JP2005144280A - Methane fermentation treatment method - Google Patents

Methane fermentation treatment method Download PDF

Info

Publication number
JP2005144280A
JP2005144280A JP2003383291A JP2003383291A JP2005144280A JP 2005144280 A JP2005144280 A JP 2005144280A JP 2003383291 A JP2003383291 A JP 2003383291A JP 2003383291 A JP2003383291 A JP 2003383291A JP 2005144280 A JP2005144280 A JP 2005144280A
Authority
JP
Japan
Prior art keywords
methane
temperature
methane fermentation
fermentation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003383291A
Other languages
Japanese (ja)
Other versions
JP4218504B2 (en
Inventor
Miyako Hitomi
美也子 人見
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003383291A priority Critical patent/JP4218504B2/en
Publication of JP2005144280A publication Critical patent/JP2005144280A/en
Application granted granted Critical
Publication of JP4218504B2 publication Critical patent/JP4218504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermentation treatment method which can keep the temperature of a methane fermenter high without decreasing the number of bacilli in the methane fermenter. <P>SOLUTION: In this methane fermentation treatment method, an organic waste is converted into a raw material slurry, supplied into the methane fermenter 1, then subjected to methane fermentation with anaerobic microorganisms, and taken out as a fermented waste liquid. In the method, a part of the fermented liquid is circulated through a circulation route 8 connected to the outside of the methane fermenter 1; a heat exchanger 6 is installed on the way of the circulation route; and the flow rate of the circulating fermentation liquid is controlled with a circulation pump 2 so that the temperature in the methane fermenter 1 is kept at 53-57°C. Preferably, the temperature of a heat medium at the heating side of the heat exchanger 6 is 55-60°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、嫌気性微生物を用いて、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を処理するメタン発酵処理方法に関する。   The present invention relates to a methane fermentation treatment method for treating organic waste such as manure, raw garbage, food processing residue and the like using anaerobic microorganisms.

生ごみ、消化汚泥等の有機性廃棄物のほとんどは、焼却や埋め立て処分されているが、焼却に伴うダイオキシンの発生や埋め立て処分地の逼迫、悪臭などの問題から、環境負荷の少ない処理方法が求められている。これらの問題を解決するために、有機性廃棄物をメタン発酵処理し、発生したメタンガスを燃料電池やガスエンジンを用いて発電するシステムが開発されている。このメタン発酵は、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができ、嫌気性のため曝気動力が不要であるため省エネルギーな処理法であり、しかも副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。   Most organic waste such as garbage and digested sludge is incinerated or disposed of in landfills. However, due to problems such as dioxin generation due to incineration, tightness of landfill sites, and bad odors, treatment methods with less environmental impact are available. It has been demanded. In order to solve these problems, a system has been developed in which organic waste is subjected to methane fermentation, and the generated methane gas is generated using a fuel cell or a gas engine. This methane fermentation is an energy-saving treatment method that can decompose organic waste into biogas and water, greatly reducing the amount of waste, and does not require aeration power because it is anaerobic. There is an advantage that methane gas can be recovered as energy.

メタン発酵処理においては、有機性廃棄物を粉砕、スラリー化した後、このスラリーを発酵槽に投入し、嫌気性下でメタン菌により発酵処理することで、有機性廃棄物をメタンガスに転換する。そして、投入原料の性状や運転条件などにより様々な処理方法、発酵槽が提案されている。   In the methane fermentation treatment, organic waste is pulverized and slurried, and then the slurry is put into a fermenter and fermented with methane bacteria under anaerobic conditions to convert the organic waste into methane gas. Various processing methods and fermenters have been proposed depending on the properties of the input raw materials and operating conditions.

例えば、下記の特許文献1には、生ごみ等の有機性廃棄物をメタン発酵法で効率的に処理するシステムとして、有機性廃棄物をペースト状に粉砕して、50〜60℃で大きな活性を示す高温メタン菌で処理するシステムが開示されている。高温メタン菌は、36〜38℃の中温で活性が大きくなる中温菌に比べて2〜3倍の活性を持っており、高温メタン菌でメタン発酵を行うことで分解速度の向上と消化率の向上を図ることができる。   For example, in Patent Document 1 below, as a system for efficiently treating organic waste such as garbage with a methane fermentation method, organic waste is pulverized into a paste and has a large activity at 50 to 60 ° C. A system for treating with high temperature methane bacteria is disclosed. Thermophilic methane bacteria are 2 to 3 times more active than mesophilic bacteria whose activity increases at a medium temperature of 36-38 ° C. By performing methane fermentation with high-temperature methane bacteria, the degradation rate and digestibility are improved. Improvements can be made.

このように、高温メタン発酵は高速処理が可能であるが、一方、高温による菌の死滅が大きくなるデメリットがある。通常、温度が高いと菌の死滅速度は上昇し、特に高温側で60℃を超えた場合には著しく菌が死滅する。このため、高温メタン発酵においては、発酵槽内の温度を常時一定範囲内に管理して、特に高温による菌の死滅を防ぐ必要がある。   Thus, high-temperature methane fermentation is capable of high-speed processing, but has a demerit that kills bacteria due to high temperature. Usually, when the temperature is high, the killing rate of the bacteria increases, and particularly when the temperature exceeds 60 ° C. on the high temperature side, the bacteria are markedly killed. For this reason, in high temperature methane fermentation, it is necessary to always manage the temperature in the fermenter within a certain range to prevent the death of bacteria due to high temperature.

メタン発酵槽の加温の方式には、下記の非特許文献1に示すように、発酵槽に直接蒸気を吹き込む方式や、外部に熱交換器を設けて間接加熱する方式がある。   As shown in Non-Patent Document 1 below, the methane fermenter is heated by a method in which steam is directly blown into the fermenter or a method in which a heat exchanger is provided outside and indirectly heated.

また、下記の特許文献2には、嫌気性消化リアクター内で生成する消化汚泥を主体とする混合液の一部を引き抜き、その引き抜いた混合液を60〜150℃の温度範囲で3分間以上加熱処理して混合液中の難分解性有機物を変性させ、該混合液を前記嫌気性消化リアクターに循環・返送させること、及び、循環・返送系統中に加熱設備を設け、嫌気性消化リアクター中の消化温度を適正範囲に制御することが開示されている。   In Patent Document 2 below, a part of the mixed liquid mainly composed of digested sludge generated in the anaerobic digestion reactor is extracted, and the extracted mixed liquid is heated at a temperature range of 60 to 150 ° C. for 3 minutes or more. Treating the denatured organic matter in the mixed solution to circulate and return the mixed solution to the anaerobic digestion reactor, and provide a heating facility in the circulation / return system, It is disclosed that the digestion temperature is controlled within an appropriate range.

