JP2005136266A - Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device - Google Patents

Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device Download PDF

Info

Publication number
JP2005136266A
JP2005136266A JP2003371796A JP2003371796A JP2005136266A JP 2005136266 A JP2005136266 A JP 2005136266A JP 2003371796 A JP2003371796 A JP 2003371796A JP 2003371796 A JP2003371796 A JP 2003371796A JP 2005136266 A JP2005136266 A JP 2005136266A
Authority
JP
Japan
Prior art keywords
ceramic multilayer
multilayer wiring
wiring board
green sheet
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003371796A
Other languages
Japanese (ja)
Inventor
Manabu Onishi
学 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003371796A priority Critical patent/JP2005136266A/en
Publication of JP2005136266A publication Critical patent/JP2005136266A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive, thin ceramic multilayer wiring circuit board having an excellent productivity, a method for manufacturing the board, and a semiconductor device using the ceramic multilayer wiring circuit board. <P>SOLUTION: Wiring conductors 11a, 11b are attached to a through-hole 7 having conductive paste M filled therein in both front and back surfaces 9a, 9b of a wiring printing green sheet 9. The conductive paste M as a connecting conductor for electrically connecting the upper and lower conductors 11a, 11b is filled in the through-hole 7 of an insulating green sheet 10 having a thickness smaller than the wiring printing green sheet 9. And the insulating green sheet 10 is interposed between the wiring printing green sheets 9 to be laminated, thus forming a ceramic green laminate 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エレクトロニクス産業で用いられるLSIあるいはIC、チップ部品を搭載するセラミック多層配線基板に係り、さらにその製造方法、およびそのセラミック多層配線基板を用いた半導体装置に関するものである。   The present invention relates to a ceramic multilayer wiring board on which LSI or IC and chip components used in the electronics industry are mounted, and further relates to a manufacturing method thereof and a semiconductor device using the ceramic multilayer wiring board.

近年、半導体素子の高度化、あるいは複数の半導体素子を1つのセラミック多層配線基板に搭載する半導体装置のモジュール化、あるいは半導体装置の小型化・薄型化の傾向により、半導体装置を構成するセラミック多層配線基板にも配線の高密度化あるいは薄型化の要望が高まっている。   In recent years, with the advancement of semiconductor elements, the modularization of semiconductor devices in which a plurality of semiconductor elements are mounted on a single ceramic multilayer wiring board, or the trend toward miniaturization and thinning of semiconductor devices, the ceramic multilayer wiring that constitutes semiconductor devices There is an increasing demand for higher density or thinner wiring on the substrate.

一般にセラミック多層基板の製造方法として、印刷積層法とグリーンシート積層法とが知られている。   In general, a printing lamination method and a green sheet lamination method are known as methods for producing a ceramic multilayer substrate.

印刷積層法は、焼成済みのセラミック基板上に導体ペーストの印刷・乾燥,焼成と絶縁ペースとの印刷・乾燥,焼成を繰り返して多層化する方法であり、工程が簡便で製造歩留まりがよく、安価にセラミック配線基板が得られるが、配線パターンによる基板表面の段差のため高積層には不向きであり、また、焼成済みのセラミック基板上に印刷形成するため基板にスルーホールがある場合、配線の設計が制約される。   The printing lamination method is a method of multilayering by repeating printing, drying, firing and insulation pace printing, drying, and firing on a fired ceramic substrate. The process is simple, the production yield is good, and the cost is low. A ceramic wiring board can be obtained, but it is not suitable for high stacking due to the step on the board surface due to the wiring pattern, and if there is a through hole in the board for printing on the fired ceramic board, the wiring design Is constrained.

一方、グリーンシート積層法は各グリーンシートにビア孔を形成し、配線を形成した各グリーンシートを熱圧着して積層し、一括に焼成する方法であり、高積層に有利で比較的に自由な配線の設計が可能であるが、焼成時の収縮による寸法安定性が悪く、製造歩留まりが低い。   On the other hand, the green sheet laminating method is a method of forming via holes in each green sheet, laminating each green sheet on which wiring is formed by thermocompression bonding, and firing at a time, which is advantageous for high lamination and relatively free. Wiring can be designed, but the dimensional stability due to shrinkage during firing is poor, and the production yield is low.

