JP2005142097A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2005142097A
JP2005142097A JP2003379362A JP2003379362A JP2005142097A JP 2005142097 A JP2005142097 A JP 2005142097A JP 2003379362 A JP2003379362 A JP 2003379362A JP 2003379362 A JP2003379362 A JP 2003379362A JP 2005142097 A JP2005142097 A JP 2005142097A
Authority
JP
Japan
Prior art keywords
induction heating
circuit
inverter
container
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003379362A
Other languages
Japanese (ja)
Inventor
Kenichi Tamura
憲一 田村
Koichi Kinoshita
広一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2003379362A priority Critical patent/JP2005142097A/en
Publication of JP2005142097A publication Critical patent/JP2005142097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker capable of preventing damage to elemental components or the like, by distinguishing utensils by materials with a small specific resistance such as aluminum and copper and preventing overcurrent into a circuit and the elemental components. <P>SOLUTION: The induction heating cooker provided with a direct current power source circuit, an inverter circuit converting an output of the direct current power source circuit into a high frequency, a load circuit consisting of an induction heating coil connected to an output point of the inverter circuit and a resonant capacitor, an inverter driving means driving the inverter circuit, and a current detecting means detecting current flowing in the load circuit, is also provided with a control means controlling drive of the inverter driving means by judging the size of specific resistance of a vessel based on voltage information in response to an oscillating current detected by the current detecting means as voltage pulses are impressed on the load circuit to have the current oscillated by controlling a conductive ratio of the inverter circuit for a fixed period of time before starting of heating operation of the induction heating coil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、誘導加熱調理器に関し、特に比抵抗(抵抗率)の小さい例えばアルミ、銅などの容器を検出する検出手段を有する誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker, and more particularly to an induction heating cooker having detection means for detecting a container such as aluminum or copper having a small specific resistance (resistivity).

図7は、従来の誘導加熱調理器の回路図である。
図において、51は直流電源、52は前記直流電源51間に接続されたインバータ回路で、第1及び第2トランジスタ53、54と、該第1及び第2トランジスタ53、54に夫々並列に接続されたダイオード55、56よりなる。57は前記第1トランジスタ53に並列に接続された負荷回路で、誘導加熱コイル58及び共振コンデンサ59よりなる。
FIG. 7 is a circuit diagram of a conventional induction heating cooker.
In the figure, 51 is a DC power source, 52 is an inverter circuit connected between the DC power sources 51, and is connected in parallel to the first and second transistors 53, 54 and the first and second transistors 53, 54, respectively. Diodes 55 and 56. A load circuit 57 is connected in parallel to the first transistor 53 and includes an induction heating coil 58 and a resonance capacitor 59.

上記のように構成された従来の誘導加熱調理器の動作を、前記図7と図8の動作波形図を用いて説明する。
前記第1及び第2トランジスタ53、54の各ベースには、オン・オフ信号A、Bが各々印加される。まず、信号Bにより前記第2トランジスタ54がオンとなると、直流電源51から電流I1が流れ、第2トランジスタ54がオフ、第1トランジスタ53がオンになると、電流I2が流れる。この電流I2がゼロになると負荷回路57を流れる電流が反転し、電流I3が流れる。続いて、再び前記第2トランジスタ54がオン、第1トランジスタ53がオフとなるが、しばらくの間電流I4が流れる。このようなインバータ回路52の動作によって、高周波電流が誘導加熱コイル58に供給され、誘導加熱コイル58の上に載せられた適正負荷(鍋)とされる鉄鍋などの誘導加熱を行う(例えば、特許文献1参照)。
The operation of the conventional induction heating cooker configured as described above will be described with reference to the operation waveform diagrams of FIGS.
On / off signals A and B are applied to the bases of the first and second transistors 53 and 54, respectively. First, when the second transistor 54 is turned on by the signal B, a current I1 flows from the DC power supply 51, and when the second transistor 54 is turned off and the first transistor 53 is turned on, a current I2 flows. When the current I2 becomes zero, the current flowing through the load circuit 57 is inverted, and the current I3 flows. Subsequently, the second transistor 54 is turned on again and the first transistor 53 is turned off, but the current I4 flows for a while. By such an operation of the inverter circuit 52, a high-frequency current is supplied to the induction heating coil 58, and induction heating is performed on an iron pan or the like to be an appropriate load (pan) placed on the induction heating coil 58 (for example, Patent Document 1).

特公昭63−049872(第5頁、第1、第2図)JP-B 63-049872 (5th page, Fig. 1 and Fig. 2)

しかしながら、従来の誘導加熱調理器においては、負荷鍋として利用者に用いられる可能性のある例えばアルミ、銅などの材質による鍋は、適正鍋とされる鉄、ステンレスなどの材質の鍋と比較して著しく比抵抗(抵抗率)が小さい。そのため、アルミ、銅などの材質の鍋を加熱コイルの上に載せて、前記鉄、ステンレスなどの材質の鍋と同様に加熱コイルに高周波電流を供給して誘導加熱動作を行うと、加熱コイルを含む負荷回路のインピーダンスが著しく小さいため、回路及び要素部品に過電流が流れて、過温度上昇などを引き起こし、要素部品等が破損するおそれがあるという問題点があった。 However, in a conventional induction heating cooker, a pot made of a material such as aluminum or copper that can be used by a user as a load pan is compared with a pot made of a material such as iron or stainless steel that is considered a proper pan. The specific resistance (resistivity) is extremely small. Therefore, when a pan made of aluminum, copper or the like is placed on the heating coil and the induction coil is operated by supplying high-frequency current to the heating coil in the same manner as the iron or stainless steel pan, the heating coil Since the impedance of the load circuit including the circuit is extremely small, an overcurrent flows through the circuit and the component parts, causing an increase in overtemperature and the like.

本発明は上記問題点に鑑みてなされたもので、比抵抗(抵抗率)の著しく小さい例えばアルミ、銅等の材質による容器を識別し、回路及び要素部品への過電流を防いで、要素部品等の破損防止のできる誘導加熱調理器を得ることを目的とする。   The present invention has been made in view of the above problems, and identifies containers made of materials such as aluminum and copper having a remarkably small specific resistance (resistivity), and prevents overcurrent to the circuit and element parts. It aims at obtaining the induction heating cooking appliance which can prevent damage, such as.

この発明に係る誘導加熱調理器は、商用電源を直流に変換する直流電源回路と、前記直流電源回路の出力を高周波に変換するインバータ回路と、前記インバータ回路の出力点に接続される誘導加熱コイル及び共振コンデンサからなる負荷回路と、前記インバータ回路を駆動するインバータ駆動手段と、前記負荷回路に流れる電流を検出する電流検出手段とを備えた誘導加熱調理器であって、前記誘導加熱コイルの加熱動作開始前の一定期間、前記インバータ回路の導通比を制御することにより、前記負荷回路に電圧パルスを印加して電流を振動させ、前記電流検出手段により検出された前記振動電流に応じた電圧情報に基づいて、使用される容器の比抵抗の大小を判定し、前記インバータ駆動手段を駆動制御する制御手段を具備したものである。   An induction heating cooker according to the present invention includes a DC power supply circuit that converts commercial power to DC, an inverter circuit that converts the output of the DC power supply circuit to high frequency, and an induction heating coil connected to an output point of the inverter circuit And an induction heating cooker comprising: a load circuit comprising a resonance capacitor; inverter drive means for driving the inverter circuit; and current detection means for detecting a current flowing through the load circuit, wherein the induction heating coil is heated. Voltage information corresponding to the oscillating current detected by the current detecting means is obtained by controlling the conduction ratio of the inverter circuit for a certain period before the operation starts, thereby applying a voltage pulse to the load circuit to vibrate the current. And a control means for determining the magnitude of the specific resistance of the container to be used and controlling the drive of the inverter driving means. .