更に、下記の特許文献3には、窒素含有排水の処理方法において、アンモニアストリッピング処理後の排水を予熱器で熱交換して、高窒素含有排水を昇温させることが開示されている。
特開平10−137730号公報 特開平10−85784号公報 特開2001−70988号公報 松本幸一,「下水道施設計画・設計指針と解説 後編 -2001年度版-」,社団法人日本下水道協会,2001年5月24日発行,p393
Furthermore, Patent Document 3 below discloses that in a method for treating nitrogen-containing wastewater, wastewater after the ammonia stripping treatment is subjected to heat exchange with a preheater to raise the temperature of the high nitrogen-containing wastewater.
Japanese Patent Laid-Open No. 10-137730 JP-A-10-85784 JP 2001-70988 A Koichi Matsumoto, “Sewerage Facilities Planning / Design Guidelines and Explanation Part 2 -2001 Version”, Japan Sewerage Association, May 24, 2001, p393

上記の従来技術のうち、非特許文献1の蒸気を吹き込む方式では、蒸気に接する部分で発酵液が局所的に高温になり、部分的に60℃を超えて高温メタン菌が死滅する危険性がある。また、熱交換器による間接加熱においては、加熱に用いる温水温度は60〜90℃が一般的であるが、この場合にも、熱交換器の滞留部もしくは発酵液を循環する受熱側の流量が少ない場合、菌を含む消化液の温度が60℃を超えてしまう場合がある。   Among the above-mentioned conventional techniques, in the method of blowing steam of Non-Patent Document 1, there is a risk that the fermentation liquor locally becomes hot at the part in contact with the steam and partially exceeds 60 ° C. to kill the high-temperature methane bacteria. is there. Moreover, in indirect heating with a heat exchanger, the temperature of hot water used for heating is generally 60 to 90 ° C. In this case as well, the flow rate on the heat receiving side for circulating the staying part of the heat exchanger or the fermentation broth is When there are few, the temperature of the digestive liquid containing a microbe may exceed 60 degreeC.

また、特許文献2の方法では、引き抜いた混合液を60〜150℃の温度範囲で3分間以上加熱処理しており、これは通常の高温メタン発酵に比べて高い温度であるので、汚泥の分解は進むものの、同時に菌の死滅も進み、最終的には菌数が減ってしまい目的のスラリー量を処理できなくなるという問題がある。   Moreover, in the method of patent document 2, since the extracted liquid mixture is heat-processed in the temperature range of 60-150 degreeC for 3 minutes or more and this is high temperature compared with normal high temperature methane fermentation, decomposition | disassembly of sludge is carried out. However, at the same time, the killing of the bacteria progresses, and there is a problem that the number of the bacteria finally decreases and the target slurry amount cannot be processed.

更に、特許文献3の方法は、窒素含有排水のアンモニアストリッピング処理に関するものであり、メタン発酵処理において発酵廃液の予熱を利用する点については検討されてない。   Furthermore, the method of Patent Document 3 relates to ammonia stripping treatment of nitrogen-containing wastewater, and the point of utilizing preheating of fermentation waste liquid in methane fermentation treatment has not been studied.

このように、上記の従来技術においては、過度の高温によるメタン発酵槽内の菌数の減少を回避しつつ、高温メタン発酵槽の温度を最適範囲に保持する具体的な手段については開示されてない。   Thus, in the above-described prior art, specific means for maintaining the temperature of the high-temperature methane fermenter in the optimum range while avoiding a decrease in the number of bacteria in the methane fermenter due to excessively high temperature is disclosed. Absent.

本発明の目的は、上記従来技術の問題点を鑑みてなされたもので、高温メタン発酵槽内の温度を一定に制御しつつ、高熱による菌の死滅を最小にするように加温を行うメタン発酵処理方法を提供することにある。   The object of the present invention has been made in view of the above-mentioned problems of the prior art, and is a methane which is heated so as to minimize the death of bacteria due to high heat while controlling the temperature in the high-temperature methane fermentation tank to be constant. It is to provide a fermentation treatment method.

すなわち、本発明のメタン発酵処理方法は、有機性廃棄物を原料スラリー化してメタン発酵槽内に供給し、嫌気性微生物によりメタン発酵させ、発酵廃液として取り出すメタン発酵処理方法において、
前記メタン発酵槽の外部に接続された循環経路によって、前記メタン発酵槽内の発酵液の一部を循環させ、この循環経路の途中に加熱手段を設け、
前記メタン発酵槽内の温度が53〜57℃となるように、前記発酵液の循環流量を制御することを特徴とする。
That is, in the methane fermentation treatment method of the present invention, the organic waste is made into a raw material slurry and supplied into the methane fermentation tank, subjected to methane fermentation by anaerobic microorganisms, and taken out as a fermentation waste liquid.
By circulating a part of the fermentation broth in the methane fermentation tank by a circulation path connected to the outside of the methane fermentation tank, a heating means is provided in the middle of the circulation path,
The circulation flow rate of the fermentation liquor is controlled so that the temperature in the methane fermentation tank is 53 to 57 ° C.

本発明の方法によれば、発酵液を循環させながら外部から加熱し、この発酵液の循環流量を制御することによってメタン発酵槽内の温度を調整したので、局部的な加熱ムラを防止でき、過度の高温による菌の死滅を回避してメタン発酵槽内の菌数を維持できる。また、これによって、メタン発酵槽内の温度を、高温メタン発酵の最適温度である53〜57℃という狭い範囲内でも安定して温度制御できる。したがって、菌の活性を最適な状態に維持でき、充分なスラリー処理量を確保することができる。   According to the method of the present invention, heating from outside while circulating the fermentation liquid, and adjusting the temperature in the methane fermentation tank by controlling the circulation flow rate of this fermentation liquid, it is possible to prevent local heating unevenness, The number of bacteria in the methane fermenter can be maintained by avoiding the death of the bacteria due to excessive high temperature. Moreover, by this, the temperature in a methane fermenter can be stably controlled even in the narrow range of 53-57 degreeC which is the optimal temperature of high temperature methane fermentation. Therefore, the activity of the bacteria can be maintained in an optimum state, and a sufficient slurry processing amount can be ensured.

