JP2005141920A - Catalyst carrying electrode - Google Patents

Catalyst carrying electrode Download PDF

Info

Publication number
JP2005141920A
JP2005141920A JP2003374176A JP2003374176A JP2005141920A JP 2005141920 A JP2005141920 A JP 2005141920A JP 2003374176 A JP2003374176 A JP 2003374176A JP 2003374176 A JP2003374176 A JP 2003374176A JP 2005141920 A JP2005141920 A JP 2005141920A
Authority
JP
Japan
Prior art keywords
catalyst
carrying
electrode
average particle
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003374176A
Other languages
Japanese (ja)
Inventor
Masaki Ono
正樹 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003374176A priority Critical patent/JP2005141920A/en
Publication of JP2005141920A publication Critical patent/JP2005141920A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst carrying electrode capable of maintaining superior catalyst activity over a long period by suppressing elution of noble metal components of an electrode catalyst. <P>SOLUTION: The catalyst carrying electrode contains two or more kinds of catalysts carrying conductive materials composed of conductive carrier carrying catalytic particles of different average particle diameter, and a proton conductive member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池用電極、好ましくは、固体高分子型燃料電池用電極に関するものである。   The present invention relates to an electrode for a fuel cell, preferably an electrode for a polymer electrolyte fuel cell.

近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動し高出力密度が得られる固体高分子型燃料電池が電気自動車用電源、定置型電源として注目されている。固体高分子型燃料電池は、フィルム状の固体高分子膜からなる電解質層を用いるのが特徴である。   In recent years, in response to social demands and trends against the background of energy and environmental issues, polymer electrolyte fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . The solid polymer fuel cell is characterized by using an electrolyte layer made of a film-like solid polymer membrane.

固体高分子型燃料電池の構成は、一般的には、膜−電極接合体(以下、「MEA」とも記載する。)をセパレータで積層した構造となっている。   The polymer electrolyte fuel cell generally has a structure in which a membrane-electrode assembly (hereinafter also referred to as “MEA”) is laminated with a separator.

MEAは、電解質層が触媒担持電極により挟持されてなるものである。また、触媒担持電極には、電極触媒を高分散した触媒層と、ガス拡散層と、が含まれ得る。従って、前記触媒層は少なくとも片面が電解質層に接している。   The MEA is formed by sandwiching an electrolyte layer between catalyst supporting electrodes. Further, the catalyst-carrying electrode can include a catalyst layer in which the electrode catalyst is highly dispersed and a gas diffusion layer. Therefore, at least one surface of the catalyst layer is in contact with the electrolyte layer.

かような固体高分子型燃料電池では、電極触媒により、アノードでは燃料の水素ガスを酸化してプロトンに変え、カソードでは酸素を還元して電解質層を通ってきたプロトンと結びつき水となる化学反応が起こる。固体高分子型燃料電池は、前記化学反応により得られた反応エネルギーから電気エネルギーを直接得るものである。   In such a polymer electrolyte fuel cell, an electrode catalyst oxidizes the hydrogen gas of the fuel at the anode to convert it into protons, and at the cathode it reduces oxygen and combines with the protons that have passed through the electrolyte layer to form water, resulting in chemical reaction. Happens. The polymer electrolyte fuel cell directly obtains electric energy from the reaction energy obtained by the chemical reaction.

固体高分子型燃料電池は、コストとともに問題となっているが電池の寿命である。電池の寿命は、自動車で5000時間、家庭用では4万時間ともいわれ、長期にわたって所望の発電性能を維持することが求められている。   The polymer electrolyte fuel cell has a problem with the cost, but the life of the cell. Battery life is said to be 5000 hours for automobiles and 40,000 hours for home use, and it is required to maintain desired power generation performance over a long period of time.

従来の電極触媒では、カソードおよびアノードともに白金または白金合金等の触媒金属を微細化して、カーボンブラック等の比表面積の大きい担体に担持させた電極触媒が用いられている。しかし、運転条件、起動および停止条件によっては、カソードが貴電位環境(約0.8V以上)となる。これにより、白金の電気化学的な酸化反応が起こって白金が溶出するため、触媒量が減少して電池寿命を低下させる問題があった。   In the conventional electrode catalyst, an electrode catalyst is used in which a catalytic metal such as platinum or a platinum alloy is made fine and supported on a carrier having a large specific surface area such as carbon black for both the cathode and the anode. However, depending on the operating conditions, starting and stopping conditions, the cathode becomes a noble potential environment (about 0.8 V or more). As a result, an electrochemical oxidation reaction of platinum occurs and platinum is eluted, so that there is a problem that the amount of catalyst is reduced and the battery life is shortened.

かような問題に対し、特許文献1には、あらかじめ触媒担持電極の触媒層に含まれる電解質中に白金と合金化する金属イオンを添加されてなるアノードを用いた燃料電池が記載されている。前記金属イオンの添加は、該特許文献1における第1の実施の形態において、電解質である85%リン酸中にPdClの金属塩を10−5Mとなるように溶解させる方法により行われている。 In response to such a problem, Patent Document 1 describes a fuel cell using an anode in which a metal ion that is alloyed with platinum is added in advance to an electrolyte contained in a catalyst layer of a catalyst-carrying electrode. In the first embodiment of Patent Document 1, the addition of the metal ions is performed by a method of dissolving a metal salt of PdCl 2 in an electrolyte of 85% phosphoric acid so as to be 10 −5 M. Yes.

該特許文献1によれば、電解質中の金属イオン濃度を高くすることで、電極が高電位となっても、電極触媒中の金属成分が溶出し難く、金属成分の溶出速度を抑えることが可能である。
特開平11−312529号公報
According to Patent Document 1, by increasing the metal ion concentration in the electrolyte, it is difficult to elute the metal component in the electrode catalyst even when the electrode is at a high potential, and the elution rate of the metal component can be suppressed. It is.
JP-A-11-31529

しかし、上記特許文献1の方法では、電解質中に貴金属を高濃度に溶解させるため、製造コストが高くなる問題がある。また、塩化物イオンが触媒性能を劣化させたり、他の材料の腐食を促進させる恐れがある。   However, the method of Patent Document 1 has a problem that the manufacturing cost is high because the noble metal is dissolved in a high concentration in the electrolyte. In addition, chloride ions may deteriorate catalyst performance or promote corrosion of other materials.

従って、本発明が目的とするところは、電極触媒の貴金属成分の溶出を抑制することにより、長期間に渡り高い触媒活性を維持できる触媒担持電極を提供することである。   Accordingly, an object of the present invention is to provide a catalyst-carrying electrode that can maintain high catalytic activity for a long period of time by suppressing elution of the noble metal component of the electrode catalyst.

本発明は、導電性担体に平均粒子径が異なる触媒粒子が担持されてなる2種以上の触媒担持導電材と、プロトン導電性部材と、を含む触媒担持電極である。   The present invention is a catalyst-carrying electrode comprising two or more types of catalyst-carrying conductive materials in which catalyst particles having different average particle diameters are carried on a conductive carrier, and a proton conductive member.

本発明の触媒担持電極は、導電性担体に平均粒子径が異なる触媒粒子が担持されてなる2種以上の触媒担持導電材を含むことにより、触媒粒子量を増やすことなく、貴電位環境であっても触媒粒子の溶出を抑制することができる。従って、本発明の触媒担持電極は、低コストで製造でき、かつ、触媒活性を長期間に渡り維持することができる。   The catalyst-carrying electrode of the present invention includes two or more types of catalyst-carrying conductive materials in which catalyst particles having different average particle diameters are carried on a conductive carrier, so that it can be used in a noble potential environment without increasing the amount of catalyst particles. However, the elution of the catalyst particles can be suppressed. Therefore, the catalyst-carrying electrode of the present invention can be produced at a low cost, and the catalytic activity can be maintained for a long time.

本発明の第1は、導電性担体に平均粒子径が異なる触媒粒子が担持されてなる2種以上の触媒担持導電材と、プロトン導電性部材と、を含む触媒担持電極である。   A first aspect of the present invention is a catalyst-carrying electrode comprising two or more types of catalyst-carrying conductive materials in which catalyst particles having different average particle diameters are carried on a conductive carrier, and a proton conductive member.

