JP2005150443A - Laminated semiconductor device and its manufacturing method - Google Patents

Laminated semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005150443A
JP2005150443A JP2003386563A JP2003386563A JP2005150443A JP 2005150443 A JP2005150443 A JP 2005150443A JP 2003386563 A JP2003386563 A JP 2003386563A JP 2003386563 A JP2003386563 A JP 2003386563A JP 2005150443 A JP2005150443 A JP 2005150443A
Authority
JP
Japan
Prior art keywords
intermediate member
circuit board
semiconductor device
bare chip
circuit boards
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003386563A
Other languages
Japanese (ja)
Inventor
Naoki Sakota
直樹 迫田
Koki Kitaoka
幸喜 北岡
Akira Yoshida
陽 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003386563A priority Critical patent/JP2005150443A/en
Publication of JP2005150443A publication Critical patent/JP2005150443A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To laminate electronic components and magnetically seal between the facing electronic components. <P>SOLUTION: On one face of an intermediate member 15, a first circuit board 11 mounted with first and third bare chip semiconductor elements 13, 20 on the front and rear faces are laminated via a jointing member 16a so that the first bare chip semiconductor element 13 is opposed to a sealed pattern 17a. On the other face of the intermediate member 15, a second circuit board 12 mounted with a second bare chip semiconductor element 14 is laminated via a jointing member 16b so that the second bare chip semiconductor element 14 is opposed to a sealed pattern 17b. Thus, a multilayer structure is formed, a space between the first and second bare chip semiconductor elements 13 and 14 is sealed, and the first circuit substrate 11 is electrically connected to the second circuit board 12 by a jointing member 16. Namely, electronic components can be laminated and can magnetically seal in between the facing electronic components. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、半導体集積回路や受動素子等の電子部品を高密度に実装可能な積層型半導体装置およびその製造方法に関する。   The present invention relates to a stacked semiconductor device capable of mounting electronic components such as semiconductor integrated circuits and passive elements at high density, and a method for manufacturing the same.

近年、ハイエンドプロセッサから携帯電話に代表される携帯機器に至るまでの急速な普及の原動力として、一つには機器の飛躍的な小型化がある。これら電子機器の小型化,軽量化,薄型化に伴って、電子機器に使用される半導体装置にも小型化,薄型化が要求されてきている。このような小型化,薄型化の要求に対処すべく、半導体装置においては、ベアチップ半導体素子を用いたマルチチップモジュール(MCM)が実用化されている。   In recent years, as a driving force for rapid spread from high-end processors to portable devices typified by mobile phones, one is the dramatic downsizing of devices. As these electronic devices become smaller, lighter, and thinner, semiconductor devices used in electronic devices are also required to be smaller and thinner. In order to meet such demands for miniaturization and thinning, multichip modules (MCM) using bare chip semiconductor elements have been put into practical use in semiconductor devices.

この種の半導体装置では、回路基板に個々の半導体チップがモールド成形されることはなく、複数のベアチップ半導体素子が同一の回路基板上に平面的に並べられて配置されている。一方、他方の面には、抵抗やコンデンサ等の電子部品が実装されており、部品搭載面積に限界が生じ始めている。そこで、各回路基板を積層して部品搭載面積の高密度化を図ることが試みられている。   In this type of semiconductor device, individual semiconductor chips are not molded on a circuit board, and a plurality of bare chip semiconductor elements are arranged in a plane on the same circuit board. On the other hand, electronic components such as resistors and capacitors are mounted on the other surface, and there is a limit to the component mounting area. Therefore, attempts have been made to increase the component mounting area by stacking circuit boards.

また、複数のベアチップ半導体素子を同一の回路基板上に実装した場合には、複数のベアチップ半導体素子間で高周波信号が相互に干渉してノイズが発生したり、特性が悪化して正常に回路が動作しなくなるという問題点が生ずる。この問題点に関しては、個々のベアチップ半導体素子に金属の筐体を覆い被せてシールドするようにしている。   In addition, when multiple bare chip semiconductor elements are mounted on the same circuit board, high frequency signals interfere with each other between the multiple bare chip semiconductor elements to generate noise, or the characteristics deteriorate and the circuit normally operates. There is a problem that it does not work. Regarding this problem, each bare chip semiconductor element is covered with a metal casing and shielded.

上述のようなベアチップ半導体素子間での高周波信号の相互干渉の問題に対して、図8に示すような電磁シールドを図る半導体素子の実装構造が提案されている(例えば、特許文献1参照)。図8において、1は実装用基板、2は信号配線、3は接続パッド、4はベアチップ半導体素子、5は蓋基板、6は接着剤、7は導体端子、8は間隙設定部材、9は封止樹脂、10は絶縁膜である。   In order to deal with the problem of mutual interference of high-frequency signals between bare chip semiconductor elements as described above, a semiconductor element mounting structure for electromagnetic shielding as shown in FIG. 8 has been proposed (see, for example, Patent Document 1). In FIG. 8, 1 is a mounting substrate, 2 is a signal wiring, 3 is a connection pad, 4 is a bare chip semiconductor element, 5 is a lid substrate, 6 is an adhesive, 7 is a conductor terminal, 8 is a gap setting member, and 9 is a seal. Stop resin 10 is an insulating film.

図8に示すように、上記ベアチップ半導体素子4は導電性の蓋基板5上に接着剤6によってダイボンドされており、ベアチップ半導体素子4と実装用基板1上の接続パッド3とは、金バンプや半田バンプ等の接続バンプあるいは導電性ペーストによって形成された導体端子7を介して電気的に接続されている。また、蓋基板5の下面周辺部には間隙設定部材8を複数個設置し、実装用基板1と蓋基板5とを封止樹脂9によって接合して封止することによって、電磁シールドを図っている。   As shown in FIG. 8, the bare chip semiconductor element 4 is die-bonded on a conductive lid substrate 5 with an adhesive 6, and the bare chip semiconductor element 4 and the connection pad 3 on the mounting substrate 1 are made of gold bumps, They are electrically connected via connection terminals such as solder bumps or conductive terminals 7 formed of conductive paste. Further, a plurality of gap setting members 8 are provided on the periphery of the lower surface of the lid substrate 5, and the mounting substrate 1 and the lid substrate 5 are joined and sealed with a sealing resin 9 to achieve an electromagnetic shield. Yes.

しかしながら、上記従来の特許文献1に開示された半導体素子の実装構造においては、以下のような問題がある。すなわち、図8に示すように、ベアチップ半導体素子4を実装用基板1と蓋基板5との間に封止樹脂9によって封止するようにしている。したがって、このような実装構造では、ベアチップ半導体素子4の実装面積を積層方向に増加させることができないのである。
特開2000‐31312号公報
However, the semiconductor element mounting structure disclosed in Patent Document 1 has the following problems. That is, as shown in FIG. 8, the bare chip semiconductor element 4 is sealed between the mounting substrate 1 and the lid substrate 5 by the sealing resin 9. Therefore, with such a mounting structure, the mounting area of the bare chip semiconductor element 4 cannot be increased in the stacking direction.
Japanese Patent Laid-Open No. 2000-331312

そこで、この発明の課題は、電子部品を立体的に積層しても対向する電子部品間で高周波信号が相互干渉しない積層型半導体装置およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a stacked semiconductor device in which high-frequency signals do not interfere with each other even when electronic components are three-dimensionally stacked, and a method for manufacturing the same.

上記課題を解決するため、この発明の積層型半導体装置は、ベアチップ半導体素子等の電子部品が搭載された複数の回路基板を順次積層する際に、上記積層された複数の回路基板のうち互いに隣接している回路基板であって搭載されている電子部品が互いに対向している2つの回路基板の間に,導電層を有する中間部材を挟設し、この中間部材を介して、上記互いに隣接している2つの回路基板間を電気的に且つ機械的に接続している。   In order to solve the above-described problem, the stacked semiconductor device according to the present invention is configured such that when a plurality of circuit boards on which electronic components such as bare chip semiconductor elements are mounted are sequentially stacked, the stacked circuit boards are adjacent to each other. An intermediate member having a conductive layer is sandwiched between two circuit boards which are mounted circuit boards and mounted electronic components are facing each other. The two circuit boards are electrically and mechanically connected.