本発明の方法においては、前記加熱手段として、前記循環経路の途中に熱交換器を設け、該熱交換器の加熱側の熱媒体の温度を55〜60℃とすることが好ましい。   In the method of the present invention, it is preferable that a heat exchanger is provided in the middle of the circulation path as the heating means, and the temperature of the heat medium on the heating side of the heat exchanger is 55 to 60 ° C.

この態様によれば、加熱する温水等の熱媒体の温度が60℃以下であるので、熱交換器の滞留部でも、菌を含む発酵液の温度が60℃を超えることがない。また、メタン発酵槽の温度が高く、循環ポンプの流量が少ない条件でも、菌を含む発酵液の温度が60℃を超えることがない。したがって、メタン発酵槽内の温度を常時53〜57℃に維持でき、不要な高温による菌の死滅を防止できる。   According to this aspect, since the temperature of the heating medium such as warm water to be heated is 60 ° C. or lower, the temperature of the fermentation broth containing bacteria does not exceed 60 ° C. even in the staying portion of the heat exchanger. Moreover, the temperature of the fermented liquor containing bacteria does not exceed 60 ° C. even under conditions where the temperature of the methane fermentation tank is high and the flow rate of the circulation pump is small. Therefore, the temperature in the methane fermenter can always be maintained at 53 to 57 ° C., and killing of bacteria due to unnecessary high temperatures can be prevented.

また、本発明の方法においては、前記循環経路の途中で前記発酵液と前記原料スラリーとを混合し、その後に前記加熱手段を通して、前記混合後の前記発酵液及び前記原料スラリーを前記メタン発酵槽内に供給することが好ましい。この場合、前記発酵廃液を別の熱交換器を通して取り出し、前記原料スラリーを、この別の熱交換器を通した後に前記発酵液と混合することによって、前記原料スラリーをあらかじめ加温することがより好ましい。   Further, in the method of the present invention, the fermentation broth and the raw slurry are mixed in the middle of the circulation path, and then the mixed fermentation broth and the raw slurry are passed through the heating means to the methane fermenter. It is preferable to supply inside. In this case, the raw material slurry may be preheated by taking out the fermentation waste liquid through another heat exchanger and mixing the raw material slurry with the fermented liquid after passing through the other heat exchanger. preferable.

この実施形態によれば、循環経路の途中で発酵液と原料スラリーとを混合して加熱手段を通すことにより、菌を含む循環消化液の流量を少なくでき、菌の死滅量を少なくすることができる。また、別の熱交換器によって、あらかじめ発酵廃液と原料スラリーとの熱交換を行うことで、原料スラリーが予熱されてメタン発酵槽の温度に近い条件で供給されるので、メタン発酵槽内の温度変動を小さくできる。   According to this embodiment, by mixing the fermentation liquor and raw material slurry in the middle of the circulation path and passing through the heating means, the flow rate of the circulating digestive fluid containing bacteria can be reduced, and the killed amount of bacteria can be reduced. it can. Moreover, since the raw material slurry is preheated and supplied under conditions close to the temperature of the methane fermenter by performing heat exchange between the fermentation waste liquid and the raw material slurry in advance by another heat exchanger, the temperature in the methane fermenter Variation can be reduced.

更に、本発明においては、前記発酵廃液を前記別の熱交換器を通して取り出し、前記原料スラリーを、前記別の熱交換器を通した後に前記メタン発酵槽に供給することによって、前記原料スラリーをあらかじめ加温することも好ましい。これによっても、別の熱交換器によって、発酵廃液と原料スラリーとの熱交換を行うことで、原料スラリーが予熱されてメタン発酵槽の温度に近い条件で供給されるので、メタン発酵槽内の温度変動を小さくできる。   Further, in the present invention, the fermentation slurry is taken out through the separate heat exchanger, and the raw slurry is supplied to the methane fermentation tank after passing through the separate heat exchanger, so that the raw slurry is preliminarily obtained. It is also preferable to heat. Also by this, by performing heat exchange between the fermentation waste liquid and the raw material slurry by another heat exchanger, the raw material slurry is preheated and supplied under conditions close to the temperature of the methane fermenter. Temperature fluctuation can be reduced.

本発明によれば、高温メタン発酵槽内の温度を一定に制御しつつ、過度の高温による菌の死滅を最小にするように加温を行うことができ、安定な発酵状態を維持することができる。   According to the present invention, while controlling the temperature in the high-temperature methane fermenter to be constant, heating can be performed so as to minimize the death of bacteria due to excessively high temperature, and a stable fermentation state can be maintained. it can.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明のメタン発酵処理方法に用いることができるメタン発酵処理装置の一実施形態の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. The schematic block diagram of one Embodiment of the methane fermentation processing apparatus which can be used for the methane fermentation processing method of this invention is shown by FIG.

図1の処理装置は、有機性廃棄物をスラリー化した原料スラリーをメタン発酵処理するメタン発酵槽1と、このメタン発酵槽1の外部に接続された循環経路8とから主に構成されており、メタン発酵槽1には内部の発酵液の温度を測定する温度計Tが接続されている。 The processing apparatus of FIG. 1 is mainly composed of a methane fermentation tank 1 for subjecting a raw material slurry obtained by slurrying organic waste to a methane fermentation process, and a circulation path 8 connected to the outside of the methane fermentation tank 1. The methane fermenter 1 is connected with a thermometer T1 for measuring the temperature of the internal fermentation broth.

循環経路8の途中には、発酵液を循環させるための循環ポンプ2と、第1熱交換器6が設けられており、メタン発酵槽1内の発酵液の一部が、循環ポンプ2から第1熱交換器6を通って再度メタン発酵槽1内に戻り、循環可能なように構成されている。   In the middle of the circulation path 8, a circulation pump 2 for circulating the fermentation liquor and a first heat exchanger 6 are provided, and a part of the fermentation liquor in the methane fermentation tank 1 is supplied from the circulation pump 2. 1 It is constituted so that it can return to the methane fermentation tank 1 again through the heat exchanger 6 and can be circulated.