一般的に触媒担持電極は、ガス拡散層上に触媒担持導電材、電解質としてのプロトン導電性部材などを含む触媒層が積層されてなる。従来から触媒担持電極において用いられる触媒担持導電材は、導電性担体に白金などの触媒粒子が担持されてなる。前記触媒粒子表面において電極反応が進行する。従って、前記触媒粒子を微細化して導電性担体に高分散担持させることにより、高価な白金などの触媒粒子の使用量低減を図るとともに前記触媒担持電極の触媒活性を向上させている。   In general, a catalyst-carrying electrode is formed by laminating a catalyst layer containing a catalyst-carrying conductive material, a proton conductive member as an electrolyte, and the like on a gas diffusion layer. Conventionally, a catalyst-carrying conductive material used in a catalyst-carrying electrode is formed by carrying catalyst particles such as platinum on a conductive carrier. An electrode reaction proceeds on the surface of the catalyst particles. Therefore, by miniaturizing the catalyst particles and carrying them in a highly dispersed manner on a conductive carrier, the amount of expensive catalyst particles such as platinum is reduced and the catalytic activity of the catalyst-carrying electrode is improved.

しかし、触媒担持電極がカソードとして用いられた場合、運転条件、起動および停止条件によっては、触媒担持電極は貴電位環境(約0.8V以上)となる。これにより、触媒粒子の溶出が生じて触媒粒子の量が減少するため、触媒担持電極の性能を低下させる問題があった。   However, when the catalyst-carrying electrode is used as a cathode, the catalyst-carrying electrode is in a noble potential environment (about 0.8 V or more) depending on operating conditions, starting and stopping conditions. As a result, elution of the catalyst particles occurs and the amount of the catalyst particles decreases, which causes a problem of reducing the performance of the catalyst-carrying electrode.

かような問題に対して、本発明の触媒担持電極に含まれる触媒担持導電材は、平均粒子径の異なる触媒粒子を2種以上有する。前記触媒担持導電材により、触媒担持電極が貴電位環境となっても、触媒担持電極の高い性能を維持することができる。この理由としては必ずしも明らかではないが、以下のように考えられる。   With respect to such a problem, the catalyst-carrying conductive material contained in the catalyst-carrying electrode of the present invention has two or more kinds of catalyst particles having different average particle diameters. The catalyst-carrying conductive material can maintain high performance of the catalyst-carrying electrode even when the catalyst-carrying electrode is in a noble potential environment. The reason for this is not necessarily clear, but is considered as follows.

平均粒子径の小さな触媒粒子は、比表面積が大きいため溶出速度が速い。また、一定以下の平均粒子径しか持たない触媒粒子が溶出しても、電極反応に対する寄与が小さいため、触媒担持電極の性能低下には大きな影響を与えない。従って、前記触媒担持導電材が、平均粒子径の異なる触媒粒子を少なくとも2種類以上含有することにより、電極反応に対して寄与の小さい触媒粒子から優先的に溶出が始まる。これにより、触媒粒子周辺の触媒濃度を迅速に高めることができ、電極反応に対して寄与の大きい、すなわち、平均粒子径の大きな触媒粒子の溶出が抑制されると考えられる。   Catalyst particles with a small average particle diameter have a large specific surface area and thus a high elution rate. In addition, even if catalyst particles having an average particle diameter of a certain value or less are eluted, since the contribution to the electrode reaction is small, the performance deterioration of the catalyst-carrying electrode is not greatly affected. Therefore, when the catalyst-carrying conductive material contains at least two kinds of catalyst particles having different average particle diameters, elution starts preferentially from catalyst particles having a small contribution to the electrode reaction. Thereby, the catalyst concentration around the catalyst particles can be rapidly increased, and it is considered that elution of catalyst particles having a large contribution to the electrode reaction, that is, a large average particle diameter is suppressed.

また、触媒層の特に電極反応に寄与する触媒粒子周辺の触媒粒子濃度を高めることができる。これにより、触媒粒子の溶出を抑制するための触媒粒子の使用量を少なくすることができ、製造コストを低くすることができる。   In addition, the concentration of catalyst particles around the catalyst particles that contribute to the electrode reaction of the catalyst layer can be increased. Thereby, the usage-amount of the catalyst particle for suppressing the elution of a catalyst particle can be decreased, and manufacturing cost can be lowered.

さらに、下記化学式1に示すように平均粒子径の小さな触媒粒子の溶出により触媒粒子付近の白金イオン(Pt2+)濃度が一定値以上に高まると、熱力学的にPtOが安定となる。従って、活性に寄与する平均粒子径が大きい触媒粒子に含まれる白金により下記化学式2に示されるような反応が起こり、平均粒子径が大きい触媒粒子の表面に酸化物不動態皮膜が形成される。 Furthermore, as shown in the following chemical formula 1, when the platinum ion (Pt 2+ ) concentration in the vicinity of the catalyst particles is increased to a certain value or more by elution of the catalyst particles having a small average particle diameter, PtO becomes thermodynamically stable. Therefore, the reaction represented by the following chemical formula 2 occurs due to platinum contained in the catalyst particles having a large average particle diameter that contributes to the activity, and an oxide passive film is formed on the surface of the catalyst particles having a large average particle diameter.

Figure 2005141920
Figure 2005141920

前記酸化物不動態皮膜によって、触媒粒子の耐食性が向上して触媒粒子の溶出を抑制できる。また、前記酸化物不動態皮膜は、還元処理を施せば容易に白金に還元することができるため、触媒活性を好適に維持することができる。 The oxide passivation film improves the corrosion resistance of the catalyst particles and can suppress the elution of the catalyst particles. Moreover, since the said oxide passive film can be easily reduce | restored to platinum if it performs a reduction process, it can maintain catalyst activity suitably.

従って、平均粒子径の異なる触媒粒子が担持されてなる触媒担持導電材を含む本発明の触媒担持電極は、触媒粒子の特に電極反応に対して寄与の大きい、すなわち、平均粒子径の大きな触媒粒子の溶出を効果的に抑制することにより、長期に渡って高い性能を維持することができるのである。   Therefore, the catalyst-carrying electrode of the present invention including the catalyst-carrying conductive material on which catalyst particles having different average particle diameters are carried contributes greatly to the electrode reaction of the catalyst particles, that is, the catalyst particles having a large average particle diameter. By effectively suppressing elution, high performance can be maintained over a long period of time.

以下、本発明の触媒担持電極について、より詳細に説明する。   Hereinafter, the catalyst-carrying electrode of the present invention will be described in more detail.

本発明の触媒担持電極は、上述した通り、導電性担体に平均粒子径が異なる触媒粒子が担持されてなる2種以上の触媒担持導電材と、プロトン導電性部材と、を含む触媒担持電極である。   As described above, the catalyst-carrying electrode of the present invention is a catalyst-carrying electrode comprising two or more kinds of catalyst-carrying conductive materials in which catalyst particles having different average particle diameters are carried on a conductive carrier, and a proton conductive member. is there.

前記触媒担持導電材に用いられる導電性担体は、触媒粒子を担持するだけではなく、電子を外部回路に取り出すあるいは外部回路から取り入れるための集電体としての機能を有することが求められる。導電性担体の電気抵抗が高いと電極の内部抵抗が高くなり、結果として電極の性能を低下させることになる。そのため、電極に含まれる触媒担体の電気抵抗は、十分に低くなければならない。従って、前記導電性担体は、電子導電率が0.001S/cm以上、特に0.1S/cm以上であるのが好ましい。   The conductive carrier used for the catalyst-carrying conductive material is required not only to carry catalyst particles but also to have a function as a current collector for taking out electrons to an external circuit or taking them from the external circuit. When the electrical resistance of the conductive carrier is high, the internal resistance of the electrode is increased, and as a result, the performance of the electrode is degraded. Therefore, the electrical resistance of the catalyst carrier included in the electrode must be sufficiently low. Accordingly, it is preferable that the conductive carrier has an electronic conductivity of 0.001 S / cm or more, particularly 0.1 S / cm or more.

かような導電性担体としては、カーボンブラック、グラファイト化カーボン、活性炭、などの導電性カーボン材料や電子導電性を有する金属酸化物、金属炭化物、金属窒化物や高分子化合物などが挙げられる。   Examples of such a conductive carrier include conductive carbon materials such as carbon black, graphitized carbon, and activated carbon, and metal oxides, metal carbides, metal nitrides, and polymer compounds having electronic conductivity.

前記導電性担体の電子導電率の測定法は、導電性担体を所定の圧力で圧縮(1軸加圧、2軸加圧など)しながら圧子に取り付けた電極における電流・電圧値の関係から電子導電率を求める公知の方法が例示できる。   The method of measuring the electronic conductivity of the conductive carrier is based on the relationship between the current and voltage values of the electrodes attached to the indenter while compressing the conductive carrier at a predetermined pressure (uniaxial pressurization, biaxial pressurization, etc.). A publicly known method for obtaining the conductivity can be exemplified.

本発明の触媒担持導電材に用いられる触媒粒子は、少なくとも白金を含んでいるのが好ましい。前記触媒粒子は、白金単独であってもよいが、白金を基体とした貴金属合金触媒、貴金属−卑金属混合物触媒などであってもよい。白金は高い酸素還元活性を示すため、触媒担持導電材に好ましく用いられる。また、前記貴金属合金触媒、前記貴金属−卑金属混合物触媒などにより、触媒粒子としての安定性や活性を高めることができる。   The catalyst particles used in the catalyst-carrying conductive material of the present invention preferably contains at least platinum. The catalyst particles may be platinum alone, or may be a noble metal alloy catalyst based on platinum, a noble metal-base metal mixture catalyst, or the like. Since platinum exhibits high oxygen reduction activity, it is preferably used for the catalyst-carrying conductive material. Moreover, stability and activity as catalyst particles can be enhanced by the noble metal alloy catalyst, the noble metal-base metal mixture catalyst, and the like.

前記貴金属合金触媒として、具体的には、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムなどの白金以外の貴金属の金属、金、銀、クロム、鉄、チタン、マンガン、コバルト、ニッケルおよび銅からなる群から選ばれる1種以上の金属と、白金との合金が好ましい。   As the noble metal alloy catalyst, specifically, from a group consisting of metals of noble metals other than platinum such as ruthenium, rhodium, palladium, osmium, iridium, gold, silver, chromium, iron, titanium, manganese, cobalt, nickel and copper An alloy of one or more selected metals and platinum is preferred.

また、前記貴金属−卑金属混合物触媒として、具体的には、Pt−WOなどの貴金属−金属酸化物混合物が挙げられる。 Further, the noble metal - as base metal mixture catalyst, specifically, noble metals such as Pt-WO 3 - metal oxide mixtures.

前記触媒担持導電材は、前記導電性担体に前記触媒粒子が担持されてなる。また、前記触媒担持導電材における触媒粒子は、少なくとも2種以上の平均粒子径を有する。かような触媒担持導電材において、触媒粒子の平均粒径が最も大きな触媒担持導電材の触媒粒子平均粒径が、触媒粒子の平均粒径が最も小さな前記触媒担持導電材の触媒粒子平均粒径の1.5〜20倍、好ましくは2〜10倍、より好ましくは2〜5倍であるのがよい。   The catalyst-carrying conductive material is formed by carrying the catalyst particles on the conductive carrier. The catalyst particles in the catalyst-carrying conductive material have at least two kinds of average particle diameters. In such a catalyst-carrying conductive material, the average particle size of the catalyst-carrying conductive material having the largest average particle size of the catalyst particles is the average particle size of the catalyst-carrying conductive material having the smallest average particle size of the catalyst particles. 1.5 to 20 times, preferably 2 to 10 times, more preferably 2 to 5 times.

触媒粒子の平均粒径が最も大きな触媒担持導電材における触媒粒子平均粒径が、触媒粒子の平均粒径が最も小さな前記触媒担持導電材の触媒粒子平均粒径の20倍を超えると、
最も大きな触媒粒子の比表面積が低下するため触媒反応面積が減少し、十分な触媒活性が得られない恐れがある。また、1.5倍を下回ると、最も大きな触媒粒子と最も小さな触媒粒子との比表面積の差が小さいため、触媒粒子の溶出速度の顕著な差が得られない恐れがある。
When the average particle size of the catalyst in the catalyst-carrying conductive material having the largest average particle size of the catalyst particles exceeds 20 times the average particle size of the catalyst-carrying conductive material in which the average particle size of the catalyst particles is the smallest,
Since the specific surface area of the largest catalyst particles decreases, the catalytic reaction area decreases, and there is a possibility that sufficient catalytic activity cannot be obtained. On the other hand, if the ratio is less than 1.5 times, the difference in specific surface area between the largest catalyst particle and the smallest catalyst particle is small, so that a significant difference in the elution rate of the catalyst particle may not be obtained.

触媒粒子の平均粒径が最も大きな触媒担持導電材の触媒粒子平均粒径は、2.0〜10nm、好ましくは1.0〜10nm、より好ましくは2.0〜5.0nmとするのがよい。前記平均粒径が2.0nm未満であると、触媒粒子の溶出速度の顕著な差が得られない恐れがあり、10nmを超えると触媒粒子の比表面積が低下するため十分な触媒活性が得られない恐れがあるため望ましくない。   The catalyst particle average particle diameter of the catalyst-carrying conductive material having the largest average particle diameter of the catalyst particles is 2.0 to 10 nm, preferably 1.0 to 10 nm, more preferably 2.0 to 5.0 nm. . If the average particle size is less than 2.0 nm, there is a risk that a significant difference in the elution rate of the catalyst particles may not be obtained. If the average particle size exceeds 10 nm, the specific surface area of the catalyst particles is reduced, so that sufficient catalytic activity is obtained. Not desirable because there is no fear.

触媒粒子の平均粒径が最も小さな触媒担持導電材の触媒粒子平均粒径は、0.5〜1.5nm、好ましくは0.75〜1.5nm、より好ましくは1.0〜1.5nmとするのがよい。前記平均粒径は、0.5nm未満であると触媒粒子を形成するのが困難となる恐れがあり、1.5nmを超えると触媒粒子の比表面積が大きくなり優先的な触媒粒子の溶出が期待できず、目的とする効果が得られない恐れがある。   The catalyst particle average particle diameter of the catalyst-carrying conductive material having the smallest average particle diameter of the catalyst particles is 0.5 to 1.5 nm, preferably 0.75 to 1.5 nm, more preferably 1.0 to 1.5 nm. It is good to do. If the average particle size is less than 0.5 nm, it may be difficult to form catalyst particles. If the average particle size exceeds 1.5 nm, the specific surface area of the catalyst particles will increase and preferential elution of catalyst particles is expected. There is a risk that the intended effect cannot be obtained.

なお、本発明において、触媒金属の平均粒径は、X線回折における触媒金属の回折ピークの半値幅より求められる結晶子径、あるいは、透過型電子顕微鏡像より調べられる触媒金属の粒子径の平均値を示す。   In the present invention, the average particle diameter of the catalyst metal is the average of the crystallite diameter determined from the half-value width of the diffraction peak of the catalyst metal in X-ray diffraction, or the average particle diameter of the catalyst metal determined from a transmission electron microscope image. Indicates the value.

本発明の触媒担持電極において、触媒粒子の平均粒径が最も大きな前記触媒担持導電材の配合割合は、触媒担持導電材の全量に対して好ましくは50〜90質量%、より好ましくは55〜85質量%、特に好ましくは60〜80質量%である。触媒粒子の平均粒径が最も大きな前記触媒担持導電材の配合割合が、50質量%未満であると電極反応に寄与する触媒粒子の量が少ないために十分な電極性能を得ることができない恐れがあり、90質量%を超えると優先的に溶出する触媒粒子の量が少なくなり、目的とする効果が得られない恐れがある。   In the catalyst-carrying electrode of the present invention, the mixing ratio of the catalyst-carrying conductive material having the largest average particle diameter of the catalyst particles is preferably 50 to 90% by mass, more preferably 55 to 85%, based on the total amount of the catalyst-carrying conductive material. It is 60 mass%, Most preferably, it is 60-80 mass%. If the blending ratio of the catalyst-carrying conductive material having the largest average particle diameter of the catalyst particles is less than 50% by mass, there is a possibility that sufficient electrode performance cannot be obtained because the amount of the catalyst particles contributing to the electrode reaction is small. If the amount exceeds 90% by mass, the amount of catalyst particles eluted preferentially decreases, and the intended effect may not be obtained.

また、本発明の触媒担持電極おいて、触媒粒子の平均粒径が最も小さな触媒担持導電材の配合割合は、触媒担持導電材の全量に対して好ましくは10〜50質量%、より好ましくは15〜45質量%、特に好ましくは20〜40質量%である。触媒粒子の平均粒径が最も小さな触媒担持導電材の配合割合が、50質量%を超えると優先的に溶出する触媒粒子の量が多くなりすぎて触媒担持電極の高い触媒活性が得られない恐れがあり、さらには、得られる電極の製造コストを高くする恐れがある。また、配合割合が10質量%未満であると優先的に溶出する触媒粒子の量が少なくなり、目的とする効果が得られない恐れがある。   In the catalyst-carrying electrode of the present invention, the blending ratio of the catalyst-carrying conductive material having the smallest average particle diameter of the catalyst particles is preferably 10 to 50% by mass, more preferably 15%, based on the total amount of the catalyst-carrying conductive material. It is -45 mass%, Most preferably, it is 20-40 mass%. If the blending ratio of the catalyst-carrying conductive material having the smallest average particle diameter of the catalyst particles exceeds 50% by mass, the amount of the catalyst particles preferentially eluted may increase so much that the high catalyst activity of the catalyst-carrying electrode may not be obtained. Furthermore, there is a risk of increasing the manufacturing cost of the obtained electrode. In addition, when the blending ratio is less than 10% by mass, the amount of the catalyst particles eluted preferentially decreases, and the intended effect may not be obtained.


図1に2種類の平均粒子径を有する触媒粒子が担持されてなる触媒担持導電材の模式図を示す。図1に示される触媒担持導電材は、大きな平均粒子径を有する触媒粒子2を導電性担体1に担持させ、次に小さい平均粒子径を有する触媒粒子3を別の導電性担体1に担持させた後、これらを所定の混合比で混合して得られるものである。図1の触媒担持導電材において電極反応が進行すると、小さい平均粒子径を有する触媒粒子3が優先的に溶出して触媒粒子濃度を高めることにより、大きな平均粒子径を有する触媒粒子2の溶出を抑制することができるのである。なお、図1は本発明の触媒担持導電材を模式的に示すのであって、本発明の触媒担持導電材がこれに限定されるものではない。

FIG. 1 is a schematic diagram of a catalyst-carrying conductive material in which catalyst particles having two types of average particle diameters are carried. In the catalyst-carrying conductive material shown in FIG. 1, catalyst particles 2 having a large average particle diameter are supported on a conductive carrier 1, and catalyst particles 3 having the next smaller average particle diameter are supported on another conductive carrier 1. Thereafter, these are mixed at a predetermined mixing ratio. When the electrode reaction progresses in the catalyst-carrying conductive material of FIG. 1, the catalyst particles 3 having a small average particle diameter are preferentially eluted to increase the catalyst particle concentration, whereby the catalyst particles 2 having a large average particle diameter are eluted. It can be suppressed. FIG. 1 schematically shows the catalyst-carrying conductive material of the present invention, and the catalyst-carrying conductive material of the present invention is not limited to this.

本発明の触媒担持電極に含まれるプロトン導電性部材としては、少なくとも高いプロトン導電性を有する液体、固体、ゲル状材料などが利用可能で、リン酸、硫酸、アンチモン酸、スズ酸、ヘテロポリ酸などの固体酸、パーフルオロスルホン酸アイオノマー、リン酸などの無機酸を炭化水素系高分子化合物にドープさせたもの、一部がプロトン導電性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたゲル状プロトン導電性部材などが挙げられる。   As the proton conductive member contained in the catalyst-carrying electrode of the present invention, at least a liquid, solid, gel-like material having high proton conductivity can be used, and phosphoric acid, sulfuric acid, antimonic acid, stannic acid, heteropoly acid, etc. Organic acids / inorganic hybrid polymers, polymers in which a hydrocarbon polymer compound is doped with an inorganic acid such as solid acid, perfluorosulfonic acid ionomer, phosphoric acid, etc., partially substituted with proton conductive functional groups Examples thereof include a gel proton conductive member in which a matrix is impregnated with a phosphoric acid solution or a sulfuric acid solution.

また、プロトン導電性部材として他には、水素イオン−電子混合導電体などの電子導電性を同時に有する混合導電体も利用できる。   In addition, as the proton conductive member, a mixed conductor having an electronic conductivity such as a hydrogen ion-electron mixed conductor can also be used.

前記プロトン導電性部材は、バインダーポリマーとして触媒担持導電材を被覆しているのが好ましい。これにより、触媒層の構造を安定に維持できるとともに、電極反応が進行する反応サイト(三相界面)を十分に確保して、高い触媒活性を得ることができる。触媒層中に含まれるプロトン導電性部材の含有量は、特に限定されないが、触媒担持導電材の全量に対して20〜60質量%とするのがよい。   The proton conductive member is preferably coated with a catalyst-carrying conductive material as a binder polymer. Thereby, while being able to maintain the structure of a catalyst layer stably, the sufficient reaction site (three-phase interface) where an electrode reaction advances can be ensured, and high catalyst activity can be acquired. The content of the proton conductive member contained in the catalyst layer is not particularly limited, but is preferably 20 to 60% by mass with respect to the total amount of the catalyst-carrying conductive material.

また、カソードなどでは、酸素還元反応によって多量の水が生成する。この生成水は反応ガスが拡散するための細孔を閉鎖する恐れがあるため、触媒担持電極の撥水性を確保することも重要である。従って、前記触媒層には、必要に応じてポリテトラフルオロエチレン(以下、PTFEという)等の撥水剤を含有させてもよい。ただし、撥水剤は絶縁体であるため電極の出力の観点からはその量は少量であるほど望ましく、その含有量は触媒担持導電材の全量に対して0.01〜20質量%が好ましい。   In addition, at the cathode or the like, a large amount of water is generated by an oxygen reduction reaction. Since this generated water may close the pores for the reaction gas to diffuse, it is also important to ensure the water repellency of the catalyst-carrying electrode. Therefore, the catalyst layer may contain a water repellent such as polytetrafluoroethylene (hereinafter referred to as PTFE) as necessary. However, since the water repellent is an insulator, its amount is preferably as small as possible from the viewpoint of the output of the electrode, and its content is preferably 0.01 to 20% by mass with respect to the total amount of the catalyst-carrying conductive material.

本発明の触媒担持電極において触媒層を支持するガス拡散層としては、特に限定されないが、多孔質のカーボンペーパー、または、カーボン布などの多孔質カーボン基材などの電子伝導性を有する多孔質体が挙げられる。   The gas diffusion layer that supports the catalyst layer in the catalyst-carrying electrode of the present invention is not particularly limited, but is a porous body having electron conductivity such as porous carbon paper or a porous carbon substrate such as carbon cloth. Is mentioned.

前記触媒層および前記ガス拡散層の厚さは、反応ガス拡散性を向上するには薄い方が望ましいが、薄すぎると十分な電極出力が得られない。従って、所望の特性を有する電極が得られるように適宜決定すればよい。   The catalyst layer and the gas diffusion layer are desirably thin to improve the reaction gas diffusibility. However, if the thickness is too thin, sufficient electrode output cannot be obtained. Therefore, it may be determined as appropriate so as to obtain an electrode having desired characteristics.

本発明の触媒担持電極に用いられる触媒担持導電材の製造方法としては、例えば、
触媒粒子を導電性担体に担持させて、所望の粒子径を有する触媒粒子が担持されてなる触媒担持導電材を複数作製した後、これらを所定の混合比で混合する方法である。
As a method for producing a catalyst-carrying conductive material used for the catalyst-carrying electrode of the present invention, for example,
In this method, catalyst particles are supported on a conductive carrier, and a plurality of catalyst-supporting conductive materials on which catalyst particles having a desired particle diameter are supported are prepared, and then mixed at a predetermined mixing ratio.

触媒粒子を導電性担体に担持させる方法としては、公知の方法が挙げられ、特に限定されない。例えば、触媒金属化合物溶液に導電性担体を分散し、これに還元剤を加えることにより、導電性担体に触媒粒子を高分散担持することができる。   The method for supporting the catalyst particles on the conductive carrier includes known methods, and is not particularly limited. For example, by dispersing a conductive carrier in a catalyst metal compound solution and adding a reducing agent thereto, the catalyst particles can be highly dispersed and supported on the conductive carrier.

触媒金属化合物溶液とは、触媒粒子としてPtを用いる場合には、例えば、塩化白金酸、塩化アンミン白金、ジニトロジアンミン白金などの触媒金属化合物を含有する溶液のことである。触媒粒子を貴金属合金触媒などとするには、前記溶液に白金の他に所望する金属の硝酸塩、塩化物、硫酸塩などの金属化合物として分散させればよい。   The catalyst metal compound solution is a solution containing a catalyst metal compound such as chloroplatinic acid, chloroplatinum chloride, or dinitrodiammine platinum when Pt is used as the catalyst particles. In order to use the catalyst particles as a noble metal alloy catalyst or the like, it may be dispersed in the solution as a metal compound such as a desired metal nitrate, chloride or sulfate in addition to platinum.

触媒金属化合物を添加する溶媒としては、水、メタノール、エタノールなどを用いることができる。   As a solvent to which the catalytic metal compound is added, water, methanol, ethanol or the like can be used.

前記触媒金属化合物溶液に、導電性担体を分散するには、ホモジナイザ、超音波分散装置等の適当な分散手段を用いればよい。導電性担体に担持させる触媒粒子の粒径を調整するには、触媒金属化合物溶液における、触媒粒子濃度、触媒金属化合物と導電性担体との配合比率、または還元剤の種類により調製することができる。これらは、担持する触媒粒子が所望の粒径を有するように適宜決定すればよい。例えば、比較的還元力の弱い還元剤を用いたり、反応温度をより低温にしたり、触媒金属化合物濃度を低くした場合に担持触媒金属粒子径を小さくすることが出来る。   In order to disperse the conductive carrier in the catalyst metal compound solution, an appropriate dispersing means such as a homogenizer or an ultrasonic dispersing device may be used. In order to adjust the particle size of the catalyst particles supported on the conductive carrier, it can be prepared according to the catalyst particle concentration in the catalyst metal compound solution, the blending ratio of the catalyst metal compound and the conductive carrier, or the type of reducing agent. . These may be determined as appropriate so that the supported catalyst particles have a desired particle size. For example, the supported catalyst metal particle diameter can be reduced when a reducing agent having a relatively low reducing power is used, when the reaction temperature is lowered, or when the concentration of the catalyst metal compound is lowered.

なお、触媒粒子、導電性担体などについては上述した通りであるため、ここではその記載を省略する。   In addition, since it is as above-mentioned about a catalyst particle, an electroconductive support | carrier, the description is abbreviate | omitted here.

還元剤としては、触媒金属化合物を還元できるものであれば特に限定されず、チオ硫酸ナトリウム、クエン酸、クエン酸ナトリウム、L−アスコルビン酸、水素化ホウ素ナトリウム、ヒドラジン、ホルムアルデヒド、メタノール、エタノール、水素、エチレン、一酸化炭素などを用いることができる。前記還元剤を添加することにより、導電性担体上に触媒金属化合物を金属粒子として高分散担持させることができる。   The reducing agent is not particularly limited as long as it can reduce the catalytic metal compound. Sodium thiosulfate, citric acid, sodium citrate, L-ascorbic acid, sodium borohydride, hydrazine, formaldehyde, methanol, ethanol, hydrogen , Ethylene, carbon monoxide and the like can be used. By adding the reducing agent, the catalyst metal compound can be highly dispersed and supported as metal particles on the conductive support.

前記還元剤を、上述の触媒金属化合物と導電性担体との分散液に適量加え、還流反応装置を用いて60〜100℃、好ましくは80〜95℃に加熱することにより導電性担体表面に触媒粒子の還元担持を行うことができる。その後、ろ過、洗浄、乾燥を行うことにより所望の粒径を有する触媒粒子を含有する触媒担持導電材が得られる。   An appropriate amount of the reducing agent is added to the above dispersion of the catalytic metal compound and the conductive carrier, and the catalyst is formed on the surface of the conductive carrier by heating to 60 to 100 ° C., preferably 80 to 95 ° C. using a reflux reactor. It is possible to carry out reduction loading of particles. Thereafter, filtration, washing and drying are performed to obtain a catalyst-carrying conductive material containing catalyst particles having a desired particle size.

また、触媒粒子を合金化させるには、さらに、焼成を行うのが好ましい。焼成方法としては、導電性担体上の触媒粒子の分散状態、粒子径などによって異なるが、好ましくは、窒素、ヘリウム、アルゴンなどの不活性雰囲気中で、焼成温度300〜1000℃、好ましくは300〜600℃で、1〜6時間程度、行えばよい。   In order to alloy the catalyst particles, it is preferable to further perform firing. The calcination method varies depending on the dispersed state of catalyst particles on the conductive support, the particle diameter, and the like, but preferably in an inert atmosphere such as nitrogen, helium, argon, etc., at a calcination temperature of 300 to 1000 ° C., preferably 300 to What is necessary is just to carry out at 600 degreeC for about 1 to 6 hours.

導電性担体に触媒粒子を担持させる上述した方法では還元剤を用いたが、特にこれに限定されない。例えば、含浸法、共沈法、競争吸着法などの各種公知技術を用いることができる。また、特開平7−246343号公報、および、特開平10−216517号公報などに記載されるマイクロエマルジョン法を用いて電極触媒を製造してもよい。前記マイクロエマルジョン法によっても、導電性担体上に触媒粒子を高分散担持することができる。   Although the reducing agent is used in the above-described method of supporting the catalyst particles on the conductive support, the present invention is not particularly limited to this. For example, various known techniques such as an impregnation method, a coprecipitation method, and a competitive adsorption method can be used. Alternatively, an electrode catalyst may be produced using a microemulsion method described in JP-A-7-246343 and JP-A-10-216517. Also by the microemulsion method, the catalyst particles can be highly dispersed and supported on the conductive support.

上記方法により得られた触媒担持導電材を、平均粒子径が異なる触媒粒子が2種以上含まれるように上述した所定の混合比で混合することにより、所望する触媒担持導電材が得られる。   A desired catalyst-carrying conductive material is obtained by mixing the catalyst-carrying conductive material obtained by the above method at the predetermined mixing ratio described above so that two or more kinds of catalyst particles having different average particle sizes are included.

次に、本発明の触媒担持電極の製造方法としては、触媒担持導電材、プロトン導電性部材の他に必要に応じて、撥水剤、造孔剤、増粘剤、希釈溶媒などを混合してペースト状あるいはスラリー状にし、これをガス拡散層上または後述の電解質層上にスクリーン印刷法、沈積法、あるいはスプレー法などで所望の厚さに塗布して触媒層を形成する公知の方法が挙げられる。   Next, as a method for producing the catalyst-carrying electrode of the present invention, in addition to the catalyst-carrying conductive material and the proton conductive member, a water repellent, a pore-forming agent, a thickener, a diluting solvent and the like are mixed as necessary. There is a known method for forming a catalyst layer by forming a paste or slurry, and applying this to a desired thickness on a gas diffusion layer or an electrolyte layer described later by a screen printing method, a deposition method, or a spray method. Can be mentioned.

また、導電性担体表面に担持された白金などの触媒粒子は、触媒活性を高めるために還元処理を行うとよい。前記還元処理は、水素や一酸化炭素などの還元ガスを用いる気相法、NaBH、ホルムアルデヒド、ブドウ糖、ヒドラジンなどを用いる液相法(湿式)など公知の方法により行えばよい。前記還元処理を行うのは、触媒担持導電材を作製した後、触媒担持電極を作製した後、など特に限定されない。電極反応進行中に触媒粒子表面に酸化物不動態皮膜が形成された場合にも、前記還元処理を行うことにより触媒粒子の活性を維持することができる。 Further, the catalyst particles such as platinum supported on the surface of the conductive carrier may be subjected to a reduction treatment in order to increase the catalytic activity. The reduction treatment may be performed by a known method such as a gas phase method using a reducing gas such as hydrogen or carbon monoxide, or a liquid phase method (wet) using NaBH 4 , formaldehyde, glucose, hydrazine, or the like. The reduction treatment is not particularly limited after the catalyst-carrying conductive material is produced and the catalyst-carrying electrode is produced. Even when an oxide passivation film is formed on the surface of the catalyst particles during the progress of the electrode reaction, the activity of the catalyst particles can be maintained by performing the reduction treatment.

本発明の前記触媒担持電極は、アノードとしても、カソードとしても用いてよいが、貴電位環境下でも触媒粒子の溶出を抑制できることから、カソードとして用いるのが好ましい。   The catalyst-carrying electrode of the present invention may be used as an anode or a cathode, but is preferably used as a cathode because elution of catalyst particles can be suppressed even in a noble potential environment.

本発明の第二は、上述した本発明の前記触媒担持電極を用いた燃料電池である。本発明の導電性担体を用いた触媒担持電極は、高い電極性能を長期に渡って維持することができる。従って、かような触媒担持電極を燃料電池用電極として用いれば、優れた耐久性を有する燃料電池を提供することが可能となり得る。燃料電池の種類としては、所望する電池特性がえられるのであれば特に限定されないが、実用性・安全性などの観点から固体高分子型燃料電池(以下、「PEFC」とも記載する。)として用いるのが好ましい。   The second of the present invention is a fuel cell using the above-described catalyst-carrying electrode of the present invention. The catalyst-carrying electrode using the conductive carrier of the present invention can maintain high electrode performance over a long period of time. Therefore, if such a catalyst-supporting electrode is used as a fuel cell electrode, it may be possible to provide a fuel cell having excellent durability. The type of fuel cell is not particularly limited as long as desired cell characteristics can be obtained, but it is used as a polymer electrolyte fuel cell (hereinafter also referred to as “PEFC”) from the viewpoints of practicality and safety. Is preferred.

PEFCは、一般的には、MEA(膜−電極接合体)をセパレータで積層した構造となっている。また、MEAは、電解質層が触媒坦持電極により挟持されてなるものである。従って、前記触媒担持電極における触媒層は、少なくとも片面が電解質層に接している。   The PEFC generally has a structure in which MEAs (membrane-electrode assemblies) are stacked with separators. The MEA is formed by sandwiching an electrolyte layer between catalyst-carrying electrodes. Therefore, at least one side of the catalyst layer in the catalyst-carrying electrode is in contact with the electrolyte layer.

PEFCにおける触媒担持電極に関しては、上述した通りであるため、ここではその説明を省略する。また、上述した触媒担持電極をカソードとして用いた場合、アノードはカソードと同じものを用いてもよく、特開2002−151089号公報などに記載される従来公知のアノード用電極を用いてもよく、特に限定されない。   Since the catalyst-supporting electrode in PEFC is as described above, the description thereof is omitted here. In addition, when the above-described catalyst-supporting electrode is used as a cathode, the anode may be the same as the cathode, or a conventionally known anode electrode described in JP-A No. 2002-151089 may be used. There is no particular limitation.

アノードに用いられる触媒担持導電材は、水素酸化反応に対して高い触媒活性を有するものであればよく、カソードに用いたものと同じものを用いてもよい。また、アノードに用いられるプロトン導電性部材、ガス拡散層なども、カソードと同じものを用いればよく、ここではその説明を省略する。   The catalyst-carrying conductive material used for the anode may be any material as long as it has a high catalytic activity for the hydrogen oxidation reaction, and the same material as that used for the cathode may be used. The proton conductive member and gas diffusion layer used for the anode may be the same as those for the cathode, and the description thereof is omitted here.

前記電解質層は、プロトン導電性部材からなるフィルム状の固体高分子膜である。前記電解質層に用いられるプロトン導電性部材としては、特に限定されず、上述した触媒層において列挙したプロトン導電性部材と同じものが挙げられる。また、触媒層と電解質層とに用いるプロトン導電性部材は、同じものを用いても、異なったものを用いてもよい。   The electrolyte layer is a film-like solid polymer film made of a proton conductive member. The proton conductive member used for the electrolyte layer is not particularly limited, and examples thereof include the same proton conductive members listed in the catalyst layer described above. Moreover, the proton conductive member used for the catalyst layer and the electrolyte layer may be the same or different.

MEAを挟持するセパレータとしては、カーボンペーパー、カーボンクロスなど公知のものを用いればよい。セパレータは、空気と燃料ガスとを分離する機能を有するものであり、それらの流路を確保するために流路溝が形成されてもよい。セパレータの流路溝の溝幅やピッチに関しては特に限定されないが、細くなるほど電極へのガス拡散性が改善され、通常は0.5〜1.0mm程度の溝幅が用いられている。また、カソードにおいて生成した水がセパレータの流路に滞留するのを防ぐため、流路を長くして流速を速めたり、セパレータを立てて生成水が上から下へと流れ易くなるようにしてもよい。   A known separator such as carbon paper or carbon cloth may be used as a separator for sandwiching the MEA. The separator has a function of separating air and fuel gas, and a channel groove may be formed in order to secure the channel. The groove width and pitch of the flow path groove of the separator are not particularly limited, but the gas diffusibility to the electrode is improved as the thickness is reduced, and a groove width of about 0.5 to 1.0 mm is usually used. In addition, in order to prevent water generated at the cathode from staying in the separator flow path, the flow path is lengthened to increase the flow rate, or the separator is set up so that the generated water can easily flow from top to bottom. Good.

MEAの製造方法としては、電解質層上に触媒担持電極を直接作製する方法、セパレータ上に触媒担持電極を作製しこれを電解質層と接合する方法、平板上に触媒担持電極を作製しこれを電解質層に転写する方法などの種々の方法が挙げられる。なお、触媒担持電極を電解質層とは別個にセパレータ上に形成した場合は、触媒担持電極と電解質層とは、ホットプレス法、接着法(特開平7−220741号公報参照)等により接合することが好ましい。   As a manufacturing method of MEA, a method of directly producing a catalyst-carrying electrode on an electrolyte layer, a method of producing a catalyst-carrying electrode on a separator and bonding it to an electrolyte layer, a catalyst-carrying electrode on a flat plate, Various methods such as a method of transferring to a layer can be mentioned. When the catalyst-carrying electrode is formed on the separator separately from the electrolyte layer, the catalyst-carrying electrode and the electrolyte layer are joined by a hot press method, an adhesion method (see Japanese Patent Application Laid-Open No. 7-220741) or the like. Is preferred.

さらに、PEFCが所望する電圧等を得られるように、セパレータを介してMEAを複数積層して直列に繋いだスタックを形成してもよい。PEFCの形状などは、特に限定されず、所望する電圧などの電池特性が得られるように適宜決定すればよい。   Furthermore, a stack in which a plurality of MEAs are stacked via a separator and connected in series may be formed so that a desired voltage or the like can be obtained by the PEFC. The shape of the PEFC is not particularly limited, and may be determined as appropriate so that desired battery characteristics such as voltage can be obtained.

本発明の触媒担持電極を用いた燃料電池は、従来のものと比較して長期に渡って高い電池性能を維持することができる。従って、車両などの移動体用電源、定置用電源などとして信頼性の高い燃料電池を提供することが可能である。なお、上述した固体高分子型燃料電池に関しては、本発明の一実施形態を示したに過ぎず、本発明がこれに限定されるものではない。従って、本発明の触媒担持電極を用いた電極燃料電池は、本発明の範囲に含まれるものである。   The fuel cell using the catalyst-carrying electrode of the present invention can maintain high cell performance over a long period of time as compared with the conventional one. Therefore, it is possible to provide a highly reliable fuel cell as a power source for a moving body such as a vehicle or a stationary power source. In addition, regarding the polymer electrolyte fuel cell described above, only one embodiment of the present invention is shown, and the present invention is not limited to this. Therefore, an electrode fuel cell using the catalyst-carrying electrode of the present invention is included in the scope of the present invention.

以下、実施例により本発明をより詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.

<実施例1>
・Pt担持カーボン1の調製
まず、Pt担持カーボン1を以下のように作製した。
<Example 1>
-Preparation of Pt-supported carbon 1 First, Pt-supported carbon 1 was produced as follows.

導電性カーボンブラック(Cabot社Vulcan XC−72:電子導電率10S/cm)5gを、1.5wt%Pt含有塩化白金酸水溶液500gにホモジナイザを用いて十分に分散させた後、クエン酸ナトリウム5gを加えてよく溶解させた後、還流反応装置を用いて反応液を攪拌させながら85℃で4時間加熱還流して白金のカーボンブラック表面への還元担持を行った。反応終了後、室温まで試料溶液を放冷した後、白金担持されたカーボンブラック粉末を吸引濾過装置で濾別し、よく水洗した後これを80℃で6時間減圧乾燥させることによりPt担持カーボン粉末1を得た。得られたPt担持カーボン粉末1を原子吸光法により定量分析を行った結果、Pt担持量は57.9wt%であった。また、透過型電子顕微鏡による観察から、Ptの平均粒子径は3.3nmと見積もられた。   5 g of conductive carbon black (Cabot Vulcan XC-72: electronic conductivity 10 S / cm) was sufficiently dispersed in 500 g of 1.5 wt% Pt-containing chloroplatinic acid aqueous solution using a homogenizer, and then 5 g of sodium citrate was added. In addition, after sufficiently dissolving, the reaction liquid was stirred at 85 ° C. for 4 hours while stirring the reaction solution using a reflux reaction apparatus, and platinum was supported on the surface of carbon black. After the completion of the reaction, the sample solution was allowed to cool to room temperature, and then the platinum-supported carbon black powder was filtered off with a suction filtration device, washed thoroughly with water, and then dried under reduced pressure at 80 ° C. for 6 hours to obtain a Pt-supported carbon powder. 1 was obtained. The obtained Pt-supported carbon powder 1 was quantitatively analyzed by atomic absorption spectrometry. As a result, the Pt-supported amount was 57.9 wt%. From the observation with a transmission electron microscope, the average particle diameter of Pt was estimated to be 3.3 nm.

・Pt担持カーボン2の調製
次に、Pt担持カーボン2を以下のように作製した。
-Preparation of Pt-supported carbon 2 Next, Pt-supported carbon 2 was produced as follows.

導電性カーボンブラック(Cabot社Vulcan XC−72:電子導電率10S/cm)7gを、0.6wt%Pt含有塩化白金酸水溶液500gにホモジナイザを用いて十分に分散させた後、ホルムアルデヒド50mlを加えてよく混合させた後、還流反応装置を用いて反応液を攪拌させながら50℃で6時間還流して白金のカーボンブラック表面への還元担持を行った。反応終了後、Ptカーボン1と同様な方法によりPt担持カーボン粉末2を得た。得られたPt担持カーボン粉末2を原子吸光法により定量分析を行った結果、Pt担持量は28.4wt%であった。また、透過型電子顕微鏡による観察から、Ptの平均粒子径は1.1nmと見積もられた。   7 g of conductive carbon black (Cabot Vulcan XC-72: electronic conductivity 10 S / cm) was sufficiently dispersed in 500 g of 0.6 wt% Pt-containing chloroplatinic acid aqueous solution using a homogenizer, and then 50 ml of formaldehyde was added. After mixing well, the reaction solution was stirred using a reflux reactor and refluxed at 50 ° C. for 6 hours to carry reduction of platinum onto the carbon black surface. After completion of the reaction, Pt-supported carbon powder 2 was obtained by the same method as Pt carbon 1. The obtained Pt-supported carbon powder 2 was quantitatively analyzed by atomic absorption spectrometry. As a result, the Pt-supported amount was 28.4 wt%. From the observation with a transmission electron microscope, the average particle diameter of Pt was estimated to be 1.1 nm.

得られたPt担持カーボン1とPt担持カーボン2とを、75:25(質量比)でよく混合しカソード触媒を作製した。   The obtained Pt-supported carbon 1 and Pt-supported carbon 2 were mixed well at 75:25 (mass ratio) to prepare a cathode catalyst.

<比較例1>
実施例1と同様にして、Pt担持カーボン1のみをカソード触媒として作製した。
<Comparative Example 1>
In the same manner as in Example 1, only Pt-supported carbon 1 was produced as a cathode catalyst.

<比較例2>
実施例1と同様にして、Pt担持カーボン2のみをカソード触媒として作製した。
<Comparative example 2>
In the same manner as in Example 1, only Pt-supported carbon 2 was produced as a cathode catalyst.

<電極触媒の性能評価>
前記実施例1および比較例1、2で得たカソード触媒について、以下の手順で、MEAを作製して燃料電池単セルの性能測定を行った。
<Performance evaluation of electrode catalyst>
With respect to the cathode catalysts obtained in Example 1 and Comparative Examples 1 and 2, MEA was produced according to the following procedure, and the performance of the single fuel cell was measured.

まず、MEAを以下の手順で作製した。   First, MEA was produced in the following procedure.

各実施例および比較例の電極触媒の重量に対して2倍量の精製水を加えた後、0.5倍量のイソプロピルアルコールを加え、さらにNafionの重量が1倍量になるようにNafion溶液(Aldrich社製 5wt%Nafion含有)を加えた。混合スラリーを超音波ホモジナイザでよく分散させ、それに続いて減圧脱泡操作を加えることによって触媒スラリーを作製した。これをガス拡散層(GDL)であるカーボンペーパー(東レ製TGP−H−120)の片面にスクリーン印刷法によって所望の厚さに応じて所定量の触媒スラリーを印刷し、60℃で24時間乾燥させてカソードを作製した後、触媒層を塗布した面を電解質膜に合わせて120℃、0.1MPaで10分間ホットプレスを行うことによりカソードと電解質膜とを接合した。   After adding 2 times the amount of purified water to the weight of the electrocatalyst of each Example and Comparative Example, 0.5 times the amount of isopropyl alcohol is added, and the Nafion solution is added so that the weight of Nafion is 1 time. (Containing 5 wt% Nafion manufactured by Aldrich) was added. The mixed slurry was well dispersed with an ultrasonic homogenizer, followed by addition of a vacuum degassing operation to prepare a catalyst slurry. A predetermined amount of catalyst slurry is printed on one side of carbon paper (TGP-H-120 manufactured by Toray Industries, Inc.), which is a gas diffusion layer (GDL), by a screen printing method and dried at 60 ° C. for 24 hours. Then, the cathode and the electrolyte membrane were joined by hot pressing at 120 ° C. and 0.1 MPa for 10 minutes with the surface on which the catalyst layer was applied aligned with the electrolyte membrane.

次に、アノードは電極触媒としてPt担持カーボン1のみを用いた以外はカソードと同様にして作製し、触媒層を電解質膜のカソード接合面と反対の面に接合してMEAとした。アノードおよびカソードの触媒層の厚さはいずれのセルについても8〜12μmの範囲内とした。   Next, the anode was prepared in the same manner as the cathode except that only Pt-supported carbon 1 was used as the electrode catalyst, and the catalyst layer was joined to the surface opposite to the cathode joining surface of the electrolyte membrane to form MEA. The thickness of the anode and cathode catalyst layers was in the range of 8 to 12 μm for both cells.

得られたMEAは、アノード、カソードともにPt使用量を見かけの電極面積1cmあたり0.5mgとし、電極面積は300cmとした。また、電解質膜としては、Nafion112(厚さ:約50μm)を用いた。 In the obtained MEA, the amount of Pt used for both the anode and the cathode was 0.5 mg per 1 cm 2 of the apparent electrode area, and the electrode area was 300 cm 2 . As the electrolyte membrane, Nafion 112 (thickness: about 50 μm) was used.

作製したMEAを用いて燃料電池単セルを構成し、性能測定を以下に従って行った。   A fuel cell single cell was constructed using the produced MEA, and performance measurement was performed as follows.

本測定では燃料電池を発電運転させる場合にはアノード側に燃料として水素を供給し、カソード側には空気を供給した。両ガスとも供給圧力は大気圧とし、水素は80℃、空気は60℃で飽和加湿し、燃料電池本体の温度は80℃に設定し、水素利用率は70%、空気利用率は40%として、電流密度0.5A/cmで30分運転し、それに続いて電流密度0.05A/cmで30分運転する繰り返し連続運転を行って、電流密度0.5A/cm運転時の最後の5分間(25〜30分)の平均セル電圧の変化を見ることによって、燃料電池単セルの耐久性評価を行った。 In this measurement, when the fuel cell was operated for power generation, hydrogen was supplied as fuel to the anode side and air was supplied to the cathode side. Supply pressure for both gases is atmospheric pressure, hydrogen is 80 ° C, air is saturated and humidified at 60 ° C, fuel cell body temperature is set to 80 ° C, hydrogen utilization is 70%, and air utilization is 40%. current density 0.5A / cm 2 at driving 30 minutes, to go to followed by repeated continuous operation of operating 30 minutes at a current density of 0.05 a / cm 2 thereto, the end of the current density 0.5A / cm 2 during operation The durability of the single fuel cell was evaluated by observing the change in the average cell voltage for 5 minutes (25 to 30 minutes).

図2は、実施例1および比較例1、2電極触媒を用いて構成した各固体高分子電解質型燃料電池の電流密度0.5A/cmにおけるセル電圧の負荷変動サイクル数に対する変化を示すグラフである。図2に示すように、比較例1の従来型のPt担持カーボン1のみを電極触媒として用いた燃料電池は運転開始当初のセル電圧は高い値を示したが、負荷変動サイクル数に対してセル電圧の低下速度が大きく、400サイクルでセル電圧は0.5V近くにまで低下した。 FIG. 2 is a graph showing changes in the cell voltage with respect to the number of load fluctuation cycles at a current density of 0.5 A / cm 2 for each solid polymer electrolyte fuel cell configured using Example 1 and Comparative Examples 1 and 2 electrode catalysts. It is. As shown in FIG. 2, the fuel cell using only the conventional Pt-supported carbon 1 of Comparative Example 1 as the electrode catalyst showed a high cell voltage at the start of operation, but the cell voltage with respect to the number of load fluctuation cycles The rate of voltage decrease was large, and the cell voltage decreased to nearly 0.5 V in 400 cycles.

さらに、比較例2のPt平均粒子径の小さいPt担持カーボン2のみを電極触媒として用いた燃料電池では運転開始時点でのセル電圧が他よりかなり低く、その上、負荷変動サイクル数に対するセル電圧の低下速度も大きく、150サイクルでセル電圧は0.5V近くにまで低下した。この結果から、比較例電極では燃料電池の負荷変動サイクルにより触媒の劣化が発生し、それにより電極性能が著しく低下することが示唆される。   Furthermore, in the fuel cell using only the Pt-supported carbon 2 having a small Pt average particle diameter of Comparative Example 2 as an electrode catalyst, the cell voltage at the start of operation is considerably lower than the others, and in addition, the cell voltage relative to the number of load fluctuation cycles is The rate of decrease was also great, and the cell voltage decreased to nearly 0.5 V after 150 cycles. From this result, it is suggested that in the comparative example electrode, the catalyst is deteriorated by the load fluctuation cycle of the fuel cell, and thereby the electrode performance is remarkably lowered.

一方、実施例1の電極触媒を用いた燃料電池は、各比較例の電極触媒の場合と大きく異なり、運転開始当初セル電圧がおよそ0.75Vであったのに対し、500サイクル経過後も約0.7Vのセル電圧を保っており、従来の電極に比べて耐久性が大幅に改善されることがわかった。   On the other hand, the fuel cell using the electrode catalyst of Example 1 is significantly different from the case of the electrode catalyst of each comparative example, and the cell voltage at the start of operation was about 0.75 V, but after about 500 cycles, It was found that the cell voltage of 0.7 V was maintained, and the durability was greatly improved as compared with the conventional electrode.

電池性能の劣化が抑制される詳細な機構は明らかではないが、この結果から、実施例1による電極では運転条件によって電極触媒の劣化が起こり得るような条件においても平均粒径の大きく異なる触媒金属粒子が同一触媒層に共存することによって触媒の劣化が抑えられ、セル性能の劣化を効果的に抑制していることが示唆される。   Although the detailed mechanism by which the deterioration of the battery performance is suppressed is not clear, from this result, the catalyst metal having a significantly different average particle diameter even under conditions where the electrode catalyst according to Example 1 may deteriorate depending on the operating conditions The coexistence of particles in the same catalyst layer suppresses catalyst deterioration, suggesting that cell performance deterioration is effectively suppressed.

本発明の触媒担持導電材の模式図を示す。The schematic diagram of the catalyst carrying | support conductive material of this invention is shown. 実施例1および比較例1、2電極触媒を用いて構成した各固体高分子電解質型燃料電池の電流密度0.5A/cmでのセル電圧と負荷変動サイクル数との関係図を示す。Example 1 and Comparative Examples 1 and 2 A graph showing the relationship between the cell voltage at the current density of 0.5 A / cm 2 and the number of load fluctuation cycles of each solid polymer electrolyte fuel cell configured using the electrode catalyst is shown.

符号の説明Explanation of symbols

1 導電性担体、
2 触媒粒子、
3 触媒粒子。
1 conductive carrier,
2 catalyst particles,
3 Catalyst particles.

Claims (9)

導電性担体に平均粒子径が異なる触媒粒子が担持されてなる2種以上の触媒担持導電材と、プロトン導電性部材と、を含む触媒担持電極。   A catalyst-carrying electrode comprising two or more types of catalyst-carrying conductive materials in which catalyst particles having different average particle diameters are carried on a conductive carrier, and a proton conductive member. 前記導電性担体は、電子導電率が0.001S/cm以上である請求項1記載の触媒担持電極。   The catalyst-carrying electrode according to claim 1, wherein the conductive carrier has an electronic conductivity of 0.001 S / cm or more. 前記触媒粒子は、少なくとも白金を含む請求項1または2に記載の触媒担持電極。   The catalyst-carrying electrode according to claim 1, wherein the catalyst particles include at least platinum. 触媒粒子の平均粒径が最も大きな前記触媒担持導電材の触媒粒子平均粒径が、触媒粒子の平均粒径が最も小さな前記触媒担持導電材の触媒粒子平均粒径の1.5〜20倍である請求項1〜3のいずれかに記載の触媒担持電極。   The catalyst particle average particle size of the catalyst-carrying conductive material having the largest average particle size of catalyst particles is 1.5 to 20 times the catalyst particle average particle size of the catalyst-carrying conductive material having the smallest average particle size of catalyst particles. The catalyst-carrying electrode according to any one of claims 1 to 3. 触媒粒子の平均粒径が最も大きな前記触媒担持導電材の触媒粒子平均粒径は、2.0〜10nmである請求項1〜4のいずれかに記載の触媒担持電極。   The catalyst-carrying electrode according to any one of claims 1 to 4, wherein the catalyst-carrying conductive material having the largest average particle size of the catalyst particles has an average particle size of 2.0 to 10 nm. 触媒粒子の平均粒径が最も小さな前記触媒担持導電材の触媒粒子平均粒径は、0.5〜1.5nmである請求項1〜5のいずれかに記載の触媒担持電極。   The catalyst-carrying electrode according to any one of claims 1 to 5, wherein the catalyst-carrying conductive material having the smallest average particle size of the catalyst particles has an average particle size of 0.5 to 1.5 nm. 触媒粒子の平均粒径が最も大きな前記触媒担持導電材の配合割合は、触媒担持導電材の全量に対して50〜90質量%である請求項1〜6のいずれかに記載の触媒担持電極。   The catalyst-carrying electrode according to any one of claims 1 to 6, wherein a mixing ratio of the catalyst-carrying conductive material having the largest average particle diameter of catalyst particles is 50 to 90% by mass with respect to the total amount of the catalyst-carrying conductive material. 触媒粒子の平均粒径が最も小さな前記触媒担持導電材の配合割合は、触媒担持導電材の全量に対して10〜50質量%である請求項1〜7のいずれかに記載の触媒担持電極。   The catalyst-carrying electrode according to any one of claims 1 to 7, wherein a mixing ratio of the catalyst-carrying conductive material having the smallest average particle diameter of catalyst particles is 10 to 50% by mass with respect to the total amount of the catalyst-carrying conductive material. 請求項1〜8のいずれかに記載の触媒担持電極を用いた燃料電池。   A fuel cell using the catalyst-carrying electrode according to claim 1.
JP2003374176A 2003-11-04 2003-11-04 Catalyst carrying electrode Withdrawn JP2005141920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374176A JP2005141920A (en) 2003-11-04 2003-11-04 Catalyst carrying electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374176A JP2005141920A (en) 2003-11-04 2003-11-04 Catalyst carrying electrode

Publications (1)

Publication Number Publication Date
JP2005141920A true JP2005141920A (en) 2005-06-02

Family

ID=34685969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374176A Withdrawn JP2005141920A (en) 2003-11-04 2003-11-04 Catalyst carrying electrode

Country Status (1)

Country Link
JP (1) JP2005141920A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116842A1 (en) * 2006-03-31 2007-10-18 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
CN104247114A (en) * 2012-01-20 2014-12-24 百拉得动力***公司 Fuel cell electrode with gradient catalyst structure
CN111697227A (en) * 2019-03-12 2020-09-22 丰田自动车株式会社 Lithium ion secondary battery and method for manufacturing same
CN115275235A (en) * 2022-09-30 2022-11-01 国家电投集团氢能科技发展有限公司 Slurry of cathode catalyst layer of proton exchange membrane fuel cell, preparation method and membrane electrode
JP7323714B2 (en) 2020-05-28 2023-08-08 コーロン インダストリーズ インク Method for producing mixed catalyst for fuel cell, and method for forming electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116842A1 (en) * 2006-03-31 2007-10-18 Nissan Motor Co., Ltd. Electrode catalyst for electrochemical cell, method for manufacturing the same, electrochemical cell, unit cell for fuel battery, and fuel battery
US8114538B2 (en) 2006-03-31 2012-02-14 Nissan Motor Co., Ltd. Electrocatalyst for electrochemical cell, method for producing the electrocatalyst, electrochemical cell, single cell of fuel cell, and fuel cell
CN104247114A (en) * 2012-01-20 2014-12-24 百拉得动力***公司 Fuel cell electrode with gradient catalyst structure
US9761899B2 (en) 2012-01-20 2017-09-12 Audi Ag Fuel cell electrode with gradient catalyst structure
CN111697227A (en) * 2019-03-12 2020-09-22 丰田自动车株式会社 Lithium ion secondary battery and method for manufacturing same
CN111697227B (en) * 2019-03-12 2023-03-14 丰田自动车株式会社 Lithium ion secondary battery and method for manufacturing same
JP7323714B2 (en) 2020-05-28 2023-08-08 コーロン インダストリーズ インク Method for producing mixed catalyst for fuel cell, and method for forming electrode
CN115275235A (en) * 2022-09-30 2022-11-01 国家电投集团氢能科技发展有限公司 Slurry of cathode catalyst layer of proton exchange membrane fuel cell, preparation method and membrane electrode
CN115275235B (en) * 2022-09-30 2023-01-24 国家电投集团氢能科技发展有限公司 Slurry for cathode catalyst layer of proton exchange membrane fuel cell, preparation method and membrane electrode

Similar Documents

Publication Publication Date Title
EP2477264B1 (en) Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode
JP5425771B2 (en) catalyst
EP2990104B1 (en) Catalyst, method for producing same, and electrode catalyst layer using said catalyst
US8470495B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
EP2990109A1 (en) Electrode and fuel cell electrode catalyst layer containing same
US10562018B2 (en) Electrode catalyst, and membrane electrode assembly and fuel cell using electrode catalyst
EP2990105A1 (en) Catalyst, and electrode catalyst layer, film electrode assembly, and fuel cell each including said catalyst
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
WO2006002228A2 (en) Catalyst support for an electrochemical fuel cell
JP2007307554A (en) Supported catalyst, its manufacturing method, electrode using this, and fuel cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
WO2016007671A1 (en) Cathode design for electrochemical cells
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP5326585B2 (en) Method for producing metal catalyst-supported carbon powder
JP2006209999A (en) Electrode for polymer electrolyte fuel cell and its manufacturing method
JP2020047430A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2005141920A (en) Catalyst carrying electrode
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2005135671A (en) Electrode for fuel cell
JP2005190887A (en) Electrode catalyst having surface constitution to structure catalyst layer having high performance and durability, and its manufacturing method
JP2006339125A (en) Solid polymer fuel cell
JP2006079917A (en) Mea for fuel cell, and fuel cell using this

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109