JP2005150027A - Component measuring apparatus for humidifying gas - Google Patents

Component measuring apparatus for humidifying gas Download PDF

Info

Publication number
JP2005150027A
JP2005150027A JP2003389401A JP2003389401A JP2005150027A JP 2005150027 A JP2005150027 A JP 2005150027A JP 2003389401 A JP2003389401 A JP 2003389401A JP 2003389401 A JP2003389401 A JP 2003389401A JP 2005150027 A JP2005150027 A JP 2005150027A
Authority
JP
Japan
Prior art keywords
gas
moisture
intermediate space
pressure
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003389401A
Other languages
Japanese (ja)
Inventor
Hiroshi Hamaguchi
寛 浜口
Hiroshi Tomiyama
浩 冨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DUNE KK
Toyota Motor Corp
Original Assignee
DUNE KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DUNE KK, Toyota Motor Corp filed Critical DUNE KK
Priority to JP2003389401A priority Critical patent/JP2005150027A/en
Publication of JP2005150027A publication Critical patent/JP2005150027A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component measuring apparatus for humidifying gas, which separates and removes water contained in humidifying gas, continuously or intermittently measures a water content promptly, and performs mass analysis of gas constituents simultaneously. <P>SOLUTION: This component measuring apparatus is provided with a mass spectrometer 20, and a water removal quantifying part 10 provided in the upstream of a flow passage supplying the humidifying gas and continuously separating and removing water and measuring the water content contained in the humidifying gas. The water removal quantifying part 10 comprises: a pair of upstream and downstream orifice tubes 12, 12' coaxially facing each other along the gas flow passage; a vacuum pump 18 evacuating an intermediate part space 11 storing the pair of orifices; a vacuum bulb 17 adjusting the pressure in the intermediate part space 11 to optimize the water removal efficiency; a vacuum gauge 14 measuring the pressure in the intermediate part space 11; and thermometers 15, 16 measuring the gas temperatures in a supply upstream part and the adiabatically expanded intermediate part space. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水分とその他のガス成分が含まれる加湿ガスの成分分析、すなわち、水分量とその他のガス成分の質量とを連続的に、あるいは断続的に同時測定する装置に関する。   The present invention relates to a component analysis of a humidified gas containing moisture and other gas components, that is, an apparatus for continuously or intermittently measuring the moisture content and the mass of other gas components.

ガス濃度を高速で定量する、あるいは気体分子の種類をそれらの質量電荷比の大きさによって分析する装置として磁場型、四重極型、飛行時間差型などの質量分析計が知られている。こうした質量分析計はガス状となった試料物質を高真空に保持されたイオン化室に微少流量導入し、イオン化室で生じたイオンを電磁場の作用によってイオンの質量電荷比の大きさ毎に軌道分離して、イオン検出部で計測された質量スペクトルから導入した試料物質の成分や構造を同定する装置である。   2. Description of the Related Art Magnetic spectrometers such as a magnetic field type, a quadrupole type, and a time-of-flight difference type are known as apparatuses for quantifying gas concentrations at high speed or analyzing the types of gas molecules based on their mass-to-charge ratio. These mass spectrometers introduce a small amount of gaseous sample material into an ionization chamber held in a high vacuum, and the ions generated in the ionization chamber are orbitally separated by the magnitude of the mass-to-charge ratio of the ions by the action of an electromagnetic field. Thus, it is an apparatus for identifying the component and structure of the sample substance introduced from the mass spectrum measured by the ion detector.

ただし、質量分折計は、大気圧あるいは加圧された状態にある試料ガスを高真空に保持されたイオン化室に直接導入することは不可能であり、そのため試料ガスの導入量を微少に調整するための接続部(インターフェース)として、何らかの希釈・減圧手段、あるいは差動排気部分が不可欠となる。   However, the mass spectrometer cannot directly introduce the sample gas at atmospheric pressure or under pressure into the ionization chamber held in a high vacuum, so the amount of sample gas introduced can be adjusted slightly. As a connection part (interface) for this purpose, some dilution / decompression means or a differential exhaust part is indispensable.

また、高真空に保持した質量分析計内に多量の水分を含んだ試料ガスを導入すると、水分から解離した活性な酸素イオンなどによって、イオン源のフィラメントがたちまち劣化し、短時間の計測操作中であってもデータの信頼性が失われ、さらにフィラメントの焼損トラブルで計測不能となってしまう。   In addition, if a sample gas containing a large amount of water is introduced into a mass spectrometer held in a high vacuum, the filament of the ion source deteriorates quickly due to active oxygen ions dissociated from the water, and a short measurement operation is in progress. Even so, the reliability of the data is lost, and the measurement becomes impossible due to a burning problem of the filament.

従来技術として用いられている分析方法には、ガスクロマトグラフ質量分析計(GCMS)がある。その高い感度と優れた選択性から、ガスクロマトグラフで分離可能な揮発性有機化合物の混合物の試料ガスにも適用できることから、多方面での分析に不可欠な計測手段となっている。飲料水、工場排水といった水分に溶存した微量な有機化合物などの分析を行う水質分析においては、パージトラッブ・ガスクロマトグラフ質量分析計(PT・GCMS)、またはヘッドスペース・ガスクロマトグラフ質量分析計(HS・GCMS)が公定法となっている。   An analysis method used as a conventional technique is a gas chromatograph mass spectrometer (GCMS). Because of its high sensitivity and excellent selectivity, it can also be applied to sample gases of volatile organic compound mixtures that can be separated by gas chromatography, making it an indispensable means for analysis in various fields. For water quality analysis that analyzes trace amounts of organic compounds dissolved in water, such as drinking water and factory effluent, purge trap gas chromatograph mass spectrometer (PT / GCMS) or headspace gas chromatograph mass spectrometer (HS / GCMS) ) Is the official law.

しかし、ここで用いられているガスクロマトグラフ自体で水分の検出、定量化を行う訳ではなく、また前段に配置したパージトラップの機能は、試料をバブリングして揮発成分を気化させ、その試料ガスをコールドトラップ管で濃縮することである。   However, the gas chromatograph used here does not detect or quantify moisture, and the purge trap function placed in the previous stage vaporizes volatile components by bubbling the sample, and the sample gas is Concentrate in a cold trap tube.

これらの分析方法においても、多量の水分を含んだ試料ガスを導入する場合には、水分がトラップ管内で凝縮・凍結を起こして、管内に目詰まりを生じてキャリアーガスが流れなくなることを防ぐために、コールドトラップ管の上流で除湿器や気液分離器を用いて水分除去を行っている。   Even in these analysis methods, when introducing a sample gas containing a large amount of moisture, in order to prevent moisture from condensing and freezing in the trap tube, causing clogging in the tube and preventing the carrier gas from flowing. The water is removed upstream of the cold trap tube using a dehumidifier and a gas-liquid separator.

なお、以上に述べたような水分に溶存した微量成分の水質分析であれば、気液分離器などを用いて予め単独で水分量を計測することは比較的簡単であるが、ここで問題としている加湿ガス、すなわち水蒸気に含まれた、あるいは他のガス成分と混合気体となった状態の水分量の計測を行うことは、静電容量法、光学式露点法、水晶発振子法、五酸化リン吸収電解法といった水分計が市販製品としてあるものの、いずれも校正方法の難しさや計測時間が長いなどの問題があり、価格も相当高いものである。   Note that it is relatively easy to measure the amount of water alone in advance using a gas-liquid separator or the like for the water quality analysis of trace components dissolved in water as described above. Measurement of the amount of moisture contained in the humidified gas, that is, in the water vapor or mixed with other gas components, is the capacitance method, optical dew point method, crystal oscillator method, pentoxide Although moisture analyzers such as the phosphorus absorption electrolysis method are available as commercial products, there are problems such as difficulty in calibration method and long measurement time, and the price is considerably high.