本発明の誘導加熱調理器は、誘導加熱動作開始前の一定期間、インバータ回路の導通比を制御して、誘導加熱コイル及び共振コンデンサからなる負荷回路に、電圧パルスを印加して電流を振動させ、電流検出手段により検出された前記振動電流に応じた電圧情報に基づいて、使用される容器の比抵抗(抵抗率)の大小を判定し、インバータ駆動手段を駆動制御するようにしたので、利用者が例えばアルミ、銅等の比抵抗の著しく小さい材質の容器を加熱コイルの上に載せて運転開始させた場合でも、比抵抗の小さい材質の容器における誘導加熱した際の過電流による回路及び要素部品の破損を防止することができる。   The induction heating cooker of the present invention controls the conduction ratio of the inverter circuit for a certain period before the induction heating operation starts, and applies a voltage pulse to the load circuit composed of the induction heating coil and the resonance capacitor to vibrate the current. Since the magnitude of the specific resistance (resistivity) of the container to be used is determined based on the voltage information corresponding to the oscillating current detected by the current detecting means, the inverter driving means is driven and controlled. Even if a person puts a container made of a material having a very low specific resistance such as aluminum or copper on the heating coil and starts operation, a circuit and elements due to overcurrent when the container is made of a material having a low specific resistance is induction-heated Damage to the parts can be prevented.

実施の形態1.
図1は本発明の実施の形態1における誘導加熱調理器の回路構成図である。
図1において、1は商用電源、2は商用電源1を直流に変換する直流電源回路、3は前記直流電源2間に直列接続されたインバータ回路で、例えばIGBTの各々第1スイッチング素子4及び第2スイッチング素子5で構成されている。6は前記第2スイッチング素子5に並列に接続された負荷回路で、誘導加熱コイル(以下、加熱コイルという)7、共振コンデンサ8より構成される。9は前記負荷回路6に流れる電流を検出する電流検出手段の例えばカレントトランス、10は前記加熱コイル7の上に載せられる容器である。
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram of an induction heating cooker according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a commercial power supply, 2 is a DC power supply circuit for converting the commercial power supply 1 into direct current, and 3 is an inverter circuit connected in series between the DC power supplies 2, for example, the first switching element 4 and the first switching element 4 of the IGBT. 2 switching elements 5. Reference numeral 6 denotes a load circuit connected in parallel to the second switching element 5 and includes an induction heating coil (hereinafter referred to as a heating coil) 7 and a resonance capacitor 8. Reference numeral 9 denotes a current transformer, for example, current detection means for detecting a current flowing through the load circuit 6, and reference numeral 10 denotes a container placed on the heating coil 7.

11は前記カレントトランス9からの検出電流を入力し、検出電流を基に電圧を検知する電圧検知回路で、図2に該電圧検知回路の回路構成の一例を示す。尚、図2において前記図1と同一又は相当部分には同一符号を付し説明を省略する。図2において、21はダイオードブリッジよりなる整流回路で、この整流回路21間には抵抗22及びコンデンサ23が接続され積分回路を構成している。24はコンパレータであり、このコンパレータ24の入力側の一端には前記積分回路の出力点が入力され、他端には抵抗25及び抵抗26で構成される抵抗分割回路により、基準電圧が入力される。27は前記整流回路21間に並列接続された抵抗である。 Reference numeral 11 denotes a voltage detection circuit that inputs a detection current from the current transformer 9 and detects a voltage based on the detection current. FIG. 2 shows an example of the circuit configuration of the voltage detection circuit. In FIG. 2, the same or corresponding parts as those in FIG. In FIG. 2, reference numeral 21 denotes a rectifier circuit formed of a diode bridge. A resistor 22 and a capacitor 23 are connected between the rectifier circuits 21 to constitute an integration circuit. Reference numeral 24 denotes a comparator. An output point of the integrating circuit is input to one end of the input side of the comparator 24, and a reference voltage is input to the other end by a resistor dividing circuit including a resistor 25 and a resistor 26. . Reference numeral 27 denotes a resistor connected in parallel between the rectifier circuits 21.

12は前記インバータ回路3の前記第1、第2スイッチング素子4、5を交互に導通させるべく駆動信号を与えるインバータ駆動手段、13は前記電圧検知回路からの電圧情報を基に、使用される容器の比抵抗の大小を識別し、前記インバータ駆動手段12の駆動を制御する例えばマイコン等により構成される制御手段である。 Reference numeral 12 denotes inverter drive means for supplying a drive signal to alternately connect the first and second switching elements 4 and 5 of the inverter circuit 3, and reference numeral 13 denotes a container used based on voltage information from the voltage detection circuit. For example, a microcomputer for controlling the drive of the inverter drive means 12.

次に上記のように構成された誘導加熱調理器の動作について説明する。
商用電源1より入力された交流電流は、直流電源回路2によって整流されて直流に変換され、前記第1、第2スイッチング素子4、5により構成されるインバータ回路3に入力される。前記第1、第2スイッチング素子4、5はインバータ駆動手段12からの駆動信号により高周波で交互にオン・オフ駆動され、前記負荷回路6に高周波の矩形電圧を印加する。負荷回路6は加熱コイル7、共振コンデンサ8により直列共振回路を構成しているため、前記インバータ回路3からの電圧印加により高周波の共振電流が流れる。この電流により前記加熱コイル7に高周波磁界が発生し、この高周波磁界により加熱コイル7の上に載せられた容器10の底部に渦電流を発生させる。渦電流は容器底部を流れ、この渦電流と容器抵抗成分のジュール熱で発熱し誘導加熱される。
Next, the operation of the induction cooking device configured as described above will be described.
The alternating current input from the commercial power source 1 is rectified and converted into direct current by the direct current power circuit 2 and input to the inverter circuit 3 constituted by the first and second switching elements 4 and 5. The first and second switching elements 4 and 5 are alternately turned on and off at a high frequency by a drive signal from the inverter driving means 12 and apply a high-frequency rectangular voltage to the load circuit 6. Since the load circuit 6 forms a series resonance circuit with the heating coil 7 and the resonance capacitor 8, a high-frequency resonance current flows by applying a voltage from the inverter circuit 3. A high frequency magnetic field is generated in the heating coil 7 by this current, and an eddy current is generated at the bottom of the container 10 placed on the heating coil 7 by the high frequency magnetic field. The eddy current flows through the bottom of the container, and is heated by induction heating by the eddy current and the Joule heat of the container resistance component.