従来、半導体素子収納用パッケージあるいは回路基板などに使用されるセラミック多層配線基板は、特許文献1に記載されているように、アルミナセラミックスなどの電気絶縁材料より成る基体と該基体の表面および内部に埋設、焼き付けられているタングステン(W)、モリブデン(Mo)などの高融点金属より成る配線導体とにより構成されている。   2. Description of the Related Art Conventionally, as disclosed in Patent Document 1, a ceramic multilayer wiring board used for a semiconductor element storage package or a circuit board is formed on a base made of an electrically insulating material such as alumina ceramic, and on the surface and inside of the base. The wiring conductor is made of a refractory metal such as tungsten (W) or molybdenum (Mo) buried or baked.

前記セラミック多層配線基板の製造方法は、まず、アルミナなどの電気絶縁性に優れたセラミック原料粉末に、適当な有機溶剤,溶媒を添加混合して泥漿状となすと共に、該泥漿状物を、従来周知のドクターブレード法を採用することによってシート状とし、複数枚のセラミック生シート(グリーンシート)を得る。次に、前記セラミック生シートに接続配線用のスルーホールを形成し、該スルーホール内にタングステン(W),モリブデン(Mo)などの高融点金属からなる金属ペーストを充填すると共に、前記セラミック生シートの上面に、スクリーン印刷法などの厚膜手法により印刷塗布して、所定パターンの配線用導体を被着させる。   The method for producing the ceramic multilayer wiring board is to first add a suitable organic solvent and solvent to a ceramic raw material powder having excellent electrical insulation properties such as alumina to form a mud, and the mud By adopting a well-known doctor blade method, a sheet is formed to obtain a plurality of green ceramic sheets (green sheets). Next, through holes for connection wiring are formed in the ceramic raw sheet, and a metal paste made of a refractory metal such as tungsten (W) or molybdenum (Mo) is filled in the through holes, and the ceramic raw sheet A wiring conductor having a predetermined pattern is deposited on the upper surface of the substrate by printing and coating by a thick film method such as a screen printing method.

そして、最後に前記各セラミック生シートを上下に積層すると共に、加圧して生積層体を得て、該生積層体を還元雰囲気中、約1500℃の温度で焼成し、各セラミック生シートと配線用導電層とを焼結一体化させることによって、製品としてのセラミック多層配線基板を完成させる。   Finally, the ceramic green sheets are stacked one above the other and pressed to obtain a green laminate, and the green laminate is fired in a reducing atmosphere at a temperature of about 1500 ° C. A ceramic multilayer wiring board as a product is completed by sintering and integrating the conductive layer for use.

図4は前記のようなセラミック多層配線基板の一例を示す平面図、図5は図4のセラミック多層配線基板の側面一部を拡大して示す断面図である。   4 is a plan view showing an example of the ceramic multilayer wiring board as described above, and FIG. 5 is an enlarged cross-sectional view showing a part of the side surface of the ceramic multilayer wiring board of FIG.

図4,図5に示されるように、この種のセラミック多層配線基板1は、複数のセラミック層2を積層した構造をなし、基板表面(上部)3には半導体素子などの電子部品チップとの接続用端子4が多数配設されており、基板裏面5にはマザーボードとの接続用端子6が多数配設されている。   As shown in FIGS. 4 and 5, this type of ceramic multilayer wiring board 1 has a structure in which a plurality of ceramic layers 2 are laminated, and the substrate surface (upper part) 3 is connected to an electronic component chip such as a semiconductor element. A large number of connection terminals 4 are provided, and a large number of connection terminals 6 for connection to the mother board are provided on the back surface 5 of the substrate.

さらに、セラミック多層配線基板1の内部には、基板表面3に対し垂直で、かつ金属ペーストMが充填されたスルーホール(導体)7が多数設けられ、該スルーホール7の端面相互を接続するように配線層8が配設されており、これらを介して基板表面3の接続用端子4と基板裏面5の接続用端子6とが電気的に接続される回路網が形成されている。
特開平3−112606号公報
Further, a large number of through holes (conductors) 7 perpendicular to the substrate surface 3 and filled with the metal paste M are provided in the ceramic multilayer wiring board 1 so as to connect the end faces of the through holes 7 to each other. A wiring layer 8 is disposed on the wiring layer 8, and a circuit network is formed through which the connection terminals 4 on the substrate surface 3 and the connection terminals 6 on the substrate back surface 5 are electrically connected.
Japanese Patent Laid-Open No. 3-112606

しかしながら、従来のグリーンシート積層法によるセラミック多層配線基板の製造では、グリーンシートに配線を印刷したり、スルーホールを形成しなければならないため、製造上ハンドリングが困難であり、基板の薄型化,配線の高密度化が困難である。   However, in the production of a ceramic multilayer wiring board by the conventional green sheet lamination method, wiring must be printed on the green sheet or through holes must be formed, which makes handling difficult in manufacturing, making the board thinner and wiring It is difficult to increase the density.