上記構成によれば、互いに隣接している2つの回路基板の間に、導電層を有する中間部材が挟設されている。したがって、上記2つの回路基板に搭載されて互いに対向している電子部品の間が、上記導電層によって磁気シールドされる。さらに、上記互いに隣接している2つの回路基板間が、上記中間部材を介して電気的に且つ機械的に接続されている。したがって、上記電子部品が搭載された複数の回路基板を積層して上記電子部品の実装面積を増加させることが可能になる。その場合でも、対向する上記電子部品間で高周波信号が相互干渉することはなく、ノイズの発生や回路が正常に動作しなくなったりすることが防止される。   According to the above configuration, the intermediate member having the conductive layer is sandwiched between the two circuit boards adjacent to each other. Therefore, a space between the electronic components mounted on the two circuit boards and facing each other is magnetically shielded by the conductive layer. Further, the two adjacent circuit boards are electrically and mechanically connected via the intermediate member. Therefore, it is possible to increase the mounting area of the electronic component by stacking a plurality of circuit boards on which the electronic component is mounted. Even in this case, the high frequency signals do not interfere with each other between the electronic components facing each other, and it is possible to prevent the generation of noise and the malfunction of the circuit.

また、1実施例の積層型半導体装置では、上記中間部材の導電層は、対峙している上記電子部品の面積よりも広い面積を有すると共に、当該中間部材の表面または内部に上記電子部品と積層方向に重なり合うように形成されている。   Further, in the stacked semiconductor device of one embodiment, the conductive layer of the intermediate member has an area larger than that of the facing electronic component, and the electronic component is laminated on the surface or inside of the intermediate member. It is formed to overlap in the direction.

この実施例によれば、上記中間部材の導電層は、上記電子部品よりも広い面積を有して上記電子部品と積層方向に重なり合うように形成されている。したがって、上記中間部材による磁気シールド効果がより高められる。   According to this embodiment, the conductive layer of the intermediate member has a larger area than the electronic component and is formed so as to overlap the electronic component in the stacking direction. Therefore, the magnetic shielding effect by the intermediate member is further enhanced.

また、1実施例の積層型半導体装置では、上記中間部材の導電層は、上記互いに隣接している2つの回路基板のグランド端子と上記互いに対向している電子部品のグランド端子とに接続されている。   In the stacked semiconductor device of one embodiment, the conductive layer of the intermediate member is connected to the ground terminals of the two circuit boards adjacent to each other and the ground terminals of the electronic components facing each other. Yes.

この実施例によれば、上記中間部材の導電層は、上記両回路基板および両電子部品のグランド端子を介して接地されている。したがって、互いに対向している上記電子部品の間が、上記導電層によって、確実に磁気シールドされる。   According to this embodiment, the conductive layer of the intermediate member is grounded via the ground terminals of both the circuit boards and both electronic components. Therefore, between the electronic components facing each other, the magnetic shielding is surely performed by the conductive layer.

また、1実施例の積層型半導体装置では、上記電子部品は、上記回路基板にフリップチップ実装されることによって搭載されている。   In the stacked semiconductor device of one embodiment, the electronic component is mounted on the circuit board by flip chip mounting.

この実施例によれば、上記電子部品が搭載された複数の回路基板が積層されて、上記電子部品の実装面積が増加されるに加えて、上記電子部品が回路基板にフリップチップ実装されている。したがって、フェイスアップ実装やワイヤボンディング等に比して高密度実装化が図られて、電子機器のより一層の小型化を図ることが可能になる。   According to this embodiment, a plurality of circuit boards on which the electronic components are mounted are stacked to increase the mounting area of the electronic components, and the electronic components are flip-chip mounted on the circuit board. . Therefore, high-density mounting is achieved as compared with face-up mounting, wire bonding, and the like, and the electronic device can be further downsized.

また、この発明の積層型半導体装置の製造方法は、電子部品が搭載された複数の回路基板を順次積層する際に、上記電子部品を上記回路基板上に実装し、絶縁体で成る中間部材に導電層を形成し、少なくとも2つの上記回路基板と1つの上記中間部材とを用いて、上記2つの上記回路基板のうちの一方である第1回路基板を,この第1回路基板上の電子部品を当該中間部材の導電層に対向させて,当該中間部材の一面に接合部材を介して積層すると共に接合し、上記2つの上記回路基板のうちの他方である第2回路基板を,この第2回路基板上の電子部品を当該中間部材の導電層に対向させて,当該中間部材の他面に接合部材を介して積層すると共に接合している。   Also, in the method of manufacturing a stacked semiconductor device according to the present invention, when sequentially stacking a plurality of circuit boards on which electronic components are mounted, the electronic components are mounted on the circuit board, and an intermediate member made of an insulator is used. A conductive layer is formed, and at least two circuit boards and one intermediate member are used, and a first circuit board that is one of the two circuit boards is used as an electronic component on the first circuit board. The second circuit board, which is the other of the two circuit boards, is bonded to the second member of the two circuit boards by laminating and bonding to one surface of the intermediate member with a bonding member facing the conductive layer of the intermediate member. The electronic component on the circuit board is opposed to the conductive layer of the intermediate member, and is laminated and bonded to the other surface of the intermediate member via a bonding member.

上記構成によれば、互いに隣接している2つの回路基板の間に、導電層を有する中間部材が挟設される。したがって、上記2つの回路基板に搭載されて互いに対向している電子部品の間が、上記導電層によって磁気シールドされる。さらに、上記互いに隣接している2つの回路基板間が、上記中間部材を介して電気的に且つ機械的に接続されている。したがって、上記電子部品が搭載された複数の回路基板を積層して、上記電子部品の実装面積を増加させることが可能になる。その場合でも、対向する上記電子部品間で高周波信号が相互干渉することはなく、ノイズの発生や回路が正常に動作しなくなったりすることが防止される。   According to the above configuration, the intermediate member having the conductive layer is sandwiched between the two circuit boards adjacent to each other. Therefore, a space between the electronic components mounted on the two circuit boards and facing each other is magnetically shielded by the conductive layer. Further, the two adjacent circuit boards are electrically and mechanically connected via the intermediate member. Accordingly, a plurality of circuit boards on which the electronic components are mounted can be stacked to increase the mounting area of the electronic components. Even in this case, the high frequency signals do not interfere with each other between the electronic components facing each other, and it is possible to prevent the generation of noise and the malfunction of the circuit.

以上より明らかなように、この発明の積層型半導体装置は、互いに対向する電子部品の間に導電層を有する中間部材を挟設し、この中間部材を介して、互いに対向する2つの回路基板間を電気的に且つ機械的に接続したので、上記互いに対向する電子部品間を電磁シールドすることができる。したがって、上記電子部品がノイズを発生したり誤動作することを防止することができる。さらに、上記電子部品が搭載された複数の回路基板を積層して上記電子部品の実装面積を増加させることが可能になる。その場合でも、上記電子部品を正常に動作させることができる。   As is clear from the above, the stacked semiconductor device of the present invention has an intermediate member having a conductive layer interposed between electronic components facing each other, and between the two circuit boards facing each other through the intermediate member. Are electrically and mechanically connected, so that the above-mentioned electronic components facing each other can be electromagnetically shielded. Therefore, it is possible to prevent the electronic component from generating noise or malfunctioning. Further, it is possible to increase the mounting area of the electronic component by stacking a plurality of circuit boards on which the electronic component is mounted. Even in that case, the electronic component can be operated normally.

さらに、対向する回路基板間に中間部材を配置するだけなので高さが大幅に増大することがなく、薄型な積層半導体装置を維持することができる。   Furthermore, since the intermediate member is only disposed between the opposing circuit boards, the height does not increase significantly, and a thin laminated semiconductor device can be maintained.

また、この発明の積層型半導体装置の製造方法は、少なくとも第1回路基板上の電子部品を、中間部材の導電層に対向させて接合部材を介して積層して接合し、第2回路基板上の電子部品を、上記中間部材の導電層に対向させて接合部材を介して積層して接合するので、互いに対向する電子部品の間に導電層を有する中間部材を挟設した積層型半導体装置を作成することができる。   According to the method of manufacturing the stacked semiconductor device of the present invention, at least the electronic components on the first circuit board are stacked and bonded via the bonding member so as to face the conductive layer of the intermediate member, and on the second circuit board. Since the electronic component is laminated and bonded via the bonding member so as to face the conductive layer of the intermediate member, a stacked semiconductor device in which an intermediate member having a conductive layer is interposed between the electronic components facing each other is obtained. Can be created.