使用者により、加熱対象として、加熱コイル7の上に載せられる可能性のある容器10としては、例えば鉄、ホーロー、ステンレス、アルミ、銅等の材質のものがある。しかるに、前記容器10としての前記容器材質の中で、例えばアルミ、銅等による材質の容器を使用した場合、アルミ、銅などは著しく比抵抗(抵抗率)が小さいことから、前記鉄、ステンレス等の比較的比抵抗の大きい材質の容器と同様の方法で誘導加熱を行うと、過剰な電流が第1、第2スイッチング素子4、5や、加熱コイル7、共振コンデンサ8等の要素部品に流れ、過温度上昇、破損等を引き起こすおそれがある。そのため、誘導加熱調理器の運転開始直後、直ちに誘導加熱動作を行わず、誘導加熱開始前に一定期間の容器の判定期間を設けて、加熱対象として加熱コイル7の上に載せられる可能性のある、前記アルミ、銅等の比抵抗の著しく小さい材質の容器を識別する判定動作を行うようにする。 Examples of the container 10 that may be placed on the heating coil 7 as a heating target by the user include materials such as iron, enamel, stainless steel, aluminum, and copper. However, among the container materials as the container 10, for example, when a container made of aluminum, copper, or the like is used, aluminum, copper, etc. have a remarkably small specific resistance (resistivity). When induction heating is performed in the same manner as a container of a material having a relatively large specific resistance, an excessive current flows to element parts such as the first and second switching elements 4 and 5, the heating coil 7, and the resonance capacitor 8. There is a risk of overheating, damage, etc. Therefore, immediately after the start of the operation of the induction heating cooker, the induction heating operation is not performed immediately, and there is a possibility that a predetermined period of determination of the container is provided before the induction heating is started and placed on the heating coil 7 as a heating target. Then, a determination operation for identifying a container made of a material having a remarkably small specific resistance such as aluminum or copper is performed.

以下に、前述した運転開始直後、誘導加熱開始前の一定期間に行う、容器の判定動作について、前記図1、図2及び図3の動作波形図を用いて説明する。尚、前記図3において、左図(イ)は、前記容器10として、前述した比抵抗の大きい適正容器とされる鉄、ステンレス等の材質の容器を使用した場合の動作波形図であり、右図(ロ)は、比抵抗の著しく小さいアルミ、銅等の材質の容器を使用した場合の動作波形図である。また、図中(a)は負荷回路6への印加電圧、(b)は負荷回路6に流れる共振電流、(c)は前記電圧検知回路11のコンデンサ23の電圧、(d)は同じくコンパレータ24の出力をそれぞれ表す。   Hereinafter, a container determination operation performed immediately after the above-described operation start and during a certain period before the induction heating start will be described with reference to the operation waveform diagrams of FIGS. 1, 2, and 3. In FIG. 3, the left figure (A) is an operation waveform diagram in the case where the container 10 made of a material such as iron or stainless steel, which is an appropriate container having a large specific resistance, is used. FIG. (B) is an operation waveform diagram in the case of using a container made of a material such as aluminum or copper having a remarkably small specific resistance. In the figure, (a) is a voltage applied to the load circuit 6, (b) is a resonance current flowing through the load circuit 6, (c) is a voltage of the capacitor 23 of the voltage detection circuit 11, and (d) is a comparator 24 in the same manner. Represents the output of each.

まず前記インバータ駆動手段12により、運転開始直後、前記インバータ回路3の第1、第2スイッチング素子4、5に駆動信号を出力し、前記第1、第2スイッチング素子4、5を交互にオン・オフ動作させる。このオン・オフ動作における、前記第1スイッチング素子4の導通時間(オン時間)を第2スイッチング素子5の導通時間より十分短くすると、インバータ回路3の出力点から前記負荷回路6には、図3(a)に示すようなパルス状の電圧が印加される。尚、図3に表す振動期間、すなわち、前記第2スイッチング素子5の導通時間は、少なくとも負荷回路6の加熱コイル7と共振コンデンサ8で定まる共振周期の3倍程度の長さとする。 First, immediately after the start of operation, the inverter driving means 12 outputs a drive signal to the first and second switching elements 4 and 5 of the inverter circuit 3 to turn on the first and second switching elements 4 and 5 alternately. Turn off. When the conduction time (on time) of the first switching element 4 in this on / off operation is sufficiently shorter than the conduction time of the second switching element 5, the load circuit 6 is connected to the load circuit 6 from the output point of the inverter circuit 3. A pulsed voltage as shown in (a) is applied. Note that the vibration period shown in FIG. 3, that is, the conduction time of the second switching element 5 is at least about three times the resonance period determined by the heating coil 7 and the resonance capacitor 8 of the load circuit 6.

前記パルス電圧の印加により、負荷回路6の加熱コイル7、共振コンデンサ8の経路に、共振電流が流れる。そして、パルス電圧印加後、この共振電流は、前記振動期間において、前記(イ)の比抵抗の大きい材質の容器の場合と、前記(ロ)の比抵抗の著しく小さい材質の容器の場合とで夫々磁気結合した前記加熱コイル7のインダクタンスと共振コンデンサ8の静電容量とに応じた共振周期で、図3(b)に示すように、振動する(以下、振動電流という)。 By applying the pulse voltage, a resonance current flows through the path of the heating coil 7 and the resonance capacitor 8 of the load circuit 6. After the pulse voltage is applied, the resonance current is generated in the vibration period in the case of the container made of a material having a large specific resistance (b) and the case of a container made of a material having a remarkably small specific resistance (b). As shown in FIG. 3B, it vibrates (hereinafter referred to as an oscillating current) at a resonance period corresponding to the inductance of the heating coil 7 and the capacitance of the resonance capacitor 8 that are magnetically coupled.

そして、前記振動電流は、前記(イ)の場合、即ち抵抗成分が比較的大きい鉄、ステンレス等による材質の容器の場合は、該容器の抵抗成分による電力消費により、一定期間流れた後は減衰しゼロとなる。一方、前記(ロ)の場合、即ち抵抗成分が鉄やステンレス等と比べ著しく小さい、アルミ、銅等による材質の容器の場合は、抵抗成分による電力消費が少ないため、ほとんど減衰しない。負荷回路6に流れたこの振動電流は、加熱コイル7の一端側に設けられた電流検出手段の前記カレントトランス9により検出され、前記電圧検知回路11に出力される。 In the case of (a), that is, in the case of a container made of iron, stainless steel or the like having a relatively large resistance component, the vibration current is attenuated after flowing for a certain period due to power consumption by the resistance component of the container. It becomes zero. On the other hand, in the case of (b), that is, in the case of a container made of a material such as aluminum or copper whose resistance component is remarkably smaller than that of iron or stainless steel, the power consumption due to the resistance component is small, so that it hardly attenuates. This oscillating current flowing through the load circuit 6 is detected by the current transformer 9 of the current detecting means provided at one end of the heating coil 7 and output to the voltage detection circuit 11.

前記電圧検知回路11に入力された前記振動電流は、前記図2に示す電圧検知回路11の整流回路21により全波整流された後、抵抗22及びコンデンサ23で構成される積分回路により積分され、振動電流に応じた積分電圧に変換される。この積分回路の出力電圧、すなわちコンデンサ23の電圧は、図3(c)の電圧波形に示すように、前記(イ)の比抵抗の大きい材質の容器の場合は、振動電流の減衰と同様に徐々に減衰する。一方、前記(ロ)の比抵抗の著しく小さい材質の容器の場合は、振動電流の減衰が少ないことから、減衰の少ない電圧波形となる。そこで、前記(イ)と(ロ)の場合で夫々得られる電圧に、図3(c)に表す閾値を設定することにより、容器の識別が可能となる。 The oscillating current input to the voltage detection circuit 11 is full-wave rectified by the rectification circuit 21 of the voltage detection circuit 11 shown in FIG. 2 and then integrated by an integration circuit including a resistor 22 and a capacitor 23. It is converted into an integrated voltage corresponding to the oscillating current. As shown in the voltage waveform of FIG. 3C, the output voltage of this integrating circuit, that is, the voltage of the capacitor 23 is the same as the attenuation of the oscillating current in the case of the container made of a material having a large specific resistance (a). Decreases gradually. On the other hand, in the case of the container (b) having a remarkably small specific resistance, since the vibration current is less attenuated, the voltage waveform is less attenuated. Therefore, the container can be identified by setting the threshold values shown in FIG. 3C to the voltages obtained in the cases (A) and (B).