グリーンシートは、ドクターブレード法により数μmまで薄くできるが、50μm以下の厚さのグリーンシートに配線層をスクリーン印刷等により形成することは困難であり、セラミック多層配線基板の薄型化には限界がある。   The green sheet can be thinned to several μm by the doctor blade method, but it is difficult to form a wiring layer on a green sheet having a thickness of 50 μm or less by screen printing or the like, and there is a limit to thinning the ceramic multilayer wiring board. is there.

本発明は、前記従来の課題を解決し、安価で生産性の優れた薄型のセラミック多層配線基板、その製造方法、およびそのセラミック多層配線基板を用いた半導体装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide a thin ceramic multilayer wiring board that is inexpensive and excellent in productivity, a manufacturing method thereof, and a semiconductor device using the ceramic multilayer wiring board.

前記課題を解決するため、本発明におけるセラミック多層配線基板は、表裏両面に配線層を印刷した2枚以上のグリーンシートを、前記グリーンシートよりも厚さの薄いスルーホールを有する絶縁用グリーンシートを介して積層することにより、薄型のセラミック多層配線基板を構成するものである。   In order to solve the above-mentioned problems, the ceramic multilayer wiring board according to the present invention includes two or more green sheets having wiring layers printed on both front and back surfaces, and an insulating green sheet having a through-hole that is thinner than the green sheet. A thin ceramic multilayer wiring board is formed by laminating the layers.

すなわち、導電性ペーストの印刷,ハンドリングが比較的容易な50μm以上の厚さのグリーンシートにスルーホールを形成して、導電ペーストの充填と表裏両面への配線層を印刷し、積層時の配線層の絶縁を50μm以下の厚さのグリーンシートで行う構成のものである。   That is, through holes are formed in a green sheet with a thickness of 50 μm or more that is relatively easy to print and handle conductive paste, and the conductive paste is filled and wiring layers on both sides are printed. The insulation is performed with a green sheet having a thickness of 50 μm or less.

本発明によれば、基板の薄型化あるいは基板の厚みをほとんど変えずに配線層を増やすことができ配線密度を高めることが可能であり、半導体装置のさらなる小型化,薄型化,高密度化を実現することができる。   According to the present invention, the wiring layer can be increased without increasing the thickness of the substrate or changing the thickness of the substrate, and the wiring density can be increased, and the semiconductor device can be further reduced in size, thickness, and density. Can be realized.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係るセラミック多層配線基板の拡大断面図であり、平面状態は図4,図5に示す従来例と同様の構成である。なお、図4,図5にて説明した部材に対応する部材には同一符号を付した。   FIG. 1 is an enlarged cross-sectional view of a ceramic multilayer wiring board according to an embodiment of the present invention, and the planar state is the same as that of the conventional example shown in FIGS. Note that members corresponding to those described in FIGS. 4 and 5 are denoted by the same reference numerals.

図1において、導電材からなる配線層8が形成されている配線印刷用グリーンシート(第1の絶縁層)9と、配線印刷用グリーンシート9と厚さが異なりセラミックからなる絶縁用グリーンシート(第2の絶縁層)10が交互に積層されている。   In FIG. 1, a wiring printing green sheet (first insulating layer) 9 in which a wiring layer 8 made of a conductive material is formed, and an insulating green sheet (ceramics having a thickness different from that of the wiring printing green sheet 9) ( Second insulating layers) 10 are alternately stacked.

図2(a)〜(f)は本実施形態に係るセラミック多層配線基板の製造方法を工程順に示す説明図である。   2A to 2F are explanatory views showing a method for manufacturing a ceramic multilayer wiring board according to this embodiment in the order of steps.

