、接合する平面に設けた場合でも、当該複合型圧力容器の搭載時において底部となる部位に該連通孔を設けなければ、内容量計は各容器毎に必要となる。また、充填バルブや排出バルブにあっても鏡部に配設されることから、各容器毎に必要である。さらに、このような連通孔を設けることは、容器の強度を保持する平面の強度低下や応力集中を招くこととなるという問題が生じる。   By the way, it is desirable that the fuel of the automobile can be loaded as much as possible in the limited mounting space in order to extend the travel distance per filling. For this reason, the above-described conventional composite pressure vessel including a side pressure vessel and an inner pressure vessel has an increased maximum filling capacity compared to a cylinder pressure vessel. However, even in this composite pressure vessel, the fuel loading efficiency is not sufficient as compared with the volume of the mounting space, and further increase in the maximum filling capacity is required. In addition, this composite pressure vessel has an increased body area and mirror area as a whole compared to the case where the above-described cylinder pressure vessel is mounted in the same mounting space. There is a problem that increases. Furthermore, in this composite type pressure vessel, the side type pressure vessel and the inner type pressure vessel are formed as independent vessels, so that a filling valve for filling gas and a discharge for discharging are provided for each vessel. Valves, internal volume meters, etc. are installed. Therefore, it is necessary to have a manufacturing process for installing each valve seat to which a filling valve and a discharge valve are attached, an inner capacity meter seat for installing an inner capacity meter, etc. in each container, and each component cost and installation cost. Will occur. Furthermore, the weight will increase according to the number of valves and internal volume meters installed. There is a problem that these cannot be reduced even if the manufacturing process is improved or the weight of the container itself is reduced. On the other hand, in the case of a composite pressure vessel filled with liquefied gas, even when a communication hole for communicating the side type pressure vessel and the inner type pressure vessel is provided on the joining plane, If the communication hole is not provided in the bottom part of the container, an internal volume meter is required for each container. Moreover, even if it exists in a filling valve and a discharge valve, since it is arrange | positioned in a mirror part, it is required for every container. Furthermore, the provision of such a communication hole causes a problem that the strength of the plane that retains the strength of the container is reduced and the stress is concentrated.

一方、このような複合型圧力容器にあっては、該側型圧力容器と内型圧力容器を夫々に成形した後、接合して一体的に製造されるものである。したがって、接合作業を容易とするために、例えば、側型圧力容器の平面に接合用の凸部が形成されると共に、内型圧力容器の両平面に夫々に接合用の凹部が形成され、内型圧力容器の凹部に、側型圧力容器の凸部を嵌合して接合するようにしている。ところが、このような接合用の凹部及び凸部を形成するために新たな工程が必要となることから、容器の製造工程が繁雑化すると共に、製造費用も増大することとなる。   On the other hand, in such a composite pressure vessel, the side-type pressure vessel and the inner-type pressure vessel are respectively molded and then integrally joined. Therefore, in order to facilitate the joining operation, for example, a convex portion for bonding is formed on the plane of the side pressure vessel, and a concave portion for bonding is formed on each plane of the inner pressure vessel. The convex portion of the side pressure vessel is fitted and joined to the concave portion of the mold pressure vessel. However, since a new process is required to form such a concave part and a convex part for joining, the manufacturing process of the container becomes complicated and the manufacturing cost also increases.

本発明は、上述した問題を解決し、燃料の積載効率をさらに向上でき、また、比較的容易に製造可能な、扁平圧力容器及び扁平圧力容器の製造方法を提案することを目的とするものである。   An object of the present invention is to propose a flat pressure vessel and a flat pressure vessel manufacturing method that can solve the above-described problems, can further improve fuel loading efficiency, and can be manufactured relatively easily. is there.

本発明は、内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成され、所定のガス又は液化ガスを容器内に充填する充填バルブ及び容器外に排出する排出バルブを少なくとも各一個備えてなるか、又は、充填と排出とを行う入出バルブを少なくとも一個備えてなるものであることを特徴とする扁平圧力容器である。ここで、本発明の扁平圧力容器は、幅方向に扁平化された形態としたものである。また、本発明の扁平圧力容器には、所定のガス又は液化ガスを充填する機能と排出する機能とを有していれば良い。すなわち、充填バルブ及び排出バルブをそれぞれ少なくとも一個備える構成か、又は、充填及び排出の両方を一個のバルブで行う入出バルブを少なくとも一個備える構成のいずれかとするものである。尚、充填バルブ及び排出バルブ、入出バルブを混在させることも可能である。さらに、ガス充填量を目視するための内容量計を設ける場合にあっても、少なくとも一個設けるだけで良いという優れた利点を有する。   The present invention includes a flat cylindrical body having both ends opened by dividing a plurality of cylindrical main storage areas along the longitudinal direction by dividing the inside by a longitudinal partition wall, and both ends of the flat cylindrical body It consists of a dish-shaped mirror that is joined to cover the openings at both ends and forms a communication area that communicates with each main storage area. It is filled with a predetermined gas or liquefied gas inside the container and discharged outside the container. It is a flat pressure vessel characterized in that it comprises at least one discharge valve to perform or at least one input / output valve for filling and discharging. Here, the flat pressure vessel of the present invention is configured to be flattened in the width direction. Moreover, the flat pressure vessel of this invention should just have the function to fill with predetermined | prescribed gas or liquefied gas, and the function to discharge | emit. That is, either a configuration including at least one filling valve and a discharge valve or a configuration including at least one input / output valve that performs both filling and discharging with one valve is employed. It is possible to mix a filling valve, a discharge valve, and an inlet / outlet valve. Furthermore, even in the case where an internal volume meter for visually checking the gas filling amount is provided, there is an excellent advantage that it is only necessary to provide at least one.

かかる構成にあっては、扁平円筒胴部の内部で区画された複数の筒状主貯留域が、皿状鏡部の内部の連通領域で連通し、容器全体の内部貯留域を一体形態としたものであるから、上述した略直方体状の搭載スペースに搭載した場合に、皿状鏡部が配されるスペースに生じるデッドスペースは、上述した従来の側型圧力容器と内型圧力容器とを接合した複合型圧力容器の各鏡部が配された場合に比して、減少することとなる。すなわち、皿状鏡部の連通領域は、従来の複合型圧力容器の各鏡部の内部領域を合計した領域に比して、ガスの貯留可能な容量が大きくなる。而して、本発明の扁平圧力容器は、上述した従来の、複合型圧力容器のように各圧力容器毎に鏡部を有する構成に比して、容器全体の最大充填容量が増加し、略直方体状の搭載スペースに対する、燃料ガスの積載効率を向上させることができる。   In such a configuration, the plurality of cylindrical main storage areas partitioned inside the flat cylindrical body part communicate with each other in the communication area inside the dish-shaped mirror part, and the internal storage area of the entire container is integrated. Therefore, the dead space generated in the space where the dish-shaped mirror portion is disposed when mounted in the above-described substantially rectangular parallelepiped mounting space joins the above-described conventional side-type pressure vessel and inner-type pressure vessel. As compared with the case where each mirror part of the combined pressure vessel is arranged, the number of the pressure parts is reduced. In other words, the communication area of the dish-shaped mirror portion has a larger gas storage capacity than the total area of the mirror regions of the conventional composite pressure vessel. Thus, the flat pressure vessel of the present invention increases the maximum filling capacity of the entire vessel as compared to the conventional configuration described above, which has a mirror part for each pressure vessel, and substantially The fuel gas loading efficiency with respect to the rectangular parallelepiped mounting space can be improved.

さらに、本発明の扁平圧力容器の皿状鏡部は、従来の複合型圧力容器の各容器毎の鏡部の総表面積に比して、その表面積が小さくなることから、容器重量が軽量化することともなり得る。また、本発明の扁平圧力容器は、上述のように容器全体の内部貯留域を一体形態としたものであるため、充填バルブと排出バルブとを少なくとも各一個配設するか、入出バルブを少なくとも一個配設するだけで良い。これに対して、上述した従来の複合型圧力容器は、各容器毎に充填バルブ及び排出バルブ又は入出バルブを配設する必要があることから、該複合型圧力容器に比して、本発明の扁平圧力容器は各バルブの配設数を減少でき、これに応じて軽量化することとなる。このように、本発明の扁平圧力容器は、従来の複合型圧力容器に比して、ガスの最大充填量を増加し、かつ軽量化したものである。   Furthermore, the dish-shaped mirror part of the flat pressure vessel of the present invention has a smaller surface area than the total surface area of the mirror part for each container of the conventional composite pressure vessel, thus reducing the weight of the container. It can be a problem. In addition, since the flat pressure vessel of the present invention has the internal storage area of the entire vessel integrated as described above, at least one filling valve and one discharge valve are provided, or at least one input / output valve is provided. It is only necessary to arrange them. On the other hand, the conventional composite pressure vessel described above requires a filling valve and a discharge valve or an inlet / outlet valve for each container. In the flat pressure vessel, the number of valves can be reduced, and the weight is reduced accordingly. As described above, the flat pressure vessel of the present invention increases the maximum gas filling amount and is lighter than the conventional composite pressure vessel.

また、筒状主貯留域を区画形成する縦断隔壁は、該扁平円筒部が充填したガスの内圧に対する強度や耐久性の向上と、外部から受ける負荷に対する強度や耐久性の向上とを図るための補強壁としても働き、当該扁平圧力容器が充分な強度と耐久性を発揮できるようにしている。   In addition, the longitudinal partition wall that defines the cylindrical main storage area is for improving the strength and durability against the internal pressure of the gas filled in the flat cylindrical portion and improving the strength and durability against the load received from the outside. It also works as a reinforcing wall so that the flat pressure vessel can exhibit sufficient strength and durability.

また、上記のように、本発明の扁平圧力容器は内部が一体形態であることから、ガスの充填や排出を容器全体で行うこととなるため、ガスを充填したり排出したりする作業性が、上述した従来のシリンダー型圧力容器とほぼ同等であるという優れた利点も有する。   In addition, as described above, since the flat pressure vessel of the present invention has an integrated inside, the filling and discharging of the gas is performed in the entire vessel, so that the workability of filling and discharging the gas is improved. Also, it has an excellent advantage that it is almost equivalent to the above-described conventional cylinder type pressure vessel.

上述した扁平円筒胴部が、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、その欠円開口を覆う縦断隔壁とにより囲繞されて形成された、両側の筒状側部主貯留域を備えている構成が提案される。かかる構成にあっては、断面円弧形状が、円弧の角度が180度以上であり、かつ欠円状をなす側部円弧壁により形成されているものであるから、当該扁平円筒胴部は、180度以上の角度からなる領域だけ幅方向に扁平化されているものと言える。したがって、扁平円筒胴部は、上述したシリンダー型圧力容器に比して、180度以上の角度からなる領域の容積分だけ最大充填量が増加する。さらに、この扁平化に応じて、皿状鏡部の連通領域が形成されることから、該連通領域の容積も増える。而して、上述した従来の複合型圧力容器に比して、ガスの積載効率が向上する。   The above-described flat cylindrical body is formed by being surrounded by a long side circular arc wall having a circular arc shape with a circular arc shape with an angle occupied by the circular arc of 180 degrees or more and a vertical partition wall covering the cut circular opening. In addition, a configuration including cylindrical side main storage areas on both sides is proposed. In such a configuration, since the cross-sectional arc shape is formed by the side arc wall having a circular arc angle of 180 degrees or more and a circular shape, the flat cylindrical body portion is 180 °. It can be said that only a region having an angle of at least an angle is flattened in the width direction. Therefore, the maximum filling amount of the flat cylindrical body portion is increased by the volume of a region having an angle of 180 degrees or more, as compared with the above-described cylinder type pressure vessel. Furthermore, since the communication region of the dish-shaped mirror portion is formed according to the flattening, the volume of the communication region increases. Thus, gas loading efficiency is improved as compared with the above-described conventional composite pressure vessel.

さらに、かかる構成にあっては、欠円状をなす断面円弧形状の側部円弧壁を両側に備えたものであるから、該側部円弧壁により、扁平円弧胴部の幅方向(扁平方向)に対して、充分な剛性と強度とを発揮できる。さらに、この側部円弧壁は、扁平円弧胴部の高さ方向に対しても高い剛性と強度を有し、加えて縦断隔壁により、この高さ方向に対して充分な剛性と強度を発揮できることとなる。ここで、かかる扁平圧力容器について、FEMによる強度計算を行った結果、高圧ガス保安法の容器保安規則によるシリンダー型圧力容器の強度計算結果から得た板厚と、同等の板厚により強度設計可能であることが確認できた。而して、側部円弧壁と縦断隔壁とにより囲繞されて形成された、両側に筒状側部主貯留領域を備える扁平円筒胴部にあっても、上述した従来のシリンダー型圧力容器と同様の、優れた強度及び剛性と軽量化との両者を満足することができる。   Furthermore, in such a configuration, since the side circular arc walls having a circular arc shape having a cross-sectional shape are provided on both sides, the side circular arc walls allow the width direction (flat direction) of the flat circular arc trunk portion to be formed. In contrast, sufficient rigidity and strength can be exhibited. Furthermore, this side arc wall has high rigidity and strength in the height direction of the flat arc barrel, and in addition, the longitudinal partition wall can exhibit sufficient rigidity and strength in this height direction. It becomes. Here, as a result of strength calculation by FEM for this flat pressure vessel, strength design is possible with plate thickness equivalent to the plate thickness obtained from the strength calculation result of cylinder type pressure vessel according to the vessel safety rules of the High Pressure Gas Safety Act It was confirmed that. Thus, even in the flat cylindrical body having a cylindrical side main storage area on both sides formed by being surrounded by the side arc wall and the vertical partition wall, it is the same as the above-described conventional cylinder pressure vessel. Both excellent strength and rigidity and weight reduction can be satisfied.

また、上述した扁平円筒胴部が、相互に対峙する二面の縦断隔壁と、上下の円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁とにより囲繞されて形成された筒状中間主貯留域と、該筒状中間主貯留域の両側の縦断隔壁と、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁とにより囲繞されて形成された、両側の筒状側部主貯留域とを備えている構成が提案される。かかる構成にあっては、両側の側部円弧壁により形成された筒状側部主貯留域の間に、筒状中間主貯留域を備えたものであり、該筒状中間主領域を形成する中間円弧壁だけ、さらに扁平化した形状となる。したがって、この扁平円筒胴部の扁平化に従って、皿状鏡部の連通領域の容積が増加することとなる。また、この中間円弧壁により、扁平円弧胴部の幅方向(扁平方向)に対して充分な剛性と強度とを発揮でき、かつ、扁平円弧胴部の高さ方向に対しても、縦断隔壁と共に充分な剛性と強度とを発揮できる。このような筒状中間主貯留域を有する構成の扁平圧力容器にあっても、上述と同様、高圧ガス保安法の容器保安規則に従ったシリンダー型圧力容器の計算結果と同等の結果が得られ、優れた強度及び剛性と軽量化との両者を満足することができるものである。   Further, the above-described flat cylindrical body is formed by being surrounded by two vertical partition walls facing each other and a long intermediate arc wall having a circular arc shape in which the angle of the upper and lower arcs is 90 degrees or less. A cylindrical intermediate main storage area, vertical partition walls on both sides of the cylindrical intermediate main storage area, and a long side circular arc wall having an arcuate cross-section with an arc of 180 degrees or more. The structure provided with the cylindrical side part main storage area of the both sides formed by surrounding is proposed. In such a configuration, a cylindrical intermediate main storage area is provided between the cylindrical side main storage areas formed by the side circular arc walls on both sides, and the cylindrical intermediate main area is formed. Only the intermediate arc wall has a flattened shape. Therefore, the volume of the communication region of the dish-shaped mirror portion increases as the flat cylindrical body portion is flattened. In addition, this intermediate arc wall can exhibit sufficient rigidity and strength in the width direction (flat direction) of the flat arc barrel, and also with the vertical partition wall in the height direction of the flat arc barrel. Can exhibit sufficient rigidity and strength. Even in a flat pressure vessel having such a cylindrical intermediate main storage area, a result equivalent to the calculation result of the cylinder type pressure vessel in accordance with the vessel safety rules of the High Pressure Gas Safety Law is obtained as described above. Both excellent strength and rigidity and weight reduction can be satisfied.

ここで、扁平円筒胴部が、隣り合う二面が相互に対峙するように並立された複数の縦断隔壁の、各隣り合う二面の縦断隔壁毎に、上下一対の中間円弧壁と囲繞されて形成されたことにより、並列状に連成された複数の筒状中間主貯留域および、両側端の縦断隔壁と側部円弧壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えている構成が提案される。かかる構成にあっては、搭載スペースの寸法に従って、適当数の筒状中間主貯留域を有するものとすることができ、搭載スペースに応じた高いガス積載効率が発揮される。また、かかる構成にあっても、筒状中間主領域が上下の中間円弧壁と縦断隔壁とにより形成されていることから、扁平圧力容器の幅方向及び高さ方向に対してそれぞれ、充分な強度と剛性とを発揮できる。   Here, the flat cylindrical body is surrounded by a pair of upper and lower intermediate arc walls for each of the two adjacent vertical partition walls of a plurality of vertical partition walls arranged side by side so that two adjacent surfaces face each other. A plurality of cylindrical intermediate main storage areas that are coupled in parallel by being formed, and cylindrical side main storage areas on both sides that are formed by being surrounded by vertical partition walls and side arc walls on both ends. A configuration comprising is proposed. In such a configuration, an appropriate number of cylindrical intermediate main storage areas can be provided according to the size of the mounting space, and high gas loading efficiency corresponding to the mounting space is exhibited. Even in such a configuration, since the cylindrical intermediate main region is formed by the upper and lower intermediate arc walls and the vertical partition wall, sufficient strength is obtained in each of the width direction and the height direction of the flat pressure vessel. And rigidity.

また、上述した扁平円弧胴部が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径に形成してなるものである構成が提案される。かかる構成とすることにより、扁平円弧胴部を構成する全ての円弧壁を、同じ壁厚で、単位円弧長当りの剛性と強度とを同じにできる。したがって、軽量化のために壁厚を薄肉化した場合にあっても、扁平円弧胴部を、幅方向及び高さ方向の剛性と強度とのバランスに優れたものとなり、軽量化の効果も大きくなり得る。   Further, a configuration is proposed in which the above-described flat arc body is formed by forming the cross-section arc diameter of the side arc wall and the cross-section arc diameter of the intermediate arc wall to be the same diameter. By adopting such a configuration, it is possible to make all the arc walls constituting the flat arc barrel portion have the same wall thickness and the same rigidity and strength per unit arc length. Therefore, even when the wall thickness is reduced for weight reduction, the flat arc barrel has an excellent balance between rigidity and strength in the width direction and height direction, and the effect of weight reduction is also great. Can be.

このような扁平円筒胴部が、縦断隔壁の長手方向に沿った両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面により連続する接合部を形成してなるものである構成が提案される。かかる構成にあっては、縦断隔壁と上述した側部円弧壁、中間円弧壁とが接合する接合部に円弧凹面が形成されているものであるから、扁平圧力容器に所定のガスを充填した場合に、該ガスの内圧によって接合部に生じる応力集中を緩和することができる。したがって、本発明の扁平圧力容器は、ガスの充填と排出とが繰り返されることによる疲労特性を改善でき、耐久性を向上することができる。ここで、円弧凹面の凹面半径rは、縦断隔壁の壁厚tに対して、r=t〜3tとすることが好適である。   Such a flat cylindrical body portion is widened to both outer sides in the wall thickness direction at both ends along the longitudinal direction of the longitudinal partition wall, and a joining portion is formed in which the main wall portion and the widened portion are continuous by an arc concave surface. A configuration is proposed. In such a configuration, since the arc concave surface is formed at the joint portion where the longitudinal partition wall and the above-described side arc wall and intermediate arc wall are joined, the flat pressure vessel is filled with a predetermined gas. In addition, the stress concentration generated in the joint due to the internal pressure of the gas can be relaxed. Therefore, the flat pressure vessel of the present invention can improve fatigue characteristics due to repeated filling and discharging of gas, and can improve durability. Here, the concave radius r of the arc concave surface is preferably r = t to 3t with respect to the wall thickness t of the vertical partition wall.

一方、本発明は、内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成された扁平圧力容器の製造方法にあって、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された略Iビーム形状の縦断隔壁と、前記扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、縦断隔壁の両接合部に、側部円筒壁の欠円開口端に形成した接合端部を溶接することによって、該縦断隔壁と側部円筒壁とにより囲繞された筒状主貯留域を両側に備えた扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする。   On the other hand, the present invention provides a flat cylindrical body having both ends opened by dividing a plurality of cylindrical main storage areas along the longitudinal direction by dividing the inside by vertical partition walls, and having both ends open, and the flat cylindrical body In which the arc occupies an angle of 180 degrees. The manufacturing method of the flat pressure vessel includes a dish-shaped mirror portion that is joined to cover both end openings of the section and forms a communication area that communicates with each main storage area. The long side circular arc wall having an arcuate cross-section having the above-mentioned circular shape, widened to both sides in the longitudinal direction on both sides in the longitudinal direction, and the main wall portion and the widened portion are substantially continuous with an arc concave surface. After performing a molding process for forming a substantially I-beam shaped vertical partition wall having a T-shaped cross-section joint and a dish-shaped mirror part joined to both ends of the flat cylindrical body, By welding the joint ends formed at the open ends of the cylindrical holes on the side cylindrical walls to both joints of the partition walls, A joining step of forming a flat cylindrical body having a cylindrical main storage area on both sides surrounded by a partition wall and a side cylindrical wall, and then welding a dish-shaped mirror part to both ends of the flat cylindrical body. It is characterized by having done.