すなわち、前記コンパレータ24において、入力側の一端に入力される前記(イ)と(ロ)の場合の積分回路による振動電流に応じた積分電圧、すなわち前記コンデンサ23の電圧と、他端に入力される前記閾値の基準電圧となる前記抵抗25及び抵抗26で構成される抵抗分割回路による定電圧との比較を行う。このコンパレータ24での比較の結果、コンパレータ24の出力側は、図3(d)に示すように、前記(イ)の比抵抗の大きい材質の容器の場合は、前記コンデンサ23の電圧が前記閾値(基準電圧)を上回る部分で断続的な矩形電圧波形を出力する。一方、前記(ロ)の比抵抗の著しく小さい材質の容器の場合は、前記コンデンサ23の電圧が前記閾値(基準電圧)を常に上回り、したがって一定電圧を継続して出力する。 That is, in the comparator 24, the integration voltage corresponding to the oscillating current by the integration circuit in the cases (a) and (b) input to one end on the input side, that is, the voltage of the capacitor 23 is input to the other end. A comparison is made with a constant voltage by a resistance dividing circuit composed of the resistor 25 and the resistor 26 which becomes the reference voltage of the threshold value. As a result of the comparison by the comparator 24, the output side of the comparator 24, as shown in FIG. 3D, in the case of the container made of a material having a large specific resistance (A), the voltage of the capacitor 23 is the threshold value. An intermittent rectangular voltage waveform is output at a portion exceeding (reference voltage). On the other hand, in the case of the container (b) made of a material having a remarkably small specific resistance, the voltage of the capacitor 23 always exceeds the threshold value (reference voltage), and therefore a constant voltage is continuously output.

前記制御手段13は、前記コンパレータ24からの前記電圧出力情報を入力し、前記コンパレータ24から継続した一定電圧が入力された場合は、容器10が、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定し、前記インバータ駆動手段12へ駆動停止信号を出力し、インバータ回路3の第1、第2スイッチング素子4、5の駆動を停止して、誘導加熱動作を行わないようにする。一方、前記コンパレータ24から断続的な矩形電圧が入力された場合は、容器10が鉄、ステンレス等の比抵抗の大きい材質の容器と判定し、前記インバータ駆動手段12へ通常の誘導加熱動作を行うための駆動信号を出力し、インバータ回路3の第1、第2スイッチング素子4、5を動作させて誘導加熱動作を行う。 When the voltage output information from the comparator 24 is input to the control means 13 and a constant voltage continued from the comparator 24 is input, the container 10 is made of a material having a remarkably small specific resistance such as aluminum or copper. The container is determined to be a container, a drive stop signal is output to the inverter drive means 12, the drive of the first and second switching elements 4 and 5 of the inverter circuit 3 is stopped, and the induction heating operation is not performed. On the other hand, when an intermittent rectangular voltage is input from the comparator 24, the container 10 is determined to be a container having a high specific resistance such as iron or stainless steel, and the inverter driving means 12 is subjected to normal induction heating operation. Drive signal is output, and the first and second switching elements 4 and 5 of the inverter circuit 3 are operated to perform induction heating operation.

以上のように、誘導加熱調理器の運転開始直後、誘導加熱開始前の一定期間、加熱コイルの上に載せられた容器の判定を行い、例えばアルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合には、インバータ駆動手段へ駆動停止信号を出力し、その後の誘導加熱動作を行わないようにしたので、比抵抗の小さい材質の容器における誘導加熱した際の過電流による回路及び要素部品の破損を防止することができる。   As described above, immediately after the operation of the induction heating cooker is started, the container placed on the heating coil is determined for a certain period before the induction heating is started. For example, a container made of a material having a remarkably small specific resistance such as aluminum or copper. If it is determined that, since the drive stop signal is output to the inverter drive means and the subsequent induction heating operation is not performed, a circuit due to overcurrent at the time of induction heating in a container of a material having a small specific resistance and It is possible to prevent damage to the component parts.

実施の形態2.
本実施の形態における誘導加熱調理器は、上記実施の形態1の図2に示す電圧検知回路11の中の一部が相違するものであり、図4に本実施の形態における電圧検知回路の回路構成図を示す。尚、図4において、上記実施の形態1の図2と同一又は相当部分には同一符号付し説明を省略する。
前記図4の回路構成において、上記実施の形態1の図2と異なる点は、ダイオードブリッジ21、抵抗22及びコンデンサ23をなくし、ダイオード31を追加した点である。図4に示すように、前記カレントトランス9の一端は、電圧検知回路11のGNDに接続され、他端は前記ダイオード31に接続されている。
本実施の形態では、前記ダイオードブリッジ21、抵抗22及びコンデンサ23を用いない構成で、上記実施の形態1同様に加熱コイル7の上に載せられた容器10の判定を行うようにしたものである。
Embodiment 2. FIG.
The induction heating cooker in the present embodiment is partly different from the voltage detection circuit 11 shown in FIG. 2 of the first embodiment, and FIG. 4 shows the circuit of the voltage detection circuit in the present embodiment. A block diagram is shown. In FIG. 4, the same or corresponding parts as those in FIG.
In the circuit configuration of FIG. 4, the difference from FIG. 2 of the first embodiment is that the diode bridge 21, the resistor 22 and the capacitor 23 are eliminated and a diode 31 is added. As shown in FIG. 4, one end of the current transformer 9 is connected to the GND of the voltage detection circuit 11, and the other end is connected to the diode 31.
In the present embodiment, the determination of the container 10 placed on the heating coil 7 is performed in a configuration that does not use the diode bridge 21, the resistor 22, and the capacitor 23, as in the first embodiment. .

前記図4に示す電圧検知回路の構成以外は、上記実施の形態1の図1と同様であるため、運転開始直後、誘導加熱開始前の一定期間に行う、インバータ回路3による負荷回路6へのパルス電圧印加動作から始まって、カレントトランス9による検出電流が電圧検知回路11に入力される動作までは、上記実施の形態1で述べたことと同様であるので、ここでの説明を省略し、ここではそれ以降の動作について前記図4の回路構成図と図5の動作波形図を用いて説明する。 Since the configuration other than the configuration of the voltage detection circuit shown in FIG. 4 is the same as that in FIG. 1 of the first embodiment, the inverter circuit 3 supplies the load circuit 6 to the load circuit 6 immediately after the start of operation and before the induction heating starts. Since the operation from the pulse voltage application operation to the operation in which the detection current from the current transformer 9 is input to the voltage detection circuit 11 is the same as that described in the first embodiment, description thereof is omitted here. The subsequent operation will be described with reference to the circuit configuration diagram of FIG. 4 and the operation waveform diagram of FIG.