まず、図2(a),(d)に示すように、厚さの異なる配線印刷用グリーンシート9と絶縁用グリーンシート10を作製する。各グリーンシート9,10は、例えばアルミナ(Al)、シリカ(SiO)などのセラミック原料粉末に適当な有機溶剤,溶媒を添加混合して泥漿物を作り、これを従来周知のドクターブレード法などによりシート状となすことによって形成される。 First, as shown in FIGS. 2A and 2D, a wiring printing green sheet 9 and an insulating green sheet 10 having different thicknesses are produced. Each of the green sheets 9 and 10 is made by adding an appropriate organic solvent and solvent to a ceramic raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), etc., and mixing it to make a slurry. It is formed by forming into a sheet shape by a blade method or the like.

図2(b)に示すように、配線印刷用グリーンシート9に導電性ペーストMが充填される配線接続用のスルーホール7を形成する。スルーホール7は従来周知の打ち抜き加工法によりグリーンシート9の所定の位置に形成される。   As shown in FIG. 2B, a through hole 7 for wiring connection in which a conductive paste M is filled in the wiring printing green sheet 9 is formed. The through hole 7 is formed at a predetermined position of the green sheet 9 by a conventionally known punching method.

さらに、配線印刷用グリーンシート9には、図2(c)に示す如く、当該グリーンシート9の表裏面両面9a,9bに配線用の導体11a,11bを被着する。前記配線用導体11a,11bは、タングステン(W),モリブデン(Mo),マンガン(Mn)などの高融点金属よりなり、該高融点金属粉末に適当な有機溶剤,溶媒を添加混合して得た金属ペースト(導電性ペースト)を、スクリーン印刷などの厚膜手法を採用することによって、当該グリーンシート9に印刷塗布されて設けられる。   Further, as shown in FIG. 2C, wiring conductors 11a and 11b are attached to the front and rear surfaces 9a and 9b of the green sheet 9 for wiring printing. The wiring conductors 11a and 11b are made of a refractory metal such as tungsten (W), molybdenum (Mo), manganese (Mn), and obtained by adding and mixing an appropriate organic solvent and solvent to the refractory metal powder. A metal paste (conductive paste) is provided by being applied to the green sheet 9 by employing a thick film technique such as screen printing.

一方、図2(e)に示すように、配線印刷用グリーンシート9よりも厚さの薄い絶縁用グリーンシート10には、上下の配線用導体11a,11bを電気的に接続するためのスルーホール7を打ち抜き加工法により形成し、該スルーホール7に接続用導体である導電性ペーストMを充填する。   On the other hand, as shown in FIG. 2 (e), a through-hole for electrically connecting the upper and lower wiring conductors 11a and 11b is formed in the insulating green sheet 10 which is thinner than the wiring printing green sheet 9. 7 is formed by a punching method, and the through-hole 7 is filled with a conductive paste M which is a connecting conductor.

そして、図2(f)に示すように、前記配線印刷用グリーンシート9の間に、絶縁用グリーンシート10を挟むようにして積層することにより、セラミック生積層体12を生成する。   Then, as shown in FIG. 2 (f), the ceramic green laminate 12 is generated by laminating the insulating green sheet 10 between the wiring printing green sheets 9.

次に、セラミック生積層体12を、還元雰囲気中、約1500℃の温度で焼成し、各グリーンシート9,10と配線用導体11a,11bと導電性ペーストMとを一括焼成することにより、セラミック多層配線基板1が完成する。   Next, the ceramic green laminate 12 is fired at a temperature of about 1500 ° C. in a reducing atmosphere, and the green sheets 9, 10, the wiring conductors 11 a, 11 b, and the conductive paste M are collectively fired, thereby producing a ceramic. The multilayer wiring board 1 is completed.

なお、絶縁用グリーンシート10の厚さを15μm以下にすることにより、スルーホール7に導電ペーストMを充填しなくても、図3(a)に示すように、グリーンシート10の積層時に上下の配線用導体11a,11bを設けるための導電体である金属ペーストPがスルーホール7に流れ込む(矢印方向)ことになり、これによりスルーホール7を金属ペーストPによって充填して上下層の接続を得ることができる。このため、図2(b)に示すような絶縁用グリーンシート10のスルーホール7に導電ペーストMを充填する工程を省略することができて生産性が向上する。   In addition, by making the thickness of the insulating green sheet 10 15 μm or less, the upper and lower sides of the green sheet 10 are stacked as shown in FIG. 3A without filling the through hole 7 with the conductive paste M. The metal paste P, which is a conductor for providing the wiring conductors 11a and 11b, flows into the through hole 7 (in the direction of the arrow), thereby filling the through hole 7 with the metal paste P to obtain upper and lower layer connections. be able to. For this reason, the process of filling the conductive paste M into the through hole 7 of the insulating green sheet 10 as shown in FIG. 2B can be omitted, and the productivity is improved.

また、本実施形態の前記セラミック多層配線基板をインターポーザに使用して、半導体素子をフリップチップまたはワイヤーボンド方式により実装することにより半導体装置を得ることができる。   Moreover, a semiconductor device can be obtained by using the ceramic multilayer wiring board of the present embodiment for an interposer and mounting a semiconductor element by a flip chip or wire bond method.

本発明は、エレクトロニクス産業で用いられるLSIあるいはIC,チップ部品を搭載するセラミック多層配線基板に適用され、特に複数のグリーンシートを積層,圧着して未焼成配線基板とし、これを焼成することで製造されるセラミック多層配線基板、その製造方法に用いて有効である。   The present invention is applied to a ceramic multilayer wiring board on which LSI, IC, and chip parts used in the electronics industry are mounted, and in particular, a plurality of green sheets are laminated and pressed to form an unfired wiring board, which is manufactured by firing it. It is effective for use in a ceramic multilayer wiring board and a manufacturing method thereof.

本発明の実施形態に係るセラミック多層配線基板の拡大断面図The expanded sectional view of the ceramic multilayer wiring board concerning the embodiment of the present invention (a)〜(f)は本実施形態に係るセラミック多層配線基板の製造方法を工程順に示す説明図(A)-(f) is explanatory drawing which shows the manufacturing method of the ceramic multilayer wiring board based on this embodiment in order of a process. 本実施形態における第2の絶縁層を製造する他の方法の説明図Explanatory drawing of the other method of manufacturing the 2nd insulating layer in this embodiment 従来のセラミック多層配線基板の一例を示す平面図Plan view showing an example of a conventional ceramic multilayer wiring board 図4のセラミック多層配線基板の側面一部を拡大して示す断面図Sectional drawing which expands and shows a part of side surface of the ceramic multilayer wiring board of FIG.

符号の説明Explanation of symbols

1 セラミック多層配線基板
9 配線印刷用グリーンシート
10 絶縁用グリーンシート
11a,11b 配線用導体
12 セラミック生積層体
M 導電性ペースト
P 金属ペースト
DESCRIPTION OF SYMBOLS 1 Ceramic multilayer wiring board 9 Green sheet for wiring printing 10 Green sheet for insulation 11a, 11b Conductor for wiring 12 Ceramic multilayer body M Conductive paste P Metal paste

Claims (5)