そして、温度計Tの検出温度に応じて循環ポンプ2の流量が制御可能となっており、これによってメタン発酵槽1内の発酵液温度が一定に維持できるようになっている。また、第1熱交換器6とメタン発酵槽1との間には、循環経路8中の発酵液の温度を測定する温度計Tが設けられている。 Then, it has a controllable flow rate of the circulation pump 2 in accordance with the detected temperature of the thermometer T 1, which fermentation liquid temperature of the methane fermentation tank 1 is adapted to be maintained constant by. Further, between the first heat exchanger 6 and the methane fermentation tank 1, a thermometer T 2 is provided for measuring the temperature of the fermentation liquor in the circulation path 8.

第1熱交換器6には、温水を供給する配管が通されており、温水供給ポンプ4によって供給される温水によって、温水を熱媒体として循環経路8の発酵液と熱交換して、発酵液を加熱できるように構成されている。また、第1熱交換器6と温水供給ポンプ4との間には供給する温水の温度を測定する温度計Tが設けられている。なお、本発明においては、循環経路8に設けられる加熱手段は必ずしも熱交換器でなくてもよく、ヒーター等を用いることもできる。 A pipe for supplying hot water is passed through the first heat exchanger 6, and the hot water supplied by the hot water supply pump 4 exchanges heat with the fermented liquid in the circulation path 8 using the hot water as a heat medium. It is comprised so that it can heat. Further, a thermometer T 3 for measuring the temperature of the hot water to be supplied is provided between the first heat exchanger 6 and the hot water supply pump 4. In the present invention, the heating means provided in the circulation path 8 is not necessarily a heat exchanger, and a heater or the like can be used.

循環経路8における、循環ポンプ2と第1熱交換器6との間には、スラリー供給ポンプ5、第2熱交換器7を介して原料スラリーを供給する配管が合流している。そして、この第2熱交換器7には、メタン発酵槽1の下部からの発酵廃液を供給する配管が通されており、引抜ポンプ3によって引き抜かれる発酵廃液によって原料スラリーと熱交換して、原料スラリーを加熱できるように構成されている。   Between the circulation pump 2 and the first heat exchanger 6 in the circulation path 8, piping for supplying the raw material slurry via the slurry supply pump 5 and the second heat exchanger 7 is joined. The second heat exchanger 7 is connected to a pipe for supplying fermentation waste liquid from the lower part of the methane fermentation tank 1, and exchanges heat with the raw material slurry by the fermentation waste liquid drawn out by the drawing pump 3. The slurry can be heated.

次に、上記の処理装置を用いた、本発明のメタン発酵処理方法について説明する。 図1において、有機性廃棄物は、分解速度及び消化率の向上を図るために、図示しない粉砕機、微粉砕機で粗砕された後、希釈水により適当な固形物濃度に調整されてスラリー化される。そして、スラリー供給ポンプ5を介し、第2熱交換器7を通った後、循環経路8を循環する発酵液と合流し、その後、第1熱交換器6を通って、メタン発酵槽1に送られる。   Next, the methane fermentation processing method of the present invention using the above processing apparatus will be described. In FIG. 1, the organic waste is crushed by a pulverizer and a fine pulverizer (not shown) in order to improve the decomposition rate and digestibility, and then adjusted to an appropriate solid concentration with diluting water. It becomes. Then, after passing through the second heat exchanger 7 via the slurry supply pump 5, it joins with the fermentation liquor circulating in the circulation path 8, and then sent to the methane fermentation tank 1 through the first heat exchanger 6. It is done.

このメタン発酵槽1には、例えば、メタン菌等の嫌気性微生物が付着・担持された固定化微生物を充填した固定ろ床等が設置されており、ここでスラリー状の有機性廃棄物のメタン発酵が行なわれ、嫌気性微生物による有機性廃棄物の分解が行われる。なお、発酵により生成したバイオガスは、図示しないガスホルダーに回収され、ガスタービンや燃料電池などのガス利用システムでエネルギーとして利用される。   In this methane fermentation tank 1, for example, a fixed filter bed filled with immobilized microorganisms on which anaerobic microorganisms such as methane bacteria are attached and supported is installed. Here, slurry of organic waste methane Fermentation is performed, and organic waste is decomposed by anaerobic microorganisms. In addition, the biogas produced | generated by fermentation is collect | recovered by the gas holder which is not shown in figure, and is utilized as energy with gas utilization systems, such as a gas turbine and a fuel cell.

また、一定時間毎に供給されるスラリーと同量の発酵廃液が、メタン発酵槽1の下部から引抜ポンプ3によって引き抜かれ、第2熱交換器7を通って排出される。これにより、メタン発酵槽1内は、常に一定量のスラリーで満たされている。   Moreover, the same amount of fermentation waste liquid as the slurry supplied at regular intervals is drawn from the lower part of the methane fermentation tank 1 by the drawing pump 3 and discharged through the second heat exchanger 7. Thereby, the inside of the methane fermentation tank 1 is always filled with a certain amount of slurry.

ここで、この実施形態においては、循環経路8によってメタン発酵槽1内の発酵液の一部を循環させる。そして、この循環ポンプ2の流量を制御することによって、メタン発酵槽内の温度が53〜57℃となるようする。   Here, in this embodiment, a part of the fermentation liquor in the methane fermentation tank 1 is circulated by the circulation path 8. And by controlling the flow volume of this circulation pump 2, the temperature in a methane fermentation tank is made to become 53-57 degreeC.

メタン発酵槽1内の温度を53〜57℃に維持するのは以下の理由による。   The temperature in the methane fermentation tank 1 is maintained at 53 to 57 ° C. for the following reason.

菌の死滅速度は以下の(1)式のような指数関数で表されることが知られている(永井,合葉,「生物化学工学-反応速度論-」,技術社,1975年,p160-164)。   It is known that the death rate of the fungus is expressed by an exponential function as shown in the following equation (1) (Nagai, Aiba, “Biochemical engineering-Reaction kinetics-”, Technical company, 1975, p160 -164).

X=X0*exp(-kd・t) ・・・(1)
(X:菌体数、X0:初期菌体数、t:時間)
ここで、kdは菌の死滅速度である。この(1)式を用いて、まず異なる温度における死滅速度kdがどのように変化するかを測定する。
X = X 0 * exp (-kd · t) (1)
(X: number of cells, X 0 : initial number of cells, t: time)
Where kd is the kill rate of the fungus. Using this equation (1), first, how the death rate kd at different temperatures changes is measured.

