JP2005147472A - Combustion control method of combustion chamber of waste melting treatment facility - Google Patents

Combustion control method of combustion chamber of waste melting treatment facility Download PDF

Info

Publication number
JP2005147472A
JP2005147472A JP2003383661A JP2003383661A JP2005147472A JP 2005147472 A JP2005147472 A JP 2005147472A JP 2003383661 A JP2003383661 A JP 2003383661A JP 2003383661 A JP2003383661 A JP 2003383661A JP 2005147472 A JP2005147472 A JP 2005147472A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
air
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383661A
Other languages
Japanese (ja)
Other versions
JP4129224B2 (en
Inventor
Masaya Kurita
雅也 栗田
Tadashi Ogiriyama
正 小切山
Kenji Baba
健志 馬場
Tadayuki Kamitsuma
忠之 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP2003383661A priority Critical patent/JP4129224B2/en
Publication of JP2005147472A publication Critical patent/JP2005147472A/en
Application granted granted Critical
Publication of JP4129224B2 publication Critical patent/JP4129224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control method of a combustion chamber of a waste melting treatment facility capable of supplying an adequate amount of air to a rapid combustion of char without delay, and corresponding to the rapid combustion of the char by taking an amount of a combustion state of the combustion chamber as an absolute amount. <P>SOLUTION: The combustion control method of the combustion chamber is provided with an exhaust gas oxygen concentration controller 4, a secondary air flow meter 17, and an air flow control valve 19 for detecting an oxygen concentration in exhaust gas from the combustion chamber 1 and controlling a flow rate of air blown to the combustion chamber 1. A radiation thermometer 5 for detecting a temperature in the combustion chamber by light is provided in the combustion chamber 1 for combusting flammable gas containing flammable dust generated in a waste melting furnace by combustion air. A change rate of an output of a temperature detection sensor is operated by a change rate computing unit 6, and the air flow blown in the combustion chamber 1 is continuously changed corresponding to an absolute value of an amount of change. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一般廃棄物、産業廃棄物等の廃棄物を廃棄物溶融炉で処理する際に発生する可燃性ガス及び可燃性ダスト(以下「チャー」という。)を燃焼させる廃棄物溶融処理設備の燃焼室の燃焼制御方法に関する。   The present invention relates to a waste melting treatment facility for combusting combustible gas and combustible dust (hereinafter referred to as “char”) generated when waste such as general waste and industrial waste is processed in a waste melting furnace. The present invention relates to a combustion control method for a combustion chamber.

従来、廃棄物溶融炉で発生するチャーを含有する可燃性ガスは、除塵器でチャーを捕集し、チャーを可燃性ガスと共に燃焼室へ供給し燃焼空気で燃焼させている。   Conventionally, combustible gas containing char generated in a waste melting furnace is collected by a dust remover, supplied to the combustion chamber together with combustible gas, and burned with combustion air.

図3は、従来の可燃性ガスの燃焼の制御系統図である。   FIG. 3 is a control system diagram of conventional combustion of combustible gas.

燃焼室1若しくは燃焼室以降に設けられたボイラ出口、若しくは誘引通風機出口の排ガス出口2に排ガス酸素センサ3が配置され、酸素センサ3の酸素濃度の検出信号は排ガス酸素濃度調節計4へ送られ、排ガス酸素濃度調節計4は2次空気流量調節計17に信号を送り、2次空気流量調節計17は2次空気流量計18で流量を測定しながら排ガス出口2の酸素濃度が一定となるように2次空気流量調節弁19の開度を調節する。   An exhaust gas oxygen sensor 3 is disposed at a combustion chamber 1 or a boiler outlet provided after the combustion chamber or an exhaust gas outlet 2 at the outlet of the induction fan, and an oxygen concentration detection signal from the oxygen sensor 3 is sent to the exhaust gas oxygen concentration controller 4. The exhaust gas oxygen concentration controller 4 sends a signal to the secondary air flow controller 17 and the secondary air flow controller 17 measures the flow rate with the secondary air flow meter 18 while the oxygen concentration at the exhaust gas outlet 2 is constant. The opening degree of the secondary air flow rate adjustment valve 19 is adjusted so as to be.

通常、廃棄物溶融炉より排出される可燃性ガス成分及びチャーは、一定しておらず時々刻々と変化し、このため、2次燃焼空気を過剰に供給して未燃COの発生を抑制している。   Normally, combustible gas components and char discharged from a waste melting furnace are not constant and change from moment to moment. For this reason, an excessive supply of secondary combustion air is supplied to suppress the generation of unburned CO. ing.