したがって、上記電子部品が搭載された複数の回路基板を積層して上記電子部品の実装面積を増加させるに際して、互いに対向する電子部品間を電磁シールドし、上記電子部品がノイズを発生したり誤動作することを防止できる。   Therefore, when a plurality of circuit boards on which the electronic components are mounted are stacked to increase the mounting area of the electronic components, the electronic components facing each other are electromagnetically shielded, and the electronic components generate noise or malfunction. Can be prevented.

以下、この発明を図示の実施の形態により詳細に説明する。尚、以下の各実施の形態においては、積層される回路基板に電子部品の1例としてべアチップ半導体素子を実装する場合を例示しているが、この発明における電子部品は、これに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. In each of the following embodiments, a case where a bear chip semiconductor element is mounted as an example of an electronic component on a circuit board to be laminated is illustrated, but the electronic component in the present invention is limited to this. It is not a thing.

・第1実施の形態
図1は、本実施の形態における積層型半導体装置の一例を模式的に示す断面図である。この積層型半導体装置21は、第1のベアチップ半導体素子がフリップチップ実装された第1の回路基板と、第2のベアチップ半導体素子が実装された第2の回路基板とを対向させた際に、第1のベアチップ半導体素子の駆動電圧と第2のベアチップ半導体素子の駆動電圧とに差がある場合には、第1,第2のベアチップ半導体素子間で電磁干渉が生じ、ベアチップ半導体素子が誤動作する。これを回避するために、上記両回路基板の接続端子に電気的に導通接続されている導電層を有する中間部材を上記両回路基板の間に配置したものである。
First Embodiment FIG. 1 is a cross-sectional view schematically showing an example of a stacked semiconductor device according to the present embodiment. In the stacked semiconductor device 21, when the first circuit board on which the first bare chip semiconductor element is flip-chip mounted and the second circuit board on which the second bare chip semiconductor element is mounted face each other, When there is a difference between the drive voltage of the first bare chip semiconductor element and the drive voltage of the second bare chip semiconductor element, electromagnetic interference occurs between the first and second bare chip semiconductor elements, and the bare chip semiconductor element malfunctions. . In order to avoid this, an intermediate member having a conductive layer electrically connected to the connection terminals of both circuit boards is disposed between the circuit boards.

図1において、11は第1回路基板、12は第2回路基板、13は第1ベアチップ半導体素子、14は第2ベアチップ半導体素子、15は中間部材、16は両回路基板11,12間の接合部材、17は導電層、18は外部端子、19はバンプ、20は第3ベアチップ半導体素子である。ここで、第1,第2回路基板11,12の材料としては、ガラス布エポキシ樹脂またはアラミド繊維不織布エポキシ樹脂や液晶ポリマー樹脂等の絶縁材料で構成された有機基板を用いる。また、アルミナセラミックス等の絶縁材料で構成された無機基板を用いても構わない。   In FIG. 1, 11 is a first circuit board, 12 is a second circuit board, 13 is a first bare chip semiconductor element, 14 is a second bare chip semiconductor element, 15 is an intermediate member, and 16 is a joint between both circuit boards 11 and 12. A member, 17 is a conductive layer, 18 is an external terminal, 19 is a bump, and 20 is a third bare chip semiconductor element. Here, as the material of the first and second circuit boards 11 and 12, an organic substrate made of an insulating material such as a glass cloth epoxy resin, an aramid fiber nonwoven fabric epoxy resin, or a liquid crystal polymer resin is used. An inorganic substrate made of an insulating material such as alumina ceramics may be used.

本実施の形態においては、図1に示すように、上記第1,第2ベアチップ半導体素子13,14を中間部材15のシールド用の導電部材17a,17bに対向させて、接合部材16を介して、電子部品が実装された第1,第2回路基板11,12を配置する。そして、接合部材16によって第1,第2回路基板11,12間を電気的に接続して、電子部品の実装面積を積層方向に立体的に増加しつつ電磁シールドが可能なようにしている。   In the present embodiment, as shown in FIG. 1, the first and second bare chip semiconductor elements 13 and 14 are opposed to the shielding conductive members 17a and 17b of the intermediate member 15 via the joining member 16. First and second circuit boards 11 and 12 on which electronic components are mounted are arranged. Then, the first and second circuit boards 11 and 12 are electrically connected by the joining member 16 so as to enable electromagnetic shielding while increasing the mounting area of the electronic component in the stacking direction in a three-dimensional manner.

上記第1,第2回路基板11,12は、上記第1,第2ベアチップ半導体素子13,14等の電子部品が高密度に実装されている基板である。第1,第2ベアチップ半導体素子13,14の厚みは150μmであり、第1,第2回路基板11,12の厚みは約0.5mmである。また、図1に示す積層型半導体装置21の厚みは約2mmである。   The first and second circuit boards 11 and 12 are boards on which electronic components such as the first and second bare chip semiconductor elements 13 and 14 are mounted at a high density. The thickness of the first and second bare chip semiconductor elements 13 and 14 is 150 μm, and the thickness of the first and second circuit boards 11 and 12 is about 0.5 mm. The thickness of the stacked semiconductor device 21 shown in FIG. 1 is about 2 mm.

一側の面に第1ベアチップ半導体素子13が実装される一方、他側の面に第3ベアチップ半導体素子20が実装された第1回路基板11が、接合部材16aを挟んで中間部材15の一方の面上に積層されると共に、第1回路基板11と中間部材15との間が接合部材16aによって電気的に接続されている。また、中間部材15の他方の面上には、他の接合部材16bを挟んで、一側の面に第2ベアチップ半導体素子14が実装された第2回路基板12が積層されると共に、第2回路基板12と中間部材15との間が接合部材16bによって電気的に接続されている。こうして、積層型半導体装置21は多層構造を成している。   The first circuit board 11 on which the first bare chip semiconductor element 13 is mounted on one surface and the third bare chip semiconductor element 20 is mounted on the other surface is one of the intermediate members 15 with the bonding member 16a interposed therebetween. The first circuit board 11 and the intermediate member 15 are electrically connected by a bonding member 16a. Further, on the other surface of the intermediate member 15, the second circuit board 12 on which the second bare chip semiconductor element 14 is mounted on one surface is stacked with the other bonding member 16 b interposed therebetween, and the second circuit board 12 is stacked. The circuit board 12 and the intermediate member 15 are electrically connected by a bonding member 16b. Thus, the stacked semiconductor device 21 has a multilayer structure.

つまり、上記接合部材16aは第1回路基板11と中間部材15との間に設けられる一方、接合部材16bは第2回路基板12と中間部材15との間に設けられており、少なくとも第1,第2回路基板11,12や中間部材15を保持する機能と、第1,第2回路基板11,12間を電気的に接続する機能と、第1,第2ベアチップ半導体素子13,14間を電磁シールドする機能との3つの機能を有している。そして、接合部材16a,16bによって画定される領域内であって、中間部材15における少なくとも第1,第2ベアチップ半導体素子13,14に対向する側(つまり、中間部材15の表層または内層)には、所定の広さのシールド用の導電層17が設けられる。図1においては、導電層17を、中間部材15の表面と裏面とに形成された銅箔パターン(以下、シールドパターンと言う)17a,17bで構成すると共に、後に詳述するように接地している。尚、シールドパターン17a,17bは、中間部材15の形成時にランド電極や配線パターンと同時に形成される。   That is, the joining member 16a is provided between the first circuit board 11 and the intermediate member 15, while the joining member 16b is provided between the second circuit board 12 and the intermediate member 15, and at least the first, The function of holding the second circuit boards 11 and 12 and the intermediate member 15, the function of electrically connecting the first and second circuit boards 11 and 12, and the connection between the first and second bare chip semiconductor elements 13 and 14 It has three functions, namely the function of electromagnetic shielding. In the region defined by the joining members 16a and 16b and on the side of the intermediate member 15 facing at least the first and second bare chip semiconductor elements 13 and 14 (that is, the surface layer or the inner layer of the intermediate member 15). A conductive layer 17 for shielding having a predetermined area is provided. In FIG. 1, the conductive layer 17 is composed of copper foil patterns (hereinafter referred to as shield patterns) 17a and 17b formed on the front and back surfaces of the intermediate member 15, and grounded as will be described in detail later. Yes. The shield patterns 17a and 17b are formed simultaneously with the land electrode and the wiring pattern when the intermediate member 15 is formed.