なお、菌数測定方法としては特に限定されないが、測定すべき試料に、前記菌体内に存在するエステラーゼ酵素によって蛍光物質を生成する試薬を混合し、前記蛍光物質の蛍光を測定することにより行なうことが好ましい。   The method for measuring the number of bacteria is not particularly limited, but it is performed by mixing the sample to be measured with a reagent that generates a fluorescent substance using the esterase enzyme present in the bacterial body, and measuring the fluorescence of the fluorescent substance. Is preferred.

活性菌内に存在する加水分解酵素であるエステラーゼ酵素によって加水分解することにより蛍光物質を生成する蛍光試薬は、元来蛍光性を有していないが、拡散によって生細胞内に取込まれると、すべての細胞が共通に持っている酵素のエステラーゼによってエステル結合が加水分解され、蛍光物質として細胞内に蓄積される。一方、死菌はエステラーゼ活性が失われており染色されないため、活性菌だけの検出が可能となる。このような、エステラーゼ酵素によって加水分解され、蛍光を呈する蛍光物質となる試薬としては、5−(6−)カルボキシフルオレセインジアセテート、5−カルボキシフルオレセインジアセテートアセトキシメチルエステートなどからなる群が好ましく例示できる。   A fluorescent reagent that generates a fluorescent substance by hydrolyzing with an esterase enzyme, which is a hydrolase present in active bacteria, originally has no fluorescence, but when taken into living cells by diffusion, The ester bond is hydrolyzed by esterase, an enzyme common to all cells, and is accumulated in the cell as a fluorescent substance. On the other hand, dead bacteria lose their esterase activity and are not stained, so that only active bacteria can be detected. Preferred examples of such a reagent that is hydrolyzed by an esterase enzyme and becomes a fluorescent substance that exhibits fluorescence include a group consisting of 5- (6-) carboxyfluorescein diacetate, 5-carboxyfluorescein diacetate acetoxymethyl estate, and the like. .

活性菌の菌数測定方法は、蛍光顕微鏡により、上記の蛍光物質が蛍光を発することを利用して、蛍光画像を観察して菌数をカウントする。この菌数測定方法により、メタン菌、酸生成菌等のメタン発酵槽内のすべての活性菌数の合計を測定することができる。なお、上記の菌数測定に要する時間は30〜60分で行うことができるので簡便で、短時間に測定を行なうことができる。なお、上記の菌数測定方法は、本出願人による特願2002−165714号に詳細に記載されている。   In the method of measuring the number of active bacteria, the number of bacteria is counted by observing a fluorescence image using a fluorescence microscope using the fact that the fluorescent substance emits fluorescence. By this method for measuring the number of bacteria, the total number of all active bacteria in the methane fermentation tank such as methane bacteria and acid-producing bacteria can be measured. In addition, since the time required for the above-mentioned measurement of the number of bacteria can be performed in 30 to 60 minutes, the measurement is simple and can be performed in a short time. The above method for measuring the number of bacteria is described in detail in Japanese Patent Application No. 2002-165714 by the present applicant.

表1、図2には、55℃で安定発酵している容量2Lのメタン発酵槽の負荷を停止し、温度を変えて停止前後の菌数減少から死滅速度を実験により算出した結果を示す。菌数測定は上記のエステラーゼ酵素を用いた方法で行っている。また、図3には、表1の死滅速度を対数にし、温度に対してプロットしたグラフを示す。   Table 1 and FIG. 2 show the results of experimentally calculating the death rate from the decrease in the number of bacteria before and after stopping by stopping the load of the 2 L methane fermenter stably fermenting at 55 ° C. The number of bacteria is measured by a method using the above esterase enzyme. FIG. 3 shows a graph in which the death rate in Table 1 is logarithmically plotted against temperature.

Figure 2005144280
Figure 2005144280

表1、図2からわかるように、死滅速度kdは温度に依存する値である。また、図3に示すように、死滅速度の対数と温度との関係は2種類の直線関係で表される。すなわち、10〜55℃の温度範囲と55〜70℃では傾きが異なり、両直線の交点は約60℃である。すなわち60℃以上では急激に菌が死滅することがわかる。   As can be seen from Table 1 and FIG. 2, the death rate kd is a value depending on the temperature. Further, as shown in FIG. 3, the relationship between the logarithm of the death rate and the temperature is represented by two types of linear relationships. That is, the slope is different between the temperature range of 10 to 55 ° C. and 55 to 70 ° C., and the intersection of both straight lines is about 60 ° C. That is, it can be seen that at 60 ° C. or higher, the bacteria are rapidly killed.

更に、発酵液の温度と、菌の増殖速度(発酵槽内の全活性菌)との関係を示したグラフを図4に示す。この増殖速度は菌の死滅の影響を含んだ見かけの増殖速度であり、菌の活性の高さを表す。つまり、増殖速度が大きいほど1日あたりの菌の増殖量が高くなるので、当然発酵槽の処理能力は大きくなる。図5は、図4の結果を基に、温度と増殖速度との関係を求めたグラフである。   Furthermore, the graph which showed the relationship between the temperature of a fermented liquor and the growth rate (all active microbe in a fermenter) of a microbe is shown in FIG. This growth rate is an apparent growth rate including the effect of the killing of the fungus, and represents the high activity of the fungus. That is, the larger the growth rate, the higher the growth amount of the bacteria per day, so naturally the processing capacity of the fermenter increases. FIG. 5 is a graph showing the relationship between temperature and growth rate based on the result of FIG.

図5の結果から、発酵液の温度が55℃の場合に増殖速度はピークを示しており、両端の50℃および60℃では、55℃の場合に半分以下に活性が低下している。これは50℃では高温菌の活動温度から外れ、60℃では、上述したように死滅による影響が大きいためである。   From the results of FIG. 5, the growth rate shows a peak when the temperature of the fermentation broth is 55 ° C., and at 50 ° C. and 60 ° C. at both ends, the activity decreases to half or less at 55 ° C. This is because at 50 ° C., it deviates from the active temperature of the thermophilic bacteria, and at 60 ° C., as described above, the effect of killing is large.

特に、53〜57℃における増殖速度は55℃の80%以上であり、発酵槽の能力が極めて高い温度であることがわかる。   In particular, the growth rate at 53 to 57 ° C. is 80% or more of 55 ° C., which indicates that the fermenter capacity is extremely high.