質量分析計による水分を含んだ試料ガスの測定に対して、水分除去のための前処理装置
を付加した先例としては、特許文献1(特開平08−122314号公報)には、ガスクロマトグラフ質量分析計(GCMS)において、インジェクタとメインカラムとの間に水分を分離可能なプレカラムを配置し、プレカラムを通過した水分が除去された試料ガスを質量分析計へ送り込むと共に、バルブの流路を切り換えることによってプレカラムで分離した水分を系外へ排出するようにしたものが記載されている。また、特許文献2(特開平10−19850号公報)には、水分を含んだ試料(加湿ガス)をペルチェ効果による電子クーラーを備えた脱水装置に送り込み、水蒸気成分を凝縮してトラップした後に、水分が除去された試料ガスを質量分析計に送り込むようにしたものが記載されている。ここでも、トラップされた水分は脱水装置の下部に設けられたドレインからバルブによって系外に排出されている。さらに、この文献には、上記の脱水装置と質量分析計との間に過塩素酸マグネシウムやシリカゲルなどの脱水剤が充填された脱水管が設けられており、質量分析計への水蒸気の流入をさらに低減するようにしている。
As a precedent in which a pretreatment device for removing moisture is added to the measurement of a sample gas containing moisture by a mass spectrometer, Patent Document 1 (Japanese Patent Laid-Open No. 08-122314) discloses gas chromatograph mass spectrometry. In the gas meter (GCMS), a pre-column capable of separating water is placed between the injector and the main column, and the sample gas from which water has passed through the pre-column is sent to the mass spectrometer and the flow path of the valve is switched. In which the water separated by the precolumn is discharged out of the system. In addition, in Patent Document 2 (Japanese Patent Laid-Open No. 10-19850), a sample containing moisture (humidified gas) is fed into a dehydrator equipped with an electronic cooler based on the Peltier effect, and the water vapor component is condensed and trapped. The sample gas from which moisture is removed is described as being sent to a mass spectrometer. Here again, the trapped moisture is discharged out of the system by a valve from a drain provided in the lower part of the dehydrator. Furthermore, in this document, a dehydration tube filled with a dehydrating agent such as magnesium perchlorate or silica gel is provided between the dehydrator and the mass spectrometer, and the flow of water vapor into the mass spectrometer is prevented. Further reduction is made.

一方、ガスクロマトグラフ質量分析計(GCMS)には、ガスクロマトグラフと質量分析計との接続部(インターフェース)として、セパレータが多用されている(特許文献3:特公昭55−28508号公報など参照)。このセパレータは共軸・連通した一対のオリフィス(ノズルとも呼ばれている)を備え、それらの中間部空間を差動排気する構造を有し、ガスクロマトグラフのカラムで分離溶出してくるガス成分を運ぶキャリアーガス(担体ガス)であるヘリウムを分離除去し、分析対象のガスのみ質量分析計に導入するために用いられている。ここで、セパレータはオリフィスで絞り込まれた気体流をより低い圧力空間に急激に発散させることによって、質量の小さなヘリウムを選択的に分離除去し、質量のより大きなガス分子に対する通過率を大きくする効果を有することから、分子分離器、濃縮機(エシリッチャ)とも呼ばれている。   On the other hand, separators are frequently used in gas chromatograph mass spectrometers (GCMS) as connecting portions (interfaces) between gas chromatographs and mass spectrometers (see Patent Document 3: Japanese Patent Publication No. 55-28508). This separator is equipped with a pair of coaxial and communicating orifices (also called nozzles), and has a structure that differentially evacuates the intermediate space between them so that the gas components separated and eluted by the column of the gas chromatograph can be removed. Helium, which is a carrier gas (carrier gas) to be carried, is separated and removed, and only the gas to be analyzed is introduced into the mass spectrometer. Here, the separator has the effect of selectively separating and removing helium with a small mass and increasing the passage rate for gas molecules with a larger mass by abruptly diverging the gas flow constricted by the orifice into a lower pressure space. Therefore, it is also called a molecular separator or a concentrator.

本発明に関する発想は、こうしたオリフィスを有するセパレータの使用方法において、その構造で何故温度変化を検出する機能を備えないのか、という疑問を端緒として、以下に記載する全く別の研究分野からの知見によって、水蒸気がオリフィスを通過する際には急激な断熱膨張に伴って温度降下を生じる現象に着目し、オリフィスの孔径や距離、圧力差などの条件を調整することにより、水蒸気に含まれた水分を最も凝縮・氷結を起こし易い状態にして、結果として水分除去に対して著しい効果を引き出すこと、さらにはオリフィスでの断熱膨張に伴う温度降下を精密計測することによって水分量を迅速に決定すること、を了知し、本発明をなすに至ったものである。   The idea related to the present invention is based on the findings from a completely different field of research described below, starting with the question of why the structure of the separator having an orifice does not have a function of detecting a temperature change. Focusing on the phenomenon of temperature drop due to rapid adiabatic expansion when water vapor passes through the orifice, adjusting the conditions such as orifice diameter, distance, pressure difference, etc. To determine the amount of moisture quickly by making the most condensing and freezing conditions, resulting in a significant effect on moisture removal, and by precisely measuring the temperature drop due to adiabatic expansion at the orifice, As a result, the present invention has been made.

ちなみに、Philip G.hillの著書(非特許文献1)によれば、高温の水蒸気を断熱膨張
させると水分子自身が集合して離散的な凝縮核をつくって成長していく自己凝縮(均一凝縮)する過程、すなわち水蒸気が、とりわけ他のガスに比べて潜熱放出が著しく、急激な断熱膨張に伴って温度降下を生じて凝縮して大きな液滴となり、さらに氷結する現象が観測され、また理論的な解明も行われている。
By the way, according to Philip G.hill's book (Non-Patent Document 1), when a high-temperature steam is adiabatically expanded, water molecules themselves gather to form discrete condensation nuclei and grow (self-condensation). ), That is, the latent heat release is particularly significant compared to other gases, a temperature drop occurs due to rapid adiabatic expansion, condenses into large droplets, and a phenomenon of freezing is observed, and the theory Elucidation is also carried out.

こうした現象解析や実験研究に関して、質量分析とは全く異なった熱力学や流体力学といった研究分野において、古くは1852〜1862年に、J.P.JouleとW.Thomsonによる一連の実験から発見された、気体が多孔性の栓や細孔(オリフィス、スロットルとも呼ばれる)を通過して連続的に排気されると、気体が非可逆的断熱膨張に伴って温度変化が生じるというジュールトムソン効果は多くの教科書にも記載されている。   With regard to such phenomenon analysis and experimental research, in a research field such as thermodynamics and fluid dynamics that are completely different from mass spectrometry, gas was discovered from a series of experiments by JPJoule and W. Thomson in 1852 to 1862. The Joule-Thompson effect, which causes temperature changes with irreversible adiabatic expansion when continuously exhausted through porous plugs and pores (also called orifices and throttles), has been found in many textbooks. Has been described.

さらには1897年に、C.T.R.Wilsonによって発明されたウイルスン霜箱、すなわちアルゴンと40%水蒸気+60%エチルアルコールの混合気体は飽和状態で封入した容器中に荷電粒子を通過させた直後に機械的に容器内を断熱膨張させると、混合気体は過飽和状態となって荷電粒子の通路で生成された正、負イオンを核とした霧滴が形成され、こうした霧滴の列を荷電粒子の飛跡検出器としたことは有名である。   Furthermore, in 1897, the virus frost box invented by CTRWilson, that is, a mixed gas of argon and 40% water vapor + 60% ethyl alcohol was mechanically immediately after passing charged particles through a container sealed in a saturated state. When the inside of the container is adiabatically expanded, the gas mixture becomes supersaturated, forming mist droplets with positive and negative ions as nuclei formed in the passage of charged particles. It is famous.