尚、前記図5において、左図(イ)は上記実施の形態1の図3と同様、容器10として、鉄、ステンレス等の比抵抗(抵抗率)の大きい材質の容器を使用した場合の動作波形図であり、右図(ロ)は同じく、アルミ、銅等の比抵抗の著しく小さい材質の容器を使用した場合の動作波形図である。また、図中、(a)、(b)は上記実施の形態1の図3と同様、各々負荷回路6への印加電圧、負荷回路6に流れる共振電流であり、(e)は前記図4の抵抗27の電圧、(f)は同じくコンパレータ24の出力をそれぞれ表す。 In FIG. 5, the left figure (A) shows the operation when a container made of a material having a large specific resistance (resistivity) such as iron or stainless steel is used as the container 10 as in FIG. 3 of the first embodiment. Similarly, the right figure (b) is an operation waveform chart when a container made of a material having a remarkably small specific resistance such as aluminum or copper is used. Also, in the figure, (a) and (b) are the applied voltage to the load circuit 6 and the resonance current flowing through the load circuit 6, respectively, as in FIG. 3 of the first embodiment, and (e) is the aforementioned FIG. Similarly, the voltage (f) of the resistor 27 represents the output of the comparator 24, respectively.

前記図5(b)に示す(イ)の鉄、ステンレス等の比抵抗(抵抗率)の大きい材質の容器を使用した場合と、(ロ)のアルミ、銅等の比抵抗の著しく小さい材質の容器を使用した場合の負荷回路6に流れる振動電流は、カレントトランス9で検出され電圧検知回路11に出力される。前記電圧検知回路11に入力された前記(イ)、(ロ)の場合の検出電流は、前記ダイオード31により半波整流された電流となって抵抗27に流れる。そのため、抵抗27に生じる電圧は、前記(イ)、(ロ)の場合で、前記振動電流の半波整流された電流に対応した図5(e)に示すような半波整流の電圧波形となる。そこで、前記(イ)と(ロ)の場合で夫々得られる電圧に、上記実施の形態1と同様に、前記図5(e)に表す閾値を設定することにより、容器の識別が可能となる。 When using a container having a high specific resistance (resistivity) such as iron or stainless steel (b) shown in FIG. 5B, and (b) a material having a remarkably low specific resistance such as aluminum or copper. When the container is used, the oscillating current flowing in the load circuit 6 is detected by the current transformer 9 and output to the voltage detection circuit 11. In the cases (A) and (B) inputted to the voltage detection circuit 11, the detection current flows through the resistor 27 as a current half-wave rectified by the diode 31. Therefore, the voltage generated in the resistor 27 is the voltage waveform of the half-wave rectification as shown in FIG. 5 (e) corresponding to the half-wave rectified current of the oscillating current in the cases (b) and (b). Become. Therefore, the container can be identified by setting the threshold values shown in FIG. 5 (e) to the voltages obtained in the cases (b) and (b), as in the first embodiment. .

すなわち、前記コンパレータ24において、入力側の一端に入力される前記図5(e)に示す(イ)と(ロ)の場合の半波整流波形の前記抵抗27の電圧と、他端に入力される前記閾値の基準電圧となる前記抵抗25及び抵抗26で構成される抵抗分割回路による定電圧との比較を行う。このコンパレータ24での比較の結果、コンパレータ24の出力側は、図5(f)に示すように、前記(イ)と(ロ)の場合で夫々、半波整流された電流に対応した半波整流波形の前記抵抗27の電圧が前記閾値(基準電圧)を上回る部分で矩形電圧波形を出力する。図5(f)で示されるように、前記(イ)の場合は、コンパレータ24から矩形電圧波形が断続的に出力され、一方、(ロ)の場合は、矩形電圧波形が継続して出力される。 That is, in the comparator 24, the voltage of the resistor 27 of the half-wave rectified waveform in the cases (a) and (b) shown in FIG. A comparison is made with a constant voltage by a resistance dividing circuit composed of the resistor 25 and the resistor 26 which becomes the reference voltage of the threshold value. As a result of the comparison by the comparator 24, the output side of the comparator 24 is a half wave corresponding to the half-wave rectified current in each of the cases (a) and (b), as shown in FIG. A rectangular voltage waveform is output at a portion where the voltage of the resistor 27 in the rectified waveform exceeds the threshold value (reference voltage). As shown in FIG. 5 (f), in the case (b), the rectangular voltage waveform is intermittently output from the comparator 24, while in the case (b), the rectangular voltage waveform is continuously output. The

前記制御手段13は、前記コンパレータ24からの前記電圧出力情報を入力し、
図5(f)の(ロ)に示すような継続した矩形電圧波形が入力された場合は、容器10が、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定し、前記インバータ駆動手段12へ駆動停止信号を出力し、インバータ回路3の第1、第2スイッチング素子4、5の駆動を停止して、誘導加熱動作を行わないようにする。一方、図5(f)の(イ)に示すような断続的な矩形電圧波形が入力された場合は、容器10が、鉄、ステンレス等の比抵抗の大きい材質の容器と判定し、前記インバータ駆動手段12へ通常の誘導加熱動作を行うための駆動信号を出力し、インバータ回路3の第1、第2スイッチング素子4、5を動作させて誘導加熱動作を行う。
The control means 13 inputs the voltage output information from the comparator 24,
When a continuous rectangular voltage waveform as shown in (b) of FIG. 5 (f) is input, it is determined that the container 10 is made of a material having a remarkably small specific resistance such as aluminum or copper, and the inverter driving means The drive stop signal is output to 12, the drive of the first and second switching elements 4 and 5 of the inverter circuit 3 is stopped, and the induction heating operation is not performed. On the other hand, when an intermittent rectangular voltage waveform as shown in FIG. 5F is input, it is determined that the container 10 is a container made of a material having a large specific resistance such as iron or stainless steel, and the inverter A drive signal for performing a normal induction heating operation is output to the drive unit 12 and the first and second switching elements 4 and 5 of the inverter circuit 3 are operated to perform the induction heating operation.

以上のように、上記実施の形態1同様に、運転開始直後、誘導加熱開始前の一定期間、加熱コイルの上に載せられた容器の判定を行い、例えばアルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合には、インバータ駆動手段へ駆動停止信号を出力し、その後の誘導加熱動作を行わないようにしたので、上記実施の形態1同様に、比抵抗の小さい材質の容器における誘導加熱した際の過電流による回路及び要素部品の破損を防止することができる。   As described above, as in the first embodiment, the container placed on the heating coil is determined immediately after the start of operation and for a certain period before the start of induction heating. For example, the specific resistance of aluminum, copper, etc. is remarkably small. When it is determined that the container is made of a material, a drive stop signal is output to the inverter driving means and the subsequent induction heating operation is not performed. Therefore, as in the first embodiment, a container made of a material having a small specific resistance. It is possible to prevent damage to circuits and component parts due to overcurrent when induction heating is performed.

実施の形態3.
本実施の形態における誘導加熱調理器は、アルミ、銅等の比抵抗の小さい材質の容器と判定された場合に、該比抵抗の小さい容器での誘導加熱を可能にするようにしたものである。尚、本実施の形態における誘導加熱調理器の構成等は、上記実施の形態1の図1と同様であるので、ここでの図示と説明を省略する。
Embodiment 3 FIG.
When the induction heating cooker in the present embodiment is determined to be a container made of a material having a small specific resistance such as aluminum or copper, induction heating is enabled in a container having a low specific resistance. . In addition, since the structure etc. of the induction heating cooking appliance in this Embodiment are the same as that of FIG. 1 of the said Embodiment 1, illustration and description here are abbreviate | omitted.

また、アルミ、銅等の比抵抗の小さい材質の容器と、鉄、ステンレス等の比抵抗の大きい材質の容器の判定の仕方については、上記実施の形態1或いは2で述べたことと同様であるので、ここでの説明を省略し、ここでは、アルミ、銅等の比抵抗の小さい材質の容器と判定された場合の、誘導加熱動作について説明する。 In addition, the method of determining a container made of a material having a low specific resistance such as aluminum or copper and a container made of a material having a high specific resistance such as iron or stainless steel are the same as those described in the first or second embodiment. Therefore, description here is abbreviate | omitted and the induction heating operation | movement when it determines with a container with a small specific resistance material, such as aluminum and copper, is demonstrated here.

上記実施の形態1或いは2で述べた方法により、前記制御手段13で、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、前記制御手段13は、前記インバータ回路3の第1、第2スイッチング素子4、5の駆動周波数を上げるよう、前記インバータ駆動手段12へ駆動信号を出力する。例えば、適正容器とされる鉄、ステンレス等の比抵抗の大きい材質の容器と判定された場合は、前記インバータ回路3の駆動周波数を例えば20KHz程度とし、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、前記インバータ回路3の駆動周波数を例えば50KHz程度に上昇させるようにする。   When the control means 13 determines that the container is made of a material having a remarkably small specific resistance such as aluminum or copper by the method described in the first or second embodiment, the control means 13 A drive signal is output to the inverter drive means 12 so as to increase the drive frequency of the first and second switching elements 4 and 5. For example, when it is determined that the container is made of a material having a large specific resistance such as iron or stainless steel, which is a proper container, the drive frequency of the inverter circuit 3 is set to, for example, about 20 KHz, and the material having a remarkably small specific resistance such as aluminum or copper. If it is determined that the container is a container, the drive frequency of the inverter circuit 3 is increased to, for example, about 50 KHz.

前記負荷回路6のインピーダンスは、前記容器10の抵抗成分及び前記加熱コイル7のインダクタンスに大きく依存する。そして、前記加熱コイル7のインダクタンスは周波数に依存することから、前記インバータ回路3の駆動周波数を上昇させることで、前記負荷回路6のインピーダンスを上昇させることができるため、アルミ、銅等の比抵抗の著しく小さい材質の容器の誘導加熱動作が可能となる。また、負荷回路6のインピーダンスを上昇させることにより、過電流の抑制ができ回路及び要素部品の破損を防止することができる。 The impedance of the load circuit 6 greatly depends on the resistance component of the container 10 and the inductance of the heating coil 7. Since the inductance of the heating coil 7 depends on the frequency, the impedance of the load circuit 6 can be increased by increasing the drive frequency of the inverter circuit 3, so that the specific resistance of aluminum, copper, etc. It is possible to perform induction heating operation of a container having a remarkably small material. Further, by increasing the impedance of the load circuit 6, overcurrent can be suppressed and damage to the circuit and component parts can be prevented.

以上のように、本実施の形態においては、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、前記インバータ回路3の駆動周波数を上昇させて負荷回路6のインピーダンスを上昇させるようにしたので、比抵抗の小さい容器の誘導加熱を可能にすることができる。また、負荷回路6のインピーダンスを上昇させることによって、過電流の抑制ができ回路及び要素部品の破損を防止することができる。   As described above, in the present embodiment, when it is determined that the container is made of a material having a remarkably small specific resistance such as aluminum or copper, the impedance of the load circuit 6 is increased by increasing the drive frequency of the inverter circuit 3. Therefore, induction heating of a container having a small specific resistance can be made possible. Further, by increasing the impedance of the load circuit 6, overcurrent can be suppressed and damage to the circuit and component parts can be prevented.

実施の形態4.
本実施の形態における誘導加熱調理器は、アルミ、銅等の比抵抗の小さい材質の容器の誘導加熱動作を可能にする、他の形態を示すものである。
図6に、本実施の形態における誘導加熱調理器の回路構成図を示す。尚、図6において、上記実施の形態1の図1と同一又は相当部分には同一符号を付し説明を省略する。
Embodiment 4 FIG.
The induction heating cooker in this Embodiment shows another form which enables the induction heating operation | movement of the container of materials with small specific resistance, such as aluminum and copper.
In FIG. 6, the circuit block diagram of the induction heating cooking appliance in this Embodiment is shown. In FIG. 6, the same or corresponding parts as those in FIG.

図6において、前記実施の形態1の図1と異なる点は、切替え手段41、及び前記加熱コイル7と異なるインダクタンスを有した加熱コイル42を備えている点である。尚、前記インダクタンスの関係は、加熱コイル7<加熱コイル42とする。 6 is different from FIG. 1 of the first embodiment in that a switching means 41 and a heating coil 42 having an inductance different from that of the heating coil 7 are provided. Note that the relationship of the inductance is heating coil 7 <heating coil 42.

前記加熱コイル42は、前記負荷回路6の前記加熱コイル7と例えば上下に並列に配設され、前記切替え手段41は、前記インバータ回路3の出力点と、並列配設された前記加熱コイル7及び加熱コイル42との間に設けられ、前記制御手段13からの制御信号により、例えば接点を切り替えることで、前記加熱コイル7或いは加熱コイル42のいずれか一方を負荷回路6として挿入する。 The heating coil 42 is arranged in parallel with, for example, the heating coil 7 of the load circuit 6, and the switching means 41 is connected to the output point of the inverter circuit 3 and the heating coil 7 arranged in parallel. One of the heating coil 7 and the heating coil 42 is inserted as the load circuit 6 by switching the contact point, for example, by a control signal from the control means 13 provided between the heating coil 42 and the control circuit 13.

上記のように構成された誘導加熱調理器において、前述した運転開始直後、誘導加熱開始前の一定期間に行う、容器の判定においては、前記加熱コイル7を負荷回路6として挿入し、上記実施の形態1の図1と同様の回路形成で判定動作を行うようにする。尚、判定の仕方については、上記実施の形態1或いは2で述べたことと同様であるので、ここでの説明を省略し、ここでは、判定後の誘導加熱動作について説明する。   In the induction heating cooker configured as described above, the heating coil 7 is inserted as the load circuit 6 in the container determination performed immediately after the start of operation described above, and in a certain period before the start of induction heating. The determination operation is performed in the same circuit formation as in FIG. Note that the determination method is the same as that described in the first embodiment or the second embodiment, and therefore description thereof is omitted. Here, the induction heating operation after determination will be described.

上記実施の形態1或いは2で述べた方法により、前記制御手段13で、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、前記制御手段13は、前記切り替え手段41に制御信号を出力し、前記加熱コイル7よりインダクタンスの大きい加熱コイル42に切り替え、加熱コイル42を負荷回路6として挿入しインバータ回路3の出力点と接続して誘導加熱動作を行うようにする。
一方、制御手段13で、鉄、ステンレス等の比抵抗の大きい材質の容器と判定された場合は、前記切り替え手段41により、インダクタンスの小さい前記加熱コイル7に切り替え、加熱コイル7を負荷回路6として挿入して誘導加熱動作を行うようにする。
When the control unit 13 determines that the container is made of a material having a remarkably small specific resistance such as aluminum or copper by the method described in the first or second embodiment, the control unit 13 A control signal is output to switch to the heating coil 42 having a larger inductance than the heating coil 7, and the heating coil 42 is inserted as the load circuit 6 and connected to the output point of the inverter circuit 3 to perform the induction heating operation.
On the other hand, when the control means 13 determines that the container is made of a material having a high specific resistance such as iron or stainless steel, the switching means 41 switches to the heating coil 7 having a small inductance, and the heating coil 7 is used as the load circuit 6. Insert and perform induction heating operation.

すなわち、前記加熱コイル42は加熱コイル7と比較して、インダクタンスが大きい加熱コイルとしているため、アルミ、銅等の比抵抗の小さい材質の容器の場合でも、インダクタンスの大きい加熱コイル42に切り替えることにより、負荷回路6のインピーダンスを大きくすることができ、誘導加熱が可能となる。また、負荷回路6のインピーダンスを大きくすることによって、過電流の抑制ができ回路及び要素部品の破損を防止することができる。 That is, since the heating coil 42 is a heating coil having a large inductance compared to the heating coil 7, even in the case of a container made of a material having a small specific resistance such as aluminum or copper, the heating coil 42 is switched to the heating coil 42 having a large inductance. The impedance of the load circuit 6 can be increased, and induction heating can be performed. Further, by increasing the impedance of the load circuit 6, overcurrent can be suppressed and damage to the circuit and component parts can be prevented.

以上のように、本実施の形態においては、インダクタンスの異なる2つの加熱コイルと、該2つの加熱コイルを切り替える切り替え手段を備え、鉄、ステンレス等の比抵抗の大きい材質の容器と判定された場合は、インダクタンスの小さい加熱コイル7に切り替え、アルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、インダクタンスの大きい加熱コイル42に切り替えて負荷回路6のインピーダンスを大きくするようにしたので、比抵抗の小さい容器の場合でも、誘導加熱が可能となる。また、負荷回路6のインピーダンスを大きくすることによって、過電流の抑制ができ回路及び要素部品の破損を防止することができる。   As described above, in the present embodiment, when two heating coils having different inductances and switching means for switching between the two heating coils are provided, the container is determined to be a container having a large specific resistance such as iron or stainless steel. Is switched to the heating coil 7 having a small inductance, and when it is determined that the container is made of a material having a remarkably small specific resistance such as aluminum or copper, the heating coil 42 having a large inductance is switched to increase the impedance of the load circuit 6. Therefore, induction heating is possible even in the case of a container having a small specific resistance. Further, by increasing the impedance of the load circuit 6, overcurrent can be suppressed and damage to the circuit and component parts can be prevented.

また、インダクタンスの小さい加熱コイル7と同一の電流をインダクタンスの大きい加熱コイル42に流した場合、発生する磁束を増すことができるため、容器底部に発生する渦電流を増すことができ、比抵抗の小さな材質の容器を有効に加熱することが可能となる。 Further, when the same current as that of the heating coil 7 having a small inductance is passed through the heating coil 42 having a large inductance, the generated magnetic flux can be increased, so that the eddy current generated at the bottom of the container can be increased, and the specific resistance can be reduced. It becomes possible to effectively heat a container made of a small material.

尚、上記実施の形態では、加熱コイル7及び加熱コイル42が例えば上下に並列に配設された場合の誘導加熱動作について説明したが、前記加熱コイル7及び加熱コイル42を例えば平面状に配設し、制御手段13でアルミ、銅等の比抵抗の著しく小さい材質の容器と判定された場合は、切り替え手段41に制御信号を出力し、インダクタンスの大きい前記加熱コイル42に切り替え、そして、例えば切り替え表示により、利用者が容器を前記加熱コイル42に載置し、鉄、ステンレス等の比抵抗の大きい材質の容器と判定された場合は、インダクタンスの小さい前記加熱コイル7に切り替え、同様に切り替え表示により、容器を加熱コイル7に載置して、誘導加熱動作を行うようにしてもよい。 In the above embodiment, the induction heating operation in the case where the heating coil 7 and the heating coil 42 are arranged in parallel vertically, for example, has been described. However, the heating coil 7 and the heating coil 42 are arranged in a planar shape, for example. When the control means 13 determines that the container is made of a material having a remarkably small specific resistance such as aluminum or copper, it outputs a control signal to the switching means 41 and switches to the heating coil 42 having a large inductance. If the display places the container on the heating coil 42 and it is determined that the container is made of a material having a high specific resistance such as iron or stainless steel, the display is switched to the heating coil 7 having a small inductance, and the display is switched in the same manner. Thus, the container may be placed on the heating coil 7 to perform the induction heating operation.

この発明の実施の形態1における誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance in Embodiment 1 of this invention. この発明の実施の形態1に係る電圧検知回路の一例を示す回路構成図である。It is a circuit block diagram which shows an example of the voltage detection circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る動作波形図ある。It is an operation | movement waveform diagram which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る電圧検知回路の一例を示す回路構成図である。It is a circuit block diagram which shows an example of the voltage detection circuit which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る動作波形図ある。It is an operation | movement waveform diagram which concerns on Embodiment 2 of this invention. この発明の実施の形態4における誘導加熱調理器の回路構成図である。It is a circuit block diagram of the induction heating cooking appliance in Embodiment 4 of this invention. 従来の誘導加熱調理器の回路図である。It is a circuit diagram of the conventional induction heating cooking appliance. 従来の動作波形図である。It is a conventional operation waveform diagram.

符号の説明Explanation of symbols

1 商用電源、 2 直流電源回路、 3 インバータ回路、 4、5 第1、第2スイッチング素子、 6 負荷回路、 7 加熱コイル、 8 共振コンデンサ、 9 カレントトランス、 10 容器、 11 電圧検知回路、 12 インバータ駆動手段、 13 制御手段、 21 整流回路、 22 抵抗、 23 コンデンサ、 24 コンパレータ、 25、26、27 抵抗、 31 ダイオード、 41 切り替え手段、 42 加熱コイル。   DESCRIPTION OF SYMBOLS 1 Commercial power supply, 2 DC power supply circuit, 3 Inverter circuit, 4, 5 1st, 2nd switching element, 6 Load circuit, 7 Heating coil, 8 Resonance capacitor, 9 Current transformer, 10 Container, 11 Voltage detection circuit, 12 Inverter Driving means, 13 control means, 21 rectifier circuit, 22 resistors, 23 capacitors, 24 comparators, 25, 26, 27 resistors, 31 diodes, 41 switching means, 42 heating coils.