ここで、発酵槽の安全率を1.2〜1.5倍と考えると、55℃の増殖速度μ=0.28(d-1)では、μ=0.19〜0.23(d-1)として発酵槽を設計すれば安全となるが、上記の53℃および57℃では、それぞれ増殖速度が0.27、0.25であるため、設計値よりも高い能力を保持している。一方、50℃、60℃における増殖速度はそれぞれ0.088、0.13であり安全設計値から外れている。 Here, assuming that the safety factor of the fermenter is 1.2 to 1.5 times, when the growth rate at 55 ° C. is μ = 0.28 (d −1 ), μ = 0.19 to 0.23 (d − It is safe to design a fermenter as 1 ), but at 53 ° C and 57 ° C, the growth rates are 0.27 and 0.25, respectively. On the other hand, the growth rates at 50 ° C. and 60 ° C. are 0.088 and 0.13, respectively, which are out of the safe design value.

したがって、メタン発酵槽の温度を53〜57℃に保つことによって、メタン発酵槽内の菌数を減らすことなしに、高温メタン発酵の温度を保持することができる。   Therefore, by maintaining the temperature of the methane fermentation tank at 53 to 57 ° C., the temperature of the high-temperature methane fermentation can be maintained without reducing the number of bacteria in the methane fermentation tank.

上記のようにメタン発酵槽1の温度を53〜57℃に保つために、この実施形態では、循環経路8の途中に第1熱交換器6が設けられており、この第1熱交換器6に55〜60℃の温水を通している。これによって、循環ポンプ2の流量を変動させることによって発酵液の温度を53〜57℃に保つことができる。なお、この場合、循環経路8における温度計Tの検出温度は55〜57℃とすることが好ましい。 In order to keep the temperature of the methane fermentation tank 1 at 53 to 57 ° C. as described above, in this embodiment, the first heat exchanger 6 is provided in the middle of the circulation path 8. Through hot water of 55-60 ° C. Thus, the temperature of the fermentation broth can be maintained at 53 to 57 ° C. by changing the flow rate of the circulation pump 2. In this case, the temperature detected by the thermometer T 2 in the circulation path 8 is preferably set to 55 to 57 ° C..

なお、この実施形態においては、原料スラリーが、スラリー供給ポンプ5、第2熱交換器7を介して上記の循環経路8に合流している。そして、この第2熱交換器7には、メタン発酵槽1の下部からの発酵廃液を供給する配管が通されており、引抜ポンプ3によって引き抜かれる発酵廃液によって原料スラリーと熱交換することで原料スラリーが予熱される。この場合、第2熱交換器7によって原料スラリーを35〜45℃まで予熱することが好ましい。これによって、原料スラリーの分だけ発酵液の循環量を少なくできるので、循環によって第1熱交換器6で死滅する菌数を更に少なくすることができる。また、第2熱交換器7によって、あらかじめ発酵廃液と原料スラリーとの熱交換を行うことで、原料スラリーが予熱されてメタン発酵槽の温度に近い条件で供給されるので、メタン発酵槽内の温度変動をより小さくできる。   In this embodiment, the raw slurry is joined to the circulation path 8 via the slurry supply pump 5 and the second heat exchanger 7. The second heat exchanger 7 is connected to a pipe for supplying fermentation waste liquid from the lower part of the methane fermentation tank 1, and the raw material slurry is heat-exchanged by the fermentation waste liquid drawn out by the drawing pump 3. The slurry is preheated. In this case, it is preferable to preheat the raw material slurry to 35 to 45 ° C. by the second heat exchanger 7. Thereby, since the circulation amount of the fermentation liquor can be reduced by the amount of the raw slurry, the number of bacteria killed in the first heat exchanger 6 by the circulation can be further reduced. Moreover, since the raw material slurry is preheated and supplied under conditions close to the temperature of the methane fermentation tank by performing heat exchange between the fermentation waste liquid and the raw material slurry in advance by the second heat exchanger 7, Temperature fluctuation can be made smaller.

なお、本発明においては、原料スラリーは必ずしも循環経路8に合流させなくてもよく、第2熱交換器7によって、発酵廃液と熱交換した後、直接メタン発酵槽1内に供給してもよい。これによっても、原料スラリーが予熱されてメタン発酵槽の温度に近い条件で供給されるので、メタン発酵槽内の温度変動をより小さくできる。   In the present invention, the raw slurry does not necessarily have to be joined to the circulation path 8 and may be directly supplied into the methane fermentation tank 1 after heat exchange with the fermentation waste liquid by the second heat exchanger 7. . Also by this, since raw material slurry is preheated and supplied on the conditions close | similar to the temperature of a methane fermenter, the temperature fluctuation in a methane fermenter can be made smaller.

図1に示すような構成の処理装置を用いてメタン発酵処理を行った。メタン発酵槽1の容量は10リットルであり、原料スラリーとして模擬生ゴミスラリーを用いた。   A methane fermentation process was performed using a processing apparatus configured as shown in FIG. The capacity of the methane fermenter 1 was 10 liters, and simulated raw garbage slurry was used as a raw material slurry.

第1熱交換器6には温水供給ポンプ4によって温水を流し、温度計Tが55〜60℃となるように調整した。そして、この状態で、メタン発酵槽1内の温度計Tが53〜57℃となるように循環ポンプ2の流量を調節した。このときの温度計Tは55〜57℃であった。 The first heat exchanger 6 running hot water by the hot water supply pump 4, a thermometer T 3 was adjusted to 55 to 60 ° C.. In this state, a thermometer T 1 of the methane fermentation tank 1 was adjusted to the flow rate of the circulating pump 2 so that the 53 through 57 ° C.. Thermometer T 2 of the this time was 55 to 57 ° C..

また、原料スラリーは、第2熱交換器7によって発酵廃液と熱交換されて38〜40℃となるように予熱した後、循環経路8に合流させて第1熱交換器6で再度加熱し、発酵液と原料スラリーとを混合させた状態でメタン発酵槽1内に供給した。   In addition, the raw slurry is preheated to 38 to 40 ° C. by heat exchange with the fermentation waste liquid by the second heat exchanger 7, and then joined to the circulation path 8 and heated again by the first heat exchanger 6. The fermented liquor and the raw material slurry were mixed and supplied into the methane fermentation tank 1.