このシールドパターン17a,17bの面積は、電磁シールド効果を上げるために、第1,第2ベアチップ半導体素子13,14の中間部材15への投影面積よりも広い方が好ましい。本実施の形態においては、第1回路基板11下面の第1ベアチップ半導体素子13を中間部材15上面のシールドパターン17aによって電磁シールドすることができ、同様に、第2回路基板12上面の第2ベアチップ半導体素子14を中間部材15下面のシールドパターン17bによって電磁シールドすることができるようになっている。   The area of the shield patterns 17a and 17b is preferably wider than the projected area of the first and second bare chip semiconductor elements 13 and 14 onto the intermediate member 15 in order to increase the electromagnetic shielding effect. In the present embodiment, the first bare chip semiconductor element 13 on the lower surface of the first circuit board 11 can be electromagnetically shielded by the shield pattern 17a on the upper surface of the intermediate member 15. Similarly, the second bare chip on the upper surface of the second circuit board 12 can be used. The semiconductor element 14 can be electromagnetically shielded by the shield pattern 17b on the lower surface of the intermediate member 15.

また、上記第1,第2ベアチップ半導体素子13,14等の電子部品は、第1,第2回路基板11,12における一方の面のみに実装されるものではなく、上記電子部品の密度を高めるために、第1,第2回路基板11,12における両面に実装してもよい。例えば、一方の面にベアチップ半導体素子を実装し、他方の面にチップ状の抵抗やコンデンサ等の受動素子を実装する場合や、図1に示す第1回路基板11のように、両面に第1,第3ベアチップ半導体素子13,20を実装する場合も含まれている。   Further, the electronic components such as the first and second bare chip semiconductor elements 13 and 14 are not mounted only on one surface of the first and second circuit boards 11 and 12, and the density of the electronic components is increased. Therefore, it may be mounted on both surfaces of the first and second circuit boards 11 and 12. For example, when a bare chip semiconductor element is mounted on one surface and a passive element such as a chip-like resistor or capacitor is mounted on the other surface, or the first circuit board 11 shown in FIG. The case where the third bare chip semiconductor elements 13 and 20 are mounted is also included.

このように、本実施形態の積層型半導体装置21によれば、上記中間部材15の一方の面側には、第1,第3ベアチップ半導体素子13,20が実装された第1回路基板11を、第1ベアチップ半導体素子13を中間部材15の上記一方の面に形成されたシールドパターン17aに対向させて、接合部材16aを介して積層している。同様に、中間部材15の他方の面側には、第2ベアチップ半導体素子14が実装された第2回路基板12を、第2ベアチップ半導体素子14を中間部材15の上記他方の面に形成されたシールドパターン17bに対向させて、接合部材16bを介して積層している。こうして、第1回路基板11と第2回路基板12とを中間部材15の両面に積層して多層構造を成すと共に、第1ベアチップ半導体素子13と第2ベアチップ半導体素子14との間をシールドし、第1回路基板11と第2回路基板12との間を接合部材16によって電気的に接続している。   As described above, according to the stacked semiconductor device 21 of the present embodiment, the first circuit board 11 on which the first and third bare chip semiconductor elements 13 and 20 are mounted is provided on one surface side of the intermediate member 15. The first bare chip semiconductor element 13 is laminated via the bonding member 16a so as to face the shield pattern 17a formed on the one surface of the intermediate member 15. Similarly, the second circuit board 12 on which the second bare chip semiconductor element 14 is mounted is formed on the other surface side of the intermediate member 15, and the second bare chip semiconductor element 14 is formed on the other surface of the intermediate member 15. The shield pattern 17b is opposed so as to be laminated via a joining member 16b. Thus, the first circuit board 11 and the second circuit board 12 are laminated on both surfaces of the intermediate member 15 to form a multilayer structure, and the space between the first bare chip semiconductor element 13 and the second bare chip semiconductor element 14 is shielded, The first circuit board 11 and the second circuit board 12 are electrically connected by a bonding member 16.

したがって、上記所定の広さのシールドパターン17a,17bと接合部材16a,16bとによって電気的にシールドされた第1,第2ベアチップ半導体素子13,14の実装面積を積層方向に立体的に増加させることができ、第1,第2のベアチップ半導体素子を回路基板上に平面に配置し、各ベアチップ半導体素子を金属蓋等で電磁シールドする場合に比して、積層方向に第1,第2ベアチップ半導体素子13,14を高密度に実装することができる。更に加えて、各積層間に設けられたシールドパターン17a,17bによって、第1,第2回路基板11,12に形成された回路間のノイズによるクロストークも防止することができる。   Therefore, the mounting area of the first and second bare chip semiconductor elements 13 and 14 electrically shielded by the shield patterns 17a and 17b having the predetermined width and the joining members 16a and 16b is increased three-dimensionally in the stacking direction. Compared to the case where the first and second bare chip semiconductor elements are arranged on a circuit board in a plane and each bare chip semiconductor element is electromagnetically shielded with a metal lid or the like, the first and second bare chips are arranged in the stacking direction. The semiconductor elements 13 and 14 can be mounted with high density. In addition, the crosstalk caused by noise between circuits formed on the first and second circuit boards 11 and 12 can be prevented by the shield patterns 17a and 17b provided between the stacked layers.

すなわち、本実施の形態の積層型半導体装置21を用いることによって、電子機器の小型化および信頼性の向上を図ることができるのである。   That is, by using the stacked semiconductor device 21 of the present embodiment, it is possible to reduce the size and improve the reliability of the electronic device.

以下、上記積層型半導体装置21の製造方法について説明する。図2乃至図5は、積層型半導体装置21の製造方法の一例を示す工程図である。この例においては、中間部材15の両面に所定の広さのシールドパターン17a,17bで成るシールド用の導電層17を形成する。シールドパターン17a,17bは、銅箔等によってランド電極や配線パターンの形成時に同時に形成され、接地線用の端子に共通に接続されて、第1回路基板11と第2回路基板12とを積層する際に一括して接地される。   Hereinafter, a method for manufacturing the stacked semiconductor device 21 will be described. 2 to 5 are process diagrams showing an example of a method for manufacturing the stacked semiconductor device 21. In this example, a shield conductive layer 17 composed of shield patterns 17a and 17b having a predetermined width is formed on both surfaces of the intermediate member 15. The shield patterns 17a and 17b are formed simultaneously with the formation of land electrodes and wiring patterns with copper foil or the like, and are connected in common to the ground line terminal, and the first circuit board 11 and the second circuit board 12 are laminated. At the same time, they are grounded together.

また、第1回路基板(以下、第1回路基板11で代表して説明するが第2回路基板12の場合も同様)11の一方の面には、図2に示すように、第1ベアチップ半導体素子13を実装する。ここで、第1回路基板11は、ガラス布基材エポキシ樹脂銅張積層板(FR‐4)等の多層銅張積層基板を加工して、予め所定の配線パターンやランド等を形成して用いられる。尚、配線パターンやランドの形成は、例えば次のようにして行われる。すなわち、多層銅張積層基板の片面毎にレジスト材料を塗布し、その後に配線パターンやランド等の形状のレチクル(例えばネガフィルムや乾板)を用いてレジスト材料を露光し、得られたレジスト膜をマスクにして銅箔をエッチングすることによって配線パターンやランド等が形成される。   In addition, as shown in FIG. 2, a first bare chip semiconductor is provided on one surface of a first circuit board 11 (hereinafter, described by using the first circuit board 11 as a representative but the same applies to the second circuit board 12). The element 13 is mounted. Here, the first circuit board 11 is formed by processing a multilayer copper-clad laminate such as a glass cloth base epoxy resin copper-clad laminate (FR-4) to form a predetermined wiring pattern, land, or the like in advance. It is done. The wiring pattern and land are formed as follows, for example. That is, a resist material is applied to each side of a multilayer copper-clad laminate substrate, and then the resist material is exposed using a reticle (for example, a negative film or a dry plate) having a shape such as a wiring pattern or land, and the resulting resist film is formed. Wiring patterns, lands, and the like are formed by etching the copper foil using a mask.

また、上記多層銅張積層基板として、耐熱性や寸法度安定性に優れているポリイミド系樹脂銅張積層基板や、ビスマレイミド‐トリアジン(BT)レジン系樹脂銅張積層基板を用いてもよい。   In addition, as the multilayer copper-clad laminate, a polyimide resin copper-clad laminate excellent in heat resistance and dimensional stability, or a bismaleimide-triazine (BT) resin copper-clad laminate may be used.

上述のような第1回路基板11には、上記配線パターンに接続して予め形成された複数のパッド電極等に、Au等のバンプ19を介して、第1ベアチップ半導体素子13が接合される。   On the first circuit board 11 as described above, the first bare chip semiconductor element 13 is bonded to a plurality of pad electrodes formed in advance connected to the wiring pattern via bumps 19 such as Au.

