JP2005136231A - Ceramic electronic component and ceramic capacitor - Google Patents

Ceramic electronic component and ceramic capacitor Download PDF

Info

Publication number
JP2005136231A
JP2005136231A JP2003371295A JP2003371295A JP2005136231A JP 2005136231 A JP2005136231 A JP 2005136231A JP 2003371295 A JP2003371295 A JP 2003371295A JP 2003371295 A JP2003371295 A JP 2003371295A JP 2005136231 A JP2005136231 A JP 2005136231A
Authority
JP
Japan
Prior art keywords
internal electrode
particles
electronic component
ceramic
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003371295A
Other languages
Japanese (ja)
Inventor
Hisashi Sato
恒 佐藤
Katsura Hayashi
桂 林
Tadashi Nagasawa
忠 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003371295A priority Critical patent/JP2005136231A/en
Publication of JP2005136231A publication Critical patent/JP2005136231A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic electronic component and a ceramic capacitor whose characteristics in a high frequency are improved by reducing the resistance value of the connecting part of a via conductor and an internal electrode. <P>SOLUTION: This ceramic electronic component 10 is configured by embedding an internal electrode 2 formed by sintering conductor materials including Ni particulate, interposed between adjacent dielectric layers and a via conductor 3 formed by sintering conductive materials including Cu particles and Ni particles, and connected to the internal electrode 2 in a laminate 5 formed by laminating a plurality of dielectric layers 1. The internal electrode 2 is formed so as to be thicker than the other sites wherein Cu particles are diffused in the neighborhood 2a of the connecting part with the via conductor 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はセラミック電子部品及びセラミックコンデンサに関するものである。   The present invention relates to a ceramic electronic component and a ceramic capacitor.

従来より、種々の電気・電子回路には、セラミックコンデンサ等のセラミック電子部品が幅広く用いられている。   Conventionally, ceramic electronic parts such as ceramic capacitors have been widely used in various electric / electronic circuits.

従来のセラミック電子部品としては、例えば、複数個の誘電体層を積層してなる積層体の内部に、Ni粒子を含む導体材料を焼結して成り、隣接する誘電体層間に介在される内部電極と、Ni粒子を含む導体材料を焼結して成り、前記内部電極に接続されるビア導体とを埋設した構造のものが知られている。   As a conventional ceramic electronic component, for example, an inside of a laminate formed by laminating a plurality of dielectric layers is formed by sintering a conductive material containing Ni particles and interposed between adjacent dielectric layers. An electrode having a structure in which a conductive material containing Ni particles is sintered and a via conductor connected to the internal electrode is embedded is known.

係るセラミック電子部品は、誘電体層を介して対向する2種類の内部電極間に所定の電圧を印加することによって、両内部電極間に配されている誘電体層に所定の静電容量を形成する構成となっており、このような内部電極の対を内部に複数個設けることによって大きな静電容量を実現したセラミックコンデンサである。   The ceramic electronic component forms a predetermined capacitance in the dielectric layer disposed between the two internal electrodes by applying a predetermined voltage between the two types of internal electrodes facing each other through the dielectric layer. The ceramic capacitor achieves a large capacitance by providing a plurality of such internal electrode pairs inside.

尚、極の異なるビア導体同士を隣接させることによって、発生する磁束を互いに打ち消し合い、セラミックコンデンサは低いインダクタンスを達成することが可能であり、係るセラミックコンデンサは、この優れた特性により特に高周波用途において供するものである(例えば、特許文献1参照。)。
特開平2001−185442号公報
By adjoining via conductors with different poles, the generated magnetic flux cancels each other out, and the ceramic capacitor can achieve a low inductance. (For example, refer to Patent Document 1).
JP 2001-185442 A

近年、より高容量のセラミックコンデンサを得るために積層数の増加が図られており、これに伴って内部電極の厚みが薄くなる傾向にある。   In recent years, the number of laminated layers has been increased in order to obtain a higher-capacity ceramic capacitor, and the thickness of the internal electrodes tends to be reduced accordingly.