その結果、メタン発酵槽1内の温度を常時53〜57℃となるように維持することが可能となることを確認でき、高温メタン発酵処理が順調に行われていることを確認できた。また、生ゴミスラリーを循環消化液に合流させることで第1熱交換器6に入る発酵液の流量を50%減らすことができた。   As a result, it was confirmed that the temperature in the methane fermentation tank 1 could be constantly maintained at 53 to 57 ° C., and it was confirmed that the high-temperature methane fermentation treatment was being performed smoothly. Moreover, the flow volume of the fermented liquor which enters into the 1st heat exchanger 6 was able to be reduced 50% by merging a raw garbage slurry with a circulation digestive liquid.

本発明のメタン発酵処理方法は、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物を処理するために好適に用いられる。   The methane fermentation treatment method of the present invention is suitably used for treating organic waste such as manure, raw garbage, and food processing residue.

本発明に用いるメタン発酵処理装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the methane fermentation processing apparatus used for this invention. 高温メタン発酵における菌の死滅速度を求めたグラフである。It is the graph which calculated | required the death rate of the microbe in high temperature methane fermentation. 温度と菌の死滅速度との関係を表すグラフである。It is a graph showing the relationship between temperature and the death rate of a microbe. 高温メタン発酵における菌の増殖速度を求めたグラフである。It is the graph which calculated | required the growth rate of the microbe in high temperature methane fermentation. 温度と菌の増殖速度との関係を表すグラフである。It is a graph showing the relationship between temperature and the growth rate of bacteria.

符号の説明Explanation of symbols

1 メタン発酵槽
2 消化液循環ポンプ
3 消化液引抜きポンプ
4 温水供給ポンプ
5 生ゴミスラリー供給ポンプ
6 第1熱交換器
7 第2熱交換器
、T、T 温度計
1 the methane fermentation tank 2 digested slurry circulation pump 3 digestive fluid withdrawal pump 4 the hot water supply pump 5 garbage slurry feed pump 6 the first heat exchanger 7 a second heat exchanger T 1, T 2, T 3 Thermometer

Claims (5)

有機性廃棄物を原料スラリー化してメタン発酵槽内に供給し、嫌気性微生物によりメタン発酵させ、発酵廃液として取り出すメタン発酵処理方法において、
前記メタン発酵槽の外部に接続された循環経路によって、前記メタン発酵槽内の発酵液の一部を循環させ、この循環経路の途中に加熱手段を設け、
前記メタン発酵槽内の温度が53〜57℃となるように、前記発酵液の循環流量を制御することを特徴とするメタン発酵処理方法。
In the methane fermentation treatment method, organic waste is made into a raw material slurry, supplied into the methane fermentation tank, methane fermented by anaerobic microorganisms, and taken out as fermentation waste liquid.
By circulating a part of the fermentation broth in the methane fermentation tank by a circulation path connected to the outside of the methane fermentation tank, a heating means is provided in the middle of the circulation path,
A methane fermentation treatment method, wherein the circulating flow rate of the fermentation broth is controlled so that the temperature in the methane fermentation tank is 53 to 57 ° C.
前記加熱手段として、前記循環経路の途中に熱交換器を設け、該熱交換器の加熱側の熱媒体の温度を55〜60℃とする請求項1に記載メタン発酵処理方法。   The methane fermentation treatment method according to claim 1, wherein a heat exchanger is provided in the middle of the circulation path as the heating means, and the temperature of the heat medium on the heating side of the heat exchanger is set to 55 to 60 ° C. 前記循環経路の途中で前記発酵液と前記原料スラリーとを混合し、その後に前記加熱手段を通して、前記混合後の前記発酵液及び前記原料スラリーを前記メタン発酵槽内に供給する請求項1又は2に記載のメタン発酵処理方法。   The fermentation liquid and the raw material slurry are mixed in the middle of the circulation path, and then the mixed fermentation liquid and the raw material slurry are supplied into the methane fermentation tank through the heating means. A methane fermentation treatment method according to 1. 前記発酵廃液を別の熱交換器を通して取り出し、前記原料スラリーを、この別の熱交換器を通した後に前記発酵液と混合することによって、前記原料スラリーをあらかじめ加温する請求項3に記載のメタン発酵処理方法。   The said fermentation waste liquid is taken out through another heat exchanger, The said raw material slurry is preheated by mixing the said raw material slurry with the said fermentation liquid after passing through this another heat exchanger. Methane fermentation treatment method. 前記発酵廃液を前記別の熱交換器を通して取り出し、前記原料スラリーを、前記別の熱交換器を通した後に前記メタン発酵槽に供給することによって、前記原料スラリーをあらかじめ加温する請求項1又は2に記載のメタン発酵処理方法。   The said fermentation waste liquid is taken out through the said another heat exchanger, The said raw material slurry is previously heated by supplying the said raw material slurry to the said methane fermentation tank after passing through the said another heat exchanger. 2. The methane fermentation treatment method according to 2.
JP2003383291A 2003-11-13 2003-11-13 Methane fermentation treatment method Expired - Lifetime JP4218504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383291A JP4218504B2 (en) 2003-11-13 2003-11-13 Methane fermentation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383291A JP4218504B2 (en) 2003-11-13 2003-11-13 Methane fermentation treatment method

Publications (2)

Publication Number Publication Date
JP2005144280A true JP2005144280A (en) 2005-06-09
JP4218504B2 JP4218504B2 (en) 2009-02-04

Family

ID=34692052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383291A Expired - Lifetime JP4218504B2 (en) 2003-11-13 2003-11-13 Methane fermentation treatment method

Country Status (1)