上記バンプ19としては、Auバンプ以外に、NiコアAu等の金属突起や、必要に応じて導体フィラーを混入したペースト等による導電突起を用いることも可能である。但し、上記導電突起は金属突起よりも電気抵抗が高い。したがって、バンプ19としては、導電突起よりも金属突起の方が望ましい。尚、バンプ19は、第1回路基板11の面上に形成してもよいし、第1ベアチップ半導体素子13の面上に形成してもよい。   In addition to the Au bump, the bump 19 may be a metal protrusion such as Ni core Au, or a conductive protrusion made of a paste mixed with a conductive filler as required. However, the conductive protrusion has a higher electrical resistance than the metal protrusion. Therefore, the bump 19 is preferably a metal protrusion rather than a conductive protrusion. The bumps 19 may be formed on the surface of the first circuit board 11 or may be formed on the surface of the first bare chip semiconductor element 13.

上記第1ベアチップ半導体素子13を第1回路基板11に接続する方法は、第1回路基板11と第1ベアチップ半導体素子13との間に封止材料(封止樹脂)を介在させ、加熱・加圧によって接続部であるバンプ19を圧接する方法や超音波を印加して接続する方法によって行う。尚、第1回路基板11の場合には、同様にして、他方の面上にバンプ19を介して第3ベアチップ半導体素子20が実装される。   The method for connecting the first bare chip semiconductor element 13 to the first circuit board 11 includes heating and applying a sealing material (sealing resin) between the first circuit board 11 and the first bare chip semiconductor element 13. This is performed by a method of pressing the bumps 19 that are connection portions by pressure or a method of connecting by applying ultrasonic waves. In the case of the first circuit board 11, the third bare chip semiconductor element 20 is similarly mounted on the other surface via the bumps 19.

また、上記第1回路基板11における第1ベアチップ半導体素子13の実装面上に動作検査用電極22が形成される。この動作検査用電極22は、試験電圧の印加やテストデータの供給を行った後の出力データを引き出す際に使用される。この動作検査用電極22として動作検査専用の電極を設けてもよい。しかしながら、本実施の形態においては、電極数を極力少なくする観点から、例えば、接合部材16と電気的に接続されるランド電極23等の信号入力線や信号出力線に接続された本来の電極を兼用するのである。   Further, an operation inspection electrode 22 is formed on the mounting surface of the first bare chip semiconductor element 13 in the first circuit board 11. The operation inspection electrode 22 is used when extracting output data after applying a test voltage or supplying test data. An electrode dedicated for operation inspection may be provided as the operation inspection electrode 22. However, in the present embodiment, from the viewpoint of reducing the number of electrodes as much as possible, for example, an original electrode connected to a signal input line or a signal output line such as a land electrode 23 electrically connected to the bonding member 16 is not used. They are also used.

尚、上述したように、上記第1回路基板11は両面銅箔基板を積層してなる多層銅張積層基板であり、図2にその断面を示すように、複数の接地用ランド電極24同士が、コンタクト孔に埋め込まれた導電部材26と1枚の銅箔25とを介して電気的に接続されている。また、この接地用の銅箔25には、上記第1ベアチップ半導体素子13の接地用の電極(図示せず)も、バンプ19,接地用ランド電極(図示せず)およびコンタクト孔に埋め込まれた導電部材(図示せず)を介して、電気的に接続されている。   As described above, the first circuit board 11 is a multilayer copper-clad laminate formed by laminating double-sided copper foil substrates. As shown in the cross section of FIG. The conductive member 26 embedded in the contact hole and one copper foil 25 are electrically connected to each other. Further, in the grounding copper foil 25, the grounding electrode (not shown) of the first bare chip semiconductor element 13 is also embedded in the bump 19, the grounding land electrode (not shown) and the contact hole. It is electrically connected via a conductive member (not shown).

次に、両面に上記シールドパターン17a,17bを有する中間部材15を形成する。図3は、中間部材15の平面図である。尚、本実施の形態においては、第1,第2回路基板11,12を形成した後に中間部材15を形成するようにしているが、第1,第2回路基板11,12と中間部材15との形成順序は本実施の形態の順序に限定されることはなく、中間部材15を形成した後に第1,第2回路基板11,12を形成しても一向に差し支えない。ここで、中間部材15は絶縁フィルムで構成され、望ましくは耐熱性に優れるポリイミドより構成されることが望ましい。   Next, the intermediate member 15 having the shield patterns 17a and 17b on both sides is formed. FIG. 3 is a plan view of the intermediate member 15. In the present embodiment, the intermediate member 15 is formed after the first and second circuit boards 11 and 12 are formed. However, the first and second circuit boards 11 and 12 and the intermediate member 15 The order in which the first and second circuit boards 11 and 12 are formed after the intermediate member 15 is formed is not limited to the order in the present embodiment. Here, the intermediate member 15 is made of an insulating film, and preferably made of polyimide having excellent heat resistance.

上記シールドパターン17a,17bは、両面銅箔基板で成る中間部材15の両面に形成された銅箔に、予めエッチング加工を施して所定の大きさに形成する。例えば、中間部材15の片面毎にレジスト材を塗布し、その後に、スルーホール用のランド電極27,28や配線パターンやシールドパターン17a,17bなどの形を有するレチクルを用いて上記レジスト材を露光して、上記エッチング用のマスクを形成する。その際におけるシールドパターン17a,17bの形状は、接地線用のスルーホール(図示せず)に接続される2つのランド電極(接地用ランド電極)28に至るようにパターニングされている。その後、上記マスクを用いて上記銅箔をエッチングする。こうして、スルーホール用のランド電極27や接地用ランド電極28や配線パターンと、シールドパターン17a,17bとが、同時に形成されるのである。   The shield patterns 17a and 17b are formed in a predetermined size by previously etching the copper foil formed on both surfaces of the intermediate member 15 made of a double-sided copper foil substrate. For example, a resist material is applied to each side of the intermediate member 15, and then the resist material is exposed using a reticle having shapes such as land electrodes 27, 28 for through holes, wiring patterns, shield patterns 17a, 17b, and the like. Then, the etching mask is formed. The shapes of the shield patterns 17a and 17b at that time are patterned so as to reach two land electrodes (grounding land electrodes) 28 connected to through holes (not shown) for grounding wires. Thereafter, the copper foil is etched using the mask. Thus, the through-hole land electrode 27, the ground land electrode 28, the wiring pattern, and the shield patterns 17a and 17b are formed simultaneously.

尚、本実施の形態においては、図3に示すように、中間部材15の両面に形成されたシールドパターン17a,17bによって導電層17を構成している。しかしながら、本実施の形態はこれに限定されるものではない。図4に示すように、導電層17を中間部材15の内層に形成すると共に、表層にスルーホール用のランド電極29を形成し、ランド電極29を介して接地するようにしても差し支えない。   In the present embodiment, as shown in FIG. 3, the conductive layer 17 is composed of shield patterns 17 a and 17 b formed on both surfaces of the intermediate member 15. However, the present embodiment is not limited to this. As shown in FIG. 4, the conductive layer 17 may be formed on the inner layer of the intermediate member 15, and a land electrode 29 for through holes may be formed on the surface layer and grounded via the land electrode 29.

次に、上記接合部材16を形成する。この接合部材16は、第1回路基板11用の接合部材16aと第2回路基板12用の接合部材16bとで構成される。そして、各接合部材16a,16bは、その主要部が金属のコアボールで構成されている。例えば、CuまたはNi等から成る略球状の金属塊の表面を半田や錫等のメッキで被覆して形成される。上記金属のコアボールは、第1,第2回路基板11,12への信号出力線や第1,第2回路基板11,12からの信号入力線や電源線や接地線等に対応して配置される。   Next, the joining member 16 is formed. The bonding member 16 includes a bonding member 16 a for the first circuit board 11 and a bonding member 16 b for the second circuit board 12. And each joining member 16a, 16b is comprised by the core ball | bowl with the main part. For example, the surface of a substantially spherical metal lump made of Cu or Ni or the like is coated with a plating such as solder or tin. The metal core balls are arranged corresponding to signal output lines to the first and second circuit boards 11 and 12, signal input lines from the first and second circuit boards 11 and 12, power supply lines, ground lines, and the like. Is done.