また、排ガス中の酸素濃度を一定に保つ燃焼制御方法として、特許文献1には、図4に示す燃焼制御系統図のごとく、燃焼室1の出口以降に排ガス酸素濃度計3をもつ燃焼室内に明るさ検出センサ5を設け、明るさの変化により炉内の燃焼状態の相対的変化をとらえ、燃焼負荷が増大した場合には、燃焼制御のため、2次空気の空気流量調節弁19の開度を一定時間増大させ、空気量を増加させることで燃焼制御を安定させる制御が記載されている。なお、6は明るさセンサ5からの信号の変化率を演算する演算器である。12、13は共に信号の加算器である。
特開平11−125414号公報
Further, as a combustion control method for keeping the oxygen concentration in the exhaust gas constant, Patent Document 1 discloses in a combustion chamber having an exhaust gas oximeter 3 after the outlet of the combustion chamber 1 as shown in a combustion control system diagram shown in FIG. A brightness detection sensor 5 is provided to detect the relative change in the combustion state in the furnace due to the change in brightness. When the combustion load increases, the air flow rate adjustment valve 19 of the secondary air is opened for combustion control. There is described a control that stabilizes the combustion control by increasing the degree for a certain time and increasing the amount of air. Reference numeral 6 denotes a calculator that calculates the rate of change of the signal from the brightness sensor 5. Reference numerals 12 and 13 denote signal adders.
JP-A-11-125414

しかし、前記従来の燃焼室の燃焼では、過剰空気が多いと燃焼排ガス温度の低下によるダイオキシン発生が懸念され過剰空気は少ないほうがよい。なお、ダイオキシン発生抑制ガイドラインでは、燃焼室内850℃、2秒以と規定されている。また、過剰空気による排ガス量の増大は、燃焼室後段の誘引通風機や排ガス集塵機などの設備の容量増大を招き不経済である。   However, in the conventional combustion in the combustion chamber, if there is a large amount of excess air, dioxins are likely to be generated due to a decrease in the temperature of the combustion exhaust gas. The dioxin generation suppression guideline stipulates that the combustion chamber is 850 ° C. and 2 seconds or longer. Further, the increase in the amount of exhaust gas due to excess air is uneconomical because it increases the capacity of facilities such as an induction fan and exhaust gas dust collector at the rear stage of the combustion chamber.

さらに、廃棄物溶融炉の炉況によりチャーの発生量が急増することがあり、燃焼室でのチャーの急激な燃焼により排ガス酸素濃度が規定値を守れず未燃COの発生が起こるが、排ガス酸素センサ及び排ガス酸素濃度調節計による補正は、測定の遅れや燃焼後の排ガス酸素濃度測定によるために間に合わない。   Furthermore, the amount of char generated may increase rapidly depending on the furnace conditions of the waste melting furnace, and the exhaust gas oxygen concentration does not meet the specified value due to the rapid combustion of char in the combustion chamber, but unburned CO is generated. The correction by the oxygen sensor and the exhaust gas oxygen concentration controller is not in time because of the measurement delay or the exhaust gas oxygen concentration measurement after combustion.

また、前記明るさ検出センサを用いた燃焼制御方法では、燃焼室内の負荷の増大に対し、相対的に増減を判断することは出来るが、負荷の変化量を絶対的な変化量として捕らえることが出来ない。このため、二次燃焼空気量の変化が実際の変化量に合わず、空気量の過不足により、未燃COを発生させたり、温度低下を引き起こす場合があった。   Further, in the combustion control method using the brightness detection sensor, it is possible to determine a relative increase / decrease with respect to an increase in the load in the combustion chamber, but it is possible to capture the change amount of the load as an absolute change amount. I can't. For this reason, the change in the amount of secondary combustion air does not match the actual amount of change, and there are cases where unburned CO is generated or the temperature is lowered due to excess or deficiency in the amount of air.

このときの一例を図5に示す。図5のAは補正制御が適正に作用した場合を示す。図5のBは燃焼負荷の持続時間が想定よりも短く、補止量が大きすぎたために空気量過多となり燃焼温度が低下した状態を示す。図5のCは変化が燃焼負荷変化以外の要因により起こった一時的な温度指示値の低下であり、不必要に補正を掛けることでBと同様に燃焼温度が低下した状態を示す。図5のDは燃焼負荷の変化速度が小さく、補正制御が働かなかったために、排ガス中酸素濃度が低下した状態を示す。   An example at this time is shown in FIG. FIG. 5A shows a case where the correction control is properly applied. FIG. 5B shows a state in which the duration of the combustion load is shorter than expected and the amount of air is excessive because the amount of stoppage is too large, and the combustion temperature is lowered. C in FIG. 5 is a temporary decrease in the temperature instruction value caused by a factor other than the change in the combustion load, and shows a state in which the combustion temperature is lowered similarly to B by applying correction unnecessarily. FIG. 5D shows a state where the oxygen concentration in the exhaust gas is lowered because the change rate of the combustion load is small and the correction control does not work.