また、比較的最近では半導体製造装置分野において、1990年のJun Zhao,Benjamin,Y.H.Liu,Thomas H.Kuehn(非特許文献2)、続いて1991年のJohn F.O' Hanlon,Jhy-Jer,Shieh(非特許文献3)の水分のエアロゾルによるウエハなどの表面汚染に関連した研究論文によれば、真空プロセス装置に用いられる、大気状態と真空状態を往復するロードロック室などの排気過程における水分のエアロゾル形成に関する実験データと数学モデルが報告されている。とりわけ、これらの論文に掲載されている、室内室気の湿度を35〜63%に変化させた場合の、排気過程で真空チャンバ内で計測された圧力、気体温度、およびエアロゾル発生量のデータは、本発明に大きな足がかりを与えている。   More recently, in the field of semiconductor manufacturing equipment, Jun Zhao, Benjamin, YHLiu, Thomas H. Kuehn (Non-Patent Document 2) in 1990, followed by John FO 'Hanlon, Jhy-Jer, Shieh (1991) According to a research paper related to surface contamination of wafers and the like caused by moisture aerosol in Non-Patent Document 3), the moisture aerosol in the exhaust process of a load lock chamber that reciprocates between the atmospheric state and the vacuum state, which is used in a vacuum process apparatus. Experimental data and mathematical models on formation have been reported. In particular, the pressure, gas temperature, and aerosol generation data measured in the vacuum chamber during the exhaust process when the humidity of the indoor room air is changed from 35% to 63%, which are published in these papers. This gives a great foothold to the present invention.

特開平08−122314号公報Japanese Patent Laid-Open No. 08-122314 特開平10−19850号公報Japanese Patent Laid-Open No. 10-19850 特公昭55−28508号公報Japanese Patent Publication No.55-28508 Philip G.hill, Condensation of water vapour during supersonic expansion in nozzles, Journal of Fluid Mechanics,25-3(1966),P593-620Philip G.hill, Condensation of water vapour during supersonic expansion in nozzles, Journal of Fluid Mechanics, 25-3 (1966), P593-620 Jun Zhao,Benjamin,Y.H.Liu,Thomas H.Kuehn,The formation of water aerosols during pump-down of vacuum process tools,Sept.1990,SOLID STATE TECHNOLOGY,p85Jun Zhao, Benjamin, Y.H. Liu, Thomas H. Kuehn, The formation of water aerosols during pump-down of vacuum process tools, Sept. 1990, SOLID STATE TECHNOLOGY, p85 John F.O' Hanlon,Jhy-Jer,Shieh, Reduction of water aerosol contamination during pumping of a vacuun chamber from atomospheric pressure, J.Vac,Sci.Technol,A9(5),Sept.1991 p2802John F. O 'Hanlon, Jhy-Jer, Shieh, Reduction of water aerosol contamination during pumping of a vacuun chamber from atomospheric pressure, J. Vac, Sci. Technol, A9 (5), Sept. 1991 p2802

加湿ガスにおけるガス濃度を単に定量する場合、あるいは気体成分の種類を特定する場合には、上記特許文献1、2に記載のような加湿ガスから水分を除去する手段を備えた質量分析計を有効に用いることができる。しかし、加湿ガスに含まれる水分の定量化を、ガス成分の定量化と平行してかつ迅速に行うことが求められるような場合には、分離した水分を系外に排出している上記の装置では、それを行うことができない。   When simply quantifying the gas concentration in the humidified gas, or when specifying the type of gas component, use a mass spectrometer equipped with a means for removing moisture from the humidified gas as described in Patent Documents 1 and 2 above. Can be used. However, when the quantification of the moisture contained in the humidified gas is required to be performed quickly and in parallel with the quantification of the gas component, the above-mentioned device that discharges the separated moisture out of the system So you can't do it.

例えば、高分子電解質膜型燃料電池の運転では、水素などのガス濃度と共に、膜電極接合体(MEA)を構成する膜の水分を適切に管理することが重要であり、そのために、膜電極接合体に供給される加湿ガスおよび発電後にそこから排出される加湿ガスの水分量を、ガス濃度と同時並行して定量することは、燃料電池の運転性能を向上させる目的から不可欠の要請となっている。   For example, in the operation of a polymer electrolyte membrane fuel cell, it is important to appropriately manage the moisture of the membrane constituting the membrane electrode assembly (MEA) together with the concentration of gas such as hydrogen. Quantifying the moisture content of the humidified gas supplied to the body and the humidified gas discharged from it after power generation in parallel with the gas concentration is an indispensable requirement for the purpose of improving the operating performance of the fuel cell. Yes.

従来の計測方法では、配管を分岐して水用分析器(水用ガスクロマトグラフ)とガス用分析器(ガス用ガスクロマトグラフ)との双方に接続し、かつガス用分析器の直前で水分除去を行っていた。こうした2種類の分析器を用いる装置構成ではコストが高く、また水用ガスクロマトグラフでの水分量の計測に長い時間を要することから、燃料電池の高速度で変化する発電環境に追従することができなかった。   In the conventional measurement method, the piping is branched and connected to both the water analyzer (water gas chromatograph) and the gas analyzer (gas gas chromatograph), and moisture is removed immediately before the gas analyzer. I was going. The device configuration using these two types of analyzers is costly and takes a long time to measure the amount of water in the water gas chromatograph, so it can follow the power generation environment that changes at high speeds of the fuel cell. There wasn't.

本発明は上記のような事情に鑑みてなされたものであり、水分とその他のガス成分とからなる加湿ガス中の水分を除去分離しながら、加湿ガスに含まれた水分量を瞬時に定量できるようにし、さらに水分除去後のガスを質量分析計に導入することにより、その他のガス成分の質量をも同時に測定できるようにした改良された加湿ガスの成分測定装置を提供することを目的とする。また、本発明の他の目的は、水分を多量に含んだ試料ガスに対応した分析方法として、気液分離器、水分計などを組み込むことなしに装置構成を簡略化し、結果として安価で、かつ迅速な測定を可能にする質量分析計やガスクロマトグラフ質量分析計のためのインターフェースを提供することにある。   The present invention has been made in view of the above circumstances, and the amount of moisture contained in the humidified gas can be quantified instantaneously while removing and separating the moisture in the humidified gas composed of moisture and other gas components. In addition, an object of the present invention is to provide an improved humidified gas component measuring device that can simultaneously measure the masses of other gas components by introducing the gas after moisture removal into the mass spectrometer. . Another object of the present invention is to simplify an apparatus configuration without incorporating a gas-liquid separator, a moisture meter, etc. as an analysis method corresponding to a sample gas containing a large amount of moisture, and as a result, is inexpensive and The object is to provide an interface for a mass spectrometer or a gas chromatograph mass spectrometer that enables rapid measurement.

本発明による加湿ガスの成分測定装置は、水分とその他のガス成分とからなる加湿ガスに関して、加湿ガスに含まれる水分量とその他のガス成分量とを連続的に、あるいは断続的に測定する装置であって、質量分析部と、質量分析部と加湿ガス導入部との間に配置されて連続的に水分を除去し、かつ定量計測する水分除去定量部とを有することを特徴とする。本発明において、質量分析部は磁場型、四重極型、飛行時間差型などの従来知られた任意の機種を用いることが可能であり、またガスクロマトグラフ質量分析計を用いてもよい。   The humidified gas component measuring device according to the present invention is a device that continuously or intermittently measures the moisture content and other gas component amounts contained in the humidified gas with respect to the humidified gas composed of moisture and other gas components. And it is characterized by having a mass analysis part and a moisture removal fixed quantity part arranged between a mass analysis part and a humidification gas introduction part and removing moisture continuously and carrying out quantitative measurement. In the present invention, the mass spectrometric unit may be any conventionally known model such as a magnetic field type, a quadrupole type, a time-of-flight type, or a gas chromatograph mass spectrometer.