その後、図5に示すように、上記中間部材15上における周縁部に形成されたランド電極27,28上に接合部材16a,16a'を配置し、加熱処理を行って中間部材15の一面上に接合部材16a,16a'を搭載する。次に、第2回路基板12上における周縁部に形成されたランド電極23,24上に接合部材16b,16b'を配置し、同様に加熱処理を行って第2回路基板12の一面上に接合部材16b,16b'を搭載する。   After that, as shown in FIG. 5, the joining members 16 a and 16 a ′ are arranged on the land electrodes 27 and 28 formed on the peripheral portion on the intermediate member 15, and heat treatment is performed on one surface of the intermediate member 15. The joining members 16a and 16a ′ are mounted. Next, the joining members 16b and 16b ′ are arranged on the land electrodes 23 and 24 formed on the peripheral edge on the second circuit board 12, and similarly heat-treated to join on one surface of the second circuit board 12. The members 16b and 16b ′ are mounted.

そうした後に、上記第2回路基板12における接合部材16b,16b'の搭載面上に上記中間部材15を、中間部材15における接合部材16a,16a'の搭載面上に第1回路基板11を、互いの接合部材16とランド電極23,24,27,28との位置を合わせて積層する。こうすることによって、第1ベアチップ半導体素子13がシールドパターン17aの面に対向し、第2ベアチップ半導体素子14がシールドパターン17bの面に対向するように、第1回路基板11と中間部材15と第2回路基板12との位置が合わせられる。   After that, the intermediate member 15 is placed on the mounting surface of the joining members 16b and 16b 'in the second circuit board 12, and the first circuit board 11 is placed on the mounting surface of the joining members 16a and 16a' in the intermediate member 15. The bonding member 16 and the land electrodes 23, 24, 27, and 28 are aligned and laminated. By doing so, the first circuit board 11, the intermediate member 15, and the first member are arranged so that the first bare chip semiconductor element 13 faces the surface of the shield pattern 17 a and the second bare chip semiconductor element 14 faces the surface of the shield pattern 17 b. The position with the two-circuit board 12 is adjusted.

その結果、上記第1回路基板11と中間部材15との間には接合部材16a,16a'が挟み込まれ、さらに中間部材15と第2回路基板12との間には接合部材16b,16b'が挟み込まれて、第1回路基板11と中間部材15とを接合部材16a,16a'によって電気的に且つ構造的に接続し、中間部材15と第2回路基板12とを接合部材16b,16b'によって電気的且つ構造的に接続した構造が得られるのである。尚、その際における上記接続は、リフロー炉等を用いた加熱工程によって行われる。   As a result, the joining members 16a and 16a ′ are sandwiched between the first circuit board 11 and the intermediate member 15, and the joining members 16b and 16b ′ are further interposed between the intermediate member 15 and the second circuit board 12. The first circuit board 11 and the intermediate member 15 are electrically and structurally connected by the joining members 16a and 16a ', and the intermediate member 15 and the second circuit board 12 are joined by the joining members 16b and 16b'. An electrically and structurally connected structure is obtained. In addition, the said connection in that case is performed by the heating process using a reflow furnace etc.

ここで、上記中間部材15におけるランド電極27,28は、図3に示すように、シールドパターン17a,17bの周囲に2列に配列されており、そのうち接地用ランド電極28は図中斜線で示すように内側に配置されている。また、第1,第2回路基板11,12におけるランド電極23,24は、図2に示すように、第1,第2ベアチップ半導体素子13,14の周囲に2列に配列されており、接地用ランド電極24は総て内側に配置されて内層された銅箔25に接続されている。そして、外部端子18が設けられる側の第2回路基板12の銅箔25は、何れかの外部端子18によって接地される。   Here, as shown in FIG. 3, the land electrodes 27 and 28 in the intermediate member 15 are arranged in two rows around the shield patterns 17a and 17b, of which the grounding land electrodes 28 are indicated by diagonal lines in the figure. Is arranged on the inside. The land electrodes 23 and 24 on the first and second circuit boards 11 and 12 are arranged in two rows around the first and second bare chip semiconductor elements 13 and 14 as shown in FIG. All the land electrodes 24 are connected to a copper foil 25 which is disposed on the inner side and is an inner layer. The copper foil 25 of the second circuit board 12 on the side where the external terminals 18 are provided is grounded by any of the external terminals 18.

その結果、上記第1,第2ベアチップ半導体素子13,14の周辺に並べて配置された接合部材16a',16b'が、中間部材15におけるシールドパターン17a,17bの周囲内側に配置された接地用ランド電極28および接地用スルーホールと、第2回路基板12における第2ベアチップ半導体素子14の周囲内側に配置された接地用ランド電極24,導電部材26および銅箔25とを、介して接地される。こうして、第1,第2ベアチップ半導体素子13,14に近い側の接合部材16a',16b'と中間部材15上のシールドパターン17a,17bとが接地されて、電磁シールドが得られるのである。また、その際に、第1回路基板11と第2回路基板12との間を封止樹脂によって封止する必要がない。したがって、回路基板を任意の数だけ積層することができることになり、実装面積が増え、多機能な電子機器の小型化を実現することができるのである。   As a result, the bonding members 16a 'and 16b' arranged side by side around the first and second bare chip semiconductor elements 13 and 14 are connected to the grounding land arranged inside the shield pattern 17a and 17b in the intermediate member 15. The electrode 28 and the grounding through hole are grounded via the grounding land electrode 24, the conductive member 26, and the copper foil 25 disposed on the inner periphery of the second bare chip semiconductor element 14 in the second circuit board 12. In this way, the joining members 16a ′ and 16b ′ near the first and second bare chip semiconductor elements 13 and 14 and the shield patterns 17a and 17b on the intermediate member 15 are grounded to obtain an electromagnetic shield. At this time, it is not necessary to seal between the first circuit board 11 and the second circuit board 12 with a sealing resin. Therefore, an arbitrary number of circuit boards can be stacked, the mounting area is increased, and downsizing of a multifunctional electronic device can be realized.

・第2実施の形態
図6は、本実施の形態における積層型半導体装置を示す断面図である。また、図7は、図6における中間基板35の平面図である。本実装の形態における積層型半導体装置43は、上記第1実施の形態の積層型半導体装置21における中間部材15と接合部材16とを一体化したものである。すなわち、本実施の形態の積層型半導体装置43における第1回路基板31,第2回路基板32,第1ベアチップ半導体素子33,第2ベアチップ半導体素子34,導電層37,外部端子38およびバンプ39は、上記第1実施の形態の積層型半導体装置における上記第1回路基板11,第2回路基板12,第1ベアチップ半導体素子13,第2ベアチップ半導体素子14,導電層17,外部端子18およびバンプ19と同じである。
Second Embodiment FIG. 6 is a cross-sectional view showing a stacked semiconductor device according to the present embodiment. FIG. 7 is a plan view of the intermediate substrate 35 in FIG. The stacked semiconductor device 43 in the present embodiment is obtained by integrating the intermediate member 15 and the bonding member 16 in the stacked semiconductor device 21 in the first embodiment. That is, the first circuit board 31, the second circuit board 32, the first bare chip semiconductor element 33, the second bare chip semiconductor element 34, the conductive layer 37, the external terminal 38, and the bump 39 in the stacked semiconductor device 43 of the present embodiment are The first circuit board 11, the second circuit board 12, the first bare chip semiconductor element 13, the second bare chip semiconductor element 14, the conductive layer 17, the external terminal 18, and the bump 19 in the stacked semiconductor device of the first embodiment. Is the same.

本実施の形態の積層型半導体装置43における中間部材35は、次のようにして形成される。すなわち、両面に銅箔が形成された絶縁基板である銅張基板36上の上記銅箔に対して、上記第1実施の形態の場合と同様にしてシールドパターン37a,37bが形成されて、中間部材35の本体が形成される。   The intermediate member 35 in the stacked semiconductor device 43 of the present embodiment is formed as follows. That is, shield patterns 37a and 37b are formed on the copper foil on the copper-clad substrate 36, which is an insulating substrate having copper foil formed on both sides, in the same manner as in the first embodiment, and the intermediate The main body of the member 35 is formed.