また、明るさの時間的変化に対して一定時間補正を掛けることで、燃焼負荷の時間的な積分量を算出し、変化の速度、変化の持続時間の両者を総合して補正することが出来なかった。   In addition, by applying a fixed time correction to the temporal change in brightness, the temporal integration amount of the combustion load can be calculated, and both the speed of change and the duration of change can be corrected comprehensively. There wasn't.

一方で、燃焼室内の酸素濃度を遅れ時間無しに測定する、レーザー式酸素濃度計が開発されているが、装置本体が高価であること、装置のダスト除去対策として、高価な窒素を必要とすることから、実施にあたっては不経済となる。   On the other hand, a laser oximeter that measures the oxygen concentration in the combustion chamber without delay has been developed. However, the device itself is expensive, and expensive nitrogen is required as a measure for removing dust from the device. Therefore, it is uneconomical for implementation.

本発明は、チャーの急激な燃焼に対し、遅れることなく適切な空気量を供給することができるとともに、燃焼室の燃焼状態の量を絶対量として捉え、チャーの急激な燃焼に対応できる、廃棄物溶融処理設備の燃焼室の燃焼制御方法を提供するものである。   The present invention is capable of supplying an appropriate amount of air without delay with respect to the rapid combustion of char, and considering the amount of combustion state in the combustion chamber as an absolute amount, which can cope with rapid combustion of char. A combustion control method for a combustion chamber of a material melting treatment facility is provided.

本発明は、燃焼室からの排ガス中の酸素濃度を検出し燃焼室に吹き込む空気を流量調整するための排ガス酸素濃度調節計、2次空気流量計及び空気流量調節弁を備えた燃焼室の燃焼制御方法において、廃棄物溶融炉で発生する可燃性ダストを含有する可燃性ガスを燃焼空気により燃焼させる燃焼室に、燃焼室内の温度を光によって検出する放射温度計を設け、温度検出センサの出力の変化率を変化率演算器で演算し、前記変化量の絶対値に相応して燃焼室に吹き込む空気流量を連続的に変化させることを特徴とする。   The present invention relates to combustion in a combustion chamber provided with an exhaust gas oxygen concentration controller, a secondary air flow meter and an air flow control valve for detecting the oxygen concentration in the exhaust gas from the combustion chamber and adjusting the flow rate of the air blown into the combustion chamber. In the control method, a radiation thermometer that detects the temperature in the combustion chamber with light is installed in the combustion chamber that burns the combustible gas containing the combustible dust generated in the waste melting furnace with the combustion air, and the output of the temperature detection sensor The change rate is calculated by a change rate calculator, and the flow rate of air blown into the combustion chamber is continuously changed in accordance with the absolute value of the change amount.

通常運転時には酸素濃度設定値を理論燃焼空気量に比較して高めに設定することで、常に過剰な空気が燃焼室内に投入されるように制御される。温度検出センサの出力の変化率が規定値を越えた時、初期の燃焼に必要な空気は2次燃焼空気の過剰空気分を充当させ、この空気が不足するまでに増加させた空気量が追いつくようにし、排ガス酸素濃度調節計による補正の遅れを補うため、排ガス酸素濃度調節計の遅れ時間に見合う時間、燃焼空気量の増加を保持する。   During normal operation, the oxygen concentration set value is set higher than the theoretical combustion air amount so that excessive air is always supplied into the combustion chamber. When the rate of change of the output of the temperature detection sensor exceeds the specified value, the air necessary for the initial combustion is allocated the excess air of the secondary combustion air, and the increased amount of air catches up until this air becomes insufficient. Thus, in order to compensate for the delay in correction by the exhaust gas oxygen concentration controller, an increase in the amount of combustion air is maintained for a time commensurate with the delay time of the exhaust gas oxygen concentration controller.