Claims (5)

商用電源を直流に変換する直流電源回路と、前記直流電源回路の出力を高周波に変換するインバータ回路と、前記インバータ回路の出力点に接続される誘導加熱コイル及び共振コンデンサからなる負荷回路と、前記インバータ回路を駆動するインバータ駆動手段と、前記負荷回路に流れる電流を検出する電流検出手段とを備えた誘導加熱調理器であって、
前記誘導加熱コイルの加熱動作開始前の一定期間、前記インバータ回路の導通比を制御することにより、前記負荷回路に電圧パルスを印加して電流を振動させ、前記電流検出手段により検出された前記振動電流に応じた電圧情報に基づいて、使用される容器の比抵抗の大小を判定し、前記インバータ駆動手段を駆動制御する制御手段を具備したことを特徴とする誘導加熱調理器。
A DC power supply circuit that converts commercial power to DC, an inverter circuit that converts the output of the DC power supply circuit to a high frequency, a load circuit comprising an induction heating coil and a resonant capacitor connected to an output point of the inverter circuit, and An induction heating cooker comprising inverter drive means for driving an inverter circuit and current detection means for detecting current flowing in the load circuit,
By controlling the conduction ratio of the inverter circuit for a certain period before starting the heating operation of the induction heating coil, a voltage pulse is applied to the load circuit to vibrate the current, and the vibration detected by the current detection means An induction heating cooker comprising control means for determining the magnitude of the specific resistance of a container to be used based on voltage information corresponding to current and drivingly controlling the inverter driving means.
前記制御手段は、比抵抗の小さい容器と判定した場合は、前記インバータ駆動手段を停止することを特徴とする請求項1記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein the control means stops the inverter driving means when it is determined that the container has a small specific resistance. 前記制御手段は、比抵抗の小さい容器と判定した場合は、前記インバータ回路の駆動周波数を上げるように前記インバータ駆動手段を制御することを特徴とする請求項1記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein the control means controls the inverter drive means to increase the drive frequency of the inverter circuit when it is determined that the container has a small specific resistance. 商用電源を直流に変換する直流電源回路と、前記直流電源回路の出力を高周波に変換するインバータ回路と、前記インバータ回路の出力点に接続されるインダクタンスの異なる2つの誘導加熱コイルと共振コンデンサからなる負荷回路と、前記2つの誘導加熱コイルを切り替える切り替え手段と、前記インバータ回路を駆動するインバータ駆動手段と、前記負荷回路に流れる電流を検出する電流検出手段とを備えた誘導加熱調理器であって、
前記誘導加熱コイルの加熱動作開始前の一定期間、前記インバータ回路の導通比を制御することにより、前記負荷回路に電圧パルスを印加して電流を振動させ、前記電流検出手段により検出された前記振動電流に応じた電圧情報に基づいて、使用される容器の比抵抗の大小を判定し、前記2つの誘導加熱コイルのいずれか一方に切り替えるように前記切り替え手段を制御する制御手段を具備したことを特徴とする誘導加熱調理器。
A DC power supply circuit that converts commercial power to DC, an inverter circuit that converts the output of the DC power supply circuit to high frequency, two induction heating coils connected to the output point of the inverter circuit and different inductances, and a resonant capacitor An induction heating cooker comprising a load circuit, switching means for switching between the two induction heating coils, inverter drive means for driving the inverter circuit, and current detection means for detecting a current flowing through the load circuit. ,
By controlling the conduction ratio of the inverter circuit for a certain period before starting the heating operation of the induction heating coil, a voltage pulse is applied to the load circuit to vibrate the current, and the vibration detected by the current detection means Based on the voltage information corresponding to the current, the control means for determining the magnitude of the specific resistance of the container to be used and controlling the switching means to switch to either one of the two induction heating coils. Induction heating cooker featuring.
前記制御手段は、比抵抗の小さい容器と判定した場合は、インダクタンスの大きい誘導加熱コイルに切り替えるように前記切り替え手段を制御することを特徴とする請求項4記載の誘導加熱調理器。 The induction heating cooker according to claim 4, wherein the control means controls the switching means to switch to an induction heating coil having a large inductance when it is determined that the container has a small specific resistance.
JP2003379362A 2003-11-10 2003-11-10 Induction heating cooker Pending JP2005142097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379362A JP2005142097A (en) 2003-11-10 2003-11-10 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379362A JP2005142097A (en) 2003-11-10 2003-11-10 Induction heating cooker

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007304166A Division JP4863974B2 (en) 2007-11-26 2007-11-26 Induction heating cooker

Publications (1)

Publication Number Publication Date
JP2005142097A true JP2005142097A (en) 2005-06-02

Family

ID=34689435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379362A Pending JP2005142097A (en) 2003-11-10 2003-11-10 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP2005142097A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066311A (en) * 2007-11-26 2008-03-21 Mitsubishi Electric Corp Induction heating cooker
JP2009043700A (en) * 2007-07-19 2009-02-26 Panasonic Corp Induction heating device
JP2016042431A (en) * 2014-08-18 2016-03-31 日立アプライアンス株式会社 Electromagnetic induction heating device and heating target determining method for the same
EP3598850A1 (en) * 2018-07-18 2020-01-22 LG Electronics Inc. -1- Induction heating device performing container sensing function
EP3651548A1 (en) * 2018-11-08 2020-05-13 LG Electronics Inc. -1- Single pulse pre-test method for improving vessel detection accuracy
US20210267024A1 (en) * 2018-05-25 2021-08-26 Samsung Electronics Co., Ltd. Cooking apparatus and control method thereof
WO2022255703A1 (en) * 2021-06-03 2022-12-08 코웨이 주식회사 Electric range and control method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043700A (en) * 2007-07-19 2009-02-26 Panasonic Corp Induction heating device
JP2008066311A (en) * 2007-11-26 2008-03-21 Mitsubishi Electric Corp Induction heating cooker
JP2016042431A (en) * 2014-08-18 2016-03-31 日立アプライアンス株式会社 Electromagnetic induction heating device and heating target determining method for the same
US20210267024A1 (en) * 2018-05-25 2021-08-26 Samsung Electronics Co., Ltd. Cooking apparatus and control method thereof
US11877373B2 (en) * 2018-05-25 2024-01-16 Samsung Electronics Co., Ltd. Cooking apparatus and control method thereof
EP3598850A1 (en) * 2018-07-18 2020-01-22 LG Electronics Inc. -1- Induction heating device performing container sensing function
US11470694B2 (en) 2018-07-18 2022-10-11 Lg Electronics Inc. Induction heating device performing container sensing function
EP3651548A1 (en) * 2018-11-08 2020-05-13 LG Electronics Inc. -1- Single pulse pre-test method for improving vessel detection accuracy
US11528782B2 (en) 2018-11-08 2022-12-13 Lg Electronics Inc. Single pulse pre-test method for improving vessel detection accuracy
WO2022255703A1 (en) * 2021-06-03 2022-12-08 코웨이 주식회사 Electric range and control method therefor

Similar Documents

Publication Publication Date Title
JP5255445B2 (en) Induction heating apparatus and related operations and one-handed pan detection method
JP2001196156A (en) Induction cooker
JP2005142097A (en) Induction heating cooker
CN110324921B (en) Induction heating device and drive control method thereof
JP4863974B2 (en) Induction heating cooker
JPH11121159A (en) Induction heating cooker
JP4864157B2 (en) Induction heating cooker
JP4383942B2 (en) Induction heating cooker
JP3376227B2 (en) Inverter device
JP2009092835A (en) Induction heating apparatus
JP4134944B2 (en) Induction heating cooker
JP6854405B2 (en) Drive control method for induction heating device and induction heating device
JP4613687B2 (en) Induction heating device
WO2018186036A1 (en) Electromagnetic induction heating cooker
JP2005149915A (en) Induction heating cooking appliance
JP4325446B2 (en) Induction heating device
JP4301083B2 (en) Induction heating cooker
JP4605545B2 (en) Electromagnetic induction heating control device
JP5340026B2 (en) Induction heating cooker
JP2009087883A (en) Electromagnetic induction heating cooker
JPH03145091A (en) Electromagnetic cooking appliance
JP5397501B2 (en) Induction heating device
JP3733525B2 (en) Induction heating cooker
JP2022089233A (en) Induction heating cooker
KR0152836B1 (en) Frequency band conversion circuit of induction cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071025