かかる製造方法により、上述した本発明にかかる、側部円弧壁と、その欠円開口を覆う縦断隔壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっては、比較的単純な形態である側部円筒壁、縦断隔壁、及び皿状鏡部を別々に成形し、これらを溶接することにより、扁平圧力容器を製造するようにした方法である。これにより、成形加工で成形される、圧力容器を構成する部品点数及び部品種類を少なくし、かつ、接合工程での溶接箇所を少なくすると共に溶接作業を単純化することができるから、各工程が簡素化されることとなり、製造効率を向上させ得る。さらに、成形工程で成形した各部品の保管場所も縮小することが可能である。而して、扁平圧力容器の製造時間と製造にかかる費用とを低減することができる。また、縦断隔壁の接合部に円弧凹面が形成されていることにより、本製造方法で製造した扁平圧力容器に充填されたガスの内圧力や、充填と排出との繰り返し応力によって生じる応力集中を緩和できる。ここで、皿状鏡部の成形は、プレス加工により行うことが好適である。   By such a manufacturing method, a flat pressure vessel having cylindrical side main storage areas on both sides formed by being surrounded by the side arc wall and the vertical partition wall covering the cutout opening according to the present invention described above is provided. It can be manufactured easily and properly. In this manufacturing method, the flat cylindrical pressure vessel is manufactured by separately molding the side cylindrical wall, the vertical partition wall, and the dish-shaped mirror portion, which are relatively simple forms, and welding them. Is the method. As a result, the number of parts constituting the pressure vessel and the type of parts formed by the molding process can be reduced, and the number of welding locations in the joining process can be reduced and the welding operation can be simplified. This simplifies the manufacturing efficiency. Furthermore, it is possible to reduce the storage location of each part molded in the molding process. Thus, the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced. In addition, the arc concavity is formed at the junction of the vertical partition walls, reducing the stress concentration caused by the internal pressure of the gas filled in the flat pressure vessel manufactured by this manufacturing method and the repeated stress of filling and discharging it can. Here, it is preferable that the dish-shaped mirror portion is formed by press working.

また、上述と同様の扁平圧力容器の製造方法にあって、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された縦断隔壁および前記側部円弧壁を、該側部円弧壁の欠円開口端に形成した接合端部を両接合部に一側から連成させることにより、一体的に形成した内側に筒状側部主貯留域が形成された側部閉鎖円弧壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に備えた扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする。   Further, in the manufacturing method of the flat pressure vessel similar to the above, the long side circular arc wall having a circular arc shape with a circular arc with an angle occupied by the circular arc of 180 degrees or more, and both ends in the longitudinal direction, A longitudinal partition wall in which a joint portion having a substantially T-shaped cross section is formed, which is widened to both outer sides in the wall thickness direction and the main wall portion and the widened portion are continuous with an arc concave surface, and the side arc wall. By connecting the joint end portion formed at the open end of the notch circle to both joint portions from one side, the side closed circular arc wall in which the cylindrical side main storage area is formed in the integrally formed inner side, From the other side where the side arc wall is not coupled to the joint part of the side closed arc wall after performing the molding process of respectively forming the dish-shaped mirror part joined to the both ends opening of the cylindrical body part A cylinder surrounded by a vertical partition wall and a side arc wall by welding the joining end of the open end of the side arc wall. To form a flat cylindrical barrel having a side main area on both sides, then, it is characterized in that to perform the bonding step of welding the dished mirror portion across the opening of 該扁 flat cylindrical barrel.

かかる製造方法にあっても、上述の製造方法と同様に、上述した本発明にかかる、側部円弧壁と、その欠円開口を覆う縦断隔壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっては、比較的単純な形態である側部円筒壁、側部閉鎖円弧壁、及び皿状鏡部を別々に成形し、これらを溶接することにより、扁平圧力容器を製造するようにした方法である。ここで、扁平円筒部を、各一個の側部円弧壁及び側部閉鎖円弧壁を接合することにより形成するようにしたから、部品点数が一層少なくなり、溶接箇所を低減できると共に溶接作業をさらに単純化できる。このため、成形工程及び接合工程が簡素化され、製造効率を一層向上できると共に、各部品の保管場所を縮小することが可能である。而して、本扁平圧力容器の製造時間と製造にかかる費用とを低減することができる。また、縦断隔壁の接合部に円弧凹面が形成されていることにより、本製造方法で製造した扁平圧力容器に充填されたガスの内圧力や、充填と排出との繰り返し応力によって生じる応力集中を緩和できる。ここで、皿状鏡部の成形は、プレス加工により行うことが好適である。   Even in such a manufacturing method, similar to the above-described manufacturing method, the cylindrical sides on both sides formed by being surrounded by the side circular arc wall and the vertical partition wall covering the cutout opening according to the present invention described above. A flat pressure vessel having a main storage area can be manufactured easily and appropriately. In this manufacturing method, a flat cylindrical pressure vessel is manufactured by separately forming a side cylindrical wall, a side closed circular arc wall, and a dish-shaped mirror portion, which are relatively simple, and welding them. This is the method. Here, since the flat cylindrical portion is formed by joining each one side arc wall and side closing arc wall, the number of parts can be further reduced, the number of welding points can be reduced, and the welding operation can be further reduced. It can be simplified. For this reason, the molding process and the joining process are simplified, the manufacturing efficiency can be further improved, and the storage location of each component can be reduced. Thus, it is possible to reduce the manufacturing time and manufacturing cost of the flat pressure vessel. In addition, the arc concavity is formed at the junction of the vertical partition walls, reducing the stress concentration caused by the internal pressure of the gas filled in the flat pressure vessel manufactured by this manufacturing method and the repeated stress of filling and discharging it can. Here, it is preferable that the dish-shaped mirror portion is formed by press working.

また、本発明の他の製造方法としては、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された縦断隔壁および、円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁を、該中間円弧壁の片側円弧端に形成した接合端部を一方の接合部に一側から連成させることにより、一体的に形成した略L字状断面の中間片方壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、二つの中間片方壁の、各中間円弧壁の片側円弧端の接合端部を他方の縦断隔壁の接合部に互いに溶接することにより、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、各中間片方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端に形成した接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に形成する接合とを行って扁平円筒胴部を形成し、その後、該扁平胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする。   In addition, as another manufacturing method of the present invention, a long side circular arc wall having an arc shape with a circular cross section with an angle occupied by the circular arc of 180 degrees or more, and both sides in the longitudinal direction, both in the wall thickness direction. Longitudinal partition wall formed with a joint portion of a substantially T-shaped cross section that is widened outward and the main wall portion and the wide width portion are continuous with an arc concave surface, and a long cross-section arc shape with an angle occupied by the arc of 90 degrees or less The intermediate arc wall of the intermediate arc wall is integrally formed with the one end of the intermediate arc wall at one end of the arc, and the one end of the intermediate arc wall is integrally formed from one side; , After performing the molding process of respectively molding the dish-shaped mirror part joined to the opening at both ends of the flat cylindrical body part, the joining end part of the one side arc end of each intermediate arc wall of the two intermediate one side walls is the other By welding each other to the joint of the vertical partition walls, the two vertical partition walls facing each other and the upper and lower A joint that forms a cylindrical intermediate main region surrounded by an intermediate arc wall, and a noncircular open end of the side arc wall from the other side where the intermediate arc wall is not coupled to the junction of each intermediate half wall By welding the joining end portion formed on the cylindrical side portion main region surrounded by the vertical partition wall and the side arc wall to form both sides to form a flat cylindrical body, The present invention is characterized in that a joining step of welding a dish-shaped mirror portion to both ends of the flat body portion is performed.

かかる製造方法により、上述した本発明にかかる、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞されて形成された筒状中間主貯留域と、両側の縦断隔壁と側部円弧壁とにより囲繞されて形成された両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっては、比較的単純な形態である側部円筒壁、中間片方壁、及び皿状鏡部を別々に成形し、これらを溶接することにより、扁平圧力容器を製造するようにした方法である。ここで、中間円弧壁と縦断隔壁とを別々に成形せずに、中間片方壁として成形することにより、成形工程で成形される部品点数と部品種類とを少なくし、溶接箇所を一層低減できると共に溶接作業を単純化できる。本製造方法にあっても、上述の製造方法と同様に、成形工程及び接合工程が簡素化され、製造効率を一層向上できると共に、各部品の保管場所を縮小することが可能である。而して、扁平圧力容器の製造時間と製造にかかる費用とを低減することができる。また、縦断隔壁の接合部に円弧凹面が形成されていることにより、本製造方法で製造した扁平圧力容器に充填されたガスの内圧力や、充填と排出との繰り返し応力によって生じる応力集中を緩和できる。ここで、皿状鏡部の成形は、プレス加工により行うことが好適である。   By such a manufacturing method, the cylindrical intermediate main storage area formed by being surrounded by the above-described two facing vertical partition walls and the upper and lower intermediate arc walls according to the present invention, the vertical partition walls and the side portions on both sides A flat pressure vessel provided with cylindrical side main storage areas on both sides formed by being surrounded by an arc wall can be manufactured easily and appropriately. In this manufacturing method, a flat pressure vessel is manufactured by separately molding a side cylindrical wall, an intermediate one-side wall, and a dish-shaped mirror portion, which are relatively simple, and welding them. It is the method. Here, by forming the intermediate arc wall and the longitudinal partition wall separately as an intermediate one-side wall, the number of parts and types of parts formed in the forming process can be reduced, and the number of welding points can be further reduced. Welding work can be simplified. Even in this manufacturing method, as in the above-described manufacturing method, the molding step and the joining step are simplified, the manufacturing efficiency can be further improved, and the storage location of each component can be reduced. Thus, the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced. In addition, the arc concavity is formed at the junction of the vertical partition walls, reducing the stress concentration caused by the internal pressure of the gas filled in the flat pressure vessel manufactured by this manufacturing method and the repeated stress of filling and discharging it can. Here, it is preferable that the dish-shaped mirror portion is formed by press working.

また、本発明の他の製造方法としては、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とが円弧凹面で連続する略T字状断面の接合部が一体的に形成された縦断隔壁および、前記側部円弧壁を、該側部円弧壁の欠円開口端に形成した接合端部を両接合部に一側から連成させることにより、一体的に形成した内側に筒状側部主貯留域が形成された側部閉鎖円弧壁と、前記縦断隔壁および、円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁を、該中間円弧壁の片側円弧端に形成した接合端部を両接合部に一側から夫々に連成させることにより、一体的に形成した略コ字状断面の中間双方壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、中間双方壁の上下の片側円弧端の接合端部を溶接することによって、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、中間双方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することにより、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を形成する接合とを行って扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする。   In addition, as another manufacturing method of the present invention, a long side circular arc wall having an arc shape with a circular cross section with an angle occupied by the circular arc of 180 degrees or more, and both sides in the longitudinal direction, both in the wall thickness direction. A longitudinal partition wall integrally formed with a joint portion having a substantially T-shaped cross section that is widened outward and the main wall portion and the widened portion are continuous with an arc concave surface, and the side arc wall is The side closed circular arc wall in which the cylindrical side main storage area is formed on the inner side formed integrally by coupling the joint end formed at the end of the notch circle to both joints from one side, A longitudinal partition wall and a long intermediate circular arc wall having a circular arc shape with an arc occupying an angle of 90 degrees or less, and a joint end formed at one circular arc end of the intermediate circular arc wall from both sides to both joints, respectively. By coupling, both the middle wall of the substantially U-shaped cross section and the opening of both ends of the flat cylindrical body After performing the molding process of forming the dish-shaped mirror portions to be joined respectively, the joints of the side closed arc walls are joined to the upper and lower sides of the intermediate walls from the other side where the side arc walls are not coupled. Joining to form a cylindrical intermediate main region surrounded by two vertical partition walls facing each other and the upper and lower intermediate arc walls by welding the joining end of the arc end on one side, and the junction of both intermediate walls A cylindrical side part surrounded by a vertical partition wall and a side arc wall by welding a joining end part of a notch opening end of the side arc wall from the other side where the intermediate arc wall is not coupled A flat cylinder body is formed by performing bonding that forms a main region, and thereafter, a bonding process is performed in which a dish-shaped mirror portion is welded to both ends of the flat cylinder body.

かかる製造方法にあっても、上述の製造方法と同様に、上述した本発明の筒状中間主貯留域と両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっては、比較的単純な形態である側部円筒壁、側部閉鎖円弧壁、中間双方壁及び皿状鏡部を別々に成形し、これらを溶接することにより、扁平圧力容器を製造するようにした方法である。ここで、扁平円筒部を、各々一個の側部円筒壁、側部閉鎖円弧壁、中間双方壁を接合することにより形成するようにしたから、成形工程で成形される部品点数を一層少なくでき、溶接箇所を減少できると共に溶接作業を単純化することができる。このため、成形工程と接合工程が簡素化され、製造効率を一層向上できると共に、各部品の保管場所を縮小することが可能である。而して、本扁平圧力容器の製造時間と製造にかかる費用とを低減することができる。また、縦断隔壁の接合部に円弧凹面が形成されていることにより、本製造方法で製造した扁平圧力容器に充填されたガスの内圧力や、充填と排出との繰り返し応力によって生じる応力集中を緩和できる。ここで、皿状鏡部の成形は、プレス加工により行うことが好適である。   Even in such a manufacturing method, similarly to the above-described manufacturing method, a flat pressure vessel including the above-described cylindrical intermediate main storage area of the present invention and the cylindrical side main storage areas on both sides is easily and appropriately manufactured. can do. In this manufacturing method, a flat cylindrical pressure vessel is formed by separately molding a side cylindrical wall, a side closed circular arc wall, both intermediate walls, and a dish-shaped mirror portion, which are relatively simple, and welding them. This is a method for manufacturing. Here, since the flat cylindrical portion is formed by joining one side cylindrical wall, side closed arc wall, and both intermediate walls, the number of parts molded in the molding process can be further reduced. The number of welding points can be reduced and the welding operation can be simplified. For this reason, the molding process and the joining process are simplified, the manufacturing efficiency can be further improved, and the storage location of each component can be reduced. Thus, it is possible to reduce the manufacturing time and manufacturing cost of the flat pressure vessel. In addition, the arc concavity is formed at the junction of the vertical partition walls, reducing the stress concentration caused by the internal pressure of the gas filled in the flat pressure vessel manufactured by this manufacturing method and the repeated stress of filling and discharging it can. Here, it is preferable that the dish-shaped mirror portion is formed by press working.

ここで、上記の製造方法にあって、接合工程が、中間双方壁の接合部に、中間円弧壁が連成されていない他側から、他の中間双方壁の上下の片側円弧端の接合端部を溶接することにより、複数の筒状中間主領域を連成する扁平円筒胴部を形成するようにした方法が提案される。かかる製造方法により、上述した本発明の、並列状に連成された複数の筒状中間主貯留域と両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっては、中間双方壁を複数成形して、順次溶接していくことにより、複数の筒状中間主貯留域を連成した扁平円筒胴部を容易に形成できる。このため、複数の筒状中間主貯留域を並成した扁平圧力容器を製造する場合にあって、部品点数と部品種類とを少くすることが可能である。また、予め中間双方壁を複数成形しておくことにより、当該扁平圧力容器の搭載される搭載スペースに応じた、幅方向の長さが異なる扁平圧力容器を、中間双方壁の接合数量を調整することによって容易かつ適切に製造することができるという利点もある。   Here, in the above manufacturing method, the joining step is a joining end of the upper and lower one-side arc ends of the other intermediate walls from the other side where the intermediate arc walls are not coupled to the joining portion of the both intermediate walls. A method is proposed in which a flat cylindrical body that is formed by coupling a plurality of cylindrical intermediate main regions is formed by welding the portions. By this manufacturing method, the flat pressure vessel having the plurality of cylindrical intermediate main storage areas and the cylindrical side main storage areas on both sides that are coupled in parallel according to the present invention described above is easily and appropriately manufactured. be able to. In this manufacturing method, by forming a plurality of both intermediate walls and sequentially welding them, it is possible to easily form a flat cylindrical body that is formed by coupling a plurality of cylindrical intermediate main storage areas. For this reason, in the case of manufacturing a flat pressure vessel in which a plurality of cylindrical intermediate main storage areas are arranged, it is possible to reduce the number of parts and the kind of parts. In addition, by forming a plurality of intermediate both walls in advance, the number of flat pressure vessels having different lengths in the width direction according to the mounting space in which the flat pressure vessels are mounted is adjusted. There is also an advantage that it can be manufactured easily and appropriately.

また、上述した成形工程が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径となるように成形した製造方法が提案される。かかる製造方法により、上述した本発明にかかる、全ての円弧壁が同じ円弧径からなる構成の扁平圧力容器を製造することができる。   Moreover, the manufacturing method which shape | molded so that the shaping | molding process mentioned above may become the same diameter as the cross-sectional arc diameter of a side part arc wall and the cross-sectional arc diameter of an intermediate | middle arc wall is proposed. With this manufacturing method, it is possible to manufacture a flat pressure vessel having a configuration in which all the arc walls according to the present invention have the same arc diameter.

また、上述の成形工程が、所定の扁平円筒胴部長さの略複数倍の長さに成形した後、所定長さに切断するようにした製造方法が提案される。かかる製造方法により、扁平円筒胴部を複数製造する場合に、この成形工程の効率が向上する。すなわち、比較的大量に製造する場合にあって、製造効率が向上することによって、製造時間と製造費用とを低減することができる。また、様々な長さの扁平円筒胴部を形成する場合にも、長さの異なる扁平圧力容器を容易に製造することができる。さらには、切断前の状態で保管しておくことにより、必要に応じて所望の長さの扁平圧力容器を製造できるという利点もある。   In addition, a manufacturing method is proposed in which the above-described forming step is formed into a length approximately a plurality of times the predetermined flat cylindrical body length, and then cut into a predetermined length. This manufacturing method improves the efficiency of this molding process when a plurality of flat cylindrical barrels are manufactured. That is, in the case of manufacturing in a relatively large amount, the manufacturing time and the manufacturing cost can be reduced by improving the manufacturing efficiency. Also, when forming flat cylindrical barrels of various lengths, flat pressure vessels having different lengths can be easily manufactured. Furthermore, there is also an advantage that a flat pressure vessel having a desired length can be manufactured as needed by storing it in a state before cutting.

このような製造方法にあって、成形工程により、縦断隔壁の接合部の外面に、長手方向に亘って嵌合凹溝を形成すると共に、該接合部に溶接される接合端部に、該嵌合凹溝に嵌入する嵌合凸部を形成し、接合工程により、前記接合部の嵌合凹溝に、接合端部の嵌合凸部を嵌入して溶接することにより接合するようにした方法が提案される。ここで、接合部の外面としては、縦断隔壁の壁厚方向に対向する側面や、扁平円筒胴部の高さ方向に対向する外表面のいずれとすることも可能である。接合端部は、上述した各製造方法にあって、側部円弧壁の欠円開口端や、中間片方壁、中間双方壁の円弧端の、縦断隔壁の接合部に溶接される部位を言う。かかる製造方法にあっては、接合部に形成された嵌合凹溝に、接合端部に形成された嵌合凸部を嵌入して溶接するようにしたことにより、接合工程における、接合位置の精度を向上できると共に、溶接作業の作業性を向上できる。また、所定の接合位置を常に適正な位置とすることができるから、各扁平圧力容器の固体間の差を減少することができる。   In such a manufacturing method, the forming process forms a fitting groove in the longitudinal direction on the outer surface of the joint portion of the longitudinal partition wall, and the fitting end is welded to the joint portion. A method of forming a fitting convex portion to be fitted into the mating groove, and joining the fitting concave groove of the joint portion by fitting and fitting the fitting convex portion of the joining end portion into the fitting concave groove in the joining step. Is proposed. Here, the outer surface of the joining portion may be any of a side surface facing the wall thickness direction of the longitudinal partition wall and an outer surface facing the height direction of the flat cylindrical body portion. The joining end portion refers to a portion welded to the joining portion of the longitudinal partition wall at the notch opening end of the side arc wall and the arc ends of the intermediate one side wall and the middle both walls in each manufacturing method described above. In such a manufacturing method, the fitting convex portion formed at the joint end portion is fitted into the fitting concave groove formed at the joint portion and welded, so that the joining position in the joining step can be reduced. Accuracy can be improved and workability of welding work can be improved. Moreover, since a predetermined joining position can always be an appropriate position, the difference between the solids of each flat pressure vessel can be reduced.

一方、上述した扁平圧力容器の製造方法にあって、成形工程が、アルミニウム合金を押出加工することにより成形するようにした製造方法が提案される。ここで、押出加工により成形するものとしては、上述した側部円弧壁、縦断隔壁、側部閉鎖円弧壁、中間片方壁、中間双方壁の扁平円筒胴部を形成する各部品である。尚、上述のように、皿状鏡部はプレス加工により成形することが望ましい。この押出加工にあっては、例えば、アルミニウム合金の板材から所定形状に成形する一般的なロール加工やプレス加工等の加工方法に比して、長尺部品の成形に適しており、該部品の形状及び寸法を高精度で成形でき、かつ加工工程を簡素化することができる。このため、成形工程に要する成形時間を短縮できると共に、成形費用を減少させることができる。特に、上述のように接合部に嵌合凹溝を設け、各壁の接合端部に嵌合凸部を設ける場合にあっては、板材から成形する方法に比して、精度を向上でき、かつ、成形加工費を低減できる。ここで、アルミニウム合金の押出加工としては、上述した製造方法にあって、側部円弧壁、縦断隔壁、中間片方壁、中間双方壁のような、いわゆるソリッド形状は比較的低い加工費用で成形できる。一方、側部閉鎖円弧壁のような、いわゆるホロー形状は、前記ソリッド形状に比して加工費が高くなる。したがって、接合工程における作業性と合わせて、製造される扁平圧力容器に用途に応じて、上述したような各製造方法を適宜選択すれば良い。   On the other hand, in the above-described flat pressure vessel manufacturing method, a manufacturing method is proposed in which the forming step is performed by extruding an aluminum alloy. Here, what is formed by extrusion processing is each component that forms the above-described flat cylindrical body portion of the side circular arc wall, the vertical partition wall, the side closed circular arc wall, the intermediate one side wall, and the both intermediate walls. As described above, the dish-shaped mirror part is desirably formed by press working. In this extrusion process, for example, it is suitable for forming a long part as compared with a processing method such as a general roll process or press process for forming an aluminum alloy sheet into a predetermined shape. The shape and dimensions can be formed with high accuracy, and the processing process can be simplified. For this reason, the molding time required for the molding process can be shortened and the molding cost can be reduced. In particular, in the case where the fitting groove is provided in the joint portion as described above and the fitting convex portion is provided in the joint end portion of each wall, the accuracy can be improved as compared with the method of molding from the plate material, In addition, the molding cost can be reduced. Here, as the extrusion process of the aluminum alloy, in the manufacturing method described above, a so-called solid shape such as a side arc wall, a vertical partition wall, an intermediate one-side wall, and an intermediate both-side wall can be formed at a relatively low processing cost. . On the other hand, a so-called hollow shape such as a side-closed arc wall has a higher processing cost than the solid shape. Therefore, it is only necessary to appropriately select each manufacturing method as described above in accordance with the use of the flat pressure vessel to be manufactured, together with the workability in the joining process.