温度検出センサによる変化量を連続的に測定し、変化量を燃焼負荷量とみなし、吹き込む空気量の増加量を連続的に変化させ、変化の傾きの大小、変化の持続時間の長短に対して適切な空気量を連続的に補正できることを特微とする。これは、温度変化量の時間的積分値と吹き込み空気の補正量の積分値が相関性をもって制御できることを特徴とする(以下「連続補正制御」という。)。本制御は補正量の精度を重視する場合に用いる。本制御の具体例を図6に示す。図6のAは補正制御が適正に作用した場合を示す。図6のBは燃焼負荷の持続時間が想定よりも短いが、移動平均値との偏差によって持続時間を短くすることで適正な補正量が得られ、空気量過多となり燃焼温度が低下することなく適正な制御を継続することが出来る。図6のCは変化が燃焼負荷変化以外の要因により起こった一時的な温度指示値の低下であり、補正制御を動作させないことで図5のCで発生したような燃焼温度の低下を引き起こすことなく適切な状態で制御が継続できる。図6のDは燃焼負荷の変化速度が小さいが、平均値との温度の偏差は大きくなり、補正制御が適切に働くため、図5のDで起こったような排ガス中の酸素濃度の低下を防止することが出来る状態を示す。   The amount of change by the temperature sensor is continuously measured, the amount of change is regarded as the combustion load, the amount of increase in the amount of air blown is continuously changed, and the magnitude of the change and the change duration are short and long. It is characterized by the ability to continuously correct the appropriate amount of air. This is characterized in that the temporal integration value of the temperature change amount and the integration value of the correction amount of the blown air can be controlled with correlation (hereinafter referred to as “continuous correction control”). This control is used when importance is attached to the accuracy of the correction amount. A specific example of this control is shown in FIG. FIG. 6A shows a case where the correction control is properly applied. In FIG. 6B, although the duration of the combustion load is shorter than expected, an appropriate correction amount can be obtained by shortening the duration due to deviation from the moving average value, so that the air temperature is excessive and the combustion temperature does not decrease. Proper control can be continued. C in FIG. 6 is a temporary decrease in the temperature indication value caused by a factor other than the change in the combustion load, and causing the decrease in the combustion temperature as generated in C in FIG. 5 by not operating the correction control. Control can be continued in an appropriate state. In FIG. 6D, the change rate of the combustion load is small, but the deviation of the temperature from the average value becomes large, and the correction control works properly. Therefore, the decrease in the oxygen concentration in the exhaust gas as occurred in D of FIG. The state which can be prevented is shown.

温度検出センサによる変化量の瞬時値を用い、変化量から演算した補正量を用いて空気吹き込み制御弁の弁開度を一定時間開することで補正し、補正量は温度変化量を燃焼負荷変化量として演算し、補正量を温度変化量に対して一対一で決定できることを特徴とする(以下「ステップ補正制御」という。)。本制御は補正量の速度追従性を重視する場合に用いる。   Using the instantaneous value of the amount of change by the temperature detection sensor and using the correction amount calculated from the amount of change, the valve opening of the air blowing control valve is corrected by opening it for a certain period of time. It is calculated as an amount, and the correction amount can be determined one-to-one with respect to the temperature change amount (hereinafter referred to as “step correction control”). This control is used when importance is attached to the speed followability of the correction amount.

応答性の高い、光による温度センサを用いることで、燃焼状態の過渡的な状況を判断し、低負荷時からの復帰による制御上適切な温度上昇、炉内圧力変動による瞬時的な温度変化を燃焼負荷の増大とみなすことなく、誤検知による空気補正量の過剰状態を防止することが出来ることを特徴とする。   By using a light temperature sensor with high responsiveness, it is possible to determine the transient state of the combustion state, and to control the temperature rise appropriately by returning from a low load, and to instantaneously change the temperature due to fluctuations in the furnace pressure. It is characterized in that it is possible to prevent an excessive state of the air correction amount due to erroneous detection without considering that the combustion load increases.

通常、燃焼室に吹き込む空気は燃焼を主目的とした1次、2次空気とは別に燃焼室内の可燃性ガス、チャーと空気の混合性を向上させる目的で撹拌空気を利用することがあるが、上記制御方法において、増加させる空気は1次、2次空気とは別個に設置された撹拌に用いられる空気を使用しても良い。また、2次空気の流速を高く設定し、攪拌効果をもたせることで高い効果が得られる。   Usually, the air blown into the combustion chamber may use agitation air for the purpose of improving the mixing property of the combustible gas, char and air in the combustion chamber separately from the primary and secondary air for the main purpose of combustion. In the above control method, the air to be increased may be air used for agitation installed separately from primary and secondary air. Moreover, a high effect is acquired by setting the flow rate of secondary air high and giving a stirring effect.