Country Link
JP (1) JP4218504B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150253A (en) * 2004-11-30 2006-06-15 Ngk Insulators Ltd Methane fermentation apparatus for garbage
JP2007117801A (en) * 2005-10-25 2007-05-17 Kobelco Eco-Solutions Co Ltd Methane fermentation treatment method of organic waste and its apparatus
JP2008036560A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Methane fermentation method
JP2009066513A (en) * 2007-09-12 2009-04-02 Obihiro Univ Of Agriculture & Veterinary Medicine Methane fermentation method
JP2009525169A (en) * 2006-02-03 2009-07-09 エルタガ ライセンシング ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for producing biogas from organic materials
JP2010527762A (en) * 2007-05-23 2010-08-19 ガンテフォート、ヴィルヘルム Fermenter for producing biogas from pumpable organic materials
KR102264141B1 (en) * 2020-09-23 2021-06-11 코오롱글로벌 주식회사 Anaerobic digestion device
JP7446821B2 (en) 2020-01-17 2024-03-11 三菱化工機株式会社 Anaerobic digestion systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460452B1 (en) 2017-07-05 2022-10-28 가부시키가이샤 바이오스 Method and apparatus for methane fermentation treatment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545193A (en) * 1977-06-10 1979-01-16 Combustion Eng Device for estimating mean outlet temperature of reactor core
JPS5916598A (en) * 1982-07-19 1984-01-27 Hiroyoshi Masuzawa Generator for gaseous methane
JPS5929091A (en) * 1982-08-11 1984-02-16 Fuji Electric Co Ltd Anaerobic digester
JPS59166295A (en) * 1983-03-11 1984-09-19 Toshiba Corp Heating device for digestion tank
JPS6067199U (en) * 1983-10-18 1985-05-13 株式会社東芝 Sludge digestion tank heating control device
JPS60232299A (en) * 1984-05-01 1985-11-18 Mitsubishi Electric Corp Temperature control apparatus of digestion tank
JPH04298296A (en) * 1991-03-27 1992-10-22 Ishikawajima Harima Heavy Ind Co Ltd Anaerobic waste water treatment
JPH05192697A (en) * 1992-01-21 1993-08-03 Toshiba Corp Sludge digestion controller
JPH113723A (en) * 1997-06-09 1999-01-06 Mitsubishi Kakoki Kaisha Ltd Digestive gas-using fuel cell facility
JPH11290827A (en) * 1998-04-14 1999-10-26 Kubota Corp Method for heating organic waste in fermentation tank
JP2000288594A (en) * 1999-04-08 2000-10-17 Kajima Corp Sludge treatment method and apparatus
JP2004528981A (en) * 2001-05-31 2004-09-24 バイオザーン コーポレーション Anaerobic digesters, anaerobic digestion methods and methods for minimizing the use of inhibitory polymers in digestion

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545193A (en) * 1977-06-10 1979-01-16 Combustion Eng Device for estimating mean outlet temperature of reactor core
JPS5916598A (en) * 1982-07-19 1984-01-27 Hiroyoshi Masuzawa Generator for gaseous methane
JPS5929091A (en) * 1982-08-11 1984-02-16 Fuji Electric Co Ltd Anaerobic digester
JPS59166295A (en) * 1983-03-11 1984-09-19 Toshiba Corp Heating device for digestion tank
JPS6067199U (en) * 1983-10-18 1985-05-13 株式会社東芝 Sludge digestion tank heating control device
JPS60232299A (en) * 1984-05-01 1985-11-18 Mitsubishi Electric Corp Temperature control apparatus of digestion tank
JPH04298296A (en) * 1991-03-27 1992-10-22 Ishikawajima Harima Heavy Ind Co Ltd Anaerobic waste water treatment
JPH05192697A (en) * 1992-01-21 1993-08-03 Toshiba Corp Sludge digestion controller
JPH113723A (en) * 1997-06-09 1999-01-06 Mitsubishi Kakoki Kaisha Ltd Digestive gas-using fuel cell facility
JPH11290827A (en) * 1998-04-14 1999-10-26 Kubota Corp Method for heating organic waste in fermentation tank
JP2000288594A (en) * 1999-04-08 2000-10-17 Kajima Corp Sludge treatment method and apparatus
JP2004528981A (en) * 2001-05-31 2004-09-24 バイオザーン コーポレーション Anaerobic digesters, anaerobic digestion methods and methods for minimizing the use of inhibitory polymers in digestion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150253A (en) * 2004-11-30 2006-06-15 Ngk Insulators Ltd Methane fermentation apparatus for garbage
JP2007117801A (en) * 2005-10-25 2007-05-17 Kobelco Eco-Solutions Co Ltd Methane fermentation treatment method of organic waste and its apparatus
JP2009525169A (en) * 2006-02-03 2009-07-09 エルタガ ライセンシング ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for producing biogas from organic materials
JP2008036560A (en) * 2006-08-08 2008-02-21 Fuji Electric Holdings Co Ltd Methane fermentation method
JP2010527762A (en) * 2007-05-23 2010-08-19 ガンテフォート、ヴィルヘルム Fermenter for producing biogas from pumpable organic materials
US8877490B2 (en) 2007-05-23 2014-11-04 Wilhelm Gantefort Fermenter for generating biogas from pumpable organic material
JP2009066513A (en) * 2007-09-12 2009-04-02 Obihiro Univ Of Agriculture & Veterinary Medicine Methane fermentation method
JP7446821B2 (en) 2020-01-17 2024-03-11 三菱化工機株式会社 Anaerobic digestion systems and methods
KR102264141B1 (en) * 2020-09-23 2021-06-11 코오롱글로벌 주식회사 Anaerobic digestion device

Also Published As

Publication number Publication date
JP4218504B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
CN102105409B (en) Methods and apparatus for processing organic waste
CN103803770B (en) Organic sludge high-temperature micro-aerobic-anaerobic digestion device and method
JP4512823B2 (en) Organic waste treatment method and treatment system
Krugel et al. Extending thermophilic anaerobic digestion for producing class A biosolids at the greater Vancouver regional districts annacis island wastewater treatment plant
Luste et al. Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry
Cheong et al. Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen
JP4218504B2 (en) Methane fermentation treatment method
Kjerstadius et al. Hygienization of sludge through anaerobic digestion at 35, 55 and 60 C
US20220220517A1 (en) Conversion of lignocellulosic biomass into biogas
JP4011439B2 (en) Method and apparatus for methane fermentation of organic waste
Li et al. The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose
JP3719938B2 (en) Effective use system for manure and business fresh products
JP3747923B2 (en) Methane fermentation treatment method and apparatus
JP4145049B2 (en) Organic solid processing apparatus and processing method thereof
JP2011083761A (en) Methane fermentation treatment method of organic waste
JP2004167382A (en) Methane fermentation method and methane fermentation apparatus of organic material
JP4665693B2 (en) Method and apparatus for treating organic waste
JP2018144001A (en) System for and method of treating cellulosic organic waste
JP4418422B2 (en) Method for methane fermentation treatment of organic waste
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
JPH05345200A (en) Method for treating organic sludge
JP4641271B2 (en) Fermenter charging method and processing apparatus for organic substance-containing liquid
JP4050976B2 (en) Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method
JP3730499B2 (en) Organic wastewater treatment method
Jasiński et al. Practices in Biogas Plant Operation: A Case Study from Poland

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4218504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term