次に、上記中間部材35の本体に用いられた上記銅張基板36よりも厚さが厚い直線状の銅張基板40を8枚用意し、夫々の銅張基板40にレーザによって穴が空けられる。さらに、図7に示すように、シールドパターン37a,37bが形成された上記本体を成す銅張基板36の表裏4辺に、穴空けされた8枚の銅張基板40がそのランド(図示せず)同士の位置が合わられて貼り付けられる。こうして、中間部材35が形成される。最後に、印刷または鍍金によって、銅張基板40の穴が導電部材41によって埋められる。その結果、シールドパターン37a,37bと銅張基板40とが、接続端子42を介して電気的に接続される。   Next, eight linear copper-clad boards 40 having a thickness greater than that of the copper-clad board 36 used in the body of the intermediate member 35 are prepared, and each copper-clad board 40 is drilled with a laser. . Further, as shown in FIG. 7, eight copper-clad boards 40 perforated on the front and back sides of the copper-clad board 36 forming the main body on which the shield patterns 37a and 37b are formed are lands (not shown). ) The positions of each other are aligned and pasted. Thus, the intermediate member 35 is formed. Finally, the hole of the copper-clad substrate 40 is filled with the conductive member 41 by printing or plating. As a result, the shield patterns 37 a and 37 b and the copper-clad substrate 40 are electrically connected via the connection terminal 42.

上述のように形成された中間部材35と第1,第2回路基板31,32とは、異方性導電樹脂を各々の接続部に塗布した後に、第1回路基板31と中間部材35と第2回路基板32とを積層し、得られた積層構造物を170℃程度で加圧・加熱することによって、第1回路基板31と第2回路基板32との間には中間部材35が挟み込まれ、第1回路基板31と第2回路基板32とを中間部材35によって電気的に且つ構造的に接続した積層型半導体装置43が得られるのである。尚、本積層型半導体装置43の構造によっても、上記第1実施の形態における積層型半導体装置21と同様に、互いに対向する第1,第2ベアチップ半導体素子33,34の電磁シールド効果を得ることができる。   The intermediate member 35 and the first and second circuit boards 31 and 32 formed as described above are formed by applying the anisotropic conductive resin to the respective connection portions, and then the first circuit board 31, the intermediate member 35, and the first circuit board 31 and 32. The intermediate member 35 is sandwiched between the first circuit board 31 and the second circuit board 32 by laminating the two circuit boards 32 and pressurizing and heating the obtained laminated structure at about 170 ° C. Thus, the stacked semiconductor device 43 in which the first circuit board 31 and the second circuit board 32 are electrically and structurally connected by the intermediate member 35 is obtained. Note that, also by the structure of the stacked semiconductor device 43, the electromagnetic shielding effect of the first and second bare chip semiconductor elements 33 and 34 facing each other can be obtained in the same manner as the stacked semiconductor device 21 in the first embodiment. Can do.

また、本実施の形態の場合にも、上記第1回路基板31と第2回路基板32との間を封止樹脂によって封止する必要がない。したがって、回路基板を任意の数だけ積層することができることになり、実装面積が増え、多機能な電子機器の小型化を実現することができるのである。   Also in the case of the present embodiment, it is not necessary to seal between the first circuit board 31 and the second circuit board 32 with a sealing resin. Therefore, an arbitrary number of circuit boards can be stacked, the mounting area is increased, and downsizing of a multifunctional electronic device can be realized.

尚、本実施の形態においては、上記中間部材35として銅張基板36を用いる場合について説明したが、中央部がポリイミド基板であり且つ周辺部がリジット基板であるリジットフレキ基板を用いても構わない。   In this embodiment, the case where the copper-clad substrate 36 is used as the intermediate member 35 has been described. However, a rigid-flexible substrate in which the central portion is a polyimide substrate and the peripheral portion is a rigid substrate may be used. .

また、上記各実施の形態においては、2枚の回路基板11,12:31,32を積層する場合を例に説明しているが、回路基板の積層数は2枚に限定されるものではなく、3枚以上の回路基板を積層する場合にも適用できる。そして、そのような場合であって同様な効果を得ることができるのである。   In each of the above embodiments, the case where two circuit boards 11, 12, 31 and 32 are stacked is described as an example. However, the number of circuit boards stacked is not limited to two. The present invention can also be applied when three or more circuit boards are stacked. In such a case, the same effect can be obtained.

本発明の積層型半導体装置およびその製造方法は、半導体集積回路や受動素子等の電子部品を高密度に実装するのに有用であり、小型化,薄型化が要求される電子機器等に利用することができる。   INDUSTRIAL APPLICABILITY The stacked semiconductor device and the manufacturing method thereof according to the present invention are useful for mounting electronic components such as semiconductor integrated circuits and passive elements at high density, and are used for electronic devices that are required to be downsized and thinned. be able to.

この発明の積層型半導体装置における断面図である。It is sectional drawing in the laminated semiconductor device of this invention. 第1ベアチップ半導体素子が実装された第1回路基板の斜視図である。It is a perspective view of the 1st circuit board with which the 1st bare chip semiconductor element was mounted. 図1における中間部材の平面図である。It is a top view of the intermediate member in FIG. 図1および図3とは異なる中間部材の断面図である。It is sectional drawing of the intermediate member different from FIG. 1 and FIG. 図1における第1回路基板,中間部材および第2回路基板の積層手順を示す図である。It is a figure which shows the lamination | stacking procedure of the 1st circuit board in FIG. 1, an intermediate member, and a 2nd circuit board. 図1とは異なる積層型半導体装置における断面図である。FIG. 2 is a cross-sectional view of a stacked semiconductor device different from FIG. 1. 図6における中間基板の平面図である。FIG. 7 is a plan view of the intermediate substrate in FIG. 6. 電磁シールドを図る従来の半導体素子の実装構造における断面図である。It is sectional drawing in the mounting structure of the conventional semiconductor element which aims at electromagnetic shielding.

符号の説明Explanation of symbols

11,31…第1回路基板、
12,32…第2回路基板、
13,33…第1ベアチップ半導体素子、
14,34…第2ベアチップ半導体素子、
15,35…中間部材、
16,16a,16b…接合部材、
17,37…導電層、
17a,17b,37a,37b…シールドパターン、
18,38…外部端子、
19,39…バンプ、
20…第3ベアチップ半導体素子、
21,43…積層型半導体装置、
22…動作検査用電極、
23,27…スルーホール用のランド電極、
24,28…接地用ランド電極、
36,40…銅張基板、
41…導電部材。
11, 31 ... 1st circuit board,
12, 32 ... second circuit board,
13, 33 ... first bare chip semiconductor element,
14, 34 ... second bare chip semiconductor element,
15, 35 ... intermediate member,
16, 16a, 16b ... joining members,
17, 37 ... conductive layer,
17a, 17b, 37a, 37b ... shield pattern,
18, 38 ... external terminals,
19,39 ... Bump,
20 ... Third bare chip semiconductor element,
21, 43 ... Stacked semiconductor device,
22 ... Electrode for operation inspection,
23, 27 ... land electrodes for through holes,
24, 28 ... Land electrode for grounding,
36, 40 ... Copper-clad substrate,
41: Conductive member.

Claims (5)