本発明は、炉内温度変化を光として検出し、温度変化を2次空気流量のフィードフォワード要素として酸素濃度制御、2次空気流量を補正しているため、急激な燃焼に対する追従性がよい。また、温度変化量を燃焼負荷量として捉えることが出来、温度変化の絶対量に対し、空気補正量の絶対量を決めることが出来るため、精度の高い燃焼制御が可能となる。また、補正を連続的に作用させることにより、従来補正をさせることが難しかった、変化量の時間的な積分値に対しても適正な補正量を与えることができる。   In the present invention, the temperature change in the furnace is detected as light, and the oxygen concentration control and the secondary air flow rate are corrected using the temperature change as a feedforward element of the secondary air flow rate. Further, since the temperature change amount can be regarded as the combustion load amount, and the absolute amount of the air correction amount can be determined with respect to the absolute amount of the temperature change, combustion control with high accuracy is possible. In addition, by applying the correction continuously, it is possible to give an appropriate correction amount even to the temporal integration value of the change amount, which has been difficult to perform conventionally.

図1は、本発明による可燃性ガスの燃焼の制御系統図である。   FIG. 1 is a control system diagram of combustion of combustible gas according to the present invention.

燃焼室1の排ガス出口2に排ガス中の酸素濃度を検出する排ガス酸素センサ3が配置され、排ガス酸素センサ3の酸素濃度の検出信号は排ガス酸素濃度調節計4へ送られる。   An exhaust gas oxygen sensor 3 for detecting the oxygen concentration in the exhaust gas is disposed at the exhaust gas outlet 2 of the combustion chamber 1, and an oxygen concentration detection signal of the exhaust gas oxygen sensor 3 is sent to the exhaust gas oxygen concentration controller 4.

燃焼室には炉内の状態を測定するフォトセンサからなる温度検出センサ5が設けられ、温度検出センサ5の信号は変化率演算器6、移動平均演算器7へ送られる。   The combustion chamber is provided with a temperature detection sensor 5 comprising a photo sensor for measuring the state in the furnace, and a signal from the temperature detection sensor 5 is sent to a change rate calculator 6 and a moving average calculator 7.

変化率演算器8は温度検出センサ5の出力と移動平均演算器7の出力から、燃焼負荷の定常状態からの変化量を演算し、燃焼負荷補正テーブル9に入力される。   The change rate calculator 8 calculates the amount of change from the steady state of the combustion load from the output of the temperature detection sensor 5 and the output of the moving average calculator 7 and inputs it to the combustion load correction table 9.

燃焼負荷補正テーブル9では燃焼負荷の変化量に対し、必要な空気量を演算し、補正空気量を出力する。   The combustion load correction table 9 calculates a necessary air amount for the change amount of the combustion load and outputs a corrected air amount.

1次、2次空気流量調節計14、17は1次、2次空気流量計15、18から流量の測定信号が入力され、酸素濃度調節計4からの空気量指令と燃焼負荷補正テーブル9の出力値が加算器11に入力され、加算器11の信号は1次、2次空気流量調節計14、17へ入力され、適切な空気量が炉内に吹き込まれるように1次、2次空気流量調節弁16、19が調整される。   The primary and secondary air flow controllers 14 and 17 receive flow rate measurement signals from the primary and secondary air flow meters 15 and 18, and the air amount command from the oxygen concentration controller 4 and the combustion load correction table 9 The output value is input to the adder 11, and the signal of the adder 11 is input to the primary and secondary air flow controllers 14 and 17, and the primary and secondary air so that an appropriate amount of air is blown into the furnace. The flow control valves 16 and 19 are adjusted.

燃焼空気に燃焼負荷変動分の空気を事前に吹き込むことにより、排ガス酸素濃度が変動することを防止できる(連続補正制御)。   It is possible to prevent the exhaust gas oxygen concentration from fluctuating by blowing in advance the air corresponding to the fluctuation of the combustion load into the combustion air (continuous correction control).

2次空気流量調節計17は、2次空気流量計18から流量の測定信号が入力される。変化率演算器6の信号は燃焼負荷補正テーブル10へ入力される。   The secondary air flow controller 17 receives a flow rate measurement signal from the secondary air flow meter 18. The signal of the change rate calculator 6 is input to the combustion load correction table 10.