また、上述した扁平圧力容器の製造方法にあって、成形工程が、スチールを圧延加工及び/又は引抜加工することにより成形するようにした製造方法が提案される。かかる製造方法により、スチール製の扁平圧力容器を製造する場合に、成形工程に要する時間を短縮できると共に、各部品の形状及び寸法の精度を適正なものとすることができる。したがって、成形費用を減少させることも可能である。ここで、圧延加工や引抜加工により成形するものとしては、上述した側部円弧壁、縦断隔壁、側部閉鎖円弧壁、中間片方壁、中間双方壁の扁平円筒胴部を形成する各部品である。尚、上述のように、皿状鏡部はプレス加工により成形することが望ましい。   Further, in the above-described flat pressure vessel manufacturing method, a manufacturing method is proposed in which the forming step forms the steel by rolling and / or drawing. With this manufacturing method, when manufacturing a flat pressure vessel made of steel, the time required for the forming process can be shortened, and the accuracy of the shape and dimensions of each component can be made appropriate. Therefore, it is possible to reduce the molding cost. Here, what is formed by rolling or drawing is each part that forms the above-described flat cylindrical body of the side circular arc wall, the vertical partition wall, the side closed circular arc wall, the intermediate one side wall, and the intermediate both walls. . As described above, the dish-shaped mirror part is desirably formed by press working.

上述したように、本発明の扁平圧力容器は、内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成され、所定のガス又は液化ガスを容器内に充填する充填バルブ及び容器外に排出する排出バルブを少なくとも各一個備えてなるか、又は充填と排出とを行う入出バルブを少なくとも一個備えてなる構成としたものであるから、上述した従来の複合型圧力容器に比して、皿状鏡部の連通領域の貯留可能な容量が大きくなるため、容器全体の最大充填容量が増加し、略直方体状の搭載スペースに対する、燃料ガスの積載効率が向上する。また、従来の複合型圧力容器の各容器の鏡部総重量に比して、皿状鏡部の重量が軽くできるため、当該扁平圧力容器を軽量化することができる。さらに、充填バルブ及び排出バルブ又は入出バルブの配設数を少なくできるため、減少数に相当する重量だけ軽量化できる。   As described above, the flat pressure vessel according to the present invention has a flat cylindrical body whose ends are opened by dividing a plurality of cylindrical main storage areas along the longitudinal direction by dividing the inside by vertical partition walls. And a dish-shaped mirror part that covers and joins the opening at both ends of the flat cylindrical body part and forms a communication area that communicates with each main storage area inside, and a predetermined gas or liquefied gas is placed in the container. The above-described conventional composite type is provided with at least one filling valve and at least one discharge valve for discharging outside the container, or at least one input / output valve for filling and discharging. Compared to a pressure vessel, the capacity that can be stored in the communication region of the dish-shaped mirror is increased, so the maximum filling capacity of the entire vessel increases, and the loading efficiency of fuel gas in a substantially rectangular parallelepiped mounting space is improved. . Further, since the weight of the dish-shaped mirror portion can be reduced as compared with the total mirror portion weight of each container of the conventional composite pressure vessel, the flat pressure vessel can be reduced in weight. Further, since the number of filling valves and discharge valves or inlet / outlet valves can be reduced, the weight corresponding to the reduced number can be reduced.

ここで、扁平円筒胴部が、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、その欠円開口を覆う縦断隔壁とにより囲繞されて形成された、両側の筒状側部主貯留域を備えている構成とした場合にあっては、該扁平円筒胴部の扁平化に応じて形成される皿状鏡部の連通領域の容量が、上述した従来の複合型圧力容器に比して増加し、ガスの積載効率が向上する。また、この扁平円筒胴部は、幅方向(扁平方向)及び高さ方向に対して充分な剛性と強度とを発揮できる。そして、扁平形状であっても、高圧ガス保安法の容器保安規則に従うシリンダー型圧力容器の板厚計算結果と同等の板厚によって強度設計できる。而して、扁平圧力容器は、優れた強度及び剛性と軽量化との両者を満足できるものである。   Here, a flat cylindrical body is formed by being surrounded by a long side circular arc wall having a circular arc shape with a circular shape with an angle occupied by the circular arc of 180 degrees or more and a vertical partition wall covering the circular opening. In the case of the configuration including the cylindrical side main storage areas on both sides, the capacity of the communication area of the dish-shaped mirror part formed in accordance with the flattening of the flat cylindrical body part, Compared to the above-described conventional combined pressure vessel, the gas loading efficiency is improved. Moreover, this flat cylindrical trunk | drum can exhibit sufficient rigidity and intensity | strength with respect to the width direction (flat direction) and a height direction. And even if it is a flat shape, strength design can be carried out by the board thickness equivalent to the board thickness calculation result of the cylinder type pressure vessel according to the container security rule of the high-pressure gas safety method. Thus, the flat pressure vessel can satisfy both excellent strength and rigidity and weight reduction.

また、扁平円筒胴部が、相互に対峙する二面の縦断隔壁と、上下の円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁とにより囲繞されて形成された筒状中間主貯留域と、該筒状中間主貯留域の両側の縦断隔壁と、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁とにより囲繞されて形成された、両側の筒状側部主貯留域とを備えている構成とした場合にあっては、扁平円筒胴部が中間円弧壁の分だけ幅方向にさらに扁平化され、該扁平化に従って皿状鏡部の連通領域の容量が増加する。また、この中間主貯留域が形成されていても、幅方向と高さ方向に対して充分な剛性と強度を発揮できると共に、軽量化も可能となる。   In addition, a cylinder formed by a flat cylindrical body surrounded by a vertical partition wall with two faces facing each other and a long intermediate arc wall having an arc shape with a cross-sectional arc shape in which the upper and lower arcs occupy 90 degrees or less Is surrounded by a cylindrical intermediate main storage area, vertical partition walls on both sides of the cylindrical intermediate main storage area, and a long side circular arc wall having an arcuate cross-section with an arc of 180 degrees or more. In this case, the flat cylindrical body is further flattened in the width direction by the amount of the intermediate arc wall, and the flattening is performed. Accordingly, the capacity of the communication area of the dish-shaped mirror portion increases. Further, even if this intermediate main storage area is formed, sufficient rigidity and strength can be exhibited in the width direction and the height direction, and the weight can be reduced.

ここで、扁平円筒胴部が、隣り合う二面が相互に対峙するように並立された複数の縦断隔壁の、各隣り合う二面の縦断隔壁毎に、上下一対の中間円弧壁と囲繞されて形成されたことにより、並列状に連成された複数の筒状中間主貯留域および、両側端の縦断隔壁と側部円弧壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えている構成とした場合にあっては、搭載スペースの寸法に従って、適当数の筒状中間主貯留域が形成されてなるものとできるため、搭載スペースに応じた高いガス積載効率を発揮できる。また、かかる構成にあっても、扁平圧力容器の幅方向及び高さ方向に対して充分な強度及び剛性とを発揮できる。   Here, the flat cylindrical body is surrounded by a pair of upper and lower intermediate arc walls for each of the two adjacent vertical partition walls of a plurality of vertical partition walls arranged side by side so that two adjacent surfaces face each other. A plurality of cylindrical intermediate main storage areas that are coupled in parallel by being formed, and cylindrical side main storage areas on both sides that are formed by being surrounded by vertical partition walls and side arc walls on both ends. In the case of the configuration including the above, since an appropriate number of cylindrical intermediate main storage areas can be formed according to the size of the mounting space, high gas loading efficiency corresponding to the mounting space can be exhibited. . Even in such a configuration, sufficient strength and rigidity can be exhibited in the width direction and height direction of the flat pressure vessel.

また、上述した扁平円弧胴部が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径に形成してなるものである構成とした場合にあっては、扁平円弧胴部が、幅方向及び高さ方向の剛性と強度とのバランスに優れたものとなり、軽量化の効果も高い。   Further, in the case where the above-described flat arc body is formed by forming the cross-section arc diameter of the side arc wall and the cross-section arc diameter of the intermediate arc wall to be the same diameter, The portion has an excellent balance between rigidity and strength in the width direction and height direction, and the effect of weight reduction is also high.

このような扁平円筒胴部が、縦断隔壁の長手方向に沿った両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面により連続する接合部を形成してなるものとした構成にあっては、扁平圧力容器に所定のガスを充填した場合に、該ガスの内圧によって該接合部に生じる応力集中を緩和でき、充填と排出との繰り返し応力に対する耐久性を向上できる。   Such a flat cylindrical body portion is widened to both outer sides in the wall thickness direction at both ends along the longitudinal direction of the longitudinal partition wall, and a joining portion is formed in which the main wall portion and the widened portion are continuous by an arc concave surface. In the configuration, when a flat pressure vessel is filled with a predetermined gas, the stress concentration generated in the joint can be relaxed by the internal pressure of the gas, and the durability against repeated stress of filling and discharging is improved. it can.

一方、本発明の扁平圧力容器の製造方法としては、上述したように、側部円弧壁と、長手方向の両辺端に、略T字状断面の接合部が形成された略Iビーム形状の縦断隔壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、縦断隔壁の両接合部に、側部円筒壁の欠円開口端に形成した接合端部を溶接することによって、該縦断隔壁と側部円筒壁とにより囲繞された筒状主貯留域を両側に備えた扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにした方法である。この方法により、上述した本発明の、両側に筒状側部主貯留域を備えた扁平圧力容器を容易かつ適正に製造できる。この製造方法にあっては、成形加工と接合加工とを簡素化でき、製造効率が向上する。さらには、扁平圧力容器の製造時間と製造費用とを低減できる。   On the other hand, as described above, the method for producing a flat pressure vessel according to the present invention includes a substantially arcuate I-beam profile in which joints having a substantially T-shaped cross section are formed on both sides of the side arc wall and in the longitudinal direction. After performing the molding process to form the partition and the dish-shaped mirror part to be joined to the opening at both ends of the flat cylindrical body part, it is formed at both joints of the longitudinal partition wall at the end of the circular opening of the side cylindrical wall By welding the joined end portions, a flat cylindrical body having a cylindrical main storage area surrounded by the vertical partition wall and the side cylindrical wall is formed on both sides, and then both ends of the flat cylindrical body are formed. In this method, a joining step of welding the dish-shaped mirror portion to the opening is performed. By this method, the flat pressure vessel provided with the cylindrical side main storage area on both sides according to the present invention described above can be manufactured easily and appropriately. In this manufacturing method, the forming process and the joining process can be simplified, and the manufacturing efficiency is improved. Furthermore, the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced.

また、上記と同様の扁平圧力容器の製造方法にあって、側部円弧壁と、長手方向の両辺端に略T字状断面の接合部が形成された縦断隔壁および前記側部円弧壁を、該側部円弧壁の欠円開口端の接合端部を両接合部に一側から連成させることにより、一体的に形成した側部閉鎖円弧壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に備えた扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにした製造方法である。この方法にあっても、上述の製造方法と同様の、両側に筒状側部主貯留域を備えた扁平圧力容器を容易かつ適正に製造できる。かかる製造方法にあっては、扁平円筒胴部を構成する部品点数と部品種類とが一層少なくなり、成形工程及び接合工程が簡素化され、製造効率をさらに向上できる。さらには、扁平圧力容器の製造時間と製造費用とを低減できる。   Further, in the same method for producing a flat pressure vessel as described above, a side arc wall, a longitudinal partition wall in which joint portions having a substantially T-shaped cross section are formed at both ends in the longitudinal direction, and the side arc wall, By joining the joint end portion of the circular arc opening end of the side circular arc wall from one side to both joint portions, it is joined to the integrally formed side closed circular arc wall and both end openings of the flat cylindrical body. After performing the molding process to mold each of the dish-shaped mirror parts, the side circular arc wall is not circularly open from the other side where the side circular arc wall is not coupled to the joint of the side closed circular arc wall. By welding the joint ends of the ends, a flat cylindrical body having a cylindrical side main region surrounded by a longitudinal partition wall and a side arc wall is formed on both sides, and then the flat cylindrical body of the flat cylindrical body is formed. This is a manufacturing method in which a joining step of welding a dish-shaped mirror portion to both ends of the opening is performed. Even in this method, a flat pressure vessel having a cylindrical side main storage area on both sides can be manufactured easily and appropriately, similar to the above-described manufacturing method. In such a manufacturing method, the number of parts and the kind of parts constituting the flat cylindrical body are further reduced, the molding process and the joining process are simplified, and the manufacturing efficiency can be further improved. Furthermore, the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced.

また、本発明の他の製造方法としては、側部円弧壁と、長手方向の両辺端に略T字状断面の接合部が形成された縦断隔壁および中間円弧壁を、該中間円弧壁の片側円弧端の接合端部を一方の接合部に一側から連成させることにより、一体的に形成した略L字状断面の中間片方壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、二つの中間片方壁の、各中間円弧壁の片側円弧端の接合端部を他方の縦断隔壁の接合部に互いに溶接することにより、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、各中間片方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端に形成した接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に形成する接合とを行って扁平円筒胴部を形成し、その後、該扁平胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにした方法である。この方法により、上述した本発明の、筒状中間主貯留域と両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。この製造方法にあっても、上述の製造方法と同様に、成形工程及び接合工程が簡素化され、製造効率をさらに向上でき、扁平圧力容器の製造時間と製造費用とを低減できる。   In addition, as another manufacturing method of the present invention, a side arc wall, a vertical partition wall and an intermediate arc wall in which joint portions having a substantially T-shaped cross section are formed at both ends in the longitudinal direction are arranged on one side of the intermediate arc wall. By connecting the joint end of the arc end to one joint from one side, the intermediate half wall of the substantially L-shaped cross section formed integrally and the both ends opening of the flat cylindrical body are joined to the dish shape After performing the molding process to form the mirror part respectively, the joining end part of the one side arc end of each intermediate arc wall of the two intermediate one side walls is welded to the joining part of the other longitudinal partition wall to each other. A cylindrical intermediate main region surrounded by two vertical partition walls facing each other and upper and lower intermediate arc walls, and the other side where the intermediate arc wall is not coupled to the junction of each intermediate one-side wall From the vertical direction by welding the joint end formed at the open end of the circular arc of the side arc wall A cylindrical cylindrical main body is formed on both sides by forming a cylindrical side main region surrounded by a wall and a side circular arc wall to form a flat cylindrical body, and then a dish-shaped mirror is formed at both ends of the flat cylindrical body. This is a method in which a joining process of welding is performed. By this method, the flat pressure vessel provided with the cylindrical intermediate main storage area and the cylindrical side main storage areas on both sides of the present invention described above can be manufactured easily and appropriately. Even in this manufacturing method, like the above-described manufacturing method, the molding step and the joining step are simplified, the manufacturing efficiency can be further improved, and the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced.

また、本発明の他の製造方法としては、側部円弧壁と、長手方向の両辺端に略T字状断面の接合部が一体的に形成された縦断隔壁および前記側部円弧壁を、該側部円弧壁の欠円開口端の接合端部を両接合部に一側から連成させることにより、一体的に形成した側部閉鎖円弧壁と、前記縦断隔壁および中間円弧壁を、該中間円弧壁の片側円弧端の接合端部を両接合部に一側から夫々に連成させることにより、一体的に形成した略コ字状断面の中間双方壁と、扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、中間双方壁の上下の片側円弧端の接合端部を溶接することによって、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、中間双方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することにより、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を形成する接合とを行って扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにした方法である。この製造方法にあっても、上述の製造方法と同様に、上述した本発明の、筒状中間主貯留域と両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。かかる製造方法にあっては、扁平円筒胴部を構成する部品点数と部品種類とが一層少なくなり、成形工程及び接合工程が簡素化され、製造効率をさらに向上できる。さらには、扁平圧力容器の製造時間と製造費用とを低減できる。   Further, as another manufacturing method of the present invention, a side arc wall, a longitudinal partition wall in which joint portions having a substantially T-shaped cross section are integrally formed at both side ends in the longitudinal direction, and the side arc wall, By connecting the joint end portion of the circular arc opening end of the side arc wall to both joint portions from one side, the side closed arc wall formed integrally, the longitudinal partition wall and the intermediate arc wall are By connecting the joint end of one circular arc end of the arc wall to both joints from one side, respectively, the intermediate wall of the substantially U-shaped cross section formed integrally with the both ends opening of the flat cylindrical body After performing the molding process of forming the dish-shaped mirror parts to be joined respectively, the joints of the side closed arc walls are joined to the upper and lower sides of the intermediate walls from the other side where the side arc walls are not coupled. By welding the joint end of one side arc end, the two vertical partition walls facing each other and the upper and lower intermediate arc walls From the other side where the intermediate arc wall is not coupled to the junction that forms the enclosed cylindrical intermediate main region and the junction of the intermediate both walls, the junction end portion of the circular arc opening end of the side arc wall is provided. By welding, a flat cylindrical body is formed by joining to form a cylindrical side main region surrounded by the vertical partition wall and the side circular arc wall, and then, at both end openings of the flat cylindrical body In this method, a joining step of welding the dish-shaped mirror portion is performed. Even in this manufacturing method, similarly to the above-described manufacturing method, the flat pressure vessel having the cylindrical intermediate main storage area and the cylindrical side main storage areas on both sides of the present invention described above can be easily and appropriately provided. Can be manufactured. In such a manufacturing method, the number of parts and the kind of parts constituting the flat cylindrical body are further reduced, the molding process and the joining process are simplified, and the manufacturing efficiency can be further improved. Furthermore, the manufacturing time and manufacturing cost of the flat pressure vessel can be reduced.

ここで、上記の製造方法にあって、接合工程が、中間双方壁の接合部に、中間円弧壁が連成されていない他側から、他の中間双方壁の上下の片側円弧端の接合端部を溶接することにより、複数の筒状中間主領域を連成する扁平円筒胴部を形成するようにした方法にあっては、上述した本発明の、並列状に連成された複数の筒状中間主貯留域と両側の筒状側部主貯留域とを備えた扁平圧力容器を容易かつ適正に製造することができる。さらに、予め中間双方壁を複数成形しておくことにより、搭載スペースに応じて中間双方壁を順次接合する数量を適宜調整でき、幅方向の長さの異なる扁平圧力容器を容易に製造できる。   Here, in the above manufacturing method, the joining step is a joining end of the upper and lower one-side arc ends of the other intermediate walls from the other side where the intermediate arc walls are not coupled to the joining portion of the both intermediate walls. In the method of forming a flat cylindrical body part that couples a plurality of cylindrical intermediate main regions by welding the parts, a plurality of cylinders coupled in parallel according to the present invention described above A flat pressure vessel having a cylindrical intermediate main storage area and cylindrical side main storage areas on both sides can be manufactured easily and appropriately. Furthermore, by forming a plurality of intermediate both walls in advance, the number of intermediate walls that are sequentially joined can be adjusted as appropriate according to the mounting space, and flat pressure vessels having different lengths in the width direction can be easily manufactured.

また、上述した成形工程が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径となるように成形した製造方法にあっては、上述した本発明にかかる、全ての円弧壁が同じ円弧径からなる構成の扁平圧力容器を容易かつ適正に製造できる。   Further, in the manufacturing method in which the above-described forming step is formed so that the cross-section arc diameter of the side arc wall and the cross-section arc diameter of the intermediate arc wall are the same diameter, all of the above-described present invention, A flat pressure vessel having a configuration in which the arc wall has the same arc diameter can be manufactured easily and appropriately.

また、上述の成形工程が、所定の扁平円筒胴部長さの略複数倍の長さに成形した後、所定長さに切断するようにした製造方法にあっては、扁平圧力容器を多量に製造する場合にあって、製造効率を向上できる。また、様々な長さの扁平円筒胴部を形成する場合にも、長さの異なる扁平圧力容器を容易に製造することができる。   Further, in the manufacturing method in which the above-described forming process is formed into a length approximately a multiple of a predetermined flat cylindrical body length and then cut into a predetermined length, a large amount of flat pressure vessels are manufactured. In this case, manufacturing efficiency can be improved. Also, when forming flat cylindrical barrels of various lengths, flat pressure vessels having different lengths can be easily manufactured.

このような製造方法にあって、成形工程により、縦断隔壁の接合部の外面に、長手方向に亘って嵌合凹溝を形成すると共に、該接合部に溶接される接合端部に、該嵌合凹溝に嵌入する嵌合凸部を形成し、接合工程により、前記接合部の嵌合凹溝に、接合端部の嵌合凸部を嵌入して溶接することにより接合するようにした方法にあっては、接合工程における、接合位置の精度を向上できると共に、溶接作業の作業性を向上できる。   In such a manufacturing method, the forming process forms a fitting groove in the longitudinal direction on the outer surface of the joint portion of the longitudinal partition wall, and the fitting end is welded to the joint portion. A method of forming a fitting convex portion to be fitted into the mating groove, and joining the fitting concave groove of the joint portion by fitting and fitting the fitting convex portion of the joining end portion into the fitting concave groove in the joining step. In this case, the accuracy of the joining position in the joining process can be improved, and the workability of the welding work can be improved.

一方、上述した扁平圧力容器の製造方法にあって、成形工程が、アルミニウム合金を押出加工することにより成形するようにした製造方法にあっては、一般的なロール加工やプレス加工等の加工方法に比して、加工工程が簡略化でき、かつ、各部品の形状及び寸法の精度を向上でき、成形時間の短縮と成形費用の低減とが可能である。   On the other hand, in the manufacturing method of the flat pressure vessel described above, in the manufacturing method in which the forming step is formed by extruding the aluminum alloy, a processing method such as general roll processing or press processing is used. Compared to the above, the machining process can be simplified, the accuracy of the shape and dimensions of each part can be improved, and the molding time and the molding cost can be reduced.

また、上述した扁平圧力容器の製造方法にあって、成形工程が、スチールを圧延加工及び/又は引抜加工することにより成形するようにした製造方法にあっては、スチール製の扁平圧力容器を製造する場合に、成形工程の時間短縮と、各部品の形状及び寸法精度の適正化とが可能となり、成形費用が減少できる。   Moreover, in the manufacturing method of the flat pressure vessel mentioned above, in the manufacturing method in which the forming step is formed by rolling and / or drawing steel, a flat pressure vessel made of steel is manufactured. In this case, it is possible to shorten the molding process time and to optimize the shape and dimensional accuracy of each part, thereby reducing the molding cost.

本発明にかかる実施形態例を添付図面を用いて説明する。
実施形態例として、図1(イ)に示すように、扁平円筒胴部2の内部に筒状側部主貯留域3,3を両側に備えた扁平圧力容器1を例示する。また、図7(イ)に示すように、扁平円筒胴部12の内部に、筒状中間主貯留域13と、該筒状中間主貯留域13の両側に筒状側部主貯留域3,3を備えた扁平圧力容器11を例示する。さらにまた、図13(イ)に示すように、扁平円筒胴部22の内部に三つの筒状中間主貯留域13を並成し、その両側に筒状側部主貯留域3,3を備えた扁平圧力容器21を例示する。そして、これら三種類の容器を、以下の各実施例で説明する製造方法によりそれぞれ製造した。
Embodiments according to the present invention will be described with reference to the accompanying drawings.
As an embodiment, as shown in FIG. 1A, a flat pressure vessel 1 having cylindrical side main storage areas 3 and 3 on both sides inside a flat cylindrical body 2 is illustrated. Further, as shown in FIG. 7 (a), a cylindrical intermediate main storage area 13 is formed inside the flat cylindrical body 12, and a cylindrical side main storage area 3, on both sides of the cylindrical intermediate main storage area 13. The flat pressure vessel 11 provided with 3 is illustrated. Furthermore, as shown in FIG. 13 (a), three cylindrical intermediate main storage areas 13 are juxtaposed inside the flat cylindrical body 22, and cylindrical side main storage areas 3 and 3 are provided on both sides thereof. The flat pressure vessel 21 is illustrated. And these three types of containers were each manufactured with the manufacturing method demonstrated in each following Example.

(実施例1)
実施例1にあっては、図1(イ)に示す両側に筒状側部主貯留域3,3を備えた扁平圧力容器1を製造する。本実施例の製造方法では、図1(ロ)のように、成形工程により側部円弧壁4,4、縦断隔壁5、及び皿状鏡部6,6を成形した後、接合工程によりこれらを溶接して扁平圧力容器1を製造する。この側部円弧壁4にあっては、所定の円弧径からなる円弧の占める角度が180度以上である欠円状をなす断面円弧形状に形成されてなる長尺状のものである。一方、縦断隔壁5にあっては、長手方向の両辺端に、略T字状断面の接合部7a,7aを一体的に形成してなる略Iビーム形状としたものである。ここで、接合部7a,7aは、縦断隔壁5の主壁部39から壁厚方向両外側に拡幅し、この拡幅部40aが該主壁部39から円弧凹面41a、41aで連続する略T字状断面となっている(図3参照)。この円弧凹面41aは、主壁部39の壁厚tに対してt〜2tの凹面半径rにより形成されている。また、皿状鏡部6にあっては、側部円弧壁4の断面円弧とほぼ等しい円弧径の曲面を備えた皿形状に形成されてなり、鏡部開口37は、扁平円筒胴部2の両端開口38(図4(イ)参照)とほぼ同じ形状に形成されている。この皿状鏡部6の内側には、幅方向に一体の空域が形成されている。
(Example 1)
In Example 1, the flat pressure vessel 1 provided with the cylindrical side main storage areas 3 and 3 on both sides shown in FIG. In the manufacturing method of the present embodiment, as shown in FIG. 1 (b), after forming the side circular arc walls 4 and 4, the vertical partition walls 5 and the dish-shaped mirror parts 6 and 6 by the molding process, these are performed by the joining process. The flat pressure vessel 1 is manufactured by welding. The side arc wall 4 has an elongated shape formed in a cross-sectional arc shape with a circular shape in which an angle of an arc having a predetermined arc diameter occupies 180 degrees or more. On the other hand, the longitudinal partition wall 5 has a substantially I beam shape formed by integrally forming joint portions 7a and 7a having a substantially T-shaped cross section at both ends in the longitudinal direction. Here, the joining portions 7a and 7a are widened from the main wall portion 39 of the longitudinal partition wall 5 to both outer sides in the wall thickness direction, and the widened portion 40a is substantially T-shaped and continuous from the main wall portion 39 by the arc concave surfaces 41a and 41a. It has a cross section (see FIG. 3). The arc concave surface 41 a is formed with a concave radius r of t to 2 t with respect to the wall thickness t of the main wall portion 39. Further, the dish-shaped mirror portion 6 is formed in a dish shape having a curved surface having an arc diameter substantially equal to the cross-sectional arc of the side arc wall 4, and the mirror opening 37 is formed in the flat cylindrical body 2. It is formed in substantially the same shape as both-end openings 38 (see FIG. 4A). An integral air space is formed in the width direction inside the dish-shaped mirror portion 6.

上記した縦断隔壁5には、接合部7aの高さ方向に対向する外表面32aに、長手方向に沿って嵌合凹溝33,33が並成されている(図3(イ)参照)。この嵌合凹溝33,33は、他辺の接合部7aの外表面32aに形成された嵌合凹溝33,33と、上下方向でそれぞれ平行であり、かつ、壁厚方向で同位置となるように形成されている。また、側部円弧壁4の欠円開口端35、35には、前記接合部7aの嵌合凹溝33に嵌入する嵌合凸部36、36が形成されている(図3(イ)参照)。尚、この欠円開口端35の嵌合凸部36が形成されている部位が、本発明の接合端部である。   In the vertical partition wall 5 described above, fitting grooves 33 and 33 are juxtaposed along the longitudinal direction on the outer surface 32a facing the height direction of the joint portion 7a (see FIG. 3A). The fitting grooves 33 and 33 are parallel to the fitting grooves 33 and 33 formed on the outer surface 32a of the joint portion 7a on the other side in the vertical direction, and at the same position in the wall thickness direction. It is formed to become. Further, fitting convex portions 36 and 36 which are fitted into the fitting concave grooves 33 of the joint portion 7a are formed at the open ends 35 and 35 of the side circular arc wall 4 (see FIG. 3A). ). In addition, the site | part in which the fitting convex part 36 of this missing circle opening end 35 is formed is a junction end part of this invention.

成形工程としては、図示しない押出加工機に、いわゆるソリッド形状の側部円弧壁4、縦断隔壁5を夫々に成形するための所定のソリッドダイス(図示せず)を順次セットする。そして、図2(イ)のように、所定のアルミニウム合金を押出加工機により押出成形して、上記の側部円弧壁4を、扁平円筒胴部2の長さに比して数倍の長さに形成した前側部円弧壁30と、同様に上記の縦断隔壁5を、扁平円筒胴部2の長さに比して数倍の長さに形成した前縦断隔壁31とを夫々に成形する。尚、この前縦断隔壁31には、上述した縦断隔壁5の接合部7a及び嵌合凹溝33が連続して形成されている。同様に、前側部円弧壁30には、上述した側部円弧壁4の嵌合凹部36が連続して形成されている。   As a forming step, predetermined solid dies (not shown) for forming the so-called solid side arc wall 4 and the vertical partition wall 5 are sequentially set in an extruder (not shown). Then, as shown in FIG. 2A, a predetermined aluminum alloy is extruded by an extruder, and the side arc wall 4 is several times longer than the length of the flat cylindrical body 2. The front side circular arc wall 30 formed in the same manner as above and the front vertical partition wall 31 in which the above-described vertical partition wall 5 is formed several times longer than the length of the flat cylindrical body 2 are respectively formed. . The front vertical partition wall 31 is formed with the above-described joint 7a of the vertical partition wall 5 and the fitting concave groove 33 continuously. Similarly, the fitting recess 36 of the side arc wall 4 described above is continuously formed in the front arc wall 30.

その後、押出成形した前側部円弧壁30と前縦断隔壁31とを、図2(ロ)のように、所望の扁平円筒胴部2の長さに夫々に切断し、側部円弧壁4と縦断隔壁5とを得る。尚、この側部円弧壁4の長手方向の両開口には、外表面に皿状鏡部6を接合するための嵌合部を周成している(図示せず)。   Thereafter, the extruded front side arc wall 30 and the front longitudinal partition wall 31 are respectively cut to the length of the desired flat cylindrical body 2 as shown in FIG. A partition wall 5 is obtained. In addition, the fitting part for joining the plate-shaped mirror part 6 to the outer surface is formed in both opening of the longitudinal direction of this side part circular wall 4 (not shown).

また、アルミニウム合金の板材を、図示しないプレス加工により皿状鏡部6を成形する(図1(ロ)参照)。尚、この皿状鏡部6の鏡部開口の内面には、上記した側部円弧壁4の両開口の嵌合部と接合する嵌合周部が周成されている(図示せず)。このように、側部円弧壁4と縦断隔壁5、及び皿状鏡部6を成形する工程が、本発明にかかる成形工程である。   Moreover, the plate-shaped mirror part 6 is shape | molded by the press work which is not illustrated in the aluminum alloy board | plate material (refer FIG. 1 (B)). Note that a fitting peripheral portion (not shown) is formed on the inner surface of the mirror portion opening of the dish-shaped mirror portion 6 so as to join with the fitting portions of both openings of the side arc wall 4 described above. Thus, the process of shape | molding the side part circular arc wall 4, the vertical partition 5 and the plate-shaped mirror part 6 is a shaping | molding process concerning this invention.

次に、上記成形工程により成形した二つの側部円弧壁4と縦断隔壁5とを接合して扁平円筒胴部2を形成する。図3(イ)のように、縦断隔壁5の両接合部7a,7aの、一側の上下の各嵌合凹溝33,33に、側部円弧壁4の嵌合凸部36,36を嵌入する。同様に、両接合部7a,7aの他側の上下の嵌合凹溝33,33に、他の側部円弧壁4の嵌合凸部36,36を嵌入することにより、縦断隔壁5の両側に側部円弧壁4,4を組み付ける。そして、図3(ロ)のように、この嵌合凹溝33に嵌合凸部36を嵌入した外側から、長手方向に亘って溶接する(図示省略)。ここで、側部円弧壁4,4及び縦断隔壁5はアルミニウム合金製であることから、ミグ溶接を行った。このようにして、図4(イ)のように、両側の側部円弧壁4,4と縦断隔壁5とにより囲繞されて形成された筒状側部主貯留域3,3を並成した扁平円筒胴部2を得る。   Next, the flat cylindrical body 2 is formed by joining the two side circular arc walls 4 and the longitudinal partition walls 5 formed by the above forming step. As shown in FIG. 3 (a), the fitting convex portions 36, 36 of the side arcuate wall 4 are formed in the upper and lower fitting concave grooves 33, 33 on one side of the joint portions 7a, 7a of the vertical partition wall 5. Insert. Similarly, by fitting the fitting protrusions 36, 36 of the other side arc wall 4 into the upper and lower fitting grooves 33, 33 on the other side of the joints 7a, 7a, Assemble the side arcuate walls 4 and 4. Then, as shown in FIG. 3B, welding is performed in the longitudinal direction from the outside where the fitting convex portion 36 is inserted into the fitting concave groove 33 (not shown). Here, since the side arc walls 4 and 4 and the vertical partition wall 5 are made of an aluminum alloy, MIG welding was performed. In this way, as shown in FIG. 4 (a), the flat side wall in which the cylindrical side main storage areas 3 and 3 formed by being surrounded by the side arcuate walls 4 and 4 and the vertical partition walls 5 on both sides are arranged side by side. A cylindrical body 2 is obtained.

その後、図4(ロ)のように、この扁平円筒胴部2の両端開口38,38に、成形工程で成形した皿状鏡部6,6を接合する。すなわち、扁平円筒胴部2の両端開口38,38の周端と、皿状鏡部6,6の鏡部開口37,37の周端とを、ミグ溶接により接合することにより、両端開口38,38が皿状鏡部6,6で覆われる。このようにして図1(イ)に示す扁平圧力容器1が形成される。この扁平圧力容器1は、その内部が、二つの筒状側部主貯留域3,3を皿状鏡部6,6の内側の連通領域8で連通してなる一体的な内部形態となっている。
このように、側部円弧壁4と縦断隔壁5との溶接、及び皿状鏡部6を溶接する工程が、本発明にかかる接合工程である。
Thereafter, as shown in FIG. 4 (b), the dish-shaped mirror portions 6 and 6 formed in the forming step are joined to the both end openings 38 and 38 of the flat cylindrical body portion 2. That is, by opening the peripheral ends of the both end openings 38, 38 of the flat cylindrical body 2 and the peripheral ends of the mirror opening 37, 37 of the dish-like mirror parts 6, 6 by MIG welding, both end openings 38, 38 is covered with the dish-shaped mirror parts 6 and 6. In this way, the flat pressure vessel 1 shown in FIG. As for this flat pressure vessel 1, the inside becomes an integral internal form which connects the two cylindrical side part main storage areas 3 and 3 by the communication area 8 inside the dish-shaped mirror parts 6 and 6. FIG. Yes.
Thus, the process of welding the side circular arc wall 4 and the longitudinal partition wall 5 and welding the dish-shaped mirror part 6 are the joining process according to the present invention.

さらに、この接合工程で形成した扁平圧力容器1には、一方の皿状鏡部6の略中央に、内部に所定のガスを充填し、かつ、内部のガスを排出する入出バルブを取り付けるためのバルブ座10が形成され、該バルブ座10に入出バルブが配設される。また、図示しない、ガス充填量を確認する内容量計を取り付けるための内容量計座も形成され、所定の内容量計が配設される。これにより、所望の扁平圧力容器1が製造される(図1(イ))。   Further, the flat pressure vessel 1 formed in this joining step is provided with an inlet / outlet valve for filling a predetermined gas in the center of one dish-shaped mirror portion 6 and discharging the internal gas. A valve seat 10 is formed, and an inlet / outlet valve is disposed on the valve seat 10. Further, an internal volume meter seat for attaching an internal volume meter for checking the gas filling amount (not shown) is also formed, and a predetermined internal volume meter is provided. Thereby, the desired flat pressure vessel 1 is manufactured (FIG. 1 (A)).

このような製造方法にあっては、扁平圧力容器1を、比較的単純な形態とした側部円弧壁4、縦断隔壁5,皿状鏡部6の各構成部品毎に別々に成形し、これらを溶接して接合するようにした方法であり、部品点数と部品種類を少なくし、成形工程と接合工程とを簡素化したことにより、該扁平圧力容器1を容易かつ適正に製造することが可能である。また、成形工程にあって、扁平円筒胴部2に比して数倍の長さの前側部円弧壁30及び前縦断隔壁31を押出成形した後、切断して側部円弧壁4と縦断隔壁5とを成形するようにしたことにより、扁平圧力容器1を多量に製造する場合に、製造効率を一層向上させ得る。さらには、異なる長さの扁平圧力容器1を製造する場合にあっても、切断長さを変えることにより容易に対応することが可能である。一方、本製造方法では、成形工程でソリッド形状を押出成形するようにしていることから、押出加工に要する成形時間及び成形費用を比較的低めに抑えることができるという優れた利点もある。   In such a manufacturing method, the flat pressure vessel 1 is molded separately for each component of the side arc wall 4, the vertical partition wall 5, and the dish-shaped mirror part 6, which are in a relatively simple form. It is possible to manufacture the flat pressure vessel 1 easily and properly by reducing the number of parts and the types of parts and simplifying the molding process and the joining process. It is. Further, in the molding process, the front side arc wall 30 and the front longitudinal partition wall 31 which are several times longer than the flat cylindrical body 2 are extruded and then cut to cut the side arc wall 4 and the longitudinal partition wall. When the flat pressure vessel 1 is manufactured in a large amount, the manufacturing efficiency can be further improved. Furthermore, even when the flat pressure vessel 1 having a different length is manufactured, it is possible to easily cope with this by changing the cutting length. On the other hand, in this manufacturing method, since the solid shape is extruded in the molding process, there is also an excellent advantage that the molding time and molding cost required for the extrusion process can be kept relatively low.

(実施例2)
実施例2にあっては、上述した実施例1と同様の、図1(イ)に示す両側に筒状側部主貯留域3,3を備えた扁平圧力容器1を製造する。本実施例の製造方法では、図5(イ)のように、成形工程により側部円弧壁4、側部閉鎖円弧壁9、及び皿状鏡部6を成形した後、接合工程によりこれらを溶接して扁平圧力容器1を製造する。ここで、側部円弧壁4は上述の実施例1と同様とした(図1(ロ)参照)。また、側部閉鎖円弧壁9にあっては、図5(イ),(ロ)のように、側部円弧壁4の欠円開口を覆うように、縦断隔壁5の一側に該側部円弧壁4が一体的に連成され、内側に筒状側部主貯留域3が形成されているものである。ここで、縦断隔壁5の両接合部7b,7bの内側には、該縦断隔壁5から側部円弧壁4に連続する円弧凹面41b,41bが形成されている。また、この円弧凹面41b,41bの反対側には、縦断隔壁5の主壁部39から拡幅する拡幅部40bに、該主壁部39から連続する円弧凹面41a,41aが形成されている。これら円弧凹面41a,円弧凹面41bの両者共に、主壁部39の壁厚tに対してt〜2tの凹面半径rにより形成されている(図3(ロ)参照)。そして、この両接合部7b,7bの外表面32b,32bには、側部円弧壁4が連成されていない他側に、嵌合凹溝33,33が長手方向に沿って形成されている。また、皿状鏡部6にあっては、上述の実施例1と同様に、扁平円筒胴部2の両端開口38(図4(イ)参照)とほぼ同じ形状に形成されている。
(Example 2)
In the second embodiment, the flat pressure vessel 1 having the cylindrical side main storage areas 3 and 3 on both sides shown in FIG. In the manufacturing method of the present embodiment, as shown in FIG. 5 (a), after forming the side arc wall 4, the side closing arc wall 9, and the dish-shaped mirror part 6 by the molding process, these are welded by the joining process. Thus, the flat pressure vessel 1 is manufactured. Here, the side circular arc wall 4 was the same as that of the above-described Example 1 (see FIG. 1B). Moreover, in the side part closed circular arc wall 9, as shown in FIGS. 5 (a) and 5 (b), the side part is provided on one side of the vertical partition wall 5 so as to cover the notch opening of the side circular arc wall 4. The circular arc walls 4 are integrally coupled, and the cylindrical side main storage area 3 is formed inside. Here, arc concave surfaces 41 b and 41 b continuous from the vertical partition wall 5 to the side arc wall 4 are formed inside the joint portions 7 b and 7 b of the vertical partition wall 5. Further, on the opposite side of the circular arc concave surfaces 41b, 41b, circular concave surfaces 41a, 41a continuous from the main wall portion 39 are formed in a widened portion 40b widened from the main wall portion 39 of the longitudinal partition wall 5. Both the arc concave surface 41a and the arc concave surface 41b are formed with a concave radius r of t to 2t with respect to the wall thickness t of the main wall portion 39 (see FIG. 3B). Then, on the outer surfaces 32b, 32b of the joint portions 7b, 7b, fitting concave grooves 33, 33 are formed along the longitudinal direction on the other side where the side arc wall 4 is not coupled. . Further, the dish-shaped mirror portion 6 is formed in substantially the same shape as the both-end openings 38 (see FIG. 4A) of the flat cylindrical barrel portion 2 as in the first embodiment.

成形工程としては、図示しない押出加工機に、いわゆるソリッド形状の側部円弧壁4を成形するための所定のソリッドダイス(図示せず)をセットして、所定のアルミニウム合金を押出成形して、図6(イ)に示す、扁平円筒胴部2の長さに比して数倍の長さに形成した前側部円弧壁30を成形する。さらに、押出加工機に、いわゆるホロー形状の側部閉鎖円弧壁9を成形するための所定のホローダイス(図示せず)をセットして、所定のアルミニウム合金を押出成形して、図6(イ)に示す、扁平円筒胴部2の長さに比して数倍の長さに形成した前側部閉鎖円弧壁42を成形する。その後、押出成形した前側部円弧壁30と前側部閉鎖円弧壁42とを、図6(ロ)のように、所望の扁平円筒胴部2の長さに夫々に切断し、側部円弧壁4と側部閉鎖円弧壁9とを得る。   As a forming step, a predetermined solid die (not shown) for forming a so-called solid side arc wall 4 is set in an extruder (not shown), and a predetermined aluminum alloy is extruded, A front side arc wall 30 formed to be several times longer than the length of the flat cylindrical body 2 shown in FIG. Further, a predetermined hollow loader (not shown) for forming a so-called hollow-shaped side closed circular arc wall 9 is set in the extruder, and a predetermined aluminum alloy is extruded, and FIG. The front side closed circular arc wall 42 formed to be several times longer than the length of the flat cylindrical body 2 is formed. Thereafter, the extruded front side arc wall 30 and the front side closed arc wall 42 are respectively cut to the desired length of the flat cylindrical body 2 as shown in FIG. And side closed arc wall 9 are obtained.

また、実施例1と同様に、アルミニウム合金の板材を、図示しないプレス加工により皿状鏡部6を成形する(図5(イ)参照)。このように、側部円弧壁4と側部閉鎖円弧壁9、及び皿状鏡部6を成形する工程が、本発明にかかる成形工程である。   Further, similarly to the first embodiment, a plate-shaped mirror portion 6 is formed by press working (not shown) of an aluminum alloy plate material (see FIG. 5A). Thus, the process of shape | molding the side part circular arc wall 4, the side part closed circular arc wall 9, and the plate-shaped mirror part 6 is a shaping | molding process concerning this invention.

次に、上記成形工程により成形した側部円弧壁4と側部閉鎖円弧壁9とを接合して扁平円筒胴部2を形成し、該扁平円筒胴部2に皿状鏡部6,6を接合する接合工程を行う。図5(ロ)のように、側部閉鎖円弧壁9の両接合部7b,7bに形成された嵌合凹溝33,33に、側部円弧壁4の嵌合凸部36,36を嵌入し、側部閉鎖円弧壁9と側部円弧壁4とを組み付ける。そして、嵌合凹溝33,33に嵌合凸部36,36が嵌入した外側からそれぞれ、長手方向に亘ってミグ溶接を行う(図3(ロ)参照)。これにより、図4(イ)のように、側部閉鎖円弧壁9の縦断隔壁5と、側部円弧壁4により囲繞された筒状側部主貯留域3が形成され、上記した側部閉鎖円弧壁9に形成されている筒状側部主貯留域3と並列する扁平円筒胴部2を得る。   Next, the side circular arc wall 4 and the side closed circular arc wall 9 formed by the above forming step are joined to form the flat cylindrical body 2, and the dish-like mirror parts 6, 6 are attached to the flat cylindrical body 2. A joining process for joining is performed. As shown in FIG. 5 (b), the fitting convex portions 36, 36 of the side arc wall 4 are inserted into the fitting concave grooves 33, 33 formed in both the joint portions 7 b, 7 b of the side portion closing arc wall 9. Then, the side closed arc wall 9 and the side arc wall 4 are assembled. Then, MIG welding is performed in the longitudinal direction from the outside where the fitting convex portions 36 and 36 are fitted into the fitting concave grooves 33 and 33 (see FIG. 3B). As a result, as shown in FIG. 4 (a), the vertical partition wall 5 of the side closed circular arc wall 9 and the cylindrical side main storage area 3 surrounded by the side circular arc wall 4 are formed. A flat cylindrical body 2 parallel to the cylindrical side main storage area 3 formed in the arc wall 9 is obtained.

その後、この扁平円筒胴部2の両端開口38,38の周端に、成形工程で成形した皿状鏡部6,6の鏡部開口37,37の周端をミグ溶接により接合する(図4(ロ)参照)。これにより、図1(イ)に示すような、二つの筒状側部主貯留域3,3を皿状鏡部6,6の内側の連通領域8で連通してなる一体的な内部形態を有する扁平圧力容器1を得る。この扁平圧力容器1には、一方の皿状鏡部6の略中央に入出バルブを取り付けるためのバルブ座10が形成され、該バルブ座10に入出バルブが配設される。また、図示しない、内容量計を取り付けるための内容量計座も形成され、所定の内容量計が配設される。これにより、上述の実施例1とほぼ同等の扁平圧力容器1が製造されたこととなる。   Thereafter, the peripheral ends of the mirror openings 37 and 37 of the dish-shaped mirror sections 6 and 6 formed in the molding process are joined to the peripheral ends of both end openings 38 and 38 of the flat cylindrical body 2 by MIG welding (FIG. 4). (See (b)). As a result, as shown in FIG. 1 (a), an integral internal form in which the two cylindrical side main storage areas 3 and 3 are communicated with each other through the communication areas 8 inside the dish-shaped mirror parts 6 and 6 is provided. A flat pressure vessel 1 is obtained. In the flat pressure vessel 1, a valve seat 10 for attaching an inlet / outlet valve is formed in the approximate center of one dish-shaped mirror portion 6, and the inlet / outlet valve is disposed in the valve seat 10. In addition, an internal capacity meter seat (not shown) for attaching the internal capacity meter is also formed, and a predetermined internal capacity meter is disposed. Thereby, the flat pressure vessel 1 substantially equivalent to the above-mentioned Example 1 was manufactured.

本実施例2にあっては、成形工程で、側部円弧壁4と縦断隔壁5とを一体成形した側部閉鎖円弧壁9を押出成形するようにして、接合工程で、該側部閉鎖円弧壁9と側部円弧壁4とを溶接するようにした以外は、上述の実施例1と同じようにして扁平圧力容器1を製造するようにしたものである。そのため、同じ形態及び工程を表す記号は同じものを使用し、その説明は省略している。   In the second embodiment, the side closing arc wall 9 formed by integrally molding the side arc wall 4 and the longitudinal partition wall 5 is extruded in the molding process, and the side closing arc is joined in the joining process. The flat pressure vessel 1 is manufactured in the same manner as in Example 1 except that the wall 9 and the side arc wall 4 are welded. For this reason, the same symbols are used for the same forms and processes, and descriptions thereof are omitted.

このような製造方法にあっては、側部閉鎖円弧壁9と側部円弧壁4とを成形して、これらを接合することにより扁平圧力容器1を製造する方法であり、上述した実施例1の製造方法に比して、部品点数を一層少なくするようにしている。そのため、溶接工程が簡素化されることとなる。また、上述の実施例1と同様に、前側部閉鎖円弧壁42と前側部円弧壁30とを成形し、切断するようにしたことにより、多数個製造する際の効率を向上できると共に、様々な長さの圧力容器の製造に容易に対応可能である。   In such a manufacturing method, the flat pressure vessel 1 is manufactured by forming the side closed circular arc wall 9 and the side circular arc wall 4 and joining them, and the above-described first embodiment. Compared to this manufacturing method, the number of parts is further reduced. Therefore, the welding process is simplified. Further, as in the first embodiment described above, the front side closed arc wall 42 and the front side arc wall 30 are formed and cut to improve the efficiency in manufacturing a large number of pieces, and various It is possible to easily handle the production of a pressure vessel having a length.

(実施例3)
実施例3にあっては、図7(イ)のように、扁平円筒胴部12の内部に筒状中間主貯留域13とその両側に筒状側部主貯留域3,3とを備えた扁平圧力容器11を製造する。
本実施例の製造方法では、図7(ロ)のように、成形工程により側部円弧壁4、中間片方壁45、及び皿状鏡部16を成形した後、接合工程によりこれらを溶接して扁平圧力容器11を製造する。ここで、側部円弧壁4は上述の実施例1と同様とした。また、中間片方壁45にあっては、上述した縦断隔壁5(図1(ロ)参照)と、所定の円弧径からなる円弧の占める角度が90度以下である断面円弧形状の中間円弧壁14とが、該縦断隔壁5の片方の接合部7cの一側に該中間円弧壁14の片側円弧端が連成して、一体的な形状となっているものである。ここで、中間片方壁45は、縦断隔壁5の属する平面と、中間円弧壁14の、断面円弧の略中央で接する接面とがほぼ直交するように、該縦断隔壁5と中間円弧壁14とが連成された略L字状断面となっている。この中間片方壁45の接合部7cは、縦断隔壁5の主壁部39から拡幅する拡幅部40cからなり、該拡幅部40cが、内側で該縦断隔壁5から中間円弧壁14に連続する円弧凹面41cと、その反対側で主壁部39から連続する円弧凹面41aとにより形成されている。(図9参照)。これら円弧凹面41a,41c共に、主壁部39の壁厚tに対してt〜2tの凹面半径rにより形成されている(図9(イ)参照)。
(Example 3)
In Example 3, as shown in FIG. 7 (a), a cylindrical intermediate main storage area 13 and cylindrical side main storage areas 3 and 3 on both sides of the flat cylindrical body 12 were provided. A flat pressure vessel 11 is manufactured.
In the manufacturing method of the present embodiment, as shown in FIG. 7B, after the side arc wall 4, the intermediate one-side wall 45, and the dish-shaped mirror portion 16 are formed by the forming process, these are welded by the joining process. A flat pressure vessel 11 is manufactured. Here, the side arc wall 4 is the same as that in the first embodiment. Further, in the intermediate one-side wall 45, the above-described longitudinal partition wall 5 (see FIG. 1 (b)) and the intermediate arc wall 14 having an arc-shaped cross section in which an angle occupied by an arc having a predetermined arc diameter is 90 degrees or less. In other words, one end of the intermediate arc wall 14 is connected to one side of the joint 7c on one side of the vertical partition wall 5 to form an integral shape. Here, the intermediate one-side wall 45 is formed so that the plane to which the vertical partition wall 5 belongs and the contact surface of the intermediate arc wall 14 that is in contact with the approximate center of the cross-section arc are substantially orthogonal to each other. Are substantially L-shaped cross sections. The joint 7c of the intermediate one-side wall 45 is composed of a widened portion 40c that widens from the main wall portion 39 of the vertical partition wall 5, and the widened portion 40c is an arc concave surface that continues from the vertical partition wall 5 to the intermediate arc wall 14 inside. 41c and an arc concave surface 41a continuous from the main wall 39 on the opposite side. (See FIG. 9). Both the arc concave surfaces 41a and 41c are formed with a concave radius r of t to 2t with respect to the wall thickness t of the main wall portion 39 (see FIG. 9 (A)).

また、この接合部7cの外表面32cには、中間円弧壁14が連成されていない他側に、長手方向に沿って嵌合凹溝33が形成されている(図9参照)。一方、この中間片方壁45の、中間円弧壁14が連成していない他方の接合部7aは、上述の実施例1と同様に、略T字状断面に形成されており、その外表面に32aに嵌合凹溝33,33が並成されている(図9参照)。一方、この中間片方壁45の、縦断隔壁5に連成されていない中間円弧壁14の片側円弧端15には、前記接合部7aの嵌合凹溝33に嵌入する嵌合凸部36が形成されている。尚、側部円弧壁4と中間片方壁45の中間円弧壁14とは、ほぼ同径の円弧径により形成されている。   Further, on the outer surface 32c of the joint portion 7c, a fitting groove 33 is formed along the longitudinal direction on the other side where the intermediate arc wall 14 is not coupled (see FIG. 9). On the other hand, the other joint 7a of the intermediate one-side wall 45 where the intermediate arc wall 14 is not coupled is formed in a substantially T-shaped cross section, similar to the first embodiment, and is formed on the outer surface thereof. The fitting concave grooves 33, 33 are arranged in parallel with 32a (see FIG. 9). On the other hand, a fitting convex portion 36 that fits into the fitting concave groove 33 of the joint portion 7a is formed at the one-side arc end 15 of the intermediate arc wall 14 that is not continuous with the longitudinal partition wall 5 of the intermediate one side wall 45. Has been. The side arc wall 4 and the intermediate arc wall 14 of the intermediate one-side wall 45 are formed with arc diameters that are substantially the same.

また、皿状鏡部16にあっては、側部円弧壁4及び中間円弧壁14の断面円弧とほぼ等しい円弧径の曲面を備えてなる皿形状に形成されてなり、鏡部開口47は、扁平円筒胴部12の両端開口48(図10(イ)参照)とほぼ同じ形状に形成されている。この皿状鏡部16の内側には、幅方向に一体の空域が形成されている。   Further, the dish-shaped mirror part 16 is formed in a dish shape having a curved surface having an arc diameter substantially equal to the cross-section arcs of the side arc wall 4 and the intermediate arc wall 14, and the mirror opening 47 is It is formed in substantially the same shape as the opening 48 at both ends of the flat cylindrical body 12 (see FIG. 10A). An integrated airspace is formed in the width direction inside the dish-shaped mirror portion 16.

成形工程としては、図示しない押出加工機に、いわゆるソリッド形状の側部円弧壁4、中間片方壁45を成形するための所定のソリッドダイス(図示せず)を順次セットする。そして、所定のアルミニウム合金を押出成形して、図8(イ)に示す、扁平円筒胴部2の長さに比して数倍の長さに形成した前側部円弧壁30と前中間片方壁46とを夫々に成形する。その後、押出成形した前側部円弧壁30と前中間片方壁46とを、図8(ロ)のように、所望の扁平円筒胴部2の長さに夫々に切断し、側部円弧壁4と側部閉鎖円弧壁9とをそれぞれ二つずつ成形する。   As a forming process, a predetermined solid die (not shown) for forming the so-called solid side arc wall 4 and intermediate one-side wall 45 is sequentially set in an extruder (not shown). Then, a predetermined aluminum alloy is extrusion-molded, and the front side arc wall 30 and the front intermediate one-side wall which are formed several times longer than the length of the flat cylindrical body 2 shown in FIG. And 46 are formed respectively. Thereafter, the extruded front side arc wall 30 and the front intermediate one side wall 46 are respectively cut to the length of the desired flat cylindrical body 2 as shown in FIG. Two side closed circular arc walls 9 are formed.

さらに、アルミニウム合金の板材を、図示しないプレス加工により皿状鏡部16を成形する(図7(ロ)参照)。このように、側部円弧壁4と中間片方壁45、及び皿状鏡部16を成形する工程が、本発明にかかる成形工程である。   Furthermore, the plate-shaped mirror part 16 is shape | molded by the press work which is not shown in figure for the board | plate material of aluminum alloy (refer FIG. 7 (B)). Thus, the process of shape | molding the side part circular wall 4, the intermediate | middle piece one side wall 45, and the plate-shaped mirror part 16 is a shaping | molding process concerning this invention.

次に、上記成形工程により成形した、各々二つの側部円弧壁4と中間片方壁45とを接合して扁平円筒胴部22を形成し、該扁平円筒胴部22に皿状鏡部16,16を接合する接合工程を行う。図9(イ)のように、二つの中間片方壁45,45を互いに上下反対向きとして、それぞれの中間円弧壁14の嵌合凸部36を、他方の中間円弧壁14の接合部7aの嵌合凹溝33に嵌入する。さらに、図9(ロ)のように、各中間片方壁45,45の両側から、側部円弧壁4の欠円開口端35、35に形成されている嵌合凸部36,36を夫々に、接合部7a,7cの嵌入凹溝33,33に嵌入する。その後、各々の、嵌合凹溝33に嵌入した嵌合凹溝36の外側からミグ溶接を行って接合する。このようにして、図10(イ)のように、相互に対峙する二面の縦断隔壁5,5と上下の中間円弧壁14,14とにより囲繞されて形成された筒状中間主貯留域13および、両側の縦断隔壁5,5と側部円弧壁4,4とにより囲繞されて形成された両側の筒状側部主貯留域3,3を並成した扁平円筒胴部12を得る。   Next, each of the two side circular arc walls 4 and the intermediate one-sided wall 45 formed by the above-described forming step is joined to form a flat cylindrical barrel portion 22, and the flat cylindrical barrel portion 22 has a dish-like mirror portion 16, A joining step for joining 16 is performed. As shown in FIG. 9 (a), the two intermediate one-side walls 45, 45 are vertically opposite to each other, and the fitting convex portion 36 of each intermediate arc wall 14 is fitted to the joint 7 a of the other intermediate arc wall 14. It fits in the mating groove 33. Furthermore, as shown in FIG. 9 (b), the fitting convex portions 36, 36 formed on the circular opening ends 35, 35 of the side arcuate wall 4 from both sides of the intermediate one-side walls 45, 45 respectively. Then, it is fitted into the fitting concave grooves 33, 33 of the joint portions 7a, 7c. Then, it joins by performing MIG welding from the outer side of each fitting concave groove 36 inserted in each fitting concave groove 33. In this way, as shown in FIG. 10 (A), the cylindrical intermediate main storage area 13 formed by being surrounded by the two vertical partition walls 5 and 5 facing each other and the upper and lower intermediate arc walls 14 and 14 is formed. And the flat cylindrical trunk | drum 12 which juxtaposed the cylindrical side part main storage area 3 and 3 of the both sides formed and enclosed by the vertical partition walls 5 and 5 and the side circular arc walls 4 and 4 of both sides is obtained.

その後、図10(ロ)のように、この扁平円筒胴部12の両端開口48,48の周端に、成形工程で成形した皿状鏡部16,16の鏡部開口47,47の周端をミグ溶接により接合する。これにより、図7(イ)に示す、二つの筒状側部主貯留域3,3と筒状中間主貯留域13とを皿状鏡部16,16の内側の連通領域18,18で連通してなる一体的な内部形態を有する扁平圧力容器11を得る。ここで、この扁平圧力容器11には、一方の皿状鏡部16の略中央に入出バルブを取り付けるためのバルブ座10が形成され、該バルブ座10に入出バルブが配設される。また、図示しない、内容量計を取り付けるための内容量計座も形成され、所定の内容量計が配設される。このようにして、所望の扁平圧力容器11が製造される。   After that, as shown in FIG. 10 (b), the peripheral ends of the mirror openings 47 and 47 of the dish-shaped mirror sections 16 and 16 formed in the molding process are formed at the peripheral ends of both end openings 48 and 48 of the flat cylindrical body section 12. Are joined by MIG welding. Thereby, the two cylindrical side main storage areas 3 and 3 and the cylindrical intermediate main storage area 13 shown in FIG. 7 (a) are communicated with each other through the communication areas 18 and 18 inside the dish-shaped mirror sections 16 and 16. Thus, a flat pressure vessel 11 having an integral internal form is obtained. Here, in the flat pressure vessel 11, a valve seat 10 for attaching an inlet / outlet valve is formed in the approximate center of one of the dish-shaped mirror parts 16, and the inlet / outlet valve is disposed in the valve seat 10. In addition, an internal capacity meter seat (not shown) for attaching the internal capacity meter is also formed, and a predetermined internal capacity meter is disposed. In this way, a desired flat pressure vessel 11 is manufactured.

このような製造方法にあっては、扁平圧力容器11を、比較的単純な形態とした側部円弧壁4、中間片方壁45,皿状鏡部16の各構成部品を別々に成形し、これらを溶接して接合するようにした方法である。かかる製造方法では、上述した実施例1,2の扁平圧力容器1に比して、筒状中間主貯留域13だけ扁平化された扁平圧力容器11にあっても、部品点数と部品種類を少なくし、成形工程と接合工程とを簡素化でき、該扁平圧力容器11を容易かつ適正に製造することが可能となる。また、成形工程にあって、上述の実施例1と同様に、前側部円弧壁30と前中間片方壁46とを成形し、切断するようにしたことにより、扁平圧力容器を多量に製造する場合の製造効率を向上できると共に、様々な長さの圧力容器の製造に容易に対応可能である。さらに、成形工程でソリッド形状を押出成形するようにしていることから、押出加工に要する成形時間及び成形費用を低減できるという優れた利点もある。   In such a manufacturing method, each component of the side arc wall 4, the intermediate one-side wall 45, and the dish-shaped mirror portion 16 having the flat pressure vessel 11 in a relatively simple form is molded separately, and these It is the method of joining by welding. In such a manufacturing method, the number of parts and the kind of parts are reduced even in the flat pressure vessel 11 in which only the cylindrical intermediate main storage area 13 is flattened, compared to the flat pressure vessel 1 of the first and second embodiments. In addition, the molding process and the joining process can be simplified, and the flat pressure vessel 11 can be manufactured easily and appropriately. Further, in the molding process, as in the first embodiment, the front side arc wall 30 and the front intermediate one-side wall 46 are molded and cut to produce a large amount of flat pressure vessels. In addition, the manufacturing efficiency of the pressure vessel of various lengths can be easily accommodated. Further, since the solid shape is extruded in the molding process, there is an excellent advantage that the molding time and molding cost required for the extrusion process can be reduced.

(実施例4)
実施例4にあっては、上述した実施例3と同様の、図7(イ)に示す、筒状中間主貯留域13とその両側に筒状側部主貯留域3,3とを備えた扁平圧力容器11を製造する。本実施例の製造方法では、図11(イ)のように、成形工程により側部円弧壁4、側部閉鎖円弧壁9、中間双方壁50、及び皿状鏡部16を成形した後、接合工程によりこれらを溶接して扁平圧力容器11を製造する。ここで、側部円弧壁4は上述の実施例1と同様とし(図1(ロ)参照)、側部閉鎖円弧壁9は上述の実施例2と同様とした(図5(イ)参照)。一方、中間双方壁50にあっては、図11のように、上述した縦断隔壁5(図1(ロ)参照)と、所定の円弧径からなる円弧の占める角度が90度以下である断面円弧形状の中間円弧壁14,14(図7(ロ)参照)とが、該縦断隔壁5の両接合部7c,7cの一側に該中間円弧壁14,14の片側円弧端が夫々に連成して、一体的な形状となっているものである。この中間双方壁50は、縦断隔壁5の属する平面と、各中間円弧壁14、14の、断面円弧の略中央で接する接面とがほぼ直交するように、該縦断隔壁5と中間円弧壁14,14とが連成された略コ字状断面となっている。さらに、この中間双方壁50の両接合部7c、7cは、縦断隔壁5の主壁部39から壁厚方向に拡幅する拡幅部40cからなり、該拡幅部40cが、縦断隔壁5から中間円弧壁14,14に連続する円弧凹面41cと、該円弧凹面41cの反対側に、該主壁部39から連続する円弧凹面41aとにより形成されている。これら円弧凹面41a,41c共に、主壁部39の壁厚tに対してt〜2tの凹面半径rにより形成されている(図3(ロ)参照)。
Example 4
In the fourth embodiment, the cylindrical intermediate main storage area 13 shown in FIG. 7 (a) and the cylindrical side main storage areas 3 and 3 are provided on both sides thereof as in the third embodiment. A flat pressure vessel 11 is manufactured. In the manufacturing method of the present embodiment, as shown in FIG. 11 (a), the side arc wall 4, the side closed arc wall 9, the middle both walls 50, and the dish-like mirror part 16 are molded and then joined by a molding process. These are welded according to a process, and the flat pressure vessel 11 is manufactured. Here, the side circular arc wall 4 is the same as that of the above-described first embodiment (see FIG. 1 (b)), and the side portion closed circular arc wall 9 is the same as the above-described second embodiment (see FIG. 5 (a)). . On the other hand, in the intermediate both walls 50, as shown in FIG. 11, the above-described longitudinal partition wall 5 (see FIG. 1 (b)) and a cross-sectional arc in which an angle occupied by an arc having a predetermined arc diameter is 90 degrees or less. The intermediate arc walls 14 and 14 (see FIG. 7B) having a shape are connected to one side of both joints 7c and 7c of the vertical partition wall 5 and the one-side arc ends of the intermediate arc walls 14 and 14, respectively. Thus, it has an integral shape. The intermediate both walls 50 are arranged so that the plane to which the vertical partition wall 5 belongs and the contact surfaces of the intermediate arc walls 14 and 14 that are in contact with each other at the approximate center of the cross-section arc are substantially orthogonal to each other. , 14 are formed in a substantially U-shaped cross section. Further, both joint portions 7c, 7c of the intermediate both walls 50 are formed by widened portions 40c that widen in the wall thickness direction from the main wall portions 39 of the vertical partition walls 5, and the widened portions 40c are connected to the intermediate arc wall from the vertical partition walls 5. The arc concave surface 41c is continuous with the arc concave surface 41c, and the arc concave surface 41a is continuous with the main wall 39 on the opposite side of the arc concave surface 41c. Both the arc concave surfaces 41a and 41c are formed with a concave radius r of t to 2t with respect to the wall thickness t of the main wall portion 39 (see FIG. 3B).

そして、この両接合部7c,7cの外表面32c,32cには、中間円弧壁14,14が連成されていない他側に、嵌合凹溝33,33が長手方向に沿って形成されている。また、皿状鏡部16にあっては、上述の実施例3と同様に、扁平円筒胴部12の両端開口48(図7(ロ)参照)とほぼ同じ形状に形成されている。   The outer surfaces 32c and 32c of the joints 7c and 7c are formed with fitting concave grooves 33 and 33 along the longitudinal direction on the other side where the intermediate arc walls 14 and 14 are not coupled. Yes. In addition, the dish-shaped mirror portion 16 is formed in substantially the same shape as both end openings 48 (see FIG. 7B) of the flat cylindrical barrel portion 12 as in the third embodiment.

成形工程としては、図示しない押出加工機に、いわゆるソリッド形状の側部円弧壁4、中間双方壁50を夫々に成形するための所定のソリッドダイス(図示せず)を順次セットする。そして、所定のアルミニウム合金を、押出加工機により押出成形して、図12(イ)に示す、扁平円筒胴部12の長さに比して数倍の長さに形成した前側部円弧壁30と前中間双方壁51とを夫々に成形する。さらに、押出加工機に、いわゆるホロー形状の側部閉鎖円弧壁9を成形するための所定のホローダイス(図示せず)をセットして、所定のアルミニウム合金を押出成形して、図12(イ)に示す扁平円筒胴部12の長さに比して、数倍の長さに形成した前側部閉鎖円弧壁42を得る。その後、前側部円弧壁30、前中間双方壁51、前側部閉鎖円弧壁42とそれぞれを、図12(ロ)のように、所望の扁平円筒胴部12の長さに夫々に切断することにより、側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9を得る。   As a forming step, predetermined solid dies (not shown) for forming the so-called solid-shaped side circular arc wall 4 and intermediate both side walls 50 are sequentially set in an extruder (not shown). And the predetermined | prescribed aluminum alloy is extrusion-molded with an extruder, The front side circular wall 30 formed in length several times compared with the length of the flat cylindrical trunk | drum 12 shown to FIG. And the front intermediate wall 51 are respectively formed. Further, a predetermined hollow loader (not shown) for forming a so-called hollow-shaped side closed circular arc wall 9 is set in the extruder, and a predetermined aluminum alloy is extruded to obtain FIG. The front side closed circular arc wall 42 formed several times longer than the length of the flat cylindrical body 12 shown in FIG. Thereafter, the front side arc wall 30, the front middle both walls 51, and the front side closed arc wall 42 are respectively cut to the desired length of the flat cylindrical body 12, as shown in FIG. The side arc wall 4, the middle both walls 50, and the side closing arc wall 9 are obtained.

また、実施例3と同様に、アルミニウム合金の板材を、図示しないプレス加工により皿状鏡部16を成形する(図11(ロ)参照)。このように、側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9、及び皿状鏡部16を成形する工程が、本発明にかかる成形工程である。   Further, similarly to the third embodiment, a plate-shaped mirror portion 16 is formed by pressing a not-shown aluminum alloy plate (see FIG. 11B). Thus, the process of shape | molding the side part circular arc wall 4, the intermediate | middle both walls 50, the side part closed circular arc wall 9, and the plate-shaped mirror part 16 is a shaping | molding process concerning this invention.

次に、上記成形工程により成形した側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9を接合して扁平円筒胴部12を形成し、該該扁平円筒胴部12に皿状鏡部16,16を接合する接合工程を行う。図11(ロ)のように、側部閉鎖円弧壁9の両接合部7b,7bに形成された嵌合凹溝33,33に、中間双方壁50の上下の中間円弧壁14,14の嵌合凸部36,36を夫々に嵌入する。さらに、中間双方壁50の両接合部7c,7cに形成された嵌合凹溝33,33に、側部円弧壁4の嵌合凸部36,36を嵌入する。これにより、側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9を組み付ける。そして、各嵌合凹溝33に嵌入凸部36が嵌入する外側からそれぞれ、長手方向に亘ってミグ溶接する。このようにして、図10(イ)のように、上述の実施例3と同様の、筒状中間主貯留域13とその両側に筒状側部主貯留域3,3を並成した扁平円筒胴部12を得る。   Next, the side circular arc wall 4, the intermediate both side walls 50, and the side closed circular arc wall 9 formed by the above forming step are joined to form a flat cylindrical body 12, and a dish-like mirror is formed on the flat cylindrical body 12. A joining process for joining the portions 16 and 16 is performed. As shown in FIG. 11 (b), the upper and lower intermediate arc walls 14, 14 of the intermediate both walls 50 are fitted into the fitting concave grooves 33, 33 formed in both joints 7 b, 7 b of the side closed arc wall 9. The mating protrusions 36 and 36 are fitted into the respective parts. Further, the fitting convex portions 36, 36 of the side arcuate wall 4 are fitted into the fitting concave grooves 33, 33 formed in both the joint portions 7 c, 7 c of the intermediate both walls 50. As a result, the side arc wall 4, the intermediate both walls 50, and the side closing arc wall 9 are assembled. Then, MIG welding is performed across the longitudinal direction from the outside where the fitting protrusions 36 are fitted into the respective fitting grooves 33. In this way, as shown in FIG. 10 (a), the flat cylindrical body in which the cylindrical intermediate main storage area 13 and the cylindrical side main storage areas 3 and 3 are arranged on both sides thereof is the same as in the third embodiment. The trunk 12 is obtained.

その後、図10(ロ)のように、この扁平円筒胴部12の両端開口48,48の周端に、成形工程で成形した皿状鏡部16,16の鏡部開口37,37の周端をミグ溶接により接合する。これにより、図7(イ)に示すような、二つの筒状側部主貯留域3,3と筒状中間主貯留域13とを皿状鏡部16,16の内側の連通領域18で連通してなる一体的な内部形態を有する扁平圧力容器11を得る。ここで、この扁平圧力容器11には、一方の皿状鏡部16の略中央に入出バルブを取り付けるためのバルブ座10が形成され、該バルブ座10に入出バルブが配設される。また、図示しない、内容量計を取り付けるための内容量計座が形成され、所定の内容量計が配設される。これにより、上述の実施例3とほぼ同等の扁平圧力容器11が製造されたこととなる。   Thereafter, as shown in FIG. 10 (b), the peripheral ends of the mirror openings 37 and 37 of the dish-shaped mirror sections 16 and 16 formed in the forming process are formed at the peripheral ends of both end openings 48 and 48 of the flat cylindrical body section 12. Are joined by MIG welding. As a result, the two cylindrical side main storage areas 3 and 3 and the cylindrical intermediate main storage area 13 communicate with each other through the communication area 18 inside the dish-shaped mirror sections 16 and 16 as shown in FIG. Thus, a flat pressure vessel 11 having an integral internal form is obtained. Here, in the flat pressure vessel 11, a valve seat 10 for attaching an inlet / outlet valve is formed in the approximate center of one of the dish-shaped mirror parts 16, and the inlet / outlet valve is disposed in the valve seat 10. Further, an unillustrated internal capacity meter seat for attaching the internal capacity meter is formed, and a predetermined internal capacity meter is disposed. Thereby, the flat pressure vessel 11 substantially equivalent to the above-mentioned Example 3 is manufactured.

本実施例4にあっては、成形工程で、縦断隔壁5と中間円弧壁14,14とを一体成形した中間双方壁50、及び側部閉鎖円弧壁9を押出成形するようにして、接合工程で、側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9を溶接するようにした以外は、上述の実施例3と同じようにして扁平圧力容器11を製造するようにしたものである。そのため、同じ形態及び工程を表す記号は同じものを使用し、その説明は省略している。   In the fourth embodiment, in the forming step, the intermediate both walls 50 and the side closed circular arc walls 9 formed by integrally forming the longitudinal partition wall 5 and the intermediate arc walls 14 and 14 are extruded, and the joining step is performed. Thus, the flat pressure vessel 11 is manufactured in the same manner as in Example 3 except that the side arc wall 4, the intermediate both side walls 50, and the side closing arc wall 9 are welded. is there. For this reason, the same symbols are used for the same forms and processes, and descriptions thereof are omitted.

このような製造方法にあっては、側部閉鎖円弧壁9と側部円弧壁4と中間双方壁50とを成形して接合することにより扁平圧力容器11を製造する方法であり、上述した実施例3の製造方法に比して、部品点数を一層少なくするようにしている。そのため、溶接工程が簡素化されることとなる。また、上述の実施例と同様に、前側部閉鎖円弧壁42、前側部円弧壁30、前中間双方壁51を成形し、切断するようにしたことにより、多数個製造する際の製造効率を向上できると共に、様々な長さの圧力容器の製造に容易に対応可能である。   In such a manufacturing method, the flat pressure vessel 11 is manufactured by molding and joining the side closed circular arc wall 9, the side circular arc wall 4, and the intermediate both side walls 50, and the above-described implementation is performed. Compared to the manufacturing method of Example 3, the number of parts is further reduced. Therefore, the welding process is simplified. Further, as in the above-described embodiment, the front side closed arc wall 42, the front side arc wall 30, and the front intermediate wall 51 are formed and cut, thereby improving the manufacturing efficiency when manufacturing a large number of them. In addition, it can easily cope with the production of pressure vessels of various lengths.

(実施例5)
実施例5にあっては、図13(イ)のように、扁平円筒胴部22の内部に、三つの筒状中間主貯留域13を並成し、その両側に筒状側部主貯留域3,3を備えた扁平圧力容器21を製造する。
本実施例の製造方法では、図13(ロ)のように、成形工程により側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9、及び皿状鏡部26を成形した後、接合工程によりこれらを溶接して扁平圧力容器21を製造する。ここで、側部円弧壁4、中間双方壁50、側部閉鎖円弧壁9は、上述の実施例4と同様のものである。また、皿状鏡部26にあっては、側部円弧壁4及び中間円弧壁14の断面円弧とほぼ等しい円弧径の曲面を備えてなる皿形状に形成されてなり、鏡部開口57は、扁平円筒胴部22の両端開口58(図14(イ)参照)とほぼ同じ形状に形成されている。この皿状鏡部26の内側には、幅方向に一体の空域(連通領域28)が形成されている。尚、この皿状鏡部26は、上述した実施例1〜実施例4に比して、幅方向に長いものとなっている。
(Example 5)
In the fifth embodiment, as shown in FIG. 13 (a), three cylindrical intermediate main storage areas 13 are juxtaposed inside the flat cylindrical body 22, and the cylindrical side main storage areas are arranged on both sides thereof. A flat pressure vessel 21 with 3 and 3 is manufactured.
In the manufacturing method of the present embodiment, as shown in FIG. 13B, after the side circular arc wall 4, the intermediate both side walls 50, the side closed circular arc wall 9, and the dish-shaped mirror part 26 are formed by the molding process, These are welded according to a process, and the flat pressure vessel 21 is manufactured. Here, the side arc wall 4, the middle both walls 50, and the side closing arc wall 9 are the same as those in the above-described fourth embodiment. Further, the dish-shaped mirror portion 26 is formed in a dish shape having a curved surface having an arc diameter substantially equal to the cross-section arc of the side arc wall 4 and the intermediate arc wall 14. It is formed in substantially the same shape as both end openings 58 (see FIG. 14 (a)) of the flat cylindrical body part 22. An internal air space (communication region 28) is formed in the width direction inside the dish-shaped mirror portion 26. In addition, this dish-shaped mirror part 26 is a thing long in the width direction compared with Example 1- Example 4 mentioned above.

成形工程としては、図示しない押出加工機に、いわゆるソリッド形状の側部円弧壁4、中間双方壁50を夫々に成形するための所定のソリッドダイス(図示せず)を順次セットする。そして、所定のアルミニウム合金を、押出加工機により押出成形して、図12(イ)のように、扁平円筒胴部12の長さに比して数倍の長さに形成した前側部円弧壁30と前中間双方壁51とを夫々に成形する。さらに、押出加工機に、いわゆるホロー形状の側部閉鎖円弧壁9を成形するための所定のホローダイス(図示せず)をセットして、所定のアルミニウム合金を押出成形して、扁平円筒胴部12の長さに比して、数倍の長さに形成した前側部閉鎖円弧壁42を得る。その後、前側部円弧壁30、前中間双方壁51、前側部閉鎖円弧壁42とそれぞれを、図14(イ)に示す扁平円筒胴部12の長さに夫々に切断することにより、図13(ロ)に示す側部円弧壁4、三つの中間双方壁50、側部閉鎖円弧壁9を得る。   As a forming step, predetermined solid dies (not shown) for forming the so-called solid-shaped side circular arc wall 4 and intermediate both side walls 50 are sequentially set in an extruder (not shown). And the predetermined | prescribed aluminum alloy is extrusion-molded with an extruder, and as shown in FIG. 12 (a), the front side arc wall formed several times longer than the length of the flat cylindrical body 12 30 and the front intermediate wall 51 are respectively formed. Further, a predetermined hollow loader (not shown) for forming a so-called hollow side closed circular arc wall 9 is set in the extruder, and a predetermined aluminum alloy is extruded to form a flat cylindrical body 12. The front side closed circular arc wall 42 formed to be several times longer than the length is obtained. Thereafter, the front-side arc wall 30, the front intermediate wall 51, and the front-side closed arc wall 42 are respectively cut to the length of the flat cylindrical body 12 shown in FIG. The side arc wall 4, the three middle both walls 50, and the side closing arc wall 9 shown in FIG.

さらに、アルミニウム合金の板材を、図示しないプレス加工することにより、皿状鏡部26を成形する(図13(ロ)参照)。このように、側部円弧壁4、三つの中間双方壁50、側部閉鎖円弧壁9、及び皿状鏡部26を成形する工程が、本発明にかかる成形工程である。   Furthermore, the plate-shaped mirror part 26 is shape | molded by press-processing the aluminum alloy board | plate material which is not shown in figure (refer FIG. 13 (B)). Thus, the process of shape | molding the side part circular wall 4, the three intermediate | middle both sides wall 50, the side part closed circular arc wall 9, and the plate-shaped mirror part 26 is a formation process concerning this invention.

次に、上記成形工程により成形した側部円弧壁4、三つの中間双方壁50、側部閉鎖円弧壁9を接合して扁平円筒胴部22を形成し、該該扁平円筒胴部22に皿状鏡部26,26を接合する接合工程を行う。図14(ロ)のように、側部閉鎖円弧壁9の両接合部7b,7bに形成された嵌合凹溝33,33に、中間双方壁50の上下の中間円弧壁14,14の嵌合凸部36,36を夫々に嵌入する。さらに、中間双方壁50の両接合部7c,7cに形成された嵌合凹溝33,33に、他の中間双方壁50の嵌合凸部36,36を夫々に嵌入する。同様に、もう一つ他の中間双方壁50の接合凸部36,36を順次嵌入する。そして、側端に在る中間双方壁50の両接合部7c,7cの両嵌合凹溝33,33に、側部円弧壁4の嵌合凸部36,36を嵌入する。これにより、側部円弧壁4、三つの中間双方壁50、側部閉鎖円弧壁9を組み付ける。そして、各嵌合凹溝33に嵌入凸部36が嵌入する外側からそれぞれ、長手方向に亘ってミグ溶接する。このようにして、図14(イ)に示す、三つの筒状中間主貯留域13とその両側に筒状側部主貯留域3,3とを並成した扁平円筒胴部22を得る。   Next, the side circular arc wall 4, the three intermediate both side walls 50, and the side closed circular arc wall 9 formed by the above forming step are joined to form the flat cylindrical body 22, and the flat cylindrical body 22 is provided with a dish. The joining process which joins the shape mirror parts 26 and 26 is performed. As shown in FIG. 14 (b), the upper and lower intermediate arc walls 14, 14 of the intermediate both walls 50 are fitted into the fitting concave grooves 33, 33 formed in both joint portions 7 b, 7 b of the side closed arc wall 9. The mating protrusions 36 and 36 are fitted into the respective parts. Further, the fitting convex portions 36 and 36 of the other intermediate both walls 50 are fitted into the fitting concave grooves 33 and 33 formed in the joint portions 7c and 7c of the intermediate both walls 50, respectively. Similarly, the joint projections 36 and 36 of the other intermediate both walls 50 are sequentially inserted. Then, the fitting convex portions 36 and 36 of the side arcuate wall 4 are fitted into the fitting concave grooves 33 and 33 of the joint portions 7c and 7c of the intermediate both walls 50 at the side ends. Thus, the side arc wall 4, the three middle both walls 50, and the side closing arc wall 9 are assembled. Then, MIG welding is performed across the longitudinal direction from the outside where the fitting protrusions 36 are fitted into the respective fitting grooves 33. In this way, a flat cylindrical body 22 is obtained in which three cylindrical intermediate main storage areas 13 and cylindrical side main storage areas 3 and 3 are arranged on both sides thereof as shown in FIG.

その後、図14(イ)のように、この扁平円筒胴部22の両端開口58,58の周端に、成形工程で成形した皿状鏡部26,26の鏡部開口37,37の周端をミグ溶接により接合する。これにより、図13(イ)に示す、両側の筒状側部主貯留域3と三つの筒状中間主貯留域13とを皿状鏡部26,26の内側の連通領域28で連通してなる一体的な内部形態を有する扁平圧力容器21を得る。ここで、この扁平圧力容器21には、一方の皿状鏡部16の略中央に入出バルブを取り付けるためのバルブ座10が形成され、該バルブ座10に入出バルブが配設される。また、図示しない、内容量計を取り付けるための内容量計座が形成され、所定の内容量計が配設される。このようにして、所望の扁平圧力容器21が製造される。   Thereafter, as shown in FIG. 14 (a), peripheral ends of the mirror openings 37, 37 of the dish-shaped mirror portions 26, 26 formed in the forming process are formed at the peripheral ends of the both ends openings 58, 58 of the flat cylindrical body portion 22. Are joined by MIG welding. Thereby, the cylindrical side main storage area 3 on the both sides and the three cylindrical intermediate main storage areas 13 shown in FIG. 13 (a) are communicated with each other through the communication area 28 inside the dish-shaped mirror portions 26 and 26. A flat pressure vessel 21 having an integral internal form is obtained. Here, in the flat pressure vessel 21, a valve seat 10 for attaching an inlet / outlet valve is formed in the approximate center of one of the dish-shaped mirror portions 16, and the inlet / outlet valve is disposed in the valve seat 10. Further, an unillustrated internal capacity meter seat for attaching the internal capacity meter is formed, and a predetermined internal capacity meter is disposed. In this way, a desired flat pressure vessel 21 is manufactured.

このような製造方法では、前中間双方壁51を少なくとも扁平円筒胴部22の長さに比して三倍の長さに相当するように押出成形して、三つの中間双方壁50を成形することにより、幅方向に長い(扁平率の高い)扁平圧力容器21を容易かつ適正に製造できるようにしている。すなわち、本製造方法は、前中間双方壁51の成形長さを長くすることにより製造できることから、同様に中間双方壁50の連設数が異なる圧力容器も製造することが可能である。   In such a manufacturing method, the front intermediate wall 51 is extruded so as to correspond to a length at least three times as long as the length of the flat cylindrical body 22 to form the three intermediate walls 50. This makes it possible to easily and appropriately manufacture the flat pressure vessel 21 that is long in the width direction (high flatness). That is, since this manufacturing method can be manufactured by increasing the molding length of the front intermediate wall 51, it is also possible to manufacture pressure vessels in which the number of intermediate walls 50 are different.

本実施例5にあっては、溶接工程で、三つの中間双方壁50を順次連接し、その両側に側部閉鎖円弧壁9、側部円弧壁4を夫々に接合することにより、三つの筒状中間主貯留域13と両側の筒状側部主貯留域3とを並成してなる扁平圧力容器21を製造する方法であって、中間双方壁50を連接するようにした以外は、上述の実施例4とほぼ同様に製造するようにしている。そのため、同じ形態及び工程を表す記号は同じものを使用し、その説明は省略している。   In the fifth embodiment, in the welding process, the three intermediate side walls 50 are sequentially connected, and the side closed circular arc wall 9 and the side circular arc wall 4 are respectively joined to both sides thereof to thereby form three cylinders. This is a method of manufacturing a flat pressure vessel 21 formed by juxtaposing the cylindrical intermediate main storage area 13 and the cylindrical side main storage areas 3 on both sides, except that the intermediate both walls 50 are connected. The fourth embodiment is manufactured in substantially the same manner as in the fourth embodiment. For this reason, the same symbols are used for the same forms and processes, and descriptions thereof are omitted.

ここで、上述した実施例1〜実施例5の各製造方法により製造した扁平圧力容器1,11,21にあっては、それぞれの扁平円筒胴部2,12,22の筒状側部主貯留域3や筒状中間主貯留域13が、各皿状鏡部6,16,26の連通領域8,18,28により一体な内部形態となるものである。これにより、各扁平圧力容器1,11,21が積載される搭載スペースに対して、それぞれ高いガス積載効率を発揮できる。   Here, in the flat pressure vessels 1, 11 and 21 manufactured by the manufacturing methods of the first to fifth embodiments described above, the cylindrical side main reservoirs of the respective flat cylindrical body portions 2, 12, and 22 are used. The area 3 and the cylindrical intermediate main storage area 13 form an integral internal form by the communication areas 8, 18, and 28 of the respective dish-shaped mirror portions 6, 16, and 26. Thereby, high gas loading efficiency can be exhibited with respect to the loading space in which the flat pressure vessels 1, 11 and 21 are loaded.