水分除去定量部は、質量分析計の試料ガス導入部の流路上流に配置され、加湿ガスはそこを通過する際に、含まれた水分を連続的に除去しながら、かつ短時間で水分量を計測できる方法あるいは装置であれば、特に制限はないが、加湿ガスを急激に断熱膨張させることによって水分とその他のガス成分とを分離する手段と、断熱膨張させた空間から水分を排出・除去する手段と、断熱膨張させた空間から水分以外のその他のガス成分を質量分析部へ導く手段と、オリフィスでの断熱膨張の前後、すなわち水分除去定量部の供給上流部および断熱膨張させた空間の気体温度をそれぞれ計測して温度降下を検出する手段と、断熱膨張させた空間の圧力を水分除去効率が最適となるような条件に調整するための手段とからなる、例えばジュールトムソン効果(Joule-Thomson effect)を利用した連続的な水分除去定量手段は特に有効である。   The moisture removal quantification unit is arranged upstream of the flow path of the sample gas introduction unit of the mass spectrometer, and when the humidified gas passes through it, the moisture content is removed in a short time while continuously removing the contained moisture. There is no particular limitation as long as it is a method or apparatus that can measure water, but means for separating moisture and other gas components by adiabatic expansion of the humidified gas, and discharging and removing moisture from the adiabatic expansion space Means for guiding other gas components other than moisture from the adiabatic expanded space to the mass spectrometer, and before and after the adiabatic expansion at the orifice, that is, the supply upstream portion of the moisture removal quantification unit and the adiabatic expanded space It consists of a means for measuring the temperature of each gas and detecting a temperature drop, and a means for adjusting the pressure in the adiabatic expansion space to a condition that optimizes the moisture removal efficiency. Continuous moisture removing quantitative means utilizing down effect (Joule-Thomson effect) is particularly effective.

本発明による装置に用いる水分除去定量部は、より具体的には、ガスの流路に沿って共軸対向した上下流一対のオリフィス(あるいはノズル)と、この一対のオリフィスを収納する中間部空間を排気する真空ポンプと、オリフィスの中間部空間の圧力を水分除去効率が最適となるような条件に調整する真空バルブ(好ましくは、圧力制御機能付きの真空バルブ)と、オリフィスの中間部空間の圧力を計測する真空計と、断熱膨張の前後、すなわち加湿ガス供給上流部管内および断熱膨張させた中間部空間の気体温度をそれぞれ計測する温度計から構成される。   More specifically, the moisture removal quantification unit used in the apparatus according to the present invention is more specifically a pair of upstream and downstream orifices (or nozzles) that are coaxially opposed along the gas flow path, and an intermediate space that houses the pair of orifices. A vacuum pump that evacuates air, a vacuum valve (preferably a vacuum valve with a pressure control function) that adjusts the pressure in the intermediate space of the orifice to a condition that optimizes moisture removal efficiency, It consists of a vacuum gauge that measures the pressure and a thermometer that measures the gas temperature before and after adiabatic expansion, that is, in the humidified gas supply upstream pipe and in the adiabatic expanded intermediate space.

本発明による上記の装置構成において、加湿ガスは水分除去定量部を通過する際に含まれた水分の分離除去と、水分量の計測が同時に行われる。ただし、一対のオリフィスの中間部空間で分離除去されるガスは、水分のみとは限らず、水素、ヘリウム、メタン、窒素、一酸化炭素、酸素、二酸化炭素といった無機ガスも、断熱膨張の過程で水分と共に除去されてしまい、質量分析計に有効に導入されないことがありうる。これについては、前記したように、水分が上記された他のガスに比べて凝縮性が際だって大きいことから、オリフィスの孔径や距離を最適化することによって、水分の凝縮・凍結の効果を有効に引き出すことが可能であることが実験的に確認されている。   In the above-described apparatus configuration according to the present invention, the humidified gas is separated and removed from the moisture contained in the moisture removal quantification unit and the moisture content is measured simultaneously. However, the gas that is separated and removed in the intermediate space between the pair of orifices is not limited to moisture, and inorganic gases such as hydrogen, helium, methane, nitrogen, carbon monoxide, oxygen, and carbon dioxide are also adiabatically expanded. It may be removed together with moisture and not effectively introduced into the mass spectrometer. In this regard, as described above, moisture is significantly more condensable than the other gases described above, so the effect of moisture condensation and freezing can be effectively achieved by optimizing the orifice diameter and distance. It has been experimentally confirmed that it can be pulled out.

なお、オリフィスの中間部空間は、オリフィスによる断熱膨張の過程を2段階とするために、上下流一対のオリフィス中心軸と同軸をなすオリフィスを有した隔壁により2室構造とすることもできる。その際に、流路上流の第1中間部空間には、第1中間部空間を排気する真空ポンプと、第1中間部空間の圧力を水分除去効率が最適となるような条件に調整する真空バルブと、第1中間部空間の圧力を計測する真空計と、供給上流部および断熱膨張させた第1中間部空間の気体温度をそれぞれ計測する温度計が備えられ、上記した水分除去定量部として機能を果たす。そして、流路下流の第2中間部空間には、第2中間部空間を排気する真空ポンプと、第2中間部空間の圧力を調整する真空バルブとを備えるようにして、高真空を保持した質量分析計との圧力差を調整するとともに、水分を除去した後にその他のガス成分を濃縮する機能を持つようにされる。   In addition, the intermediate space of the orifice may have a two-chamber structure with a partition wall having an orifice coaxial with a pair of upstream and downstream orifice central axes in order to make the adiabatic expansion process by the orifice into two stages. At that time, in the first intermediate space upstream of the flow path, a vacuum pump that exhausts the first intermediate space and a vacuum that adjusts the pressure of the first intermediate space to a condition that optimizes the moisture removal efficiency. A valve, a vacuum gauge that measures the pressure in the first intermediate space, and a thermometer that measures the gas temperature in the upstream portion of the supply and the first intermediate space that is adiabatically expanded are provided as the moisture removal quantification unit described above. Fulfills the function. The second intermediate space downstream of the flow path is provided with a vacuum pump for exhausting the second intermediate space and a vacuum valve for adjusting the pressure of the second intermediate space to maintain a high vacuum. It adjusts the pressure difference with the mass spectrometer and has the function of concentrating other gas components after removing moisture.

本発明の目的は、水分を多量に含んだ試料ガスに対して水分を選択的に除去すると同時に、急激な断熱膨張に伴って生じる温度降下および圧力変化を精密測定することによって、除去された水分量を計測する装置を提供することである。   The object of the present invention is to selectively remove moisture from a sample gas containing a large amount of moisture, and at the same time, precisely measure temperature drop and pressure change caused by rapid adiabatic expansion, thereby removing the removed moisture. It is to provide a device for measuring quantities.

そのために、この装置を用いて、例えば高分子電解質膜型燃料電池の発電環境変化に追従して、水分を含んだ排出ガス中の水分を定量測定することが可能となり、燃料電池を常時最適な発電環境下で運転できるようになる、という当初の開発目標とした実用的な効果がもたらされる。   Therefore, using this device, it becomes possible to quantitatively measure the moisture in the exhaust gas containing moisture following the change in the power generation environment of the polymer electrolyte membrane fuel cell, for example. This brings about a practical effect as the initial development goal of being able to operate in a power generation environment.

また、本発明の別の目的は、前記したように、質量分析計やガスクロマトグラフ質量分析計のためのインターフェースを提供することであるが、本発明による装置の応用範囲は質量分析計やガスクロマトグラフ質量分析計のインターフェースに限定する必要はなく、水分を多量に含んだ試料ガスの他の計測や分析方法、すなわち、従来より計測する際の妨害物質となっていた水分除去が必須の課題であった幾つかの機器分析装置であって、発光・吸光分析、電気的あるいは熱的分析、各種クロマトグラフィー、などの計測装置に対しても広く及ぶものである。   Another object of the present invention is to provide an interface for a mass spectrometer and a gas chromatograph mass spectrometer as described above, but the application range of the apparatus according to the present invention is a mass spectrometer and a gas chromatograph. It is not necessary to limit to the interface of the mass spectrometer, and other measurement and analysis methods for sample gas containing a large amount of water, that is, removal of water, which has been a hindrance when measuring in the past, is an essential issue. In addition, some instrumental analyzers are widely applicable to measuring devices such as emission / absorption analysis, electrical or thermal analysis, and various types of chromatography.