燃焼負荷補正テーブル10では入力された温度の変化率を元に、温度変化として検出される燃焼負荷の変化量を演算し、必要な空気量を弁開度として出力し、2次空気流量調整弁17へ入力される。   The combustion load correction table 10 calculates a change amount of the combustion load detected as a temperature change based on the input temperature change rate, outputs a necessary air amount as a valve opening degree, and outputs a secondary air flow rate adjustment valve. 17 is input.

2次空気流量調節計17の信号は、燃焼負荷補正テーブル10の信号とともに加算器13へ入力され、加算器13の信号は2次空気流量調節弁19に送られて、2次空気流量調節弁19の開度を調節する。   The signal of the secondary air flow rate controller 17 is input to the adder 13 together with the signal of the combustion load correction table 10, and the signal of the adder 13 is sent to the secondary air flow rate adjustment valve 19, where the secondary air flow rate adjustment valve is sent. Adjust the opening of 19.

次ぎに、本発明の制御方法について説明する。   Next, the control method of the present invention will be described.

図2は本発明による可燃性ガスの燃焼の制御フロー図である。   FIG. 2 is a control flow chart of combustion of combustible gas according to the present invention.

連続補正制御では、温度検出センサ5の出力、移動平均演算器7から変化率演算器8にて温度の変化量を演算し、演算結果を燃焼負荷補正テーブル9で燃焼負荷の変化量に相対するように空気量の補正値ΔMVとして出力する。補正値は酸素濃度制御系への補正量として加算される。補正量ΔMVは通常の酸素濃度における制御系の出力値MVからMV+ΔMVとして燃焼空気量調節系に空気要求量として出力される。酸素濃度制御系はMV+ΔMVとして制御された空気量の結果として検出されるPVを用いて連続的に制御を続ける。   In the continuous correction control, the output of the temperature detection sensor 5, the temperature change amount is calculated from the moving average calculator 7 by the change rate calculator 8, and the calculation result is compared with the change amount of the combustion load by the combustion load correction table 9. In this way, it is output as an air amount correction value ΔMV. The correction value is added as a correction amount to the oxygen concentration control system. The correction amount ΔMV is output as the required air amount to the combustion air amount adjustment system as MV + ΔMV from the output value MV of the control system at the normal oxygen concentration. The oxygen concentration control system continues to control using PV detected as a result of the air volume controlled as MV + ΔMV.

一方ステップ補正制御では、温度検出センサ5の出力から変化率演算器6で演算した結果、変化率が規定値を越えない場合は、通常の2次空気流量SVとなるように2次空気流量調節弁を通常の開度MVとする。温度変化率の規定値は、10℃〜30℃に設定する。   On the other hand, in the step correction control, if the change rate does not exceed the specified value as a result of calculation by the change rate calculator 6 from the output of the temperature detection sensor 5, the secondary air flow rate is adjusted so as to become the normal secondary air flow rate SV. The valve is set to a normal opening MV. The specified value of the temperature change rate is set to 10 ° C to 30 ° C.

変化率が規定値を越えた時、チャーの急激な燃焼と判断し、2次空気流量調節弁を通常の開度MVからMV+ΔMVとなるようにして燃焼空気量を増加させる。   When the rate of change exceeds a specified value, it is determined that char is suddenly burned, and the amount of combustion air is increased by changing the secondary air flow rate control valve from the normal opening MV to MV + ΔMV.

燃焼室内の温度が変化した時は、既に燃焼室内の負荷が増大しているため、初期の燃焼に必要な空気は、2次燃焼空気の過剰空気分を充当させ、この空気が不足するまでに上記判断にて増加させた空気量が追いつくようにする。排ガス酸素濃度調節計による補正の遅れを補うため、排ガス酸素濃度調節計の遅れ時間に見合う時間、燃焼空気量の増加を保持する。一定時間経過後、例えば、20秒程度経過すると、排ガス酸素濃度調節計による補正で2次空気流量が追随してくる。   When the temperature in the combustion chamber changes, the load in the combustion chamber has already increased, so that the air required for the initial combustion is used by applying the excess air content of the secondary combustion air until this air becomes insufficient. The amount of air increased by the above judgment is caught up. In order to compensate for the delay in correction by the exhaust gas oxygen concentration controller, the increase in the combustion air amount is maintained for a time corresponding to the delay time of the exhaust gas oxygen concentration controller. For example, when about 20 seconds elapse after a certain time has elapsed, the secondary air flow rate follows the correction by the exhaust gas oxygen concentration controller.