電子部品が搭載された複数の回路基板を順次積層してなる積層型半導体装置において、
上記積層された複数の回路基板のうち互いに隣接している回路基板であって、搭載されている電子部品が互いに対向している2つの回路基板の間に、導電層を有する中間部材を挟設し、
上記中間部材を介して、上記互いに隣接している2つの回路基板間を、電気的に且つ機械的に接続したことを特徴とする積層型半導体装置。
In a stacked semiconductor device formed by sequentially stacking a plurality of circuit boards on which electronic components are mounted,
An intermediate member having a conductive layer is sandwiched between two circuit boards that are adjacent to each other among the plurality of circuit boards stacked above and on which the mounted electronic components face each other. And
2. A stacked semiconductor device characterized in that the two circuit boards adjacent to each other are electrically and mechanically connected via the intermediate member.
請求項1に記載の積層型半導体装置において、
上記中間部材の導電層は、対峙している上記電子部品の面積よりも広い面積を有すると共に、当該中間部材の表面または内部に上記電子部品と積層方向に重なり合うように形成されていることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1,
The conductive layer of the intermediate member has an area larger than that of the facing electronic component, and is formed on the surface or inside of the intermediate member so as to overlap the electronic component in the stacking direction. A stacked semiconductor device.
請求項1に記載の積層型半導体装置において、
上記中間部材の導電層は、上記互いに隣接している2つの回路基板のグランド端子と上記互いに対向している電子部品のグランド端子とに、接続されていることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1,
The conductive layer of the intermediate member is connected to the ground terminals of the two circuit boards adjacent to each other and the ground terminals of the electronic components facing each other.
請求項1に記載の積層型半導体装置において、
上記電子部品は、上記回路基板にフリップチップ実装されることによって搭載されていることを特徴とする積層型半導体装置。
The stacked semiconductor device according to claim 1,
2. The stacked semiconductor device according to claim 1, wherein the electronic component is mounted on the circuit board by flip chip mounting.
電子部品が搭載された複数の回路基板を順次積層してなる積層型半導体装置の製造方法において、
上記電子部品を上記回路基板上に実装し、
絶縁体で成る中間部材に導電層を形成し、
少なくとも、2つの上記回路基板と1つの上記中間部材とを用いて、
上記2つの上記回路基板のうちの一方である第1回路基板を、この第1回路基板上の電子部品を当該中間部材の導電層に対向させて、当該中間部材の一面に接合部材を介して積層すると共に接合し、
上記2つの上記回路基板のうちの他方である第2回路基板を、この第2回路基板上の電子部品を当該中間部材の導電層に対向させて、当該中間部材の他面に接合部材を介して積層すると共に接合する
ことを特徴とする積層型半導体装置の製造方法。
In a manufacturing method of a stacked semiconductor device in which a plurality of circuit boards on which electronic components are mounted are sequentially stacked,
Mounting the electronic component on the circuit board;
Forming a conductive layer on an intermediate member made of an insulator;
Using at least two circuit boards and one intermediate member,
The first circuit board, which is one of the two circuit boards, is arranged with the electronic component on the first circuit board opposed to the conductive layer of the intermediate member, and a bonding member is provided on one surface of the intermediate member. Laminate and join,
The second circuit board, which is the other of the two circuit boards, is placed with the electronic component on the second circuit board facing the conductive layer of the intermediate member, and a bonding member is interposed on the other surface of the intermediate member. A method of manufacturing a stacked semiconductor device, wherein the stacked semiconductor devices are stacked and bonded together.
JP2003386563A 2003-11-17 2003-11-17 Laminated semiconductor device and its manufacturing method Pending JP2005150443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386563A JP2005150443A (en) 2003-11-17 2003-11-17 Laminated semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386563A JP2005150443A (en) 2003-11-17 2003-11-17 Laminated semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005150443A true JP2005150443A (en) 2005-06-09

Family

ID=34694215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386563A Pending JP2005150443A (en) 2003-11-17 2003-11-17 Laminated semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005150443A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005561A (en) * 2005-06-23 2007-01-11 Fujitsu Ltd Electronic device having double sided mounting circuit substrate with built-in capacitor
KR100697553B1 (en) 2005-12-19 2007-03-21 삼성전자주식회사 Multi stacking package and method of manufacturing the same
WO2007069606A1 (en) * 2005-12-14 2007-06-21 Shinko Electric Industries Co., Ltd. Substrate with built-in chip and method for manufacturing substrate with built-in chip
JP2008141059A (en) * 2006-12-04 2008-06-19 Nec Electronics Corp Semiconductor device
JP2008153536A (en) * 2006-12-19 2008-07-03 Shinko Electric Ind Co Ltd Substrate having built-in electronic component and manufacturing method of same
JP2008159956A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
JP2009147165A (en) * 2007-12-14 2009-07-02 Shinko Electric Ind Co Ltd Semiconductor device
JP2010245269A (en) * 2009-04-06 2010-10-28 Nec Corp Semiconductor device
JP2011171578A (en) * 2010-02-19 2011-09-01 Canon Inc Semiconductor device, laminated semiconductor device, and method of manufacturing semiconductor device
JP2013123070A (en) * 2006-05-01 2013-06-20 Kla-Tencor Corp Process condition measuring device with shielding
JP2019086485A (en) * 2017-11-10 2019-06-06 株式会社豊田中央研究所 Data recording device
WO2019181589A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 High-frequency module and communication device
WO2019181590A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 High-frequency module and communication device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005561A (en) * 2005-06-23 2007-01-11 Fujitsu Ltd Electronic device having double sided mounting circuit substrate with built-in capacitor
JP4486553B2 (en) * 2005-06-23 2010-06-23 富士通株式会社 Electronic device having double-sided mounting circuit board with built-in capacitor
US8793868B2 (en) 2005-12-14 2014-08-05 Shinko Electric Industries Co., Ltd. Chip embedded substrate and method of producing the same
WO2007069606A1 (en) * 2005-12-14 2007-06-21 Shinko Electric Industries Co., Ltd. Substrate with built-in chip and method for manufacturing substrate with built-in chip
US10134680B2 (en) 2005-12-14 2018-11-20 Shinko Electric Industries Co., Ltd. Electronic part embedded substrate and method of producing an electronic part embedded substrate
US9768122B2 (en) 2005-12-14 2017-09-19 Shinko Electric Industries Co., Ltd. Electronic part embedded substrate and method of producing an electronic part embedded substrate
US7989707B2 (en) 2005-12-14 2011-08-02 Shinko Electric Industries Co., Ltd. Chip embedded substrate and method of producing the same
US9451702B2 (en) 2005-12-14 2016-09-20 Shinko Electric Industries Co., Ltd. Chip embedded substrate and method of producing the same
KR100697553B1 (en) 2005-12-19 2007-03-21 삼성전자주식회사 Multi stacking package and method of manufacturing the same
JP2013123070A (en) * 2006-05-01 2013-06-20 Kla-Tencor Corp Process condition measuring device with shielding
JP2008141059A (en) * 2006-12-04 2008-06-19 Nec Electronics Corp Semiconductor device
JP2008153536A (en) * 2006-12-19 2008-07-03 Shinko Electric Ind Co Ltd Substrate having built-in electronic component and manufacturing method of same
JP2008159956A (en) * 2006-12-26 2008-07-10 Shinko Electric Ind Co Ltd Substrate incorporating electronic component
JP2009147165A (en) * 2007-12-14 2009-07-02 Shinko Electric Ind Co Ltd Semiconductor device
JP2010245269A (en) * 2009-04-06 2010-10-28 Nec Corp Semiconductor device
JP2011171578A (en) * 2010-02-19 2011-09-01 Canon Inc Semiconductor device, laminated semiconductor device, and method of manufacturing semiconductor device
JP2019086485A (en) * 2017-11-10 2019-06-06 株式会社豊田中央研究所 Data recording device
WO2019181589A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 High-frequency module and communication device
WO2019181590A1 (en) * 2018-03-23 2019-09-26 株式会社村田製作所 High-frequency module and communication device
US11380654B2 (en) 2018-03-23 2022-07-05 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus
US11393796B2 (en) 2018-03-23 2022-07-19 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus
US11637091B2 (en) 2018-03-23 2023-04-25 Murata Manufacturing Co., Ltd. Radio-frequency module and communication apparatus

Similar Documents

Publication Publication Date Title
US7704548B2 (en) Method for manufacturing wiring board
KR100832653B1 (en) Printed circuit board with embedded components and method for manufacturing the same
KR101155624B1 (en) Embedded pcb and manufacturing method for the same
JPH09321439A (en) Lamination circuit board
JP2004179232A (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
US20080230892A1 (en) Chip package module
JP2005150443A (en) Laminated semiconductor device and its manufacturing method
JP2002299512A (en) Semiconductor device and manufacturing method thereof
JPH06120670A (en) Multilayer wiring board
JP2001119147A (en) Multilayer board incorporating electronic device and production method therefor
JPH0579995U (en) Multilayer wiring board with high-frequency shield structure
TWI506758B (en) Package on package structure and method for manufacturing same
JP5619372B2 (en) Image sensor module
KR20100136866A (en) Multi-layer printed circuit board of embedded chip type and method for fabricating the same
JP5692473B1 (en) Component built-in board and communication module
JP2002246536A (en) Method for manufacturing three-dimensional mounting package and package module for its manufacturing
JPH07142283A (en) Capacitor and packaging structure using the same
JPH1041631A (en) Manufacturing method of chip-buried structure high density mounting board
JP2015103585A (en) Interposer having flexibility and semiconductor device
JP3024596B2 (en) BGA type semiconductor device using film carrier tape
JP3785661B2 (en) Method for manufacturing double-sided wiring board and method for manufacturing semiconductor device
JP2014123592A (en) Process of manufacturing printed wiring board and printed wiring board
JPH09266266A (en) Semiconductor device, manufacturing method thereof and cap of the semiconductor device
JP2004214286A (en) Module that incorporates components
JP4660946B2 (en) Manufacturing method of circuit board with built-in electronic components