以下、本発明による加湿ガスの成分測定装置のいくつかの例を図面を参照して説明する。図1は本発明による加湿ガスの成分測定装置の構成図である。加湿ガスの成分測定装置1は、水分除去定量部10と質量分析計20を備え、分析しようとする加湿ガスは水分除去定量部10に導入され、水分を除去された試料ガスは質量分析計20に案内される。   Hereinafter, some examples of the component measuring apparatus of the humidified gas according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a humidified gas component measuring apparatus according to the present invention. The humidified gas component measuring apparatus 1 includes a moisture removal quantification unit 10 and a mass spectrometer 20. The humidified gas to be analyzed is introduced into the moisture removal quantification unit 10, and the sample gas from which moisture has been removed is the mass spectrometer 20. Be guided to.

排気装置(例えば真空ポンプ)18は、水分除去定量部10を水分の凝縮・凍結に最適な圧力に保持しながら、除去された水分を排出する。質量分析計20は分析済みとなった試料ガスを系内に残留させることなく迅速に排気するための排気装置21を備えている。   The exhaust device (for example, vacuum pump) 18 discharges the removed moisture while maintaining the moisture removal quantification unit 10 at a pressure optimal for condensation and freezing of moisture. The mass spectrometer 20 includes an exhaust device 21 for quickly exhausting the analyzed sample gas without remaining in the system.

なお、ここで注記すべきこととして、水分除去定量部10における加湿ガスに含まれている水分の除去率は必ずしも100%を達成する必要はなく、むしろ、質量分析計20の耐用寿命やデータの信頼性に影響を与えることのない極微量の許容される水分量であれば残存していてもよい。それにより、質量分析計20に導入された加湿ガスの残留水分量の経時変化が計測可能となって、他のガス成分のそれとを同時にかつ比較しながら観測できるからである。   It should be noted that the moisture removal rate contained in the humidified gas in the moisture removal quantification unit 10 does not necessarily reach 100%. Rather, the useful life of the mass spectrometer 20 and the data Any trace amount of moisture that does not affect reliability and may be left may be left. This is because the change with time of the residual moisture content of the humidified gas introduced into the mass spectrometer 20 can be measured, and can be observed simultaneously and compared with that of other gas components.

さらに加えて注記すべきことは、水分除去定量部10における加湿ガスに対する水分除去が連続的に実行される限りでは、水分量計測は断続的に行うようにしてもよく、それにより、測定精度や測定値の信頼性をより高めることができる。例えば1〜5秒間隔で計測を行うようにしてもよい。   In addition, it should be noted that the moisture content measurement may be performed intermittently as long as the moisture removal with respect to the humidified gas in the moisture removal quantification unit 10 is continuously performed. The reliability of the measured value can be further increased. For example, the measurement may be performed at intervals of 1 to 5 seconds.

次に、図2は本発明による加湿ガスの成分測定装置での水分除去定量部の一例を示す詳細図である。ここで、水分除去定量部10は中間部空間11を備え、加湿ガスの流路に沿って共軸対向した上下流一対のオリフィス管(あるいはノズル管とも呼ばれる)12、12’が収納される。オリフィス管12、12’は半球状の端部を有する薄肉のステンレス円筒管が主として用いられ、それらの端部半球中心軸部にそれぞれオリフィス(細孔)12a,12a’が設けられている。   Next, FIG. 2 is a detailed view showing an example of a moisture removal quantification unit in the humidified gas component measuring apparatus according to the present invention. Here, the moisture removal quantification unit 10 includes an intermediate space 11, and accommodates a pair of upstream and downstream orifice tubes (also referred to as nozzle tubes) 12 and 12 'that are coaxially opposed along the flow path of the humidified gas. As the orifice tubes 12 and 12 ', thin stainless steel cylindrical tubes having hemispherical ends are mainly used, and orifices (pores) 12a and 12a' are respectively provided at the central portions of the end hemispheres.

また、図2には記載されていないが、図1に記載されている真空ポンプ18(排気装置)が中間部空間11に接続されており、分離除去された水分を速やかに系外に排気する。さらに、中間部空間11における水分除去効率が最適となるように、中間部空間11の圧力条件に調整するための真空バルブ17(好ましくは圧力制御機能付きの真空バルブ)と
、中間部空間11の圧力を計測する真空計14と、加湿ガスの断熱膨張の前後、すなわち加湿ガス供給上流部のオリフィス管12の管内および中間部空間11の気体温度をそれぞれ計測するための熱電対温度計15、16を備えている。
Although not shown in FIG. 2, the vacuum pump 18 (exhaust device) shown in FIG. 1 is connected to the intermediate space 11, and the separated and removed water is quickly exhausted out of the system. . Further, a vacuum valve 17 (preferably a vacuum valve with a pressure control function) for adjusting the pressure condition of the intermediate space 11 so that the water removal efficiency in the intermediate space 11 is optimal, A vacuum gauge 14 for measuring the pressure, and thermocouple thermometers 15 and 16 for measuring the gas temperature before and after the adiabatic expansion of the humidified gas, that is, in the pipe of the orifice pipe 12 upstream of the humidified gas supply and in the intermediate space 11, respectively. It has.

図3は水分除去定量部の他の例を示す詳細図である。この水分除去定量部10’に配置された中間部空間11’には、図2に示した例と同様の一対のオリフィス管12、12’の中心軸と同軸をなす、第3のオリフィス13aを有した隔壁(もしくは仕切り板)13が設けてある。それにより、中間部空間11’内は2室構造とされ、オリフィスによる断熱膨張の過程を2段階としている。   FIG. 3 is a detailed view showing another example of the moisture removal quantification unit. In the intermediate space 11 ′ arranged in the moisture removal quantitative unit 10 ′, a third orifice 13 a that is coaxial with the central axis of a pair of orifice pipes 12 and 12 ′ similar to the example shown in FIG. 2 is provided. A partition wall (or partition plate) 13 is provided. Thus, the intermediate space 11 ′ has a two-chamber structure, and the process of adiabatic expansion by the orifice has two stages.

ここで、流路上流の第1中間部空間11aには、図2に示した例の水分除去定量部と同様な作用あるいは機能を与え、また一方、流路下流の第2中間部空間11bでは、高真空を保持した質量分析計20との圧力差を調整すると共に、水分を除去した後にその他のガス成分を濃縮するなどの役割を果たすための接続空間部として機能する。   Here, the first intermediate space 11a upstream of the flow path has the same function or function as the moisture removal quantification unit of the example shown in FIG. 2, while the second intermediate space 11b downstream of the flow path In addition to adjusting the pressure difference with the mass spectrometer 20 that maintains a high vacuum, it functions as a connection space for performing functions such as concentrating other gas components after removing moisture.

従って、第1中間部空間11aの装置構成は図2に記載された水分除去定量部と同じであり、第1中間部空間で除去された水分を速やかに系外に排気するために真空ポンプ18に接続されおり(図3には示されない)、また、この第1中間部空間11aにおける水分除去効率が最適となるような圧力条件に調整するための真空バルブ17’(好ましくは圧力制御機構付きの真空バルブ)と、この第1中間部空間の圧力を計測する真空計14と、オリフィスでの断熱膨張の前後、すなわち加湿ガス供給上流部のオリフィス管12の管内および第1中間部空間11a内の気体温度をそれぞれ計測するための熱電対温度計15,16を備えている。   Therefore, the apparatus configuration of the first intermediate space 11a is the same as that of the moisture removal quantification unit described in FIG. 2, and the vacuum pump 18 is used to quickly exhaust the water removed in the first intermediate space to the outside of the system. (Not shown in FIG. 3) and a vacuum valve 17 ′ (preferably with a pressure control mechanism) for adjusting the pressure condition so that the moisture removal efficiency in the first intermediate space 11a is optimal. Vacuum gauge), a vacuum gauge 14 for measuring the pressure in the first intermediate space, and before and after the adiabatic expansion at the orifice, that is, in the pipe of the orifice pipe 12 upstream of the humidified gas supply and in the first intermediate space 11a Thermocouple thermometers 15 and 16 are provided for measuring the gas temperatures.