前記移動平均値が規定値より小さい場合には補正を掛けないことで、低負荷状態からの復帰過程等の正常な温度上昇を判断し、過剰空気による温度低下を防止する。   When the moving average value is smaller than a specified value, correction is not performed, so that a normal temperature increase such as a recovery process from a low load state is determined, and a temperature decrease due to excess air is prevented.

規定値は800℃〜900℃程度に設定する。また、移動平均値との差を温度変化として検出することで、炉内圧力の瞬間的な変動による、温度変化検出結果を燃焼負荷とは無関係な変化と認識し、補正を欠けないことで制御の不安定化を防止する。 The specified value is set to about 800 ° C to 900 ° C. In addition, by detecting the difference from the moving average value as a temperature change, the temperature change detection result due to instantaneous fluctuations in the furnace pressure is recognized as a change unrelated to the combustion load, and control is performed without any correction. To prevent instability.

チャーの急激な燃焼に対し、遅れることなく適切な空気量を供給することができるとともに、燃焼室の燃焼状態の量を絶対量として捉え、チャーの急激な燃焼に対応できる、廃棄物溶融処理設備の燃焼室の燃焼制御に利用する。   A waste melting treatment facility that can supply an appropriate amount of air without delay in response to the rapid combustion of char, and can treat the amount of combustion in the combustion chamber as an absolute amount, and can respond to sudden combustion of char. This is used to control the combustion of the combustion chamber.

本発明による可燃性ガスの燃焼の制御系統図である。It is a control system diagram of combustion of combustible gas by the present invention. 本発明による可燃性ガスの燃焼の制御フロー図である。It is a control flow figure of combustion of combustible gas by the present invention. 従来の可燃性ガスの燃焼の制御系統図である。It is a control system diagram of the combustion of the conventional combustible gas. 従来の排ガス中の酸素濃度を一定に保つ燃焼制御系統図である。It is a combustion control system diagram which keeps the oxygen concentration in the conventional exhaust gas constant. 図4の明るさ検出センサを用いた燃焼制御による状態を示す図である。It is a figure which shows the state by the combustion control using the brightness detection sensor of FIG. 本発明の燃焼制御による状態を示す図である。It is a figure which shows the state by the combustion control of this invention.

符号の説明Explanation of symbols

1:燃焼室、2:排ガス出口、3:排ガス酸素センサ、4:排ガス酸素濃度調節計、5:温度検出センサ、6:変化率演算器、7:移動平均演算器、8:変化率演算器、9:燃焼負荷補正テーブル、10:燃焼負荷補正テーブル、11:加算器、12:加算器、13:加算器、14:1次空気流量調節計、15:1次空気流量計、16:1次空気流量調節弁、17:2次空気流量調節計、18:2次空気流量計、19:2次空気流量調節弁 1: Combustion chamber, 2: Exhaust gas outlet, 3: Exhaust gas oxygen sensor, 4: Exhaust gas oxygen concentration controller, 5: Temperature detection sensor, 6: Change rate calculator, 7: Moving average calculator, 8: Change rate calculator 9: Combustion load correction table, 10: Combustion load correction table, 11: Adder, 12: Adder, 13: Adder, 14: 1 primary air flow controller, 15: 1 primary air flow meter, 16: 1 Secondary air flow control valve, 17: Secondary air flow controller, 18: Secondary air flow meter, 19: Secondary air flow control valve

Claims (3)