しかしながら、上述した従来のセラミックコンデンサでは、内部電極の厚みが薄い場合には、ビア導体と内部電極との接続が充分に形成されないことがある。この場合、内部電極のビア導体との接続部での抵抗値が高くなり、特に高周波ではインピーダンスが高くなることから所望の特性が得られにくくなる。   However, in the above-described conventional ceramic capacitor, when the thickness of the internal electrode is thin, the connection between the via conductor and the internal electrode may not be sufficiently formed. In this case, the resistance value at the connection portion between the internal electrode and the via conductor becomes high, and the impedance becomes high especially at a high frequency, so that it is difficult to obtain desired characteristics.

また、別の観点からもビア導体と内部電極との接続が充分に形成されることが求められる。例えば、近年におけるセラミックコンデンサの小型化が進むにつれ、ビア導体の径も小径化されており、これに伴ってビア導体と内部電極とが接続する面積が小さくなってきているということからも、ビア導体と内部電極との接続は充分に形成されにくい。   Further, from another viewpoint, it is required that the connection between the via conductor and the internal electrode is sufficiently formed. For example, as ceramic capacitors have been downsized in recent years, the diameter of via conductors has also been reduced, and as a result, the area of connection between via conductors and internal electrodes has become smaller. The connection between the conductor and the internal electrode is not easily formed.

本発明は上記欠点に鑑み案出されたもので、その目的は、ビア導体と内部電極との接続部の抵抗値を低くして高周波での特性を向上させたセラミック電子部品及びセラミックコンデンサを提供することにある。   The present invention has been devised in view of the above disadvantages, and its object is to provide a ceramic electronic component and a ceramic capacitor in which the resistance value of the connection portion between the via conductor and the internal electrode is lowered to improve the characteristics at high frequency. There is to do.

本発明のセラミック電子部品は、複数個の誘電体層を積層してなる積層体の内部に、Ni粒子を含む導体材料を焼結して成り、隣接する誘電体層間に介在される内部電極と、Cu粒子及びNi粒子を含む導体材料を焼結して成り、前記内部電極に接続されるビア導体とを埋設してなるセラミック電子部品であって、前記内部電極は、前記ビア導体との接続部近傍にCu粒子が拡散されて他の部位に比し厚くなっていることを特徴とするものである。   The ceramic electronic component of the present invention comprises an internal electrode interposed between adjacent dielectric layers, which is formed by sintering a conductive material containing Ni particles inside a laminate formed by laminating a plurality of dielectric layers. A ceramic electronic component formed by sintering a conductor material containing Cu particles and Ni particles and embedded with a via conductor connected to the internal electrode, the internal electrode being connected to the via conductor The Cu particles are diffused in the vicinity of the part and are thicker than other parts.

また本発明のセラミック電子部品は、前記接続部近傍における前記内部電極の厚みが、該内部電極とビア導体との接続部より離れるに従って漸次薄くなっていることを特徴とするものである。   The ceramic electronic component of the present invention is characterized in that the thickness of the internal electrode in the vicinity of the connection portion is gradually reduced as the distance from the connection portion between the internal electrode and the via conductor is increased.

更に本発明のセラミック電子部品は、前記内部電極中のNi粒子の平均粒径が、前記他の部位に比し前記接続部近傍で大きいことを特徴とするものである。   Furthermore, the ceramic electronic component of the present invention is characterized in that the average particle diameter of Ni particles in the internal electrode is larger in the vicinity of the connection portion than in the other portions.

また更に本発明のセラミックコンデンサは、セラミック電子部品の内部電極が、異なる誘電体層間に一部対向するようにして介在される2種類の内部電極により構成されており、これら内部電極の対向領域に静電容量を形成するようにしたものである。   Furthermore, the ceramic capacitor of the present invention comprises two types of internal electrodes in which the internal electrodes of the ceramic electronