JP2005154815A - Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil - Google Patents

Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil Download PDF

Info

Publication number
JP2005154815A
JP2005154815A JP2003393134A JP2003393134A JP2005154815A JP 2005154815 A JP2005154815 A JP 2005154815A JP 2003393134 A JP2003393134 A JP 2003393134A JP 2003393134 A JP2003393134 A JP 2003393134A JP 2005154815 A JP2005154815 A JP 2005154815A
Authority
JP
Japan
Prior art keywords
foil
concentration
copper
solution
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003393134A
Other languages
Japanese (ja)
Inventor
Akiko Sugimoto
晶子 杉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003393134A priority Critical patent/JP2005154815A/en
Priority to TW093134090A priority patent/TWI267566B/en
Priority to KR1020067002773A priority patent/KR20060037433A/en
Priority to PCT/JP2004/016728 priority patent/WO2005049895A1/en
Priority to US10/556,464 priority patent/US20070017816A1/en
Priority to CNA2004800037462A priority patent/CN1748048A/en
Publication of JP2005154815A publication Critical patent/JP2005154815A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper electrolytic solution in manufacturing an electrolytic copper foil, which imparts a rough surface having the uniform shape and size of crests and small roughness to a deposited foil to be peeled off, without substantially lowering the yield of the deposited foil owing to difficulty of the control for the molecular weight and concentration of protein, and to provide a method for manufacturing the electrolytic copper foil with the use of the solution. <P>SOLUTION: The copper electrolytic solution in manufacturing the electrolytic copper foil includes 2 to 4.5 ppm protein with a number average molecular weight M<SB>n</SB>of 1,000 to 2,300. The electrolytic solution preferably includes 60 to 100 g/l Cu<SP>2+</SP>, 60 to 250 g/l free SO<SB>4</SB><SP>2-</SP>, and 0.5 to 2.0 ppm Cl<SP>-</SP>. The method for manufacturing the electrolytic copper foil uses the above copper electrolytic solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解銅箔製造用銅電解液及び電解銅箔の製造方法に関し、詳しくは粗面の山の形状及び大きさが揃い、低粗度の電解銅箔を製造することに適した電解銅箔製造用銅電解液及び電解銅箔の製造方法に関するものである。 The present invention relates to a copper electrolytic solution for producing electrolytic copper foil and a method for producing electrolytic copper foil, and more specifically, an electrolytic suitable for producing a low-roughness electrolytic copper foil having a uniform shape and size of crests on a rough surface. The present invention relates to a copper electrolyte for producing copper foil and a method for producing an electrolytic copper foil.

電解銅箔は、銅イオンを含む銅電解液からチタン等からなる陰極上に銅を電析させて得られる箔(析離箔)又は該析離箔の表面にコブ等を形成したり金属層や有機成分層を設けたりした箔(表面処理箔)であり、プリント配線板の形成材料等として広く用いられている。なお、析離箔は、上記のように陰極上に電析して得られるものであるため、一般的に、陰極側の面(光沢面、シャイニー面又はS面)と、シャイニー面の反対側の面(粗面、マット面又はM面)とは、表面の形状や粗度が異なっている。すなわち、一般的に、析離箔のシャイニー面は略陰極表面の形状が略転写されて平滑状を呈し、一方粗面は電析の際に成長した銅の表面が高低差(粗度)数μm程度の数多くの山状突起を呈するものとなる。また、表面処理箔は、通常、析離箔の粗面の山状突起を特に研磨等することなく、略そのままの状態でさらにコブを形成する等の表面処理を行ったものであるから、その粗面の表面形状は析離箔の粗面の表面形状の影響を強く残したものとなる。すなわち、電解銅箔においては、析離箔の粗面の山状突起(以下、単に「山」ともいう。)の形状及び大きさの制御は重要である。 The electrolytic copper foil is a foil (deposited foil) obtained by electrodepositing copper on a cathode made of titanium or the like from a copper electrolytic solution containing copper ions, or a metal layer on the surface of the separated foil. And a foil (surface-treated foil) provided with an organic component layer, and is widely used as a material for forming a printed wiring board. In addition, since the separation foil is obtained by electrodeposition on the cathode as described above, generally, the cathode side surface (glossy surface, shiny surface or S surface) and the opposite side of the shiny surface. This surface (rough surface, mat surface or M surface) is different in surface shape and roughness. That is, generally, the shiny surface of the separating foil has a smooth shape with substantially the shape of the cathode surface, while the rough surface has a difference in height (roughness) in the surface of copper grown during electrodeposition. A large number of ridges of about μm are exhibited. In addition, the surface-treated foil is usually subjected to a surface treatment such as forming a bump in a substantially as-is state without particularly polishing the rough projections on the rough surface of the separation foil. The surface shape of the rough surface strongly retains the influence of the surface shape of the rough surface of the separating foil. That is, in the electrolytic copper foil, it is important to control the shape and size of the rough protrusions (hereinafter also simply referred to as “mountains”) on the rough surface of the separating foil.

ところで、電解銅箔がプリント配線板の形成材料として用いられる場合、銅箔にはプリプレグ等の他種材料との接着性等が高いことが要求されるため、表面形状の制御等により接着強度等が改善された表面処理箔が主に用いられる。しかし、表面処理箔は上記のように、その表面形状は基となる析離箔の表面形状の影響が強く残るものとなるため、接着強度等の物性を安定したものとしたり積層の際に絶縁性等を確保したりするには、析離箔の粗面の山の形状及びその大きさが揃ったものであることが望まれている。一方、近年のプリント配線板への薄型化の要請より銅箔自体の薄型化が要求されているため、表面処理箔、ひいては析離箔の粗面の山の粗度が小さいことも望まれている。析離箔の粗面の山の粗度としては、具体的には、析離箔の厚さが35μmのものでRが4.2μm以下であることが望まれている。 By the way, when an electrolytic copper foil is used as a material for forming a printed wiring board, the copper foil is required to have high adhesiveness with other materials such as a prepreg. The surface-treated foil with improved is mainly used. However, as described above, since the surface shape of the surface-treated foil remains strongly influenced by the surface shape of the base separation foil, it is possible to stabilize the physical properties such as adhesive strength and to insulate the laminated foil. In order to ensure the properties and the like, it is desired that the shape and size of the rough crests of the separation and separation foil are uniform. On the other hand, since the copper foil itself is required to be thinner due to the recent demand for thinner printed wiring boards, it is also desired that the roughness of the rough surface of the surface-treated foil, and hence the separation foil, be small. Yes. Specifically, the roughness of the crest of the rough surface of the separation foil is desired to be that the thickness of the separation foil is 35 μm and Rz is 4.2 μm or less.

析離箔の粗面について、山の形状を揃え且つ粗度を低くする技術としては、従来、銅電解液中の各種イオンの濃度の制御等種々の技術が開示されている。このうち銅電解液にタンパク質やにかわ(以下、「タンパク質等」ともいう。)を溶解した水溶液(以下、「タンパク質等水溶液」ともいう。)を所定量継続して添加しつつ電解して析離箔を製造することは、低粗度箔の作製に重要な要因として知られている。 Conventionally, various techniques such as controlling the concentration of various ions in the copper electrolyte have been disclosed as techniques for aligning the shape of the peaks and reducing the roughness of the rough surface of the separating foil. Of these, a predetermined amount of an aqueous solution (hereinafter also referred to as “protein aqueous solution”) in which protein or glue (hereinafter also referred to as “protein etc.”) is dissolved in a copper electrolyte is electrolyzed and separated. Manufacturing a foil is known as an important factor in the production of low roughness foils.

すなわち、銅電解液中におけるタンパク質等の濃度や分子量は析離箔の粗面の山の形状や粗度その他の物性に影響を与えるものと考えられており、このため、銅電解液中におけるタンパク質等の濃度及び分子量を測定する方法が知られている(特許文献1)。また、タンパク質等は銅電解液中に放置するだけで分解して分子量が小さくなること、及び電解時においては消費されて銅電解液中の濃度が低くなることが知られている。 That is, it is thought that the concentration and molecular weight of proteins and the like in the copper electrolyte affect the shape, roughness and other physical properties of the rough surface of the separating foil. A method for measuring the concentration and molecular weight of these is known (Patent Document 1). In addition, it is known that proteins and the like are decomposed by simply leaving them in a copper electrolyte solution to reduce the molecular weight, and are consumed during electrolysis to reduce the concentration in the copper electrolyte solution.

特開2001−337081号公報(第2頁第1欄)JP 2001-337081 A (2nd page, 1st column)

しかしながら、現場での操業においては、タンパク質等の濃度及び分子量を制御する方法として、溶解するタンパク質等の銘柄を特定することによりタンパク質等水溶液の作製の際における初期の分子量を制御し、且つ該タンパク質等水溶液を所定量継続して添加することにより銅電解液中の濃度を一定量に制御することが経験的に行われているにすぎないというのが実情である。すなわち、現場での操業においては、所定銘柄のタンパク質等を用いたタンパク質等水溶液を所定量継続して添加するという定常状態を作り出さないと、粗面の山の形状及びその大きさが揃ったもので且つ低粗度の析離箔を作製することが困難になる。 However, in on-site operation, as a method for controlling the concentration and molecular weight of proteins and the like, the initial molecular weight in the production of aqueous solutions of proteins and the like is controlled by specifying the brands of proteins and the like that are dissolved, and the proteins The actual situation is that the concentration in the copper electrolyte is controlled to a constant amount by adding a predetermined amount of an aqueous solution continuously. In other words, in on-site operation, the shape and size of rough peaks are aligned unless a steady state in which a predetermined amount of a protein aqueous solution using a predetermined brand of protein is continuously added is created. In addition, it is difficult to produce a low roughness precipitation foil.

例えば、電解時にタンパク質等水溶液の添加時間や添加量を誤った場合や新たに銅電解液を作製する場合、前者の場合には、タンパク質等の不足分を追って添加することになるが、このように不足分を添加しても、得られる析離箔の粗面の山の形状や粗度を定常状態の良好な状態、すなわち、山の形状が整い且つ粗度が低い状態に戻すことが困難でありこの間の析離箔の歩留まりが著しく低下するという問題があった。また、後者の場合には、操業の定常状態の条件でタンパク質等水溶液を添加しても粗面の山の形状が整い且つ粗度が低い箔を得ることが困難であり、操業開始初期における析離箔の歩留まりが著しく低くなるという問題があった。さらに、たとえ同一銘柄のタンパク質を用いても、電解製造のラインが異なるだけで、得られる箔のM面の山の形状等が変化してしまうこともあるという問題があった。 For example, if the addition time or amount of an aqueous solution such as protein is wrong during electrolysis or if a new copper electrolyte is prepared, in the former case, protein or the like will be added shortly. Even if a deficiency is added, it is difficult to return the rough shape and roughness of the rough surface of the resulting separation foil to a steady state, that is, a state where the shape of the peak is uniform and the roughness is low. However, there was a problem that the yield of the separation foil during this period was remarkably lowered. Further, in the latter case, it is difficult to obtain a foil having a rough crest shape and low roughness even when an aqueous protein solution is added under the steady state conditions of the operation. There has been a problem that the yield of the release foil is remarkably lowered. Furthermore, even if proteins of the same brand are used, there is a problem in that the shape of the mountain on the M surface of the obtained foil may change only by the difference in the electrolytic production line.

従って、本発明の目的は、タンパク質等の分子量及び濃度の管理に起因する析離箔の歩留まりを実質的に生じさせないまま、析離箔の粗面の山の形状及び大きさが揃い且つ低粗度の箔を得ることができる電解銅箔製造用銅電解液及びこれを用いた電解銅箔の製造方法を提供することにある。 Therefore, the object of the present invention is to achieve a uniform shape and size of the ridges on the rough surface of the separation foil, while maintaining substantially no yield of the separation foil due to the control of the molecular weight and concentration of proteins and the like. It is providing the copper electrolyte solution for electrolytic copper foil manufacture which can obtain the foil of a degree, and the manufacturing method of an electrolytic copper foil using the same.

かかる実情において、本発明者は鋭意検討を行った結果、電解銅箔製造用の銅電解液中に含まれるタンパク質の数平均分子量及び濃度がそれぞれ所定範囲内にある銅電解液を用いると、析離箔の粗面の山の形状及び大きさが揃い且つ低粗度になることを見出し、本発明を完成するに至った。 In such a situation, the present inventor has intensively studied, and as a result, when using a copper electrolyte in which the number average molecular weight and the concentration of the protein contained in the copper electrolyte for producing an electrolytic copper foil are within a predetermined range, It has been found that the shapes and sizes of the peaks of the rough surface of the release foil are uniform and have low roughness, and the present invention has been completed.

すなわち、本発明(1)は、電解銅箔製造用の銅電解液であって、該銅電解液中に含まれるタンパク質は、数平均分子量Mが1000〜2300、且つ、濃度が2ppm〜4.5ppmであることを特徴とする電解銅箔製造用銅電解液を提供するものである。 That is, the present invention (1) is a copper electrolyte for producing an electrolytic copper foil, and the protein contained in the copper electrolyte has a number average molecular weight Mn of 1000 to 2300 and a concentration of 2 ppm to 4 The present invention provides a copper electrolyte solution for producing an electrolytic copper foil, characterized by being 0.5 ppm.

また、本発明(2)は、本発明(1)において、前記銅電解液は、Cu2+濃度が60g/l〜100g/lであることを特徴とする電解銅箔製造用銅電解液を提供するものである。 In addition, the present invention (2) provides the copper electrolyte for producing an electrolytic copper foil according to the present invention (1), wherein the copper electrolyte has a Cu 2+ concentration of 60 g / l to 100 g / l. To do.

また、本発明(3)は、本発明(1)又は(2)において、前記銅電解液は、フリーSO 2−濃度が60g/l〜250g/lであることを特徴とする電解銅箔製造用銅電解液を提供するものである。 Further, the present invention (3) is the electrolytic copper foil according to the present invention (1) or (2), wherein the copper electrolyte has a free SO 4 2− concentration of 60 g / l to 250 g / l. A copper electrolyte for production is provided.

また、本発明(4)は、本発明(1)〜(3)のいずれかにおいて、前記銅電解液は、温度が40℃〜60℃であることを特徴とする電解銅箔製造用銅電解液を提供するものである。 In addition, the present invention (4) is any one of the present inventions (1) to (3), wherein the copper electrolyte has a temperature of 40 ° C to 60 ° C. A liquid is provided.

また、本発明(5)は、本発明(1)〜(4)のいずれかにおいて、前記銅電解液は、Cl濃度が0.5ppm〜2.0ppmであることを特徴とする電解銅箔製造用銅電解液を提供するものである。 Further, the present invention (5) is the electrolytic copper foil according to any one of the present inventions (1) to (4), wherein the copper electrolyte has a Cl concentration of 0.5 ppm to 2.0 ppm. A copper electrolyte for production is provided.

また、本発明(6)は、本発明(1)〜(5)のいずれかに記載の電解銅箔製造用銅電解液を用いることを特徴とする電解銅箔の製造方法を提供するものである。 Moreover, this invention (6) provides the manufacturing method of the electrolytic copper foil characterized by using the copper electrolyte solution for electrolytic copper foil manufacture in any one of this invention (1)-(5). is there.

また、本発明(7)は、本発明(6)において、電解電流密度が30A/cm〜70A/cmであることを特徴とする電解銅箔の製造方法を提供するものである。 Further, the present invention (7), in the present invention (6), there is provided a method of manufacturing an electrolytic copper foil, wherein the electrolytic current density of 30A / cm 2 ~70A / cm 2 .

本発明に係る電解銅箔製造用銅電解液によれば、電解時における銅電解液中に含まれるタンパク質の数平均分子量M及び濃度を所定範囲内に特定したため、析離箔の粗面の山の形状が整い且つ低粗度の箔を得ることができる。また、タンパク質は通常銅電解液中で容易に分解されるため、数平均分子量Mが上記所定範囲以上のタンパク質であっても、これを原料として用いることができることから、使用可能なタンパク質の選択の幅が広がる。さらに、析離箔の粗面の山の形状が整い且つ低粗度の箔を得るためのタンパク質の分子量及び濃度の管理範囲が明確になったため、従来、タンパク質の使用銘柄を特定して銅電解液中の初期の数平均分子量Mを実質的に管理したり、該タンパク質の水溶液を銅電解液に所定量加えたりするといった経験的な作業標準工程に拘束されることなく、析離箔の粗面の山の形状が整い且つ低粗度の箔を製造するのに好ましい銅電解液を短時間で調製することができる。また、このように銅電解液を短時間で調製することができるため、銅電解液中のタンパク質の管理に起因する析離箔の歩留まりを極めて小さくすることができる。さらに、電解液中におけるタンパク質の目標分子量及び濃度を所定の管理値に合わせるだけでタンパク質の管理が済むため、ライン毎の電解液の調製が容易に行え、ラインの立ち上げを早くすることができる。また、本発明に係る電解銅箔の製造方法によれば、上記銅電解液を用いることにより、析離箔の粗面の山の形状が整い且つ低粗度の箔を得ることができる。 According to the copper electrolytic solution for producing an electrolytic copper foil according to the present invention, the number average molecular weight M n and the concentration of the protein contained in the copper electrolytic solution during electrolysis are specified within a predetermined range. It is possible to obtain a foil having a uniform mountain shape and low roughness. In addition, since proteins are usually easily decomposed in a copper electrolyte solution, even if the number average molecular weight M n is a protein having the above predetermined range or more, it can be used as a raw material. The width of. In addition, the control range of protein molecular weight and concentration in order to obtain a rough surface crest of the separating and separating foil and to obtain a low roughness foil has been clarified. The initial number average molecular weight Mn in the liquid is substantially controlled, and the analysis of the separation foil is not constrained by empirical standard operations such as adding a predetermined amount of the aqueous solution of the protein to the copper electrolyte. It is possible to prepare a copper electrolyte solution that is suitable for producing a foil having a rough crest shape and a low roughness in a short time. In addition, since the copper electrolyte can be prepared in a short time as described above, the yield of the separation foil resulting from the management of the protein in the copper electrolyte can be extremely reduced. Furthermore, since protein management is completed simply by adjusting the target molecular weight and concentration of the protein in the electrolyte solution to the predetermined control values, the electrolyte solution for each line can be easily prepared, and the line can be started up quickly. . Moreover, according to the manufacturing method of the electrolytic copper foil which concerns on this invention, the shape of the peak of the rough surface of separation | separation foil can be prepared and foil with low roughness can be obtained by using the said copper electrolyte solution.

(本発明に係る電解銅箔製造用銅電解液)
本発明に係る電解銅箔製造用銅電解液は、電解銅箔製造用の銅電解液である。該銅電解液としては、銅イオン(Cu2+)を含む電解可能な液であればよく、例えば酸性浴を用いることができ、酸性浴としては、例えば、硫酸浴等を用いることができる。硫酸浴は、得られる析離箔の物性がよく、廃水処理が容易であり、また、銅電解液の原料である銅線等を容易に溶解することができるため好ましい。
(Copper electrolyte for producing electrolytic copper foil according to the present invention)
The copper electrolyte solution for producing an electrolytic copper foil according to the present invention is a copper electrolyte solution for producing an electrolytic copper foil. The copper electrolytic solution may be any electrolytic solution containing copper ions (Cu 2+ ). For example, an acidic bath may be used. As the acidic bath, for example, a sulfuric acid bath may be used. A sulfuric acid bath is preferable because the obtained foil has good physical properties, can be easily treated with waste water, and can easily dissolve a copper wire or the like as a raw material for the copper electrolyte.

上記銅電解液は、Cu2+濃度が通常60g/l〜100g/l、好ましくは70g/l〜90g/lである。Cu2+濃度が60g/l未満であると溶液抵抗が高くなるため好ましくなく、また、100g/lを超えると硫酸銅の結晶が析出し易くなるため好ましくない。 The copper electrolyte has a Cu 2+ concentration of usually 60 g / l to 100 g / l, preferably 70 g / l to 90 g / l. If the Cu 2+ concentration is less than 60 g / l, the solution resistance becomes high, which is not preferable, and if it exceeds 100 g / l, copper sulfate crystals tend to precipitate, which is not preferable.

上記銅電解液は、硫酸浴である場合、フリーSO 2−濃度が通常60g/l〜250g/l、好ましくは100g/l〜200g/lである。ここでフリーSO 2−濃度とは、銅電解液中のCu2+濃度をCuSOに換算して得られるSO 2−濃度を、銅電解液中に含まれる全SO 2−濃度から減じた残余のSO 2−濃度を示す。フリーSO 2−濃度が60g/l未満であると溶液抵抗が高くなるため好ましくなく、また250g/lを超えると析離箔に析出異常が生じ易いため好ましくない。本発明において析離箔とは、銅イオンを含む銅電解液からチタン等からなる陰極上に銅を電析させて得られる銅箔であってコブ処理等の表面処理をしていない銅箔、すなわち、未表面処理銅箔を意味する。 When the copper electrolyte is a sulfuric acid bath, the free SO 4 2− concentration is usually 60 g / l to 250 g / l, preferably 100 g / l to 200 g / l. Here, the free SO 4 2-concentration reduces the SO 4 2-density obtained by converting the Cu 2+ concentration in the copper electrolyte solution to CuSO 4, from the total SO 4 2-concentration in the copper electrolyte solution The remaining SO 4 2− concentration is shown. If the free SO 4 2− concentration is less than 60 g / l, the solution resistance becomes high, which is not preferable, and if it exceeds 250 g / l, an abnormal precipitation tends to occur in the separation foil, which is not preferable. In the present invention, the separation foil is a copper foil obtained by electrodepositing copper on a cathode made of titanium or the like from a copper electrolyte containing copper ions, and a copper foil that is not subjected to a surface treatment such as a lump treatment, That is, it means an unsurface-treated copper foil.

上記銅電解液は、Cl濃度が通常0.5ppm〜2.0ppm、好ましくは1.5ppm〜1.9ppmである。なお、本明細書においてppmとは、mg/lを示す。Cl濃度が0.5ppm未満であると本発明のタンパク質濃度において山の形状が良好でなくなるため好ましくなく、また、2.0ppmを超えると析離箔にマイクロポロシティーが発生し易いため好ましくない。本発明では、このようにタンパク質の濃度及び分子量と、Cl濃度とがそれぞれ所定範囲内にある場合に析離箔の山の形状等が良好であることから、析離箔の山の形状の制御に関し、タンパク質の濃度及び分子量と、Cl濃度との間になんらかの相関関係があるものと推測される。 The copper electrolyte has a Cl concentration of usually 0.5 ppm to 2.0 ppm, preferably 1.5 ppm to 1.9 ppm. In addition, in this specification, ppm shows mg / l. When the Cl concentration is less than 0.5 ppm, the shape of the mountain is not good at the protein concentration of the present invention, and when it exceeds 2.0 ppm, it is not preferable because microporosity tends to occur in the separation foil. . In the present invention, when the protein concentration and molecular weight and the Cl concentration are within the predetermined ranges, the shape of the separation foil crest is good. With respect to control, it is assumed that there is some correlation between protein concentration and molecular weight and Cl concentration.

上記銅電解液は、タンパク質を含む。タンパク質としては、例えば、ゼラチン、にかわ等が挙げられる。また、銅電解液にタンパク質を含有させるためには、通常タンパク質を水に溶解した後、該タンパク質水溶液を銅電解液に添加するが、該タンパク質水溶液を作製する場合に用いる原料のタンパク質としては、数平均分子量M
1700以上のものが用いられる。この理由は、タンパク質は、銅電解液中又は水溶液で分解される等により数平均分子量Mが低下するものであるため、銅電解液中における数平均分子量Mを後述の1000〜2300とするには分解を考慮して該下限値よりも若干高いと好ましいからである。
The copper electrolyte contains protein. Examples of the protein include gelatin and glue. In order to contain protein in the copper electrolyte, the protein is usually dissolved in water, and then the protein aqueous solution is added to the copper electrolyte. As a raw material protein used for preparing the protein aqueous solution, Those having a number average molecular weight Mn of 1700 or more are used. This is because the protein, the number-average molecular weight M n by the like which is decomposed by the copper electrolyte solution or aqueous solution is one that decreases, the number average molecular weight M n in the copper electrolyte solution and 1000-2300 will be described later This is because it is preferably slightly higher than the lower limit in consideration of decomposition.

原料のタンパク質としては、例えば、銅電解液中における数平均分子量Mを該範囲内のものとすることができるものであればよいため特に限定されないが、例えば、旭陽化学工業株式会社製DVM80、新田ゼラチン株式会社製UDB、新田ゼラチン株式会社製SCP5000、新田ゼラチン株式会社製700F等を用いることができる。 The raw material protein is not particularly limited, for example, as long as the number average molecular weight Mn in the copper electrolyte solution can be within the above range. For example, DVM80 manufactured by Asahi Chemical Industry Co., Ltd. UDB manufactured by Nitta Gelatin Co., Ltd., SCP5000 manufactured by Nitta Gelatin Co., Ltd., 700F manufactured by Nitta Gelatin Co., Ltd., and the like can be used.

上記銅電解液中に含まれるタンパク質は、数平均分子量Mが通常1000〜2300、好ましくは1200〜2100であり、且つ、濃度が通常2ppm〜4.5ppm、好ましくは2.0ppm〜3.6ppm、さらに好ましくは2.5ppmを超え3.6ppm以下である。銅電解液中のタンパク質の数平均分子量M及び濃度が上記範囲内にあると、析離箔の粗面の山の形状及び大きさが揃い且つ低粗度の箔を得ることができるため好ましい。なお、本発明において、タンパク質の数平均分子量M及び濃度とは、数平均分子量Mが790以上のタンパク質の数平均分子量M及び濃度をいう。 The protein contained in the copper electrolyte has a number average molecular weight Mn of usually 1000 to 2300, preferably 1200 to 2100, and a concentration of usually 2 ppm to 4.5 ppm, preferably 2.0 ppm to 3.6 ppm. More preferably, it is more than 2.5 ppm and not more than 3.6 ppm. It is preferable that the number average molecular weight M n and the concentration of the protein in the copper electrolyte solution are within the above-mentioned ranges because the rough surface of the separation foil has a uniform shape and size of the crest and a low roughness foil can be obtained. . In the present invention, the number average molecular weight M n and the concentration of the protein, the number-average molecular weight M n refers to the number-average molecular weight M n and density of 790 or more proteins.

ここで、上記銅電解液中に含まれるタンパク質の数平均分子量M及び濃度と、析離箔の常態の抗張力との関係を図19に示し、上記銅電解液中に含まれるタンパク質の数平均分子量M及び濃度と、析離箔の粗面の粗度Rとの関係を図20に示す。図19において、横軸は銅電解液中に含まれるタンパク質分子量Mを示し、縦軸は析離箔の常態の抗張力を示す。また、図20において、横軸は銅電解液中に含まれるタンパク質分子量Mを示し、縦軸は析離箔の粗面の粗度Rを示す。 Here, the relationship between the number average molecular weight Mn and concentration of the protein contained in the copper electrolyte and the normal tensile strength of the separation foil is shown in FIG. 19, and the number average of the protein contained in the copper electrolyte is shown in FIG. FIG. 20 shows the relationship between the molecular weight M n and concentration and the roughness R z of the rough surface of the separating foil. In FIG. 19, the horizontal axis represents the protein molecular weight Mn contained in the copper electrolyte, and the vertical axis represents the normal tensile strength of the separation foil. Further, in FIG. 20, the horizontal axis indicates the protein molecular weight M n contained in the copper electrolyte, and the vertical axis shows the roughness R z of the rough surface of the deposited foil.

また、図19及び図20において、銅電解液中のタンパク質の濃度が1.5ppm未満の試料を正方形のプロット(以下、「プロットA」といい、プロットAの形成する群を「プロットA群」という。)、1.5ppm〜2.5ppmの試料を三角のプロット(以下、「プロットB」といい、プロットBの形成する群を「プロットB群」という。)、2.5ppmを超える試料を縦に菱形のプロット(以下、「プロットC」といい、プロットCの形成する群を「プロットC群」という。)で示す。 19 and 20, a sample having a protein concentration of less than 1.5 ppm in the copper electrolyte is referred to as a square plot (hereinafter referred to as “plot A”, and the group formed by plot A is referred to as “plot A group”. A sample of 1.5 ppm to 2.5 ppm is a triangular plot (hereinafter referred to as “plot B”, a group formed by the plot B is referred to as “plot B group”), and a sample exceeding 2.5 ppm. A vertical diamond plot (hereinafter referred to as “plot C”, and a group formed by plot C is referred to as “plot C group”) is shown.

図19及び図20より、プロットA群、プロットB群及びプロットC群を比較すると、銅電解液中に含まれるタンパク質の濃度が同程度であれば、銅電解液中に含まれるタンパク質の数平均分子量Mが小さくなるほど、析離箔の常態の抗張力が高く且つ粗度Rが小さくなる傾向にあることが判る。また、プロットA群、プロットB群及びプロットC群を比較すると、銅電解液中に含まれるタンパク質の数平均分子量Mが同程度であれば、銅電解液中に含まれるタンパク質の濃度が高くなるほど、析離箔の常態の抗張力が高く且つ粗度Rが小さくなる傾向にあることが判る。従って、タンパク質の数平均分子量Mが小さくなり且つタンパク質の濃度が高くなるほど、析離箔の常態の抗張力が高く且つ粗度Rが小さくなる傾向にあることが判る。 From FIG. 19 and FIG. 20, when the plot A group, the plot B group, and the plot C group are compared, if the concentration of the protein contained in the copper electrolyte solution is approximately the same, the number average of the proteins contained in the copper electrolyte solution It can be seen that the smaller the molecular weight Mn, the higher the normal tensile strength of the separating foil and the lower the roughness Rz . Moreover, when the plot A group, the plot B group, and the plot C group are compared, if the number average molecular weight Mn of the protein contained in the copper electrolyte is approximately the same, the concentration of the protein contained in the copper electrolyte is high. It can be seen that the normal tensile strength of the separating and separating foil tends to be high and the roughness Rz tends to be small. Therefore, it can be seen that as the number average molecular weight M n of the protein decreases and the protein concentration increases, the normal tensile strength of the separation foil tends to be high and the roughness R z tends to decrease.

上記のようにタンパク質の数平均分子量Mが小さくなり且つタンパク質の濃度が高くなるほど析離箔の常態の抗張力が高く且つ粗度Rが小さくなるため好ましい。しかし、一方で、タンパク質の濃度が高すぎると銅電解液の粘度が高くなりすぎて起泡し易く好ましくないという問題があり、また、タンパク質の数平均分子量Mが小さすぎると、銅電解液中に必要なタンパク質の濃度が高くなって上記のように銅電解液の粘度が高くなりすぎて起泡し易く好ましくないという問題があるため、本発明では、上記のようにタンパク質の数平均分子量Mの下限値及びタンパク質の濃度の上限値を設けている。 As described above, the lower the number average molecular weight Mn of the protein and the higher the protein concentration, the higher the normal tensile strength of the separation foil and the lower the roughness Rz, which is preferable. However, on the other hand, if the protein concentration is too high, there is a problem that the viscosity of the copper electrolyte solution is too high and foaming is not preferable, and if the number average molecular weight M n of the protein is too small, the copper electrolyte solution is too low. In the present invention, the number average molecular weight of the protein is as described above because the concentration of the necessary protein is high and the viscosity of the copper electrolyte solution is too high as described above, which is not preferable. A lower limit value of M n and an upper limit value of protein concentration are provided.

さらに、銅電解液中に含まれるタンパク質の数平均分子量Mが小さくなるのに対して析離箔の常態の抗張力が高くなる度合い、すなわち、図19の横軸(タンパク質の数平均分子量M)に対するプロットA群、プロットB群及びプロットC群それぞれの形成する傾きは、プロットA群の形成する傾き、プロットB群の形成する傾き及びプロットC群の形成する傾きの順番に、前者ほど傾きの右肩下がりになる度合いが大きくなっており、後者ほど傾きの右肩下がりになる度合いが小さくなって傾きが水平に近づいていることが判る。このため、銅電解液中のタンパク質の濃度が高くなるほどタンパク質の数平均分子量Mの変化に対する析離箔の常態の抗張力の変化が鈍感になって、銅電解液中のタンパク質の濃度の変化の影響による析離箔の常態の抗張力のばらつきが少なくなり易いことがわかる。一方、銅電解液中のタンパク質の濃度が低くなるほどタンパク質の数平均分子量Mの変化に対する析離箔の常態の抗張力の変化が鋭敏になって、銅電解液中のタンパク質の濃度の変化の影響による析離箔の常態の抗張力のばらつきが大きくなり易いことが判る。 Furthermore, while the number average molecular weight M n of the protein contained in the copper electrolyte decreases, the normal tensile strength of the separation foil increases, that is, the horizontal axis (number average molecular weight M n of the protein in FIG. 19). The slope formed by each of the plot A group, the plot B group, and the plot C group in the order of the slope formed by the plot A group, the slope formed by the plot B group, and the slope formed by the plot C group is inclined as the former. It can be seen that the degree of the lowering of the right shoulder is greater, and the latter the smaller the degree of the lowering of the right shoulder, and the inclination approaches the horizontal. For this reason, as the protein concentration in the copper electrolyte increases, the change in the normal tensile strength of the separation foil with respect to the change in the number average molecular weight Mn of the protein becomes less sensitive, and the change in the concentration of the protein in the copper electrolyte becomes less sensitive. It can be seen that the variation in the normal tensile strength of the separating foil due to the influence tends to be reduced. On the other hand, the lower the protein concentration in the copper electrolyte solution, the more sensitive the change in the normal tensile strength of the separation foil with respect to the change in the number average molecular weight Mn of the protein, and the influence of the change in the protein concentration in the copper electrolyte solution. It can be seen that the variation in the normal tensile strength of the deposited foil due to the film tends to increase.

また、銅電解液中に含まれるタンパク質の数平均分子量Mが小さくなるのに対して粗度Rが小さくなる度合い、すなわち、図20の横軸(タンパク質の数平均分子量M)に対するプロットA群、プロットB群及びプロットC群それぞれの形成する傾きは、プロットA群の形成する傾き、プロットB群の形成する傾き及びプロットC群の形成する傾きの順番に、前者ほど傾きの右肩上がりになる度合いが大きくなっており、後者ほど傾きの右肩上がりになる度合いが小さくなって傾きが水平に近づいていることが判る。このため、銅電解液中のタンパク質の濃度が高くなるほどタンパク質の数平均分子量Mの変化に対する析離箔の粗度Rの変化が鈍感になって、銅電解液中のタンパク質の濃度の変化の影響による析離箔の粗度Rのばらつきが少なくなり易いことがわかる。一方、銅電解液中のタンパク質の濃度が低くなるほどタンパク質の数平均分子量Mの変化に対する析離箔の粗度Rの変化が鋭敏になって、銅電解液中のタンパク質の濃度の変化の影響による析離箔の粗度Rのばらつきが大きくなり易いことが判る。 Further, the degree to which the roughness R z is reduced while the number average molecular weight M n of the protein contained in the copper electrolyte is reduced, that is, a plot with respect to the horizontal axis (number average molecular weight M n of the protein) in FIG. The slope formed by each of the A group, the plot B group, and the plot C group is in the order of the slope formed by the plot A group, the slope formed by the plot B group, and the slope formed by the plot C group. It can be seen that the degree of rising is larger, and the latter is less inclined to the right and the inclination is closer to the horizontal. For this reason, as the protein concentration in the copper electrolyte increases, the change in the roughness Rz of the separating foil with respect to the change in the number average molecular weight Mn of the protein becomes insensitive, and the change in the protein concentration in the copper electrolyte it can be seen that the likely less variation in roughness R z of the deposited foil due. On the other hand, the lower the protein concentration in the copper electrolyte solution, the more sensitive the change in the roughness Rz of the separation foil with respect to the change in the number average molecular weight Mn of the protein, and the change in the protein concentration in the copper electrolyte solution. variations in the roughness R z of deposited foil due is seen that tends to increase.

ここで、銅電解液中に含まれるタンパク質の数平均分子量M及び濃度の測定方法について説明する。該測定方法は、特開2001−337081号公報に開示されている方法を用いることができ、具体的には、カラムスイッチング法を併用した高速液体クロマトグラフィ、好ましくはゲルパーミエーションクロマトグラフィにより測定するタンパク質の濃度及び分子量分布の測定方法である。該測定方法においては、移動相としてアセトニトリル3容量%以上、濃度0.002M〜0.01Mの希硫酸97容量%以下の混合溶液を用い、前処理カラムの充填剤として排除限界分子量が2500以下のサイズ排除モードの充填剤を用い、分離カラムの充填剤として排除限界分子量が10000以上のサイズ排除モードの充填剤を用いることが好ましく、また、上記分離カラムは2本以上直列に接続したものであることが好ましい。上記の測定方法を用いることにより、銅電解液中に含まれるタンパク質の分子量分布及び濃度を測定し、該分子量分布より数平均分子量Mを算出する。 Here, a method for measuring the number average molecular weight M n and the concentration of the protein contained in the copper electrolyte will be described. As the measurement method, the method disclosed in Japanese Patent Application Laid-Open No. 2001-337081 can be used, and specifically, a high-performance liquid chromatography combined with a column switching method, preferably a gel permeation chromatography. This is a method for measuring concentration and molecular weight distribution. In this measurement method, a mixed solution of 3% by volume or more of acetonitrile and 97% by volume or less of dilute sulfuric acid having a concentration of 0.002M to 0.01M is used as a mobile phase, and an exclusion limit molecular weight of 2500 or less is used as a packing for a pretreatment column. It is preferable to use a size exclusion mode packing, and use a size exclusion mode packing having an exclusion limit molecular weight of 10,000 or more as a packing for the separation column. Further, two or more separation columns are connected in series. It is preferable. By using the above measurement method, the molecular weight distribution and concentration of the protein contained in the copper electrolyte are measured, and the number average molecular weight M n is calculated from the molecular weight distribution.

さらに、タンパク質の数平均分子量M及び濃度の測定方法について図面を参照して詳細に説明する。図21は本発明におけるタンパク質の数平均分子量M及び濃度の測定方法で用いる装置の一例を示す概略説明図である。図21に示す測定装置は、送液ポンプ1と、6方切換バルブ3と、送液ポンプ1と6方切換バルブ3の第1の連結口4との間に連結配置されたインジェクタ2と、切換バルブの第2の連結口5に連結配置された前処理カラム10と、前処理カラム10と切換バルブの第5の連結口8との間に連結配置された第1検出器11と、切換バルブの第6の連結口9に2基直列に連結配置された分離カラム12、12と、分離カラム12と切換バルブの第3の連結口6との間に連結配置された第2検出器13と、第2検出器13での検出データに基づいてタンパク質の濃度及び分子量分布を求めるためのデータ処理装置(図示せず)と、切換バルブの第4の連結口7に連結配置された排液パイプ14と、前処理カラム及び該分離カラムを一定温度に保つための恒温槽15とを有する。配管には好ましくはPEEK製又はテフロン(登録商標)製のチューブを用いる。 Further, a method for measuring the number average molecular weight M n and the concentration of the protein will be described in detail with reference to the drawings. FIG. 21 is a schematic explanatory view showing an example of an apparatus used in the method for measuring the number average molecular weight M n and concentration of a protein in the present invention. The measuring device shown in FIG. 21 includes a liquid feed pump 1, a 6-way switching valve 3, an injector 2 that is connected between the liquid feed pump 1 and the first connection port 4 of the 6-way switching valve 3, A pretreatment column 10 connected to the second connection port 5 of the switching valve; a first detector 11 connected to the pretreatment column 10 and the fifth connection port 8 of the switching valve; Two separation columns 12 and 12 connected in series to the sixth connection port 9 of the valve, and a second detector 13 connected and arranged between the separation column 12 and the third connection port 6 of the switching valve. And a data processing device (not shown) for determining the concentration and molecular weight distribution of the protein based on the detection data of the second detector 13, and the drainage connected to the fourth connection port 7 of the switching valve. The pipe 14, the pretreatment column and the separation column are kept at a constant temperature. And a thermostatic bath 15 for fit. For piping, a tube made of PEEK or Teflon (registered trademark) is preferably used.

検出器11及び13としては、mg/lレベルのタンパク質を検出することのできる、高速液体クロマトグラフィに一般に用いられている検出器を用いることができ、例えば吸光光度検出器を用いることができる。また、本発明においては、検出器11及び13で検出したデータに基づいてタンパク質の濃度及び分子量分布を求めるための演算機能を持ったいかなるデータ処理装置も用いることができる。 As the detectors 11 and 13, a detector that can detect a protein at a mg / l level and generally used in high performance liquid chromatography can be used. For example, an absorptiometric detector can be used. In the present invention, any data processing device having a calculation function for obtaining the protein concentration and molecular weight distribution based on the data detected by the detectors 11 and 13 can be used.

上記のような測定装置を用いて測定する際に、まず、6方切換バルブ3により、第1の連結口4と第2の連結口5とを連絡させ、第5の連結口8と第6の連結口9とを連絡させ、かつ第3の連結口6と第4の連結口7とを連絡させる。この状態で、例えば0.005M硫酸とアセトニトリルとの容量比95:5の混合溶液からなる移動相を送液ポンプ1により一定流量で、移動相溜め16→送液ポンプ1→インジェクタ2→6方切換バルブ3→前処理カラム10→第1検出器11→6方切換バルブ3→分離カラム12、12→第2検出器13→6方切換バルブ3→排液パイプ14の順で流動させる。この状態で、タンパク質を含有している電解液200μlを直接に又は純水で希釈した試料200μlをインジェクタ2に導入する。電解液は排除限界分子量が2500以下の水系のサイズ排除モード充填剤を充填した前処理カラム10、例えば、アマシャムファルマシアバイオテク株式会社製、セファデックスG−15(排除限界分子量1500)を収容した内径7.5mm、長さ250mmのPEEK製カラムに流入する。前処理カラム10に流入した電解液はサイズ排除クロマトグラフィの分離原理により分離されて分子量の大きいタンパク質が先に溶出し、その後低分子量物質である電解質成分が溶出する。 When measuring using the measuring apparatus as described above, first, the first connection port 4 and the second connection port 5 are connected by the six-way switching valve 3, and the fifth connection port 8 and the sixth connection port 5 are connected. The third connection port 6 and the fourth connection port 7 are communicated with each other. In this state, for example, a mobile phase composed of a mixed solution of 0.005M sulfuric acid and acetonitrile in a volume ratio of 95: 5 is supplied at a constant flow rate by the liquid feed pump 1, and the mobile phase reservoir 16 → liquid feed pump 1 → injector 2 → 6 direction. The flow is made in the order of the switching valve 3 → the pretreatment column 10 → the first detector 11 → the six-way switching valve 3 → the separation column 12, 12 → the second detector 13 → the six-way switching valve 3 → the drain pipe 14. In this state, 200 μl of a sample obtained by diluting 200 μl of an electrolyte containing protein directly or with pure water is introduced into the injector 2. The electrolyte has a pretreatment column 10 packed with an aqueous size exclusion mode filler having an exclusion limit molecular weight of 2500 or less, for example, an inner diameter 7 containing Sephadex G-15 (exclusion limit molecular weight 1500) manufactured by Amersham Pharmacia Biotech Co., Ltd. It flows into a PEEK column having a length of 5 mm and a length of 250 mm. The electrolyte flowing into the pretreatment column 10 is separated according to the separation principle of size exclusion chromatography, and the protein having a large molecular weight is eluted first, and then the electrolyte component that is a low molecular weight substance is eluted.

前処理カラム10から溶出されたタンパク質及び電解質成分を第1検出器11、例えば吸光光度検出器において測定波長210nmでモニターし、タンパク質が分離カラム12、12に導入された後で、大量の電解質成分が分離カラム12、12に導入される前に、6方切換バルブを切換えて第1の連結口4と第6の連結口9とを連絡させ、第3の連結口6と第2の連結口5とを連絡させ、かつ第5の連結口8と第4の連結口7とを連絡させる。この状態では移動相は、移動相溜め16→送液ポンプ1→インジェクタ2→6方切換バルブ3→分離カラム12、12→第2検出器13→6方切換バルブ3→前処理カラム10→第1検出器11→6方切換バルブ3→排液パイプ14の順で流動し、電解質成分を排液パイプ14経由で系外に排出させる。なお、上記タンパク質の濃度及び分子量分布の測定方法を採用すると、通常分子量790以上のタンパク質を測定することが可能であるので、6方切換バルブの切り替えの際には、分子量790以上のタンパク質を系外に排出しないように留意する。 The protein and electrolyte components eluted from the pretreatment column 10 are monitored at a measurement wavelength of 210 nm in a first detector 11, for example, an absorptiometric detector, and a large amount of electrolyte components are introduced after the proteins are introduced into the separation columns 12 and 12. Is introduced into the separation columns 12, 12, the six-way switching valve is switched to connect the first connection port 4 and the sixth connection port 9, and the third connection port 6 and the second connection port are connected. 5 and the fifth connecting port 8 and the fourth connecting port 7 are connected. In this state, the mobile phase is the mobile phase reservoir 16 → liquid feed pump 1 → injector 2 → 6-way switching valve 3 → separation columns 12, 12 → second detector 13 → 6-way switching valve 3 → pretreatment column 10 → first. 1 detector 11 → 6-way switching valve 3 → drainage pipe 14 flows in this order, and the electrolyte component is discharged out of the system via drainage pipe 14. In addition, since it is possible to measure a protein having a molecular weight of 790 or more by adopting the method for measuring the protein concentration and molecular weight distribution, a protein having a molecular weight of 790 or more is used when the 6-way switching valve is switched. Be careful not to discharge outside.

分離カラム12に導入されたタンパク質は、その分子量の大きさ、分子量分布に従って分離させ、溶出する。溶出したタンパク質を第2検出器、例えば、吸光光度検出器において測定波長210nmで検出し、その検出データに基づいてデータ処理装置でタンパク質の濃度及び分子量分布を求める。 The proteins introduced into the separation column 12 are separated and eluted according to the molecular weight and molecular weight distribution. The eluted protein is detected at a measurement wavelength of 210 nm by a second detector, for example, an absorptiometric detector, and the concentration and molecular weight distribution of the protein are obtained by a data processor based on the detected data.

上記測定方法においては、分離カラムの前に前処理カラムを接続することにより、移動相の流れの中でタンパク質と電解質成分を自動的に分離できるのでインジェクタに注入する前の予備処理が不要であり、そのため測定中のタンパク質の分解を極力抑えることが可能となる。また、大量に共存する電解質成分は6方切換バルブを切換えることにより系外に排出されるので、共存物質の影響を受けることも少ない。さらに、分離カラムでタンパク質の分子量分布を測定することができるので、分子量の情報も得られることから、タンパク質の分解の経時変化も測定することが可能である。 In the above measurement method, by connecting a pretreatment column before the separation column, protein and electrolyte components can be automatically separated in the flow of the mobile phase, so no pretreatment before injection into the injector is required. Therefore, it is possible to suppress the degradation of the protein being measured as much as possible. In addition, since the electrolyte component coexisting in large quantities is discharged out of the system by switching the 6-way switching valve, it is less affected by the coexisting substances. Furthermore, since the molecular weight distribution of the protein can be measured with a separation column, information on the molecular weight can also be obtained, so that it is also possible to measure a change in protein degradation over time.

上記銅電解液は、銅電解時における温度を、通常40℃〜60℃、好ましくは45℃〜55℃とする。温度が該範囲内にあると、得られる析離箔は、粗面の山の形状及び大きさが揃い、且つ低粗度になり易いため好ましい。なお、温度が40℃未満であると粗面の山の形状が荒れ易いため好ましくなく、また、60℃を超えると塩ビ配管等の設備の老朽化が加速され易いため好ましくない。 The said copper electrolyte solution shall be the temperature at the time of copper electrolysis normally 40 to 60 degreeC, Preferably it is 45 to 55 degreeC. When the temperature is within this range, the obtained separation / separation foil is preferable because the shape and size of the crests of the rough surface are uniform and low roughness tends to be obtained. In addition, it is not preferable that the temperature is less than 40 ° C. because the shape of the rough crest is likely to be rough, and if it exceeds 60 ° C., it is not preferable because aging of facilities such as polyvinyl chloride piping is easily accelerated.

上記銅電解液は、公知の製法により製造することができる。例えば、銅濃度は、既存の銅電解液で銅線屑等の銅原料を溶解して高めることができ、フリーSO 2−濃度やCl濃度は硫酸や塩酸を添加することにより高めることができる。また、銅電解液中のタンパク質の数平均分子量M及び濃度は、上記測定方法により測定した後、必要な数平均分子量Mに調整したタンパク質水溶液を必要量添加することにより調整することができる。 The said copper electrolyte solution can be manufactured by a well-known manufacturing method. For example, the copper concentration can be increased by dissolving copper raw materials such as copper wire scraps with an existing copper electrolyte, and the free SO 4 2− concentration or Cl concentration can be increased by adding sulfuric acid or hydrochloric acid. it can. In addition, the number average molecular weight M n and the concentration of the protein in the copper electrolyte can be adjusted by adding a necessary amount of an aqueous protein solution adjusted to the required number average molecular weight M n after measuring by the above measurement method. .

(本発明に係る電解銅箔の製造方法)
次に、本発明に係る電解銅箔の製造方法について説明する。該方法は上記電解銅箔製造用銅電解液を用いて析離箔を製造するものであり、析離箔を製造方法としては、公知の方法を用いることができる。公知の析離箔の製造方法としては、例えば、回転するチタン製ドラム状陰極の曲面状陰極表面と陽極との間に銅電解液を供給し、電解して、陰極表面に析離箔を析出し、これを連続的に巻き取る方法が挙げられる。
(Method for producing electrolytic copper foil according to the present invention)
Next, the manufacturing method of the electrolytic copper foil which concerns on this invention is demonstrated. In this method, a deposited foil is produced using the copper electrolytic solution for producing an electrolytic copper foil, and a known method can be used for producing the separated foil. As a known method for producing a separation foil, for example, a copper electrolyte is supplied between the curved cathode surface of a rotating titanium drum-like cathode and the anode, and electrolysis is performed to deposit a separation foil on the cathode surface. In addition, a method of continuously winding it up can be mentioned.

本発明で用いられる銅電解液の電解時における温度は、通常40℃〜60℃、好ましくは45℃〜55℃とする。温度が該範囲内にあると、得られる析離箔は、粗面の山の形状及び大きさが揃い、且つ低粗度になり易いため好ましい。なお、温度が40℃未満であると粗面の山の形状が荒れ易いため好ましくなく、また、60℃を超えると塩ビ配管等の設備の老朽化が加速され易いため好ましくない。 The temperature during electrolysis of the copper electrolyte used in the present invention is usually 40 ° C to 60 ° C, preferably 45 ° C to 55 ° C. When the temperature is within this range, the obtained separation / separation foil is preferable because the shape and size of the crests of the rough surface are uniform and low roughness tends to be obtained. In addition, it is not preferable that the temperature is less than 40 ° C. because the shape of the rough crest is likely to be rough, and if it exceeds 60 ° C., it is not preferable because aging of facilities such as polyvinyl chloride piping is easily accelerated.

また、本発明において銅電解液の電解時における電解電流密度は、通常30A/cm〜70A/cm、好ましくは40A/cm〜60A/cmである。電解電流密度が該範囲内にあると、得られる析離箔は、粗面の山の形状及び大きさが揃い、且つ低粗度になり易いため好ましい。また、陰極表面は適宜研磨することが好ましく、例えば、Rを1.2〜1.5とすることが好ましい。 In the present invention, the electrolytic current density during electrolysis of the copper electrolyte is usually 30 A / cm 2 to 70 A / cm 2 , preferably 40 A / cm 2 to 60 A / cm 2 . When the electrolytic current density is within this range, the obtained separation foil is preferable because the shape and size of the crests of the rough surface are uniform and low roughness tends to be obtained. Moreover, it is preferable to grind | polish the cathode surface suitably, for example, it is preferable to set Rz to 1.2-1.5.

上記銅電解液は、粗面の山の形状及び大きさが揃い、低粗度の析離箔を製造する原料として使用することができる。該低粗度の析離箔は、箔厚が35μmの析離箔で、粗面の粗度Rが通常4.2μm以下、好ましくは2μm〜3.2μmであり、且つ、常態の引張り強さが通常45.0kgf/mm以上である。ここで、Rとは十点平均粗さを意味し、常態とは常温での測定値を意味する。また、本発明に係る電解銅箔の製造方法は、上記析離箔の製造に用いることができる。 The copper electrolyte solution can be used as a raw material for producing a low-roughness separating / separating foil having a rough crest shape and size. Drum foil of low roughness, with drum foil of foil thickness is 35 [mu] m, the roughness R z of the rough surface is normally less than 4.2 .mu.m, preferably 2Myuemu~3.2Myuemu, and the tensile strength of the normal Is usually 45.0 kgf / mm 2 or more. Here, R z means ten-point average roughness, and normal means a measured value at normal temperature. Moreover, the manufacturing method of the electrolytic copper foil which concerns on this invention can be used for manufacture of the said separating foil.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not construed as being limited thereto.

比較例1Comparative Example 1

析離箔を作製する電解装置として、アノード−カソード間の流路が断面矩形であり、且つ循環ポンプを用いてアノード−カソード間に電解液を連続して供給しつつ電解可能な下記仕様のものを用いた。
・槽内液量 :4.5l
・アノード面及びカソード面の大きさ :6cm×11cm
・アノードの材質 :DSE
・カソードの材質 :チタン板
・アノード−カソード間の距離 :5mm
As an electrolysis apparatus for producing a separating foil, the anode-cathode flow path has a rectangular cross section, and the following specifications are available for electrolysis while continuously supplying an electrolyte solution between the anode and cathode using a circulation pump Was used.
・ Liquid volume in the tank: 4.5 l
-Size of anode surface and cathode surface: 6 cm x 11 cm
・ Anode material: DSE
-Cathode material: Titanium plate-Anode-cathode distance: 5 mm

銅電解液として、純水に、硫酸、硫酸銅5水和物及び塩酸を添加し溶解して、下記組成の溶液(基本液A)を調製した。
・Cu2+濃度 :82.5g/l
・フリーSO 2−濃度 :150g/l
・Cl濃度 :1.7ppm
As a copper electrolyte, sulfuric acid, copper sulfate pentahydrate and hydrochloric acid were added to pure water and dissolved to prepare a solution (basic solution A) having the following composition.
Cu 2+ concentration: 82.5 g / l
Free SO 4 2- concentration: 150 g / l
-Cl - concentration: 1.7 ppm

一方、ゼラチンとして新田ゼラチン株式会社製UDBを用い、これを純水に溶解して1g/lのゼラチン水溶液(ゼラチン水溶液A)を調製した。
次に、基本液Aにゼラチン水溶液Aをゼラチン濃度が1.8ppmになるまで添加し十分に攪拌して、電解液Aを調製した。電解液A中のゼラチンの数平均分子量M及び濃度を表1に示す。
On the other hand, UDB manufactured by Nitta Gelatin Co., Ltd. was used as gelatin, and this was dissolved in pure water to prepare a 1 g / l gelatin aqueous solution (gelatin aqueous solution A).
Next, an aqueous gelatin solution A was added to the basic solution A until the gelatin concentration reached 1.8 ppm, and stirred sufficiently to prepare an electrolytic solution A. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution A.

なお、ゼラチンの数平均分子量M及び濃度は、図21記載の装置を用い、下記測定条件で求めたものである。
(測定条件)
前処理カラム :アマシャムファルマシアバイオテク(株)社製、セファデックスG−15の粒径66マイクロメータ以下の充填剤(排除限界分子量1500)を収容した内径7.5mm、長さ250mmのPEEK製カラム
分離カラム :昭和電工(株)社製、Asahipak GS−320HQ
(排除限界分子量40000、内径7.6mm、長さ300mm)
温度 :25℃
移動相の種類と流量:アセトニトリル20容量%と希硫酸(0.005M)80容量%の混合液0.6ml/分
注入量 :200マイクロリッター
検出法 :210nmのUV吸収
In addition, the number average molecular weight M n and the concentration of gelatin are obtained under the following measurement conditions using the apparatus shown in FIG.
(Measurement condition)
Pretreatment column: PEEK column separation with 7.5 mm inner diameter and 250 mm length containing a filler (exclusion limit molecular weight 1500) of Sephadex G-15 particle size of 66 micrometers or less manufactured by Amersham Pharmacia Biotech Co., Ltd. Column: Showa Denko Co., Ltd., Asahipak GS-320HQ
(Exclusion limit molecular weight 40000, inner diameter 7.6 mm, length 300 mm)
Temperature: 25 ° C
Type and flow rate of mobile phase: A mixture of 20% by volume of acetonitrile and 80% by volume of dilute sulfuric acid (0.005M) 0.6 ml / min Injection amount: 200 microliters Detection method: 210 nm UV absorption

なお、ゼラチンの数平均分子量Mの測定において、検量線の作成に用いた試薬は以下のとおりである。また、ゼラチンの濃度は、同種のゼラチンの濃度既知の水溶液を用いて検量線を作成することにより測定した。
(試薬)
・ALBUMIN,BOVINE SERUM(シグマアルドリッチジャパン株式会社製、分子量66000)
・CYTOCHROME C(シグマアルドリッチジャパン株式会社製、分子量12400)
・APROTININ(シグマアルドリッチジャパン株式会社製、分子量6500)
・INSULIN(シグマアルドリッチジャパン株式会社製、分子量5734)
・INSULIN CHAIN B,OXIDIZED(シグマアルドリッチジャパン株式会社製、分子量3496)
・NEUROTENSIN(シグマアルドリッチジャパン株式会社製、分子量1673)
・ANGIOTENSIN II(シグマアルドリッチジャパン株式会社製、分子量1046)
・VAL−GLU−GLU−ALA−GLU(シグマアルドリッチジャパン株式会社製、分子量576)
In the measurement of the number average molecular weight Mn of gelatin, the reagents used for preparing a calibration curve are as follows. The concentration of gelatin was measured by preparing a calibration curve using an aqueous solution of the same type of gelatin with known concentration.
(reagent)
・ ALBUMIN, BOVINE SERUM (Sigma Aldrich Japan Co., Ltd., molecular weight 66000)
CYTOCHROME C (Sigma Aldrich Japan Co., Ltd., molecular weight 12400)
・ APROTININ (Sigma Aldrich Japan Co., Ltd., molecular weight 6500)
INSULIN (Sigma Aldrich Japan Co., Ltd., molecular weight 5734)
INSULIN CHAIN B, OXIDIZED (Sigma Aldrich Japan Co., Ltd., molecular weight 3496)
・ NEUROTENSIN (manufactured by Sigma Aldrich Japan Co., Ltd., molecular weight 1673)
・ ANGIOTENSIN II (Sigma Aldrich Japan Co., Ltd., molecular weight 1046)
VAL-GLU-GLU-ALA-GLU (Sigma Aldrich Japan, molecular weight 576)

電解液Aを調製してから直ぐに、下記条件で電解して析離箔を作製した。
・銅電解液の温度 :52℃
・電解電流密度 :50A/cm
・析離箔の厚さ :35μm
Immediately after the electrolytic solution A was prepared, electrolysis was performed under the following conditions to prepare a deposited foil.
・ Copper electrolyte temperature: 52 ℃
Electrolytic current density: 50 A / cm 2
・ Thickness of separation foil: 35μm

得られた析離箔について、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定方法は、以下のとおりである。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面の走査型電子顕微鏡(SEM)写真を撮影した。その結果を図1に示す。
・粗度R、Rmax及びR:先端がφ2μmのダイヤモンドボールである接触式の表面粗度計(小坂株式会社製、商品名:SEF−30D)を用いて、得られた析離箔の粗面の表面粗度を測定した。測定長さは0.8mmとした。R、Rmax及びRはJISB0601に準拠して測定したものであり、具体的にはRは中心線平均粗さ、Rmaxは最大粗さ、Rは十点平均値粗さを示す。
・常温引張り強さ:得られた析離箔を裁断して幅1cm×長さ10cmの測定試料を作製し、該試料の長さ方向の両端をそれぞれ、装置の上下方向の2箇所に設けられた万力類似のチャックで挟み込んで試料の長さ方向が上下方向になるようにセットし、常温下で、下方のチャックを試料を挟みこんだまま、速度50mm/minで下方に引っ張り、測定される引張り強さの最大荷重を常温引張り強さとした。
・常温伸び:常温引張り強さの測定の際に、測定される伸びの最大値を常温伸びとした。
The obtained separation / separation foil was measured for roughness R a , R max and R z of the rough surface, normal tensile strength, and normal elongation. The measuring method is as follows. The measurement results are shown in Tables 2 and 3. Moreover, the scanning electron microscope (SEM) photograph of the surface of the rough surface of the obtained separating / separating foil was image | photographed. The result is shown in FIG.
Roughness R a , R max and R z : Separation foil obtained using a contact-type surface roughness meter (trade name: SEF-30D, manufactured by Kosaka Co., Ltd.) which is a diamond ball having a tip of φ2 μm. The surface roughness of the rough surface was measured. The measurement length was 0.8 mm. R a , R max and R z are measured in accordance with JISB0601, and specifically, R a is center line average roughness, R max is maximum roughness, and R z is ten-point average roughness. Show.
-Tensile strength at normal temperature: Cut the obtained separation foil to prepare a measurement sample having a width of 1 cm and a length of 10 cm, and both ends in the length direction of the sample are provided at two locations in the vertical direction of the apparatus. The sample is sandwiched between vise-like chucks and set so that the length of the sample is in the vertical direction. At room temperature, the lower chuck is sandwiched and the sample is pulled downward at a speed of 50 mm / min. The maximum load of tensile strength to be used was the room temperature tensile strength.
-Room temperature elongation: When measuring room temperature tensile strength, the maximum value of elongation measured was defined as room temperature elongation.

比較例2Comparative Example 2

基本液Aにゼラチン水溶液Aをゼラチン濃度が1.8ppmになるまで添加した後、ゼラチンを添加しないで該液を50℃で80時間保持して、電解液Bを調製した。電解液B中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Bを用い、ゼラチン水溶液Aを添加してから80時間後に、比較例1と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図2に示す。
After adding the gelatin aqueous solution A to the basic solution A until the gelatin concentration became 1.8 ppm, the solution was kept at 50 ° C. for 80 hours without adding gelatin to prepare an electrolytic solution B. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution B.
Using the electrolytic solution B, 80 hours after adding the gelatin aqueous solution A, electrolysis was performed under the same conditions as in Comparative Example 1 to prepare a separating foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例3Comparative Example 3

銅電解液として、純水に、硫酸、硫酸銅5水和物及び塩酸を添加し溶解して、下記組成の溶液(基本液B)を調製した。
・Cu2+濃度 :84.0g/l
・フリーSO 2−濃度 :150g/l
・Cl濃度 :1.7ppm
As a copper electrolyte, sulfuric acid, copper sulfate pentahydrate and hydrochloric acid were added and dissolved in pure water to prepare a solution (basic solution B) having the following composition.
Cu 2+ concentration: 84.0 g / l
Free SO 4 2- concentration: 150 g / l
-Cl - concentration: 1.7 ppm

次に、基本液Bにゼラチン水溶液Aをゼラチン濃度が2.7ppmになるまで添加し十分に攪拌して、電解液Cを調製した。電解液C中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Cを調製してから直ぐに、下記条件で電解して析離箔を作製した。
・銅電解液の温度 :52℃
・電解電流密度 :50A/cm
・析離箔の厚さ :35μm
Next, an aqueous gelatin solution A was added to the basic solution B until the gelatin concentration reached 2.7 ppm, and stirred sufficiently to prepare an electrolytic solution C. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution C.
Immediately after preparing the electrolytic solution C, electrolysis was performed under the following conditions to prepare a deposited foil.
・ Copper electrolyte temperature: 52 ℃
Electrolytic current density: 50 A / cm 2
・ Thickness of separation foil: 35μm

得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図3に示す。 The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Cに対し、ゼラチン水溶液Aを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作を行い、電解液Cに対してゼラチン水溶液Aを最初に添加してから1日経った電解液Dを調製した。電解液D中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Dを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図4に示す。
The electrolyte solution C was added with the gelatin aqueous solution A in terms of the concentration in the electrolyte solution over the course of one day, 0.5 ppm each 6 times (3 ppm in total) and sufficiently stirred. An electrolyte solution D was prepared 1 day after the gelatin aqueous solution A was first added. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution D.
Using the electrolytic solution D, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Dに対し、ゼラチン水溶液Aを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作をさらに5日間繰り返して、電解液Cに対してゼラチン水溶液Aを最初に添加してから6日経った電解液Eを調製した。電解液E中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Eを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図5に示す。
The operation of adding the aqueous gelatin solution A to the electrolytic solution D in six times 0.5 ppm each in terms of the concentration in the electrolytic solution over a day (3 ppm in total) and sufficiently stirring is further repeated for 5 days. An electrolytic solution E was prepared 6 days after the gelatin aqueous solution A was first added to C. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution E.
Using the electrolytic solution E, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Eに対し、ゼラチン水溶液Aを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作をさらに7日間繰り返して、電解液Cに対してゼラチン水溶液Aを最初に添加してから13日経った電解液Fを調製した。電解液F中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Fを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図6に示す。
The operation of adding the aqueous gelatin solution A to the electrolytic solution E in a concentration of 0.5 ppm 6 times (3 ppm in total) in terms of the concentration in the electrolytic solution over one day and stirring sufficiently for another 7 days An electrolytic solution F was prepared 13 days after the gelatin aqueous solution A was first added to C. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution F.
Using the electrolytic solution F, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例4Comparative Example 4

ゼラチンとして新田ゼラチン株式会社製SCP5000を用い、これを純水に溶解して1g/lのゼラチン水溶液(ゼラチン水溶液B)を調製した。
次に、基本液Bにゼラチン水溶液Bをゼラチン濃度が4.5ppmになるまで添加し十分に攪拌して、電解液Gを調製した。電解液G中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Gを調製してから直ぐに、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図7に示す。
As the gelatin, SCP5000 manufactured by Nitta Gelatin Co., Ltd. was used and dissolved in pure water to prepare a 1 g / l gelatin aqueous solution (gelatin aqueous solution B).
Next, an aqueous gelatin solution B was added to the basic solution B until the gelatin concentration reached 4.5 ppm, and stirred sufficiently to prepare an electrolytic solution G. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution G.
Immediately after the electrolytic solution G was prepared, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Gに対し、ゼラチン水溶液Bを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作を行い、電解液Gに対してゼラチン水溶液Bを最初に添加してから1日経った電解液Hを調製した。電解液H中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Hを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図8に示す。
The electrolyte solution G was added with the gelatin aqueous solution B in terms of the concentration in the electrolyte solution over the course of one day, 0.5 ppm each 6 times (3 ppm in total) and sufficiently stirred. An electrolyte solution H was prepared 1 day after the gelatin aqueous solution B was first added. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution H.
Using the electrolytic solution H, electrolysis was carried out under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Dに対し、ゼラチン水溶液Bを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作をさらに5日間繰り返して、電解液Gに対してゼラチン水溶液Bを最初に添加してから6日経った電解液Iを調製した。電解液I中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Iを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図9に示す。
The operation of adding the aqueous gelatin solution B to the electrolytic solution D by converting it to the concentration in the electrolytic solution over the course of 1 day and adding 0.5 ppm 6 times (3 ppm in total) and further stirring the solution further for 5 days, An electrolyte solution I was prepared 6 days after the gelatin aqueous solution B was first added to G. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution I.
Using the electrolytic solution I, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a deposited foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Eに対し、ゼラチン水溶液Bを、1日かけて電解液中の濃度に換算して0.5ppmずつ6回(計3ppm)添加し十分に攪拌する操作をさらに7日間繰り返して、電解液Gに対してゼラチン水溶液Bを最初に添加してから13日経った電解液Jを調製した。電解液J中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Jを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図10に示す。
Addition of gelatin aqueous solution B to electrolyte solution E over the course of one day in 0.5 ppm increments 6 times (total 3 ppm) and stirring sufficiently for another 7 days Electrolyte J was prepared 13 days after the gelatin aqueous solution B was first added to G. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution J.
Using the electrolytic solution J, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例5Comparative Example 5

ゼラチンとして新田ゼラチン株式会社製700Fを用い、これを純水に溶解して1g/lのゼラチン水溶液(ゼラチン水溶液C)を調製した。
次に、基本液Bにゼラチン水溶液Cをゼラチン濃度が1.6ppmになるまで添加し十分に攪拌して、電解液Kを調製した。電解液K中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Kを調製してから直ぐに、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図11に示す。
700F manufactured by Nitta Gelatin Co., Ltd. was used as gelatin, and this was dissolved in pure water to prepare a 1 g / l gelatin aqueous solution (gelatin aqueous solution C).
Next, an aqueous gelatin solution C was added to the basic solution B until the gelatin concentration reached 1.6 ppm, and stirred sufficiently to prepare an electrolytic solution K. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution K.
Immediately after preparing the electrolyte solution K, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例6Comparative Example 6

基本液Bにゼラチン水溶液Cをゼラチン濃度が1.6ppmになるまで添加した後、ゼラチンを添加しないで該液を52℃で6.5時間保持して、電解液Lを調製した。電解液L中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Lを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図12に示す。
An aqueous gelatin solution C was added to the basic solution B until the gelatin concentration reached 1.6 ppm, and then the solution was kept at 52 ° C. for 6.5 hours without adding gelatin to prepare an electrolytic solution L. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution L.
Using the electrolytic solution L, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

電解液Kに対し、ゼラチン水溶液Cを、7時間かけて電解液中の濃度に換算して0.5ppmずつ5回(計2.5ppm)添加し十分に攪拌する操作を行い、電解液Kに対してゼラチン水溶液Cを最初に添加してから7時間経った電解液Lを調製した。電解液L中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Lを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図13に示す。
Add the gelatin aqueous solution C to the electrolytic solution K over the course of 7 hours, adding 0.5 ppm each 5 times (total 2.5 ppm), and stir well. On the other hand, an electrolytic solution L was prepared 7 hours after the gelatin aqueous solution C was first added. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution L.
Using the electrolytic solution L, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

基本液Bにゼラチン水溶液Aを、電解液中の濃度に換算して1日当たり0.5ppmずつ10回添加する作業を2日間行い、合計10ppm添加し十分に攪拌して、電解液Oを調製した。電解液O中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Oを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図14に示す。
The gelatin aqueous solution A was added to the basic solution B at a concentration of 0.5 ppm per day 10 times in terms of the concentration in the electrolytic solution for 2 days, and a total of 10 ppm was added and stirred thoroughly to prepare an electrolytic solution O. . Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution O.
Using the electrolytic solution O, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例7Comparative Example 7

基本液Bにゼラチン水溶液Bを、電解液中の濃度に換算して1日当たり0.5ppmずつ10回添加する作業を2日間行い、合計10ppm添加後3日間放置して、電解液Pを調製した。電解液P中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Pを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びRを測定した。測定結果を表2及び表3に示す。
The gelatin aqueous solution B was added to the basic solution B 10 times at a concentration of 0.5 ppm per day in terms of the concentration in the electrolyte solution for 2 days, and the electrolyte solution P was prepared by allowing it to stand for 3 days after the addition of 10 ppm in total. . Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution P.
Using the electrolytic solution P, electrolysis was performed under the same conditions as in Comparative Example 3 to produce a deposited foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, were measured R max and R z. The measurement results are shown in Tables 2 and 3.

基本液Bにゼラチン水溶液Bを、電解液中の濃度に換算して1日当たり0.5ppmずつ10回添加する作業を2日間行い、合計10ppm添加し十分に攪拌して、電解液Qを調製した。電解液Q中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Qを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図15に示す。
The gelatin aqueous solution B was added to the basic solution B at a concentration of 0.5 ppm per day 10 times in terms of the concentration in the electrolytic solution for 2 days, and a total of 10 ppm was added and stirred sufficiently to prepare an electrolytic solution Q. . Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution Q.
Using the electrolytic solution Q, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例8Comparative Example 8

ゼラチンとして旭陽化学株式会社製A1576を用い、これを純水に溶解して1g/lのゼラチン水溶液(ゼラチン水溶液C)を調製した。
次に、基本液Bにゼラチン水溶液Cを液中の濃度が5ppmになるように添加し十分に攪拌した後、5時間放置して、電解液Rを調製した。電解液R中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Rを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図16に示す。
A1576 manufactured by Asahi Chemical Co., Ltd. was used as gelatin, and this was dissolved in pure water to prepare a 1 g / l gelatin aqueous solution (gelatin aqueous solution C).
Next, an aqueous gelatin solution C was added to the basic solution B so that the concentration in the solution was 5 ppm, and the mixture was sufficiently stirred, and then allowed to stand for 5 hours to prepare an electrolytic solution R. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution R.
Using the electrolytic solution R, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

基本液Bにゼラチン水溶液Aを、電解液中の濃度に換算して1日当たり0.5ppmずつ15回添加する作業を2日間行い、合計15ppm添加して、電解液Sを調製した。電解液S中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Sを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図17に示す。
The operation of adding the aqueous gelatin solution A to the basic solution B at a concentration of 0.5 ppm per day 15 times in terms of the concentration in the electrolytic solution was performed for 2 days, and a total of 15 ppm was added to prepare an electrolytic solution S. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution S.
Using the electrolytic solution S, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.

比較例9Comparative Example 9

基本液Bにゼラチン水溶液A、電解液中の濃度に換算して1日当たり0.5ppmずつ15回添加する作業を2日間行い、合計15ppm添加した後、これを80時間放置して、電解液Tを調製した。電解液T中のゼラチンの数平均分子量M及び濃度を表1に示す。
電解液Tを用い、比較例3と同条件で電解して析離箔を作製した。
得られた析離箔について、比較例1と同様にして、粗面の粗度R、Rmax及びR、常態の引張り強さ、並びに常態の伸びを測定した。測定結果を表2及び表3に示す。また、得られた析離箔の粗面の表面のSEM写真を撮影した。その結果を図18に示す。
The basic solution B was added 15 times at a concentration of 0.5 ppm per day in gelatin aqueous solution A and converted to the concentration in the electrolyte solution for 2 days. After adding a total of 15 ppm, this was left for 80 hours. Was prepared. Table 1 shows the number average molecular weight M n and the concentration of gelatin in the electrolytic solution T.
Using the electrolytic solution T, electrolysis was performed under the same conditions as in Comparative Example 3 to prepare a separation / separation foil.
The obtained deposited foil, in the same manner as in Comparative Example 1, the roughness of the rough surface R a, R max and R z, normal tensile strength, as well as to measure the elongation of normal. The measurement results are shown in Tables 2 and 3. Moreover, the SEM photograph of the surface of the rough surface of the obtained separating / separating foil was photographed. The result is shown in FIG.



表1〜表3より、銅電解液中のゼラチンの数平均分子量M及び濃度が所定範囲内にある電解液は、得られる析離箔の粗面の山の形状及び大きさが揃い且つ低粗度であることが判る。 From Tables 1 to 3, the electrolyte solution in which the number average molecular weight M n and the concentration of gelatin in the copper electrolyte solution are within a predetermined range is uniform and low in the shape and size of the peaks of the rough surface of the obtained separation foil. It turns out to be roughness.

本発明に係る電解銅箔製造用銅電解液及び電解銅箔の製造方法は、電解銅箔のうちの析離箔の製造に用いることができる。 The copper electrolytic solution for producing an electrolytic copper foil and the method for producing an electrolytic copper foil according to the present invention can be used for producing a separating / separating foil of the electrolytic copper foil.

図1は、比較例1で得られた箔の粗面のSEM写真である。FIG. 1 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 1. 図2は、比較例2で得られた箔の粗面のSEM写真である。FIG. 2 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 2. 図3は、比較例3で得られた箔の粗面のSEM写真である。FIG. 3 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 3. 図4は、実施例1で得られた箔の粗面のSEM写真である。FIG. 4 is an SEM photograph of the rough surface of the foil obtained in Example 1. 図5は、実施例2で得られた箔の粗面のSEM写真である。FIG. 5 is an SEM photograph of the rough surface of the foil obtained in Example 2. 図6は、実施例3で得られた箔の粗面のSEM写真である。6 is a SEM photograph of the rough surface of the foil obtained in Example 3. FIG. 図7は、比較例4で得られた箔の粗面のSEM写真である。FIG. 7 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 4. 図8は、実施例4で得られた箔の粗面のSEM写真である。FIG. 8 is an SEM photograph of the rough surface of the foil obtained in Example 4. 図9は、実施例5で得られた箔の粗面のSEM写真である。FIG. 9 is an SEM photograph of the rough surface of the foil obtained in Example 5. 図10は、実施例6で得られた箔の粗面のSEM写真である。FIG. 10 is an SEM photograph of the rough surface of the foil obtained in Example 6. 図11は、比較例5で得られた箔の粗面のSEM写真である。FIG. 11 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 5. 図12は、比較例6で得られた箔の粗面のSEM写真である。FIG. 12 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 6. 図13は、実施例7で得られた箔の粗面のSEM写真である。FIG. 13 is an SEM photograph of the rough surface of the foil obtained in Example 7. 図14は、実施例8で得られた箔の粗面のSEM写真である。FIG. 14 is an SEM photograph of the rough surface of the foil obtained in Example 8. 図15は、実施例9で得られた箔の粗面のSEM写真である。FIG. 15 is a SEM photograph of the rough surface of the foil obtained in Example 9. 図16は、比較例8で得られた箔の粗面のSEM写真である。FIG. 16 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 8. 図17は、実施例10で得られた箔の粗面のSEM写真である。FIG. 17 is a SEM photograph of the rough surface of the foil obtained in Example 10. 図18は、比較例9で得られた箔の粗面のSEM写真である。FIG. 18 is an SEM photograph of the rough surface of the foil obtained in Comparative Example 9. 図19は、銅電解液中に含まれるタンパク質の数平均分子量M及び濃度と、析離箔の常態の抗張力との関係を示すグラフである。FIG. 19 is a graph showing the relationship between the number average molecular weight Mn and concentration of proteins contained in the copper electrolyte and the normal tensile strength of the separation foil. 図20は、銅電解液中に含まれるタンパク質の数平均分子量M及び濃度と、析離箔の粗面の粗度Rとの関係を示すグラフである。Figure 20 is a number-average molecular weight M n and the concentration of protein contained in the copper electrolyte solution is a graph showing the relationship between roughness R z of the rough surface of the deposited foil. 図21は、本発明におけるタンパク質の数平均分子量M及び濃度の測定方法で用いる装置の一例を示す概略説明図である。FIG. 21 is a schematic explanatory diagram illustrating an example of an apparatus used in the method for measuring the number average molecular weight M n and concentration of a protein in the present invention.

符号の説明Explanation of symbols

1 送液ポンプ
2 インジェクタ
3 6方切換バルブ
4 6方切換バルブの第1の連結口
5 6方切換バルブの第2の連結口
6 6方切換バルブの第3の連結口
7 6方切換バルブの第4の連結口
8 6方切換バルブの第5の連結口
9 6方切換バルブの第6の連結口
10 前処理カラム
11 第1検出器
12 分離カラム
13 第2検出器
14 排液パイプ
15 恒温槽
16 移動相溜め

DESCRIPTION OF SYMBOLS 1 Liquid feed pump 2 Injector 3 6-way switching valve 4 1st connection port of 6-way switching valve 5 Second connection port of 6-way switching valve 6 Third connection port of 6-way switching valve 7 6-way switching valve 4th connection port 8 5th connection port of 6-way switching valve 9 6th connection port 10 of 6-way switching valve Pretreatment column 11 1st detector 12 Separation column 13 2nd detector 14 Drain pipe 15 Constant temperature Tank 16 Mobile phase reservoir

Claims (7)

電解銅箔製造用の銅電解液であって、該銅電解液中に含まれるタンパク質は、数平均分子量Mが1000〜2300、且つ、濃度が2ppm〜4.5ppmであることを特徴とする電解銅箔製造用銅電解液。 A copper electrolyte for producing an electrolytic copper foil, wherein the protein contained in the copper electrolyte has a number average molecular weight Mn of 1000 to 2300 and a concentration of 2 ppm to 4.5 ppm. Copper electrolyte for electrolytic copper foil production. 前記銅電解液は、Cu2+濃度が60g/l〜100g/lであることを特徴とする請求項1記載の電解銅箔製造用銅電解液。 The copper electrolyte for producing an electrolytic copper foil according to claim 1, wherein the copper electrolyte has a Cu 2+ concentration of 60 g / l to 100 g / l. 前記銅電解液は、フリーSO 2−濃度が60g/l〜250g/lであることを特徴とする請求項1又は2記載の電解銅箔製造用銅電解液。 The copper electrolyte for producing an electrolytic copper foil according to claim 1, wherein the copper electrolyte has a free SO 4 2− concentration of 60 g / l to 250 g / l. 前記銅電解液は、Cl濃度が0.5ppm〜2.0ppmであることを特徴とする請求項1〜3のいずれか1項記載の電解銅箔製造用銅電解液。 The copper electrolyte for producing an electrolytic copper foil according to claim 1, wherein the copper electrolyte has a Cl concentration of 0.5 ppm to 2.0 ppm. 前記銅電解液は、温度が40℃〜60℃であることを特徴とする請求項1〜4のいずれか1項記載の電解銅箔製造用銅電解液。 The said copper electrolyte solution is 40 to 60 degreeC, The copper electrolyte solution for electrolytic copper foil manufacture of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか1項記載の電解銅箔製造用銅電解液を用いることを特徴とする電解銅箔の製造方法。 The manufacturing method of the electrolytic copper foil characterized by using the copper electrolyte solution for electrolytic copper foil manufacture of any one of Claims 1-5. 電解電流密度が30A/cm〜70A/cmであることを特徴とする請求項6記載の電解銅箔の製造方法。

Method of manufacturing an electrolytic copper foil according to claim 6, wherein the electrolytic current density of 30A / cm 2 ~70A / cm 2 .

JP2003393134A 2003-11-21 2003-11-21 Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil Pending JP2005154815A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003393134A JP2005154815A (en) 2003-11-21 2003-11-21 Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil
TW093134090A TWI267566B (en) 2003-11-21 2004-11-09 Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil
KR1020067002773A KR20060037433A (en) 2003-11-21 2004-11-11 Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil
PCT/JP2004/016728 WO2005049895A1 (en) 2003-11-21 2004-11-11 Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil
US10/556,464 US20070017816A1 (en) 2003-11-21 2004-11-11 Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil
CNA2004800037462A CN1748048A (en) 2003-11-21 2004-11-11 Copper electrolysis solution for production of electrolytic copper foil and process for producing electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003393134A JP2005154815A (en) 2003-11-21 2003-11-21 Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil

Publications (1)

Publication Number Publication Date
JP2005154815A true JP2005154815A (en) 2005-06-16

Family

ID=34616482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003393134A Pending JP2005154815A (en) 2003-11-21 2003-11-21 Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil

Country Status (6)

Country Link
US (1) US20070017816A1 (en)
JP (1) JP2005154815A (en)
KR (1) KR20060037433A (en)
CN (1) CN1748048A (en)
TW (1) TWI267566B (en)
WO (1) WO2005049895A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074611B2 (en) * 2011-03-30 2012-11-14 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery negative electrode current collector and method for producing the same
EP2847207B1 (en) 2012-05-08 2019-03-27 Nicox Ophthalmics, Inc. Fluticasone propionate nanocrystals
TWI539033B (en) * 2013-01-07 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil and its preparation method
TWI515342B (en) * 2013-09-05 2016-01-01 三井金屬鑛業股份有限公司 Surface-treated copper foil, and copper clad laminate and printed wiring board obtained by using the same
CN103510106B (en) * 2013-09-22 2015-10-21 中南大学 A kind of copper electrolysis additive and using method thereof
KR101449342B1 (en) * 2013-11-08 2014-10-13 일진머티리얼즈 주식회사 Electrolytic copper foil, electric component and battery comprising the foil
CN108385133B (en) * 2018-03-13 2019-05-14 广东飞南资源利用股份有限公司 A kind of low energy consumption method using copper-contained sludge production cathode copper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649958B2 (en) * 1987-06-15 1994-06-29 日本電解株式会社 Method for manufacturing electrolytic copper foil
US5403465A (en) * 1990-05-30 1995-04-04 Gould Inc. Electrodeposited copper foil and process for making same using electrolyte solutions having controlled additions of chloride ions and organic additives
JPH0853789A (en) * 1994-08-09 1996-02-27 Furukawa Circuit Foil Kk Production of elelctrolytic copper foil
US5863666A (en) * 1997-08-07 1999-01-26 Gould Electronics Inc. High performance flexible laminate

Also Published As

Publication number Publication date
TWI267566B (en) 2006-12-01
TW200528585A (en) 2005-09-01
WO2005049895A1 (en) 2005-06-02
CN1748048A (en) 2006-03-15
US20070017816A1 (en) 2007-01-25
KR20060037433A (en) 2006-05-03

Similar Documents

Publication Publication Date Title
JP3332289B2 (en) Method for producing electrodeposited copper foil using electrodeposited copper foil and electrolyte solution containing chloride ion and control additive of organic additive
CN104790008B (en) Electro-plating method and electroplanting device
KR101082416B1 (en) Method of analyzing electrolytic copper plating solution and analyzing device therefor and production method for semi-conductor product
JP2005154815A (en) Copper electrolytic solution in manufacturing electrolytic copper foil, and method for manufacturing electrolytic copper foil
US20040060436A1 (en) Process for degassing an aqueous plating solution
WO2009144973A1 (en) Sn or sn alloy plated film, composite material having same and composite material production method
JP6733313B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
KR20070007395A (en) Method for measuring leveler concentration of plating solution
US6140130A (en) Detection and removal of copper from wastewater streams from semiconductor and printed circuit board processing
JP2006152420A (en) Electrolytic copper foil and method for producing the same
JP2001152398A (en) Electroplating method, plating solution evaluating method, plating device and method for manufacturing semiconductor device
Hayase et al. Preferential copper electrodeposition at submicrometer trenches by consumption of halide ion
Volov et al. Investigation of copper plating and additive interactions in the presence of Fe3+/Fe2+ redox couple
JP2001073183A (en) Method for measuring leveler concentration in copper sulfate plating liquid
FI105829B (en) Process for extracting copper from aqueous solutions
CN1068155A (en) Improved and the tinsel of the combination degree of substrate and the method for making this tinsel
JP2001337081A (en) Method for measuring concentration and molecular weight distributions of glue and gelatin
Wang et al. Effect of Bis-(3-sulfopropyl) disulfide and chloride ions on the localized electrochemical deposition of copper microstructures
JP4074648B2 (en) Method for measuring concentration or molecular weight distribution of glue or gelatin
JP2006052441A (en) Copper foil, manufacturing method therefor, and tab tape
KR101325430B1 (en) The method for quantitative anaylsis of uss-p and polyethylene glycol
JP5028575B2 (en) Method for measuring nitrogen-containing organic compound concentration in copper sulfate plating solution
EP2907901B1 (en) Method for producing metal plate having alloy plating layer
RU2208664C2 (en) Method for electric deposition of tin
bin Mohd Salleh et al. Influence of acid copper plating additives on void formation during high temperature storage