廃棄物溶融炉で発生する可燃性ダストを含有する可燃ガスを、燃焼室で燃焼空気により燃焼させるに際し、燃焼室からの排ガス中の酸素濃度を検出し、燃焼室に吹き込む空気を流量調整するための排ガス酸素濃度調節計、空気流量計及び空気流量調節弁を備えた燃焼室の燃焼制御方法において、前記燃焼室内に、燃焼室内の温度を光によって検出する放射温度計を設け、該放射温度計の温度検出センサーの出力の現在値とその移動平均値の差を偏差演算器で演算し、前記偏差が規定以上を超えた時は、その温度偏差に見合う補正空気量を求め、該補正空気量を前記吹き込み空気量に加算することにより、燃焼室出側の排ガス中の酸素濃度が一定となるように燃焼制御することを特徴とする廃棄物溶融処理設備の燃焼室の燃焼制御方法。   When combustible gas containing combustible dust generated in a waste melting furnace is burned with combustion air in the combustion chamber, the oxygen concentration in the exhaust gas from the combustion chamber is detected and the flow rate of air blown into the combustion chamber is adjusted In the combustion chamber combustion control method comprising the exhaust gas oxygen concentration controller, the air flow meter, and the air flow control valve, a radiation thermometer that detects the temperature in the combustion chamber by light is provided in the combustion chamber, and the radiation thermometer The difference between the current value of the temperature detection sensor output and the moving average value is calculated by a deviation calculator, and when the deviation exceeds a specified value, a correction air amount corresponding to the temperature deviation is obtained, and the correction air amount The combustion control method for the combustion chamber of the waste melting treatment facility is characterized in that combustion is controlled so that the oxygen concentration in the exhaust gas on the exit side of the combustion chamber becomes constant by adding to the amount of blown air. 前記放射温度計の温度検出センサーの出力の変化率を変化率演算器で演算し、前記変化率が規定以上を超えた時は、その温度変化に見合う補正空気量を求め、該補正空気量を前記吹き込み空気量に加算することを特徴とする請求項1記載の廃棄物溶融処理設備の燃焼室の燃焼制御方法。   The rate of change of the output of the temperature detection sensor of the radiation thermometer is calculated by a rate of change calculator, and when the rate of change exceeds a specified value, a corrected air amount corresponding to the temperature change is obtained, and the corrected air amount is calculated. The combustion control method for a combustion chamber of a waste melting treatment facility according to claim 1, wherein the combustion air is added to the amount of blown air. 前記温度変化に見合う補正空気量が、放射温度計の測定温度から前回測定温度を減算した温度差と補正空気量との関係を示す出力演算データから演算されることを特徴とする請求項1記載の廃棄物溶融処理設備の燃焼室の燃焼制御方法。   2. The corrected air amount corresponding to the temperature change is calculated from output calculation data indicating a relationship between a corrected air amount and a temperature difference obtained by subtracting a previously measured temperature from a measured temperature of a radiation thermometer. Control method for the combustion chamber of the waste melting treatment facility.
JP2003383661A 2003-11-13 2003-11-13 Combustion control method for combustion chamber of waste melting treatment equipment Expired - Lifetime JP4129224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383661A JP4129224B2 (en) 2003-11-13 2003-11-13 Combustion control method for combustion chamber of waste melting treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383661A JP4129224B2 (en) 2003-11-13 2003-11-13 Combustion control method for combustion chamber of waste melting treatment equipment

Publications (2)

Publication Number Publication Date
JP2005147472A true JP2005147472A (en) 2005-06-09
JP4129224B2 JP4129224B2 (en) 2008-08-06

Family

ID=34692312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383661A Expired - Lifetime JP4129224B2 (en) 2003-11-13 2003-11-13 Combustion control method for combustion chamber of waste melting treatment equipment

Country Status (1)

Country Link
JP (1) JP4129224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133660A (en) * 2008-12-05 2010-06-17 Nippon Steel Engineering Co Ltd Combustion control method of combustion chamber of waste melting treatment facility

Also Published As

Publication number Publication date
JP4129224B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4568592B2 (en) Fuel gas heating control device and gas turbine power generation facility provided with the fuel gas heating control device
JP2011099608A (en) Boiler combustion control device
JP2007162531A (en) Gas turbine plant
JP4129224B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment
JP4603491B2 (en) Steam pressure control method for automatic start and stop of waste treatment boilers
JPH0611277A (en) Method and device for adjusting quantity of combustion air of flue-gas recovery device for metallurgical reaction furnace and recovery device and metallurgical reaction furnace
JP2010127598A (en) Treated object combustion system and method of controlling concentration of nitrogen oxide in exhaust gas
JP2006183058A (en) Method and apparatus for coke dry quenching
JP2010121893A (en) Device and method of automatically controlling boiler and boiler system
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP2004278869A (en) Combustion control method for combustion chamber of waste melting furnace
JPH0337091B2 (en)
JP2013057417A (en) Coal thermal power plant
JP2958550B2 (en) Combustion equipment
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JPH11125414A (en) Method for controling combustion of combustion chamber of waste melting furnace
JPH1194224A (en) Method for controlling combustion of fluidized bed type incinerator
JP2617830B2 (en) Control method of combustion air volume in ash melting furnace
JP2006125759A (en) Operation control device for incinerator
WO2022039109A1 (en) Control device, control method, and program
JP2002122317A (en) Combustion control system of refuse incinerator
JP3665483B2 (en) Combustion control device for incinerator
JP3020737B2 (en) Combustion treatment device for combustible emission gas
JP2007332856A (en) System and apparatus for controlling turbine bypass valve
JP5281378B2 (en) Combustion control method for combustion chamber of waste melting treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4129224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term