複数の配線層と絶縁層を積層してなるセラミック多層配線基板において、厚さの異なる絶縁層を交互に積層して構成されたことを特徴とするセラミック多層配線基板。   A ceramic multilayer wiring board comprising a plurality of wiring layers and insulating layers laminated, wherein insulating layers having different thicknesses are alternately laminated. 表裏両面に配線用導体が被着されると共に厚み方向に接続用導電ペーストが充填されたスルーホールを有する2層以上の第1の絶縁層と、上下の前記第1の絶縁層における前記配線用導体を接続する接続用導電ペーストが充填されたスルーホールを有し、前記第1の絶縁層よりも厚さの薄い第2の絶縁層とを交互に積層して構成されたことを特徴とするセラミック多層配線基板。   Two or more first insulating layers having through holes filled with conductive conductors for connection in the thickness direction on both front and back surfaces, and for the wiring in the upper and lower first insulating layers It has a through-hole filled with a conductive paste for connection for connecting a conductor, and is configured by alternately laminating second insulating layers having a thickness smaller than that of the first insulating layer. Ceramic multilayer wiring board. 前記第1の絶縁層が、厚み方向に接続用導電ペーストが充填されたスルーホールにて表裏面の配線用導体を接続する厚さ50μm以上の構成であり、前記第2の絶縁層が厚さ50μm以下の構成であることを特徴とする請求項2記載のセラミック多層配線基板。   The first insulating layer is configured to have a thickness of 50 μm or more to connect the wiring conductors on the front and back surfaces through through holes filled with a conductive paste for connection in the thickness direction, and the second insulating layer is thick. 3. The ceramic multilayer wiring board according to claim 2, wherein the structure is 50 [mu] m or less. 請求項2または3記載のセラミック多層配線基板を製造する方法であって、第2の絶縁層の厚さを15μm以下とし、第2の絶縁層のスルーホールの充填を、第1,第2の絶縁層の積層時に上下配線層の導電体によって行うことを特徴とするセラミック多層配線基板の製造方法。   4. The method of manufacturing a ceramic multilayer wiring board according to claim 2, wherein the thickness of the second insulating layer is 15 μm or less, and the filling of the through holes in the second insulating layer is performed by the first and second methods. A method for producing a ceramic multilayer wiring board, wherein the insulating layer is laminated by using conductors of upper and lower wiring layers. 請求項1〜3いずれか1項に記載のセラミック多層配線基板をインターポーザに使用して、半導体素子をフリップチップまたはワイヤーボンド方式により実装したことを特徴とする半導体装置。   4. A semiconductor device, wherein the ceramic multilayer wiring board according to claim 1 is used as an interposer, and a semiconductor element is mounted by a flip chip or wire bond method.
JP2003371796A 2003-10-31 2003-10-31 Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device Pending JP2005136266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371796A JP2005136266A (en) 2003-10-31 2003-10-31 Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371796A JP2005136266A (en) 2003-10-31 2003-10-31 Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2005136266A true JP2005136266A (en) 2005-05-26

Family

ID=34648351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371796A Pending JP2005136266A (en) 2003-10-31 2003-10-31 Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2005136266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177011A (en) * 2008-01-25 2009-08-06 Ferrotec Ceramics Corp Conductive member, and component and equipment using it
WO2010147000A1 (en) 2009-06-17 2010-12-23 浜松ホトニクス株式会社 Laminated wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177011A (en) * 2008-01-25 2009-08-06 Ferrotec Ceramics Corp Conductive member, and component and equipment using it
WO2010147000A1 (en) 2009-06-17 2010-12-23 浜松ホトニクス株式会社 Laminated wiring board
US8847080B2 (en) 2009-06-17 2014-09-30 Hamamatsu Photonics K.K. Laminated wiring board

Similar Documents

Publication Publication Date Title
JP3687484B2 (en) Method for manufacturing ceramic substrate and unfired ceramic substrate
JP2001267453A (en) Laminated ceramic electronic component, method of manufacturing the same, and electronic device
JP2013062473A (en) Wiring board and manufacturing method therefor
JP5236371B2 (en) Manufacturing method of ceramic parts
CN112788867A (en) Multilayer wiring substrate and probe card including the same
KR100748238B1 (en) Non-shrinkage ceramic substrate and method of manufacturing the same
WO2014174710A1 (en) Multi-layer wiring board, manufacturing method for same, and probe-card-use substrate
JP2005136266A (en) Ceramic multilayer wiring circuit board, method for manufacturing the same, and semiconductor device
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
JP6121860B2 (en) Wiring board and electronic device
JP2000068149A (en) Laminated electronic component and manufacture therefor
KR100882101B1 (en) Method of manufacturing the non-shrinkage ceramic substrate
JP2007173429A (en) Wiring circuit board
JP5516608B2 (en) Manufacturing method of ceramic laminated substrate
JP2004165343A (en) Laminated ceramic electronic component and its manufacturing method
JP2001267467A (en) Multilayer ceramic substrate, its manufacturing method and electronic device
JP4986500B2 (en) Laminated substrate, electronic device and manufacturing method thereof.
JP4746376B2 (en) Ceramic multilayer substrate and manufacturing method thereof
JPH11340634A (en) Laminate and manufacture therefor
JP2003249750A (en) Wiring board and method of manufacturing the same
JP4022105B2 (en) Manufacturing method of multilayer wiring board
JP5289874B2 (en) Manufacturing method of ceramic parts
JPH11298142A (en) Mounting structure for multilayered ceramic substrate and mounting thereof
JP2002368426A (en) Laminated ceramic electronic component and its manufacturing method as well as electronic device
JP2006041241A (en) Ceramic wiring board