また一方、流路下流の第2中間部空間11bは第2段目の断熱膨張の空間であって、隔壁13と、水分が除去されたガスを質量分析計20に案内するためのオリフィス管12’との間の空間のガスを速やかに系外に排気するための真空ポンプ18’(図示していない)が接続される。さらに、この第2中間部空間11bにおける圧力と高真空を保持した質量分析計20との圧力差が加湿ガスの検出感度を得るために最適となるように、例えば真空ポンプ18’の有効排気速度を調整するための真空バルブ17(好ましくは圧力調整機能付き真空パルプ)と、この第2中間部空間11bの圧力を計測するための真空計14’を備えている。   On the other hand, the second intermediate space 11b downstream of the flow path is a second stage adiabatic expansion space, and the partition wall 13 and the orifice pipe 12 for guiding the gas from which moisture has been removed to the mass spectrometer 20. A vacuum pump 18 ′ (not shown) is connected for quickly exhausting the gas in the space to the outside of the system. Further, for example, the effective pumping speed of the vacuum pump 18 ′ is optimized so that the pressure difference between the pressure in the second intermediate space 11 b and the mass spectrometer 20 that maintains a high vacuum is optimal to obtain the detection sensitivity of the humidified gas. A vacuum valve 17 (preferably a vacuum pulp with a pressure adjusting function) for adjusting the pressure and a vacuum gauge 14 'for measuring the pressure in the second intermediate space 11b are provided.

なお、本発明による加湿ガスの成分測定装置を最良の手段として活用するためには、加湿ガスの流量と測定圧力の範囲設定、気体温度の測定および装置周囲からの温度遮蔽が重要である。そのため、オリフィス孔径とオリフィス管の距離、中間部空間の容積、真空ポンプ、真空バルブ、配管で決まる有効排気速度や測定圧力範囲の決定にあたっては、設計計算のみならず、実際の測定環境下での予備実験を行うことが望ましい。   In order to utilize the humidified gas component measuring device according to the present invention as the best means, it is important to set the range of the flow rate and measured pressure of the humidified gas, measure the gas temperature, and shield the temperature from the surroundings of the device. Therefore, in determining the effective exhaust speed and measurement pressure range determined by the orifice hole diameter and orifice pipe distance, intermediate space volume, vacuum pump, vacuum valve, and piping, not only in the design calculation but also in the actual measurement environment. It is desirable to conduct a preliminary experiment.

本発明による加湿ガスの成分測定装置で分析すべき加湿ガスは任意であるが、例えば、高分子電解質膜型撚料電池の運転中に膜電極接合体(MEA)から排出される加湿ガスの計測条件の概略を以下に示す。   The humidified gas to be analyzed by the humidified gas component measuring apparatus according to the present invention is arbitrary. For example, measurement of the humidified gas discharged from the membrane electrode assembly (MEA) during the operation of the polymer electrolyte membrane twisted battery. An outline of the conditions is shown below.

水分除去定量部10に導入された加湿ガスは上流のオリフィス管12のオリフィス12aを通過する際に急速な断熱膨張を起こしながら中間部空間11に流入する。このオリフィス管12の前後での加湿ガスの圧力差、温度差が所要の計測範囲となるように、オリフィス孔径とオリフィス管の距離、中間部空間の容積などを適宜設定することにより、加湿ガスは上流のオリフィス管12のオリフィス12aを通過する際にジュールトムソン効果により、加湿ガスの水分量に比例した温度降下が計測される。   The humidified gas introduced into the moisture removal quantitative unit 10 flows into the intermediate space 11 while undergoing rapid adiabatic expansion when passing through the orifice 12a of the upstream orifice pipe 12. By appropriately setting the orifice hole diameter and the orifice tube distance, the volume of the intermediate space, etc. so that the pressure difference and temperature difference of the humidified gas before and after the orifice tube 12 are within the required measurement range, When passing through the orifice 12a of the upstream orifice pipe 12, a temperature drop proportional to the moisture content of the humidified gas is measured by the Joule-Thompson effect.

一例として中間部空間11の圧力を4×10〜6×10Pa、オリフィス管12のオリフィス孔径30〜150μm、オリフィス管の対向距離5mm程度とした場合に、通常の高分子電解質型燃料電池の運転中に膜電極接合体から排出される加湿ガスに対して断熱膨張による水分の凝縮、除去の効果を有効に確認することができる。 As an example, when the pressure in the intermediate space 11 is 4 × 10 4 to 6 × 10 4 Pa, the orifice hole diameter of the orifice tube 12 is about 30 to 150 μm, and the facing distance of the orifice tube is about 5 mm, a normal polymer electrolyte fuel cell It is possible to effectively confirm the effect of condensation and removal of moisture by adiabatic expansion on the humidified gas discharged from the membrane electrode assembly during the operation.

また、中間部空間11での水分の凝縮、除去により、下流のオリフィス管12’のオリフィス12a’を通過したガス成分の質量分析によれば、ほぼ100%に近い水分除去が行われた状態で質量分析計20に導入されていることが確認された。さらに、同時に中間部空間11で凝縮・結露したことにより除去された水分は、真空ポンプ18により効率よく排出されていることも明らかにされた。そのため、質量分析計20の高真空状態にあるイオン源部への悪影響もなく、適正なガス分析を長時間にわたって行うことができた。   In addition, according to mass analysis of the gas component that has passed through the orifice 12a ′ of the downstream orifice pipe 12 ′ due to condensation and removal of moisture in the intermediate space 11, in a state in which moisture removal close to 100% has been performed. It was confirmed that it was introduced into the mass spectrometer 20. Furthermore, it has also been clarified that the moisture removed by condensation and condensation in the intermediate space 11 is efficiently discharged by the vacuum pump 18. Therefore, there was no adverse effect on the ion source part in the high vacuum state of the mass spectrometer 20, and proper gas analysis could be performed for a long time.

最後に、図4のグラフは、加湿ガスに含まれた水分量を絶対湿度で表した値と、ジュールトムソン効果による温度降下の測定値との相対関係を示した実測データの一例である。この図により、加湿ガス供給上流部のオリフィス管12の管内に配置した熱電対温度計15と、中間部空間11に配置した熱電対温度計16のそれぞれの温度測定値から断熱膨張の前後の気体温度差を求めたときに、それが加湿ガスに含まれた水分量から換算した絶対湿度と比例した関係にあることを示している。   Finally, the graph of FIG. 4 is an example of actual measurement data showing a relative relationship between a value representing the amount of water contained in the humidified gas in absolute humidity and a measured value of the temperature drop due to the Joule-Thompson effect. According to this figure, the gas before and after the adiabatic expansion is determined from the temperature measured values of the thermocouple thermometer 15 arranged in the pipe of the orifice pipe 12 in the upstream portion of the humidified gas supply and the thermocouple thermometer 16 arranged in the intermediate space 11. When the temperature difference is obtained, it indicates that the temperature difference is proportional to the absolute humidity converted from the amount of moisture contained in the humidified gas.

本発明よる加湿ガスの成分測定装置の構成図。The block diagram of the component measuring apparatus of the humidified gas by this invention. 水分除去定量部の詳細図。Detailed view of moisture removal quantification unit. 水分除去定量部の他の例を示す詳細図。FIG. 5 is a detailed view showing another example of the moisture removal quantification unit. ジュールトムソン効果における温度降下と絶対湿度との相関を示すグラフ。The graph which shows the correlation with the temperature fall and absolute humidity in Joule-Thompson effect.

符号の説明Explanation of symbols

1…加湿ガスの成分測定装置、10、10’…水分除去定量部、11、11’…中間部空間、12、12’…共軸対向した上下流一対のオリフィス管、12a,12a’…オリフィス、13…隔壁、13a…隔壁のオリフィス、14、14’…真空計、15、16…熱電対温度計、17、17’…真空バルブ(圧力制御機能付きの真空バルブ)、18…排気装置(真空ポンプ)、20…質量分析計、21…排気装置(真空ポンプ) DESCRIPTION OF SYMBOLS 1 ... Humidified gas component measuring device 10, 10 '... Moisture removal fixed quantity part, 11, 11' ... Intermediate part space, 12, 12 '... A pair of upstream and downstream orifice pipes facing coaxially, 12a, 12a' ... Orifice , 13 ... partition wall, 13a ... partition orifice, 14, 14 '... vacuum gauge, 15, 16 ... thermocouple thermometer, 17, 17' ... vacuum valve (vacuum valve with pressure control function), 18 ... exhaust device ( Vacuum pump), 20 ... mass spectrometer, 21 ... exhaust device (vacuum pump)

Claims (5)

水分とガス成分とからなる加湿ガスの水分量とその他のガス成分量とを連続的に、あるいは断続的に測定する装置であって、質量分析部と、質量分析部と加湿ガス導入部との間に配置されて連続的に水分を除去し、かつ定量計測する水分除去定量部とを有することを特徴とする加湿ガスの成分測定装置。   An apparatus for continuously or intermittently measuring the moisture content of a humidified gas composed of moisture and gas components and the amount of other gas components, comprising a mass analyzer, a mass analyzer, and a humidified gas introduction unit. An apparatus for measuring a component of a humidified gas, comprising a moisture removal quantification unit that is disposed between and continuously removes moisture and performs quantitative measurement. 水分除去定量部は、加湿ガスを急激に断熱膨張させて水分とその他のガス成分とを分離する手段と、断熱膨張させた空間から水分を排出・除去する手段と、断熱膨張させた空間から水分以外のその他のガス成分を質量分析部へ導く手段と、水分除去定量部の供給上流部および断熱膨張させた空間の気体温度をそれぞれ計測して温度降下を検出する手段と、断熱膨張させた空間の圧力を水分除去効率が最適になるような条件に調整するための手段、とからなることを特徴とする請求項1に記載の加湿ガスの成分測定装置。   The moisture removal quantification unit comprises means for rapidly adiabatically expanding the humidified gas to separate moisture and other gas components, means for discharging and removing moisture from the adiabatic expanded space, and moisture from the adiabatic expanded space. A means for introducing other gas components to the mass spectrometer, a means for detecting the temperature drop by measuring the gas temperature in the supply upstream part of the moisture removal quantification part and the adiabatic expansion space, and the adiabatic expansion space The apparatus for measuring a component of a humidified gas according to claim 1, comprising: means for adjusting the pressure of the gas to a condition such that the water removal efficiency is optimized. 水分除去定量部は、ガスの流路に沿って共軸対向した上下流一対のオリフィスと、この一対のオリフィスを収納する中間部空間を排気する真空ポンプと、オリフィスの中間部空間の圧力を水分除去効率が最適となるような条件に調整する真空バルブと、オリフィスの中間部空間の圧力を計測する真空計と、供給上流部および断熱膨張させた中間部空間の気体温度をそれぞれ計測する温度計、から構成されることを特徴とする請求項1に記載の加湿ガスの成分測定装置。   The moisture removal quantification unit includes a pair of upstream and downstream orifices that are coaxially opposed along the gas flow path, a vacuum pump that exhausts the intermediate space that houses the pair of orifices, and the pressure in the intermediate space of the orifice as moisture. A vacuum valve that adjusts the conditions for optimal removal efficiency, a vacuum gauge that measures the pressure in the intermediate space of the orifice, and a thermometer that measures the gas temperature in the upstream portion of the supply and the intermediate space that is adiabatically expanded The component measuring apparatus of the humidified gas according to claim 1, comprising: オリフィスの中間部空間は、オリフィスによる断熱膨張の過程を2段階とするために、上下流一対のオリフィス中心軸と同軸をなすオリフィスを有した隔壁により2室構造とされており、流路上流の第1中間部空間には、第1中間部空間を排気する真空ポンプと、第1中間部空間の圧力を水分除去効率が最適となるような条件に調整する真空バルブと、第1中間部空間の圧力を計測する真空計と、供給上流部および断熱膨張させた第1中間部空間の気体温度をそれぞれ計測する温度計が備えられていることを特徴とする請求項3に記載の加湿ガスの成分測定装置。   In order to make the adiabatic expansion process by the orifice into two stages, the intermediate space of the orifice has a two-chamber structure with a partition having an orifice coaxial with the pair of upstream and downstream orifice central axes, The first intermediate space includes a vacuum pump that exhausts the first intermediate space, a vacuum valve that adjusts the pressure in the first intermediate space to a condition that optimizes moisture removal efficiency, and the first intermediate space. The humidified gas according to claim 3, further comprising: a vacuum gauge for measuring the pressure of the gas; and a thermometer for measuring the gas temperature of the upstream portion of the supply and the first intermediate space that is adiabatically expanded. Component measuring device. 流路下流の第2中間部空間には、第2中間部空間を排気する真空ポンプと、第2中間部空間の圧力を調整する真空バルブとが備えられ、高真空を保持した質量分析計との圧力差を調整するとともに、水分を除去した後にその他のガス成分を濃縮する機能を持つようにされていることを特徴とする請求項4に記載の加湿ガスの成分測定装置。   The second intermediate space downstream of the flow path is provided with a vacuum pump for exhausting the second intermediate space and a vacuum valve for adjusting the pressure of the second intermediate space, and a mass spectrometer that maintains a high vacuum. 5. The humidified gas component measuring device according to claim 4, wherein the humidifying gas component measuring device has a function of concentrating other gas components after removing the moisture and adjusting the pressure difference.
JP2003389401A 2003-11-19 2003-11-19 Component measuring apparatus for humidifying gas Pending JP2005150027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389401A JP2005150027A (en) 2003-11-19 2003-11-19 Component measuring apparatus for humidifying gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389401A JP2005150027A (en) 2003-11-19 2003-11-19 Component measuring apparatus for humidifying gas

Publications (1)

Publication Number Publication Date
JP2005150027A true JP2005150027A (en) 2005-06-09

Family

ID=34696160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389401A Pending JP2005150027A (en) 2003-11-19 2003-11-19 Component measuring apparatus for humidifying gas

Country Status (1)

Country Link
JP (1) JP2005150027A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183160A (en) * 2006-01-06 2007-07-19 Sumiko Consultant Kk Device for observing gas-liquid mixed fluid in the ground
JP2009529141A (en) * 2006-03-03 2009-08-13 イオンセンス インコーポレイテッド Sampling system for use in surface ionization spectroscopy
JP2010197242A (en) * 2009-02-25 2010-09-09 National Research Institute Of Police Science Japan Gas analyzer
JP2011043386A (en) * 2009-08-20 2011-03-03 Gtr Tec Corp Transmission quantity measuring instrument having freezing trap
US8525109B2 (en) 2006-03-03 2013-09-03 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
US8563945B2 (en) 2009-05-08 2013-10-22 Ionsense, Inc. Sampling of confined spaces
US8754365B2 (en) 2011-02-05 2014-06-17 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
CN106198405A (en) * 2016-07-04 2016-12-07 中国气象科学研究院 System for the monitoring of atmosphere vapour hydrogen and oxygen stable isotope ratio
CN110595859A (en) * 2019-10-29 2019-12-20 长沙开元弘盛科技有限公司 Water removal method, analyzer and water removal device thereof
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
US10825673B2 (en) 2018-06-01 2020-11-03 Ionsense Inc. Apparatus and method for reducing matrix effects
US11424116B2 (en) 2019-10-28 2022-08-23 Ionsense, Inc. Pulsatile flow atmospheric real time ionization
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551589A (en) * 1978-06-12 1980-01-08 Perkin Elmer Corp Water separator in respiration gas monitoring system by use of mass spectrometer
JPS5528508B2 (en) * 1973-10-18 1980-07-28
JPH0587779A (en) * 1991-09-30 1993-04-06 Yokogawa Electric Corp Spray chamber
JPH07147152A (en) * 1993-11-25 1995-06-06 Yokogawa Analytical Syst Kk High frequency inductively coupled plasma mass spectrometer device
JPH08122314A (en) * 1994-10-21 1996-05-17 Shimadzu Corp Gas-chromatography mass spectometric analyzer
JP2001116724A (en) * 1999-10-14 2001-04-27 Nippon Sanso Corp Method and apparatus for measuring concentration of moisture in gas
JP2003036810A (en) * 2001-07-23 2003-02-07 Hitachi Ltd Sample ionization equipment and mass analytical instrument
JP2003203599A (en) * 2003-02-03 2003-07-18 Hitachi Ltd Mass spectrometer
JP2003217503A (en) * 2002-01-22 2003-07-31 Japan Science & Technology Corp Mass spectrometer and method of mass spectrometry