ここで、上述の実施例3で製造した扁平圧力容器11(図16(イ))について、上述した従来の、シリンダー型圧力容器70(図17(イ))及び複合型圧力容器75(図18(イ))に比して、ガス積載量を比較した。   Here, with respect to the flat pressure vessel 11 (FIG. 16 (a)) manufactured in the third embodiment, the conventional cylinder type pressure vessel 70 (FIG. 17 (a)) and the combined pressure vessel 75 (FIG. 18) are described. Compared to (i)), the gas loading capacity was compared.

本実施形態例にあっては、例えば、図15(イ)のように、LPGを燃料ガスとするバス90に、該LPG用圧力容器が搭載されるようにした。搭載スペースFは、バス90の底部に略直方形状に設けられており、図15(ロ)のように、長さP800mm×高さH200mm×奥行きW400mmとする。   In this embodiment, for example, as shown in FIG. 15A, the LPG pressure vessel is mounted on a bus 90 using LPG as fuel gas. The mounting space F is provided in a substantially rectangular shape at the bottom of the bus 90, and has a length P800 mm × height H200 mm × depth W400 mm as shown in FIG.

そして、かかる搭載スペースFに搭載される、本発明にかかる扁平圧力容器11として、側部円弧壁4及び中間円弧壁14の円弧半径を約100mm(すなわち、高さが200mm)とし、、容器幅を約400mmとし、容器長を約700mmとする(図16(イ))。一方、同じ搭載スペースFに搭載される、従来のシリンダー型圧力容器70を、胴部外径約200mmとし、容器長を約700mmとする(図17(イ))。同様に、この搭載スペースFに搭載される、従来の複合型圧力容器75を、各胴部の高さを200mmとし、容器幅を約400mmとし、容器長は約700mmとする(図18(イ))。   And as the flat pressure vessel 11 concerning this invention mounted in this mounting space F, the circular arc radius of the side circular arc wall 4 and the intermediate | middle circular arc wall 14 shall be about 100 mm (namely, height is 200 mm), and container width Is about 400 mm, and the container length is about 700 mm (FIG. 16A). On the other hand, a conventional cylinder type pressure vessel 70 mounted in the same mounting space F has a barrel outer diameter of about 200 mm and a vessel length of about 700 mm (FIG. 17A). Similarly, a conventional composite pressure vessel 75 mounted in the mounting space F has a body height of 200 mm, a container width of about 400 mm, and a container length of about 700 mm (see FIG. )).

このような搭載スペースFに搭載される、本発明の扁平圧力容器11のガス充填量は、約47リットルとなる。一方、従来のシリンダー型圧力容器70にあっては、ガス充填量が約20リットルであり、搭載スペースFに二本搭載可能であることから、総ガス充填量は約40リットルとなる。また、従来の複合型圧力容器75にあっては、ガス充填量が約45リットルとなる。したがって、本発明にかかる扁平圧力容器11は、最も多量のガス又は液化ガスを充填でき、直方体状の搭載スペースFのガス積載効率が最も高いものである。
これは、搭載スペースFに扁平圧力容器11を搭載した場合に(図15(ロ))、図16(ロ)に示す縦断面にあって、図17(ロ)に示すシリンダー型圧力容器70を二本搭載した場合に比して、デッドスペースXを減少できる。さらに、図16(ハ)に示す横断面にあっても、鏡部のデッドスペースXが、図17(ハ)に示す圧力容器70に比して減少している。また、同様に、図17(ハ)に示す複合型圧力容器75を搭載した場合に比して、鏡部のデッドスペースXが減少している。このように、本発明にかかる扁平圧力容器11は、直方体状の搭載スペースFに対して、最もデッドスペースXが少ないことから、ガス又は液化ガスを充填する内容積が最も大きくなり、多量のガス又は液化ガスを充填することが可能である。而して、搭載スペースFに対するガス積載効率が最も高くなる。
The gas filling amount of the flat pressure vessel 11 of the present invention mounted in such a mounting space F is about 47 liters. On the other hand, in the conventional cylinder type pressure vessel 70, the gas filling amount is about 20 liters, and two can be mounted in the mounting space F, so the total gas filling amount is about 40 liters. Further, in the conventional composite pressure vessel 75, the gas filling amount is about 45 liters. Therefore, the flat pressure vessel 11 according to the present invention can be filled with the largest amount of gas or liquefied gas, and has the highest gas loading efficiency in the rectangular parallelepiped mounting space F.
When the flat pressure vessel 11 is mounted in the mounting space F (FIG. 15 (b)), the cylinder-shaped pressure vessel 70 shown in FIG. The dead space X can be reduced as compared with the case where two are installed. Further, even in the cross section shown in FIG. 16C, the dead space X of the mirror portion is reduced as compared with the pressure vessel 70 shown in FIG. Similarly, the dead space X of the mirror portion is reduced as compared with the case where the composite pressure vessel 75 shown in FIG. Thus, since the flat pressure vessel 11 according to the present invention has the smallest dead space X with respect to the rectangular parallelepiped mounting space F, the internal volume filled with gas or liquefied gas becomes the largest, and a large amount of gas Or it can be filled with liquefied gas. Thus, the gas loading efficiency for the mounting space F is the highest.

ここで、本発明にかかる扁平圧力容器11は、上述したように、高圧ガス保安法の容器保安規則に従う板厚設計結果から得られるシリンダー型圧力容器70の板厚と、同等の板厚として強度設計することが可能である。したがって、同じアルミニウム合金で成形した場合に、胴部、鏡部をそれぞれシリンダー型圧力容器70と同じ板厚により製造することができる。このように同じ板厚により製造された、扁平圧力容器11と、シリンダー型圧力容器70とを、上述した搭載スペースFに搭載するようにした場合、本発明にかかる扁平圧力容器11の方が、二本搭載されるシリンダー型圧力容器70に比して軽量となる。同様に、上述した複合型圧力容器75を同じ板厚で製造した場合にあっても、本発明の扁平圧力容器11の方が軽量となる。また、従来のシリンダー型圧力容器70には各一個、合計二個の入出バルブを必要とし、複合型圧力容器75には三個の入出バルブを必要とすることから、一個の入出バルブが配設された扁平圧力容器11は、入出バルブの減少分に相当しても軽量化されている。尚、上述した扁平圧力容器1及び扁平圧力容器21にあっても、扁平圧力容器11と同様に、シリンダー型圧力容器70と同等の板厚により強度設計することが可能である。   Here, as described above, the flat pressure vessel 11 according to the present invention has a strength equivalent to the plate thickness of the cylinder-type pressure vessel 70 obtained from the plate thickness design result according to the vessel safety rules of the High Pressure Gas Safety Act. It is possible to design. Therefore, when formed with the same aluminum alloy, the body part and the mirror part can be manufactured with the same plate thickness as the cylinder type pressure vessel 70. When the flat pressure vessel 11 and the cylinder-type pressure vessel 70 manufactured with the same plate thickness are mounted in the mounting space F described above, the flat pressure vessel 11 according to the present invention is It is lighter than the two cylinder-type pressure vessels 70 mounted. Similarly, even when the composite pressure vessel 75 described above is manufactured with the same plate thickness, the flat pressure vessel 11 of the present invention is lighter. In addition, since the conventional cylinder type pressure vessel 70 requires one each, a total of two inlet / outlet valves, and the composite type pressure vessel 75 requires three inlet / outlet valves, one inlet / outlet valve is provided. The flattened pressure vessel 11 is lightened even if it corresponds to the reduced amount of the inlet / outlet valve. Even in the flat pressure vessel 1 and the flat pressure vessel 21 described above, it is possible to design the strength with a plate thickness equivalent to that of the cylinder type pressure vessel 70, similarly to the flat pressure vessel 11.

一方、上述した本発明の扁平圧力容器1,11,21にあっては、各扁平円筒胴部2,12,22が、側部円弧壁4や中間円弧壁14により形成されていること、及び該胴部内に縦断隔壁5がそれぞれ形成されていることから、この扁平化した胴部の幅方向と高さ方向に対して優れた強度と剛性とを発揮できる。したがって、皿状鏡部6,16,26の内部に連通領域8,18,28が形成されていても、充分な強さを有するものとなる。さらには、各扁平圧力容器1,11,21は、縦断隔壁5の縦断隔壁5の両接合部7a,7b,7cにそれぞれ円弧凹面41a,41b,41cを夫々に形成したことにより、当該圧力容器に所定のガスを充填した場合にかかる内圧により作用する応力集中を緩和することができる。而して、本発明の扁平圧力容器1,11,21は、外部から作用する外圧負荷やガス充填/排出による繰り返し内圧負荷等に対して、充分な強度と耐久性とを発揮することができる。   On the other hand, in the flat pressure vessels 1, 11 and 21 of the present invention described above, the flat cylindrical barrels 2, 12, and 22 are formed by the side circular arc wall 4 and the intermediate circular arc wall 14, and Since the vertical partition walls 5 are respectively formed in the body portion, excellent strength and rigidity can be exhibited in the width direction and the height direction of the flattened body portion. Therefore, even if the communication regions 8, 18, and 28 are formed inside the dish-shaped mirror portions 6, 16, and 26, the strength is sufficient. Furthermore, each flat pressure vessel 1, 11, 21 is formed by forming arcuate concave surfaces 41 a, 41 b, 41 c at the joints 7 a, 7 b, 7 c of the longitudinal partition 5 of the longitudinal partition 5, respectively. When the gas is filled with a predetermined gas, stress concentration acting on the internal pressure can be reduced. Thus, the flat pressure vessels 1, 11 and 21 of the present invention can exhibit sufficient strength and durability against external pressure loads acting from the outside or repeated internal pressure loads due to gas filling / discharging. .

上述した実施例1〜実施例5の製造方法にあって、接合工程では各嵌合凹溝33に嵌合凸部36を嵌入して胴部形状に組み付けた後、溶接するようにした方法であるが、その他の方法として、それぞれ、嵌入する毎に、溶接するようにしても良い。また、この製造方法にあっては、ガスを充填及び排出できる入出バルブを配設した構成であるが、ガス充填バルブとガス排出バルブとを別々に設けるようにしても良い。また、入出バルブ(又はガス充填バルブや排出バルブ)、内容量計は、成形工程後に所定部品に配設した後、接合工程により接合されて圧力容器が形成されるようにすることもできる。   In the manufacturing method of the first to fifth embodiments described above, in the joining process, the fitting convex portions 36 are inserted into the respective fitting concave grooves 33 and assembled into the body shape, and then welded. However, as another method, it is possible to weld each time it is inserted. In this manufacturing method, an inlet / outlet valve capable of filling and discharging gas is provided, but a gas filling valve and a gas discharge valve may be provided separately. Further, the inlet / outlet valve (or gas filling valve or exhaust valve) and the internal volume meter may be arranged in a predetermined part after the molding process, and then joined by the joining process to form a pressure vessel.

また、上述した実施例1〜実施例5にあっては、アルミニウム合金を押出成形することにより、扁平円筒胴部2,12,22を形成する各部品を成形し、アルミニウム合金製の扁平圧力容器1,11,21を製造した構成であるが、その他として、スチールを圧延加工又は引抜加工することにより、扁平円筒胴部を形成する各部品を成形し、アルミニウム合金製を同形状の、各スチール製扁平圧力容器を製造することもできる。   Further, in the above-described first to fifth embodiments, the aluminum alloy is extruded to form the respective parts forming the flat cylindrical body portions 2, 12, and 22, and the flat pressure vessel made of aluminum alloy is formed. 1, 11 and 21 are manufactured, but in addition, each part that forms a flat cylindrical body is formed by rolling or drawing steel, and each steel having the same shape made of aluminum alloy A flat pressure vessel can be manufactured.

本発明の扁平圧力容器としては、上述したような自動車のLPGやCNGの燃料タンクだけでなく、消防士等の空気用ボンベや酸素ボンベ等に適用することも可能である。   The flat pressure vessel of the present invention can be applied not only to the above-described automobile LPG and CNG fuel tanks but also to air cylinders, oxygen cylinders and the like of firefighters.

実施例1の、(イ)扁平圧力容器1を表す斜視図と、(ロ)該扁平圧力容器1の各構成部品を表す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) The perspective view showing the flat pressure vessel 1 of Example 1, (b) It is explanatory drawing showing each component of this flat pressure vessel 1. FIG. 実施例1の成形工程における、(イ)押出加工により成形される前側部円弧壁30と前縦断隔壁31とを表す説明図と、(ロ)側部円弧壁4と縦断隔壁5を表す説明図である。In the molding process of the first embodiment, (a) an explanatory diagram showing the front arc wall 30 and the front vertical partition wall 31 formed by extrusion, and (b) an explanatory diagram showing the side arc wall 4 and the vertical partition wall 5. It is. 実施例1の接合工程における、(イ)扁平円筒胴部2の組み付け状態を表す断面図と、(ロ)溶接状態を表す説明図である。It is sectional drawing showing the assembly | attachment state of the flat cylindrical trunk | drum 2 in the joining process of Example 1, and (b) Explanatory drawing showing a welding state. 実施例1の接合工程における、(イ)扁平円筒胴部2を表す斜視図と、(ロ)該扁平円筒胴部2に接合される皿状鏡部6,6を表す説明図である。In the joining process of Example 1, it is (a) the perspective view showing the flat cylindrical trunk | drum 2, and (b) explanatory drawing showing the plate-shaped mirror parts 6 and 6 joined to this flat cylindrical trunk | drum 2. FIG. 実施例2の、(イ)扁平圧力容器1の各構成部品を表す説明図と、(ロ)扁平円筒胴部2を表す断面図である。FIG. 5 is an explanatory diagram showing (a) each component of the flat pressure vessel 1 and (b) a cross-sectional view showing the flat cylindrical body 2 in the second embodiment. 実施例2の成形工程における、(イ)押出加工により成形される前側部円弧壁30と前側部閉鎖円弧壁42とを表す説明図と、(ロ)側部円弧壁4と側部閉鎖円弧壁9を表す説明図である。In the molding process of the second embodiment, (a) an explanatory diagram showing the front side arc wall 30 and the front side closed arc wall 42 formed by extrusion, and (b) the side arc wall 4 and the side closed arc wall. FIG. 実施例3の、(イ)扁平圧力容器11を表す斜視図と、(ロ)該扁平圧力容器11の各構成部品を表す説明図である。(A) The perspective view showing the flat pressure vessel 11 of Example 3, (b) It is explanatory drawing showing each component of the flat pressure vessel 11. FIG. 実施例3の成形工程における、(イ)押出加工により成形される前側部円弧壁30と前中間片方壁46とを表す説明図と、(ロ)側部円弧壁4と中間片方壁45を表す説明図である。In the molding step of the third embodiment, (a) an explanatory view showing the front side arc wall 30 and the front intermediate one-side wall 46 formed by extrusion, and (b) side side arc wall 4 and the intermediate one-side wall 45. It is explanatory drawing. 実施例3の接合工程における、(イ)二つの中間片方壁45,45の組み付け状態を表す説明図と、(ロ)扁平円筒胴部2の断面図である。In the joining process of Example 3, it is (a) explanatory drawing showing the assembly | attachment state of two intermediate one side walls 45 and 45, and (b) Sectional drawing of the flat cylindrical trunk | drum 2. FIG. 実施例3の接合工程における、(イ)扁平円筒胴部12を表す斜視図と、(ロ)該扁平円筒胴部12に接合される皿状鏡部16,16を表す説明図である。In the joining process of Example 3, it is (a) the perspective view showing the flat cylindrical trunk | drum 12, and (b) explanatory drawing showing the plate-shaped mirror parts 16 and 16 joined to this flat cylindrical trunk | drum 12. FIG. 実施例4の、(イ)扁平圧力容器11の各構成部品を表す説明図と、(ロ)扁平円筒胴部12を表す断面図である。(A) It is explanatory drawing showing each component of the flat pressure vessel 11 of Example 4, and (b) Sectional drawing showing the flat cylindrical trunk | drum 12. FIG. 実施例4の成形工程における、(イ)押出加工により成形される前側部円弧壁30と前側部閉鎖円弧壁42と前中間双方壁51とを表す説明図と、(ロ)側部円弧壁4と側部閉鎖円弧壁9と中間双方壁50を表す説明図である。In the molding process of the fourth embodiment, (a) an explanatory view showing the front side arc wall 30, the front side closed arc wall 42 and the front middle both walls 51 formed by extrusion, and (b) the side arc wall 4. It is explanatory drawing showing the side part closed circular arc wall 9 and the intermediate | middle both walls 50. FIG. 実施例5の、(イ)扁平圧力容器21を表す斜視図と、(ロ)扁平圧力容器21の各構成部品を表す説明図である。(A) The perspective view showing the flat pressure vessel 21 of Example 5, (b) It is explanatory drawing showing each component of the flat pressure vessel 21. FIG. 実施例5の接合工程における、(イ)扁平円筒胴部12と皿状鏡部26,26とを表す斜視図と、(ロ)扁平円筒胴部22の断面図である。In the joining process of Example 5, (a) The perspective view showing the flat cylindrical trunk | drum 12 and the plate-shaped mirror parts 26 and 26, (b) Sectional drawing of the flat cylindrical trunk | drum 22. (イ)バス90の搭載スペースFの具体例を表す説明図と、(ロ)該搭載スペースFに扁平圧力容器11の搭載状態を表す説明図である。(A) An explanatory diagram showing a specific example of the mounting space F of the bus 90, and (b) an explanatory diagram showing a mounting state of the flat pressure vessel 11 in the mounting space F. (イ)本発明にかかる扁平圧力容器11を表す斜視図と、(ロ)該扁平圧力容器11を搭載スペースFに搭載した場合の縦断面図と、(ハ)搭載スペースFに搭載した場合の鏡部の横断面図である。(B) a perspective view showing the flat pressure vessel 11 according to the present invention, (b) a longitudinal sectional view when the flat pressure vessel 11 is mounted in the mounting space F, and (c) when mounted in the mounting space F It is a cross-sectional view of a mirror part. (イ)従来のシリンダー型圧力容器70を表す斜視図と、(ロ)該圧力容器70を搭載スペースFに搭載した場合の縦断面図と、(ハ)搭載スペースFに搭載した場合の鏡部の横断面図である。(A) A perspective view showing a conventional cylinder-type pressure vessel 70, (b) a longitudinal sectional view when the pressure vessel 70 is mounted in the mounting space F, and (c) a mirror part when mounted in the mounting space F FIG. (イ)従来の複合型圧力容器75を表す斜視図と、(ロ)該複合型圧力容器75を搭載スペースFに搭載した場合の縦断面図と、(ハ)搭載スペースFに搭載した場合の鏡部の横断面図である。(A) A perspective view showing a conventional composite pressure vessel 75, (b) a longitudinal sectional view when the composite pressure vessel 75 is mounted in the mounting space F, and (c) when mounted in the mounting space F. It is a cross-sectional view of a mirror part.

符号の説明Explanation of symbols

1,11,21 扁平圧力容器
2,12,22 扁平円筒胴部
3 筒状側部主貯留域
4 側部円弧壁
5 縦断隔壁
6,16,26 皿状鏡部
7a,7b,7c 接合部
8,18,28 連通領域
9 側部閉鎖円弧壁
13 筒状中間主貯留域
14 中間円弧壁
33 嵌合凹溝
35 欠円開口端
36 嵌合凸部
41a,41b,41c 円弧凹面
45 中間片方壁
50 中間双方壁

DESCRIPTION OF SYMBOLS 1,11,21 Flat pressure vessel 2,12,22 Flat cylindrical trunk | drum 3 Cylindrical side main storage area 4 Side circular arc wall 5 Vertical partition wall 6,16,26 Dish-shaped mirror part 7a, 7b, 7c Joint part 8 , 18, 28 Communication area 9 Side closed circular arc wall 13 Cylindrical intermediate main storage area 14 Intermediate circular arc wall 33 Fitting groove 35 Notch circular opening end 36 Fitting convex part 41a, 41b, 41c Arc concave surface 45 Intermediate one side wall 50 Intermediate wall

Claims (16)

内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、
該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成され、所定のガス又は液化ガスを容器内に充填する充填バルブ及び容器外に排出する排出バルブを少なくとも各一個備えてなるか、又は、充填と排出とを行う入出バルブを少なくとも一個備えてなるものであることを特徴とする扁平圧力容器。
A flat cylindrical body having both ends opened by dividing the inside by a vertical partition wall and juxtaposing a plurality of cylindrical main storage areas along the longitudinal direction in the width direction;
Filling the container with a predetermined gas or liquefied gas, which is joined with covering the opening at both ends of the flat cylindrical body, and is formed with a dish-shaped mirror part that forms a communication area that communicates with each main storage area. A flat pressure vessel comprising at least one discharge valve for discharging to the outside of the valve and the container, or at least one input / output valve for filling and discharging.
扁平円筒胴部が、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、その欠円開口を覆う縦断隔壁とにより囲繞されて形成された、両側の筒状側部主貯留域を備えていることを特徴とする請求項1に記載の扁平圧力容器。   The flat cylindrical body portion is formed by being surrounded by a long side circular arc wall having a circular arc shape with a circular arc shape in which the angle occupied by the circular arc is 180 degrees or more, and a vertical partition wall covering the circular opening, The flat pressure vessel according to claim 1, comprising cylindrical side main storage areas on both sides. 扁平円筒胴部が、相互に対峙する二面の縦断隔壁と、上下の円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁とにより囲繞されて形成された筒状中間主貯留域および、
該筒状中間主貯留域の両側の縦断隔壁と、円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えていることを特徴とする請求項1又は請求項2に記載の扁平圧力容器。
A cylindrical intermediate body formed by a flat cylindrical body surrounded by a vertical partition wall of two faces facing each other and a long intermediate circular arc wall having an arc shape with an upper and lower circular arc occupying an angle of 90 degrees or less Main storage area, and
Cylindrical tubes on both sides formed by being surrounded by vertical partition walls on both sides of the cylindrical intermediate main storage area and long side circular arc walls having an arcuate cross section with an arc occupying an angle of 180 degrees or more The flat pressure vessel according to claim 1, wherein the flat pressure vessel has a cylindrical side main storage area.
扁平円筒胴部が、隣り合う二面が相互に対峙するように並立された複数の縦断隔壁の、各隣り合う二面の縦断隔壁毎に、上下一対の中間円弧壁と囲繞されて形成されたことにより、並列状に連成された複数の筒状中間主貯留域および、
両側端の縦断隔壁と側部円弧壁とにより囲繞されて形成された両側の筒状側部主貯留域を備えていることを特徴とする請求項3に記載の扁平圧力容器。
A flat cylindrical body is formed by surrounding a pair of upper and lower intermediate circular arc walls for each of two adjacent vertical partition walls of a plurality of vertical partition walls arranged side by side so that two adjacent surfaces face each other. A plurality of cylindrical intermediate main storage areas coupled in parallel, and
The flat pressure vessel according to claim 3, further comprising cylindrical side main storage areas on both sides formed by being surrounded by vertical partition walls and side arc walls at both ends.
扁平円筒胴部が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径に形成してなるものであることを特徴とする請求項3又は請求項4に記載の扁平圧力容器。   The flat cylindrical body according to claim 3 or 4, wherein the flat cylindrical body is formed by forming the cross-sectional arc diameter of the side arc wall and the cross-sectional arc diameter of the intermediate arc wall to be the same. Pressure vessel. 扁平円筒胴部が、縦断隔壁の長手方向に沿った両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面により連続する接合部を形成してなるものであることを特徴とする請求項2乃至請求項5のいずれかに記載の扁平圧力容器。   The flat cylindrical body portion is formed by widening the both ends along the longitudinal direction of the longitudinal partition wall to the outer sides in the wall thickness direction, and forming a joint portion in which the main wall portion and the widened portion are continuous by an arc concave surface. The flat pressure vessel according to any one of claims 2 to 5, wherein: 内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成された扁平圧力容器の製造方法にあって、
円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、
長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された略Iビーム形状の縦断隔壁と、
前記扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、
縦断隔壁の両接合部に、側部円筒壁の欠円開口端に形成した接合端部を溶接することによって、該縦断隔壁と側部円筒壁とにより囲繞された筒状主貯留域を両側に備えた扁平円筒胴部を形成し、その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする扁平圧力容器の製造方法。
The inside is divided by a vertical partition wall, and a plurality of cylindrical main storage areas along the longitudinal direction are juxtaposed in the width direction. And a flat pressure vessel manufacturing method comprising a dish-shaped mirror portion that forms a communication area that communicates with each main storage area.
A long side circular arc wall having an arc shape in cross section having an arc shape with an angle occupied by the circular arc of 180 degrees or more;
A substantially I-beam-shaped longitudinal partition wall in which a joint portion having a substantially T-shaped cross section is formed on both sides in the longitudinal direction, which is widened on both outer sides in the wall thickness direction and the main wall portion and the widened portion are continuous with an arc concave surface;
After performing the molding process of molding the dish-shaped mirror part joined to both ends opening of the flat cylindrical body part,
The cylindrical main storage area surrounded by the longitudinal partition wall and the side cylindrical wall is welded to both sides of the longitudinal partition wall by welding the joining end portion formed at the open end of the side cylindrical wall. A method for producing a flat pressure vessel, comprising: forming a flat cylindrical body portion provided, and then performing a joining step of welding a dish-shaped mirror portion to both end openings of the flat cylindrical body portion.
内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成された扁平圧力容器の製造方法にあって、
円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、
長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された縦断隔壁および前記側部円弧壁を、該側部円弧壁の欠円開口端に形成した接合端部を両接合部に一側から連成させることにより、一体的に形成した内側に筒状側部主貯留域が形成された側部閉鎖円弧壁と、
前記扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、
側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に備えた扁平円筒胴部を形成し、
その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする扁平圧力容器の製造方法。
The inside is divided by a vertical partition wall, and a plurality of cylindrical main storage areas along the longitudinal direction are juxtaposed in the width direction. And a flat pressure vessel manufacturing method comprising a dish-shaped mirror portion that forms a communication area that communicates with each main storage area.
A long side circular arc wall having an arc shape in cross section having an arc shape with an angle occupied by the circular arc of 180 degrees or more;
A longitudinal partition wall in which both sides in the longitudinal direction are widened outward on both sides in the wall thickness direction and a junction portion having a substantially T-shaped cross section in which the main wall portion and the widened portion are continuous with an arc concave surface is formed, and the side arc wall The side where the cylindrical side main storage area is formed on the inner side formed integrally by connecting the joint end formed at the open end of the circular arc wall of the side circular arc wall from one side to both joints A closed arc wall,
After performing the molding process of molding the dish-shaped mirror part joined to both ends opening of the flat cylindrical body part,
The vertical partition wall and the side circular arc wall are welded to the joint of the side closed circular arc wall from the other side where the side circular arc wall is not coupled, by welding the joining end portion of the open end of the side circular arc wall. Forming a cylindrical body with a cylindrical side main region surrounded on both sides by
Then, the manufacturing method of the flat pressure vessel characterized by performing the joining process which welds a plate-shaped mirror part to the both-ends opening of this flat cylindrical trunk | drum.
内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成された扁平圧力容器の製造方法にあって、
円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、
長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とを円弧凹面で連続する略T字状断面の接合部が形成された縦断隔壁および、円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁を、該中間円弧壁の片側円弧端に形成した接合端部を一方の接合部に一側から連成させることにより、一体的に形成した略L字状断面の中間片方壁と、
前記扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、
二つの中間片方壁の、各中間円弧壁の片側円弧端の接合端部を他方の縦断隔壁の接合部に互いに溶接することにより、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、
各中間片方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端に形成した接合端部を溶接することによって、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を両側に形成する接合とを行って扁平円筒胴部を形成し、
その後、該扁平胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする扁平圧力容器の製造方法。
The inside is divided by a vertical partition wall, and a plurality of cylindrical main storage areas along the longitudinal direction are juxtaposed in the width direction. And a flat pressure vessel manufacturing method comprising a dish-shaped mirror portion that forms a communication area that communicates with each main storage area.
A long side circular arc wall having an arc shape in cross section having an arc shape with an angle occupied by the circular arc of 180 degrees or more;
A longitudinal partition wall in which a joint portion having a substantially T-shaped cross section that is widened outward on both sides in the longitudinal direction in the wall thickness direction and the main wall portion and the widened portion are continuous with an arc concave surface, and an angle occupied by the arc A long intermediate circular arc wall having a circular arc shape of 90 degrees or less is integrally formed by joining a joint end formed on one side arc end of the intermediate arc wall to one joint from one side An intermediate L wall with a substantially L-shaped cross section,
After performing the molding process of molding the dish-shaped mirror part joined to both ends opening of the flat cylindrical body part,
By welding the joining end of one arcuate end of each middle arcuate wall to the joining part of the other longitudinal bulkhead, the two vertical longitudinal bulkheads and upper and lower intermediate arcwalls facing each other Joining to form a cylindrical intermediate main region surrounded by
By welding the joint end formed at the open end of the circular arc wall of the side arc wall from the other side where the intermediate arc wall is not coupled to the junction of each intermediate one-side wall, the vertical partition wall and the side arc wall And forming a flat cylindrical body by performing joining to form both sides of the cylindrical side main region surrounded by
Then, the manufacturing method of the flat pressure vessel characterized by performing the joining process which welds a plate-shaped mirror part to the both ends opening of this flat trunk | drum.
内部を、縦断隔壁により区画して長手方向に沿った複数の筒状主貯留域を幅方向へ並成してなる両端が開口する扁平円筒胴部と、該扁平円筒胴部の両端開口を覆って接合され、内部に各主貯留域を連通する連通領域を形成する皿状鏡部とで構成された扁平圧力容器の製造方法にあって、
円弧の占める角度が180度以上の欠円状をなす断面円弧形状の長尺の側部円弧壁と、
長手方向の両辺端に、壁厚方向両外側に拡幅し、主壁部と拡幅部とが円弧凹面で連続する略T字状断面の接合部が一体的に形成された縦断隔壁および、前記側部円弧壁を、該側部円弧壁の欠円開口端に形成した接合端部を両接合部に一側から連成させることにより、一体的に形成した内側に筒状側部主貯留域が形成された側部閉鎖円弧壁と、
前記縦断隔壁および、円弧の占める角度が90度以下である断面円弧形状の長尺の中間円弧壁を、該中間円弧壁の片側円弧端に形成した接合端部を両接合部に一側から夫々に連成させることにより、一体的に形成した略コ字状断面の中間双方壁と、
前記扁平円筒胴部の両端開口に接合される皿状鏡部とを夫々に成形する成形工程を行った後に、
側部閉鎖円弧壁の接合部に、側部円弧壁が連成されていない他側から、中間双方壁の上下の片側円弧端の接合端部を溶接することによって、相互に対峙する二面の縦断隔壁と上下の中間円弧壁とにより囲繞された筒状中間主領域を形成する接合と、
中間双方壁の接合部に、中間円弧壁が連成されていない他側から、側部円弧壁の欠円開口端の接合端部を溶接することにより、縦断隔壁と側部円弧壁とにより囲繞された筒状側部主領域を形成する接合とを行って扁平円筒胴部を形成し、
その後、該扁平円筒胴部の両端開口に皿状鏡部を溶接する接合工程を行うようにしたことを特徴とする扁平圧力容器の製造方法。
The inside is divided by a vertical partition wall, and a plurality of cylindrical main storage areas along the longitudinal direction are juxtaposed in the width direction. And a flat pressure vessel manufacturing method comprising a dish-shaped mirror portion that forms a communication area that communicates with each main storage area.
A long side circular arc wall having an arc shape in cross section having an arc shape with an angle occupied by the circular arc of 180 degrees or more;
A longitudinal partition wall in which a joint portion having a substantially T-shaped cross section is integrally formed on both side edges in the longitudinal direction and widened outward on both sides in the wall thickness direction, and the main wall portion and the wide width portion are continuous with an arc concave surface, A cylindrical side main storage area is formed on the inner side formed integrally by connecting a joint end formed at the open end of the circular arc of the side arc wall to one of the joints. A formed side closure arc wall;
The longitudinal partition wall and a long intermediate arc wall having a circular arc shape with an arc occupying an angle of 90 degrees or less, and a joint end formed at one arc end of the intermediate arc wall from both sides to one of the joints, respectively. The two intermediate walls of a substantially U-shaped cross section formed integrally with each other,
After performing the molding process of molding the dish-shaped mirror part joined to both ends opening of the flat cylindrical body part,
By welding the joint ends of the upper and lower one-side arc ends of both intermediate walls from the other side where the side arc walls are not coupled to the joint portion of the side closed arc wall, Forming a cylindrical intermediate main region surrounded by a vertical partition wall and upper and lower intermediate arc walls;
By welding the joining end of the open end of the side circular arc wall from the other side where the intermediate circular arc wall is not coupled to the joint of the intermediate both walls, it is surrounded by the vertical partition wall and the side circular arc wall. To form a flat cylindrical body by performing the joining to form the cylindrical side main region made,
Then, the manufacturing method of the flat pressure vessel characterized by performing the joining process which welds a plate-shaped mirror part to the both-ends opening of this flat cylindrical trunk | drum.
接合工程が、中間双方壁の接合部に、中間円弧壁が連成されていない他側から、他の中間双方壁の上下の片側円弧端の接合端部を溶接することにより、複数の筒状中間主領域を連成する扁平円筒胴部を形成するようにしたことを特徴とする請求項10に記載の扁平圧力容器の製造方法。   The joining step welds the joining end portions of the upper and lower arcuate ends of the other intermediate walls from the other side where the intermediate arc walls are not coupled to the joining portions of the intermediate walls, thereby forming a plurality of cylindrical shapes. The method for producing a flat pressure vessel according to claim 10, wherein a flat cylindrical body that is coupled to the intermediate main region is formed. 成形工程が、側部円弧壁の断面円弧径と中間円弧壁の断面円弧径とを同径となるように成形したことを特徴とする請求項9乃至請求項11のいずれかに記載の扁平圧力容器の製造方法。   The flattening pressure according to any one of claims 9 to 11, wherein the forming step is performed such that the cross-sectional arc diameter of the side arc wall and the cross-sectional arc diameter of the intermediate arc wall are the same. Container manufacturing method. 成形工程により、縦断隔壁の接合部の外面に、長手方向に亘って嵌合凹溝を形成すると共に、該接合部に溶接される接合端部に、該嵌合凹溝に嵌入する嵌合凸部を形成し、
接合工程により、前記接合部の嵌合凹溝に、接合端部の嵌合凸部を嵌入して溶接することにより接合するようにしたことを特徴とする請求項7乃至請求項11のいずれかに記載の扁平圧力容器の製造方法。
The forming process forms a fitting groove in the longitudinal direction on the outer surface of the joint part of the longitudinal partition wall, and a fitting protrusion that fits into the fitting groove at the joint end welded to the joint part. Forming part,
12. The joining process according to any one of claims 7 to 11, wherein the joining convex groove of the joining end portion is inserted into the fitting concave groove of the joining portion and welded by the joining step. The manufacturing method of the flat pressure vessel as described in 1 ..
成形工程が、所定の扁平円筒胴部長さの略複数倍の長さに成形した後、所定長さに切断するようにしたことを特徴とする請求項7乃至請求項13のいずれかに記載の扁平圧力容器の製造方法。   The molding process according to any one of claims 7 to 13, wherein the molding step is formed to a length approximately equal to a plurality of times of a predetermined flat cylindrical body length and then cut to a predetermined length. Manufacturing method of flat pressure vessel. 成形工程が、アルミニウム合金を押出加工することにより成形するようにしたことを特徴とする請求項7乃至請求項14のいずれかに記載の扁平圧力容器の製造方法。   The method for manufacturing a flat pressure vessel according to any one of claims 7 to 14, wherein the forming step is performed by extruding an aluminum alloy. 成形工程が、スチールを圧延加工及び/又は引抜加工することにより成形するようにしたことを特徴とする請求項7乃至請求項14のいずれかに記載の扁平圧力容器の製造方法。

The method for producing a flat pressure vessel according to any one of claims 7 to 14, wherein the forming step is performed by rolling and / or drawing the steel.

JP2003395110A 2003-11-26 2003-11-26 Flat pressure vessel and manufacturing method for flat pressure vessel Pending JP2005155776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395110A JP2005155776A (en) 2003-11-26 2003-11-26 Flat pressure vessel and manufacturing method for flat pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395110A JP2005155776A (en) 2003-11-26 2003-11-26 Flat pressure vessel and manufacturing method for flat pressure vessel

Publications (1)

Publication Number Publication Date
JP2005155776A true JP2005155776A (en) 2005-06-16

Family

ID=34720959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395110A Pending JP2005155776A (en) 2003-11-26 2003-11-26 Flat pressure vessel and manufacturing method for flat pressure vessel

Country Status (1)

Country Link
JP (1) JP2005155776A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046645A (en) * 2004-07-06 2006-02-16 Honda Motor Co Ltd Pressure vessel
JP2008537990A (en) * 2005-04-13 2008-10-02 マグナ・シユタイル・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Modular container for cryogenic liquid
JP2009534256A (en) * 2006-04-21 2009-09-24 マグナ・シユタイル・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Inner container that is enclosed by the outer container and serves to contain cryogenic liquid
KR101147051B1 (en) 2010-04-19 2012-05-17 주식회사 대유에스이 The method of manufacturing of duo tank for lpg cars
KR101155874B1 (en) * 2010-04-19 2012-06-20 주식회사 대유에스이 A duo-tank for gas car
WO2015069376A1 (en) * 2013-11-08 2015-05-14 United Technologies Corporation High conformal pressure vessel
JP2016180488A (en) * 2015-03-25 2016-10-13 株式会社神戸製鋼所 Pressure container
US9476545B2 (en) 2012-06-20 2016-10-25 Kobe Steel, Ltd. Pressure vessel
KR101686922B1 (en) * 2016-06-01 2016-12-15 (주) 로 Donut type LPG tanks
DE102015211011A1 (en) * 2015-06-16 2016-12-22 Saf-Holland Gmbh A container assembly
CN108139022A (en) * 2015-11-25 2018-06-08 联合工艺公司 Recombination pressure container component with integrated nozzle component
CN108351071A (en) * 2015-11-25 2018-07-31 联合工艺公司 Recombination pressure container component with integral heating element
JP2018119579A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 High-pressure vessel
EP3466596A3 (en) * 2017-09-15 2019-07-24 Goodrich Corporation Methods of manufacturing of a conformable high pressure fluid vessel
WO2020108307A1 (en) * 2018-11-26 2020-06-04 哲弗智能***(上海)有限公司 Compartment-type pressure vessel and method for using same
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
US11091266B2 (en) 2017-08-29 2021-08-17 Goodrich Corporation Conformable tank fabricated using additive manufacturing
WO2023048447A1 (en) * 2021-09-23 2023-03-30 주식회사 티엠씨 Compression-type fuel tank
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158298A (en) * 1981-07-01 1989-06-21 Gerhard Kg Pressure-resistant tank
US4946056A (en) * 1989-03-16 1990-08-07 Buttes Gas & Oil Co. Corp. Fabricated pressure vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158298A (en) * 1981-07-01 1989-06-21 Gerhard Kg Pressure-resistant tank
US4946056A (en) * 1989-03-16 1990-08-07 Buttes Gas & Oil Co. Corp. Fabricated pressure vessel

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046645A (en) * 2004-07-06 2006-02-16 Honda Motor Co Ltd Pressure vessel
JP2008537990A (en) * 2005-04-13 2008-10-02 マグナ・シユタイル・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Modular container for cryogenic liquid
JP2009534256A (en) * 2006-04-21 2009-09-24 マグナ・シユタイル・フアールツオイクテヒニク・アクチエンゲゼルシヤフト・ウント・コンパニー・コマンデイトゲゼルシヤフト Inner container that is enclosed by the outer container and serves to contain cryogenic liquid
KR101147051B1 (en) 2010-04-19 2012-05-17 주식회사 대유에스이 The method of manufacturing of duo tank for lpg cars
KR101155874B1 (en) * 2010-04-19 2012-06-20 주식회사 대유에스이 A duo-tank for gas car
US9476545B2 (en) 2012-06-20 2016-10-25 Kobe Steel, Ltd. Pressure vessel
US10222001B2 (en) 2013-11-08 2019-03-05 United Technologies Corporation High conformal pressure vessel
WO2015069376A1 (en) * 2013-11-08 2015-05-14 United Technologies Corporation High conformal pressure vessel
CN105874260A (en) * 2013-11-08 2016-08-17 联合工艺公司 High conformal pressure vessel
JP2016180488A (en) * 2015-03-25 2016-10-13 株式会社神戸製鋼所 Pressure container
US10935185B2 (en) 2015-06-16 2021-03-02 Saf-Holland Gmbh Two-part container assembly for compressed air
DE102015211011B4 (en) 2015-06-16 2022-01-13 Saf-Holland Gmbh container arrangement
DE102015211011A1 (en) * 2015-06-16 2016-12-22 Saf-Holland Gmbh A container assembly
CN108139022A (en) * 2015-11-25 2018-06-08 联合工艺公司 Recombination pressure container component with integrated nozzle component
CN108351071A (en) * 2015-11-25 2018-07-31 联合工艺公司 Recombination pressure container component with integral heating element
CN108139022B (en) * 2015-11-25 2021-11-26 联合工艺公司 Composite pressure vessel assembly with integrated nozzle assembly
US11137112B2 (en) 2015-11-25 2021-10-05 Raytheon Technologies Corporation Composite pressure vessel assembly with an integrated nozzle assembly
KR101686922B1 (en) * 2016-06-01 2016-12-15 (주) 로 Donut type LPG tanks
JP2018119579A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 High-pressure vessel
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
US11091266B2 (en) 2017-08-29 2021-08-17 Goodrich Corporation Conformable tank fabricated using additive manufacturing
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank
US10816138B2 (en) 2017-09-15 2020-10-27 Goodrich Corporation Manufacture of a conformable pressure vessel
EP3466596A3 (en) * 2017-09-15 2019-07-24 Goodrich Corporation Methods of manufacturing of a conformable high pressure fluid vessel
US11725779B2 (en) 2017-09-15 2023-08-15 Goodrich Corporation Manufacture of a conformable pressure vessel
WO2020108307A1 (en) * 2018-11-26 2020-06-04 哲弗智能***(上海)有限公司 Compartment-type pressure vessel and method for using same
WO2023048447A1 (en) * 2021-09-23 2023-03-30 주식회사 티엠씨 Compression-type fuel tank
KR20230043269A (en) * 2021-09-23 2023-03-31 주식회사 티엠씨 A compression type fuel tank
KR102545599B1 (en) * 2021-09-23 2023-06-21 주식회사 티엠씨 A compression type fuel tank

Similar Documents

Publication Publication Date Title
JP2005155776A (en) Flat pressure vessel and manufacturing method for flat pressure vessel
US7971740B2 (en) Pressure vessel
CA2650003C (en) Inner tank which is surrounded by an outer tank and serves to hold a cryogenic liquid
EP3066380B1 (en) High conformal pressure vessel
JP4778737B2 (en) Pressure vessel
EP3204683B1 (en) Pressure vessel fluid manifold assembly
US5787920A (en) Tank for compressed gas
US20060261073A1 (en) Liner for pressure vessels and process for producing same
JP5305198B2 (en) Outer tank for low temperature fuel
EP3204682B1 (en) Pressure vessel assembly and method of forming
WO1997009561A1 (en) Dual chamber fluid storage vessel
CN208022137U (en) Oil groove floating roof structure
JP4423129B2 (en) Pressure vessel
JP4774244B2 (en) Pressure vessel
JP4332475B2 (en) Pressure vessel
JP2014151922A (en) Liquid storage tank
AU710621B2 (en) Dual chamber fluid storage vessel
KR100892306B1 (en) Hybrid type pressure vessel
JP4317798B2 (en) Pressure vessel
US9366203B2 (en) Conformable high pressure gaseous fuel storage system having a gas storage vessel with fractal geometry
JP2004324857A (en) Multi-spherical shell type high pressure tank for pressure fluid
FR2783034A1 (en) Container for pressurised vehicle fuel gas has curved opposed walls defining recesses connected by inner reinforcing tubes
AU691187B2 (en) Pressurized fuel vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101217