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528508B2 (en) * 1973-10-18 1980-07-28
JPS551589A (en) * 1978-06-12 1980-01-08 Perkin Elmer Corp Water separator in respiration gas monitoring system by use of mass spectrometer
JPH0587779A (en) * 1991-09-30 1993-04-06 Yokogawa Electric Corp Spray chamber
JPH07147152A (en) * 1993-11-25 1995-06-06 Yokogawa Analytical Syst Kk High frequency inductively coupled plasma mass spectrometer device
JPH08122314A (en) * 1994-10-21 1996-05-17 Shimadzu Corp Gas-chromatography mass spectometric analyzer
JP2001116724A (en) * 1999-10-14 2001-04-27 Nippon Sanso Corp Method and apparatus for measuring concentration of moisture in gas
JP2003036810A (en) * 2001-07-23 2003-02-07 Hitachi Ltd Sample ionization equipment and mass analytical instrument
JP2003217503A (en) * 2002-01-22 2003-07-31 Japan Science & Technology Corp Mass spectrometer and method of mass spectrometry
JP2003203599A (en) * 2003-02-03 2003-07-18 Hitachi Ltd Mass spectrometer

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183160A (en) * 2006-01-06 2007-07-19 Sumiko Consultant Kk Device for observing gas-liquid mixed fluid in the ground
US8525109B2 (en) 2006-03-03 2013-09-03 Ionsense, Inc. Sampling system for use with surface ionization spectroscopy
JP2009529141A (en) * 2006-03-03 2009-08-13 イオンセンス インコーポレイテッド Sampling system for use in surface ionization spectroscopy
US8217341B2 (en) 2006-03-03 2012-07-10 Ionsense Sampling system for use with surface ionization spectroscopy
US8497474B2 (en) 2006-03-03 2013-07-30 Ionsense Inc. Sampling system for use with surface ionization spectroscopy
JP2010197242A (en) * 2009-02-25 2010-09-09 National Research Institute Of Police Science Japan Gas analyzer
US10643834B2 (en) 2009-05-08 2020-05-05 Ionsense, Inc. Apparatus and method for sampling
US8563945B2 (en) 2009-05-08 2013-10-22 Ionsense, Inc. Sampling of confined spaces
US8729496B2 (en) 2009-05-08 2014-05-20 Ionsense, Inc. Sampling of confined spaces
US9390899B2 (en) 2009-05-08 2016-07-12 Ionsense, Inc. Apparatus and method for sampling of confined spaces
US8895916B2 (en) 2009-05-08 2014-11-25 Ionsense, Inc. Apparatus and method for sampling of confined spaces
US10090142B2 (en) 2009-05-08 2018-10-02 Ionsense, Inc Apparatus and method for sampling of confined spaces
US9633827B2 (en) 2009-05-08 2017-04-25 Ionsense, Inc. Apparatus and method for sampling of confined spaces
JP2011043386A (en) * 2009-08-20 2011-03-03 Gtr Tec Corp Transmission quantity measuring instrument having freezing trap
US8822949B2 (en) 2011-02-05 2014-09-02 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US9960029B2 (en) 2011-02-05 2018-05-01 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US11049707B2 (en) 2011-02-05 2021-06-29 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US9224587B2 (en) 2011-02-05 2015-12-29 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US9514923B2 (en) 2011-02-05 2016-12-06 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US10643833B2 (en) 2011-02-05 2020-05-05 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8754365B2 (en) 2011-02-05 2014-06-17 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US8963101B2 (en) 2011-02-05 2015-02-24 Ionsense, Inc. Apparatus and method for thermal assisted desorption ionization systems
US11742194B2 (en) 2011-02-05 2023-08-29 Bruker Scientific Llc Apparatus and method for thermal assisted desorption ionization systems
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US9105435B1 (en) 2011-04-18 2015-08-11 Ionsense Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
US10056243B2 (en) 2014-06-15 2018-08-21 Ionsense, Inc. Apparatus and method for rapid chemical analysis using differential desorption
US11295943B2 (en) 2014-06-15 2022-04-05 Ionsense Inc. Apparatus and method for generating chemical signatures using differential desorption
US10283340B2 (en) 2014-06-15 2019-05-07 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US9824875B2 (en) 2014-06-15 2017-11-21 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10553417B2 (en) 2014-06-15 2020-02-04 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US9558926B2 (en) 2014-06-15 2017-01-31 Ionsense, Inc. Apparatus and method for rapid chemical analysis using differential desorption
US10825675B2 (en) 2014-06-15 2020-11-03 Ionsense Inc. Apparatus and method for generating chemical signatures using differential desorption
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
CN106198405A (en) * 2016-07-04 2016-12-07 中国气象科学研究院 System for the monitoring of atmosphere vapour hydrogen and oxygen stable isotope ratio
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
US10825673B2 (en) 2018-06-01 2020-11-03 Ionsense Inc. Apparatus and method for reducing matrix effects
US11424116B2 (en) 2019-10-28 2022-08-23 Ionsense, Inc. Pulsatile flow atmospheric real time ionization
CN110595859B (en) * 2019-10-29 2022-09-13 长沙开元弘盛科技有限公司 Water removal method, analyzer and water removal device thereof
CN110595859A (en) * 2019-10-29 2019-12-20 长沙开元弘盛科技有限公司 Water removal method, analyzer and water removal device thereof
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization

Similar Documents

Publication Publication Date Title
Iinuma et al. Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products
JP2005150027A (en) Component measuring apparatus for humidifying gas
US5285064A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
JP5815533B2 (en) Device for preparing samples to be supplied to an ion mobility sensor
US8237116B2 (en) GC-MS analysis apparatus
CN112816436B (en) Spectrum-mass spectrum combined device and detection method
JPH04274728A (en) Method and apparatus for preliminary enrichment for analyzing minute amount of component in gas
JP2827010B2 (en) Method and apparatus for introducing effluent to mass spectrometers and other gas or particle detectors
US5331160A (en) Particle-beam generator for LC/MS interface
Yamamoto et al. Membrane introduction system for trace analysis of volatile organic compounds using a single photon ionization time-of-flight mass spectrometer
US11581177B2 (en) System for introducing particle-containing samples to an analytical instrument and methods of use
JPH0634616A (en) Analysis of a trace of impurities
Zhang et al. Chemical ionization mass spectrometry: Developments and applications for on-line characterization of atmospheric aerosols and trace gases
CN111033213A (en) Apparatus and method for partial conversion of a fluid sample comprising a plurality of components and method for online determination and analysis of these components
JP4744336B2 (en) Liquefied gas concentration analyzer
GB2240176A (en) Introduction of affluent into mass spectrometers and other gas-phase or particle detectors
CN110085504B (en) Ion source system based on small-hole in-situ sampling interface and miniaturized mass spectrometer
Salcedo et al. Effect of relative humidity on the detection of sulfur dioxide and sulfuric acid using a chemical ionization mass spectrometer
RU2187799C2 (en) Procedure determining impurities in uranium hexafluoride and device for its implementation
JP2006266774A (en) Analyzing method and analyzing apparatus for mixed gas
CN213456762U (en) Online monitoring system for high-resolution high-sensitivity rapid determination of volatile organic compounds
Curtius et al. Measurement of aerosol sulfuric acid: 1. Experimental setup, characterization, and calibration of a novel mass spectrometric system
JP2009069137A (en) Method for measuring trace chemical substance and its apparatus
RU94763U1 (en) QUADRUPOL MASS SPECTROMETER
JP2004061321A (en) Method and apparatus for analyzing a very small quantity of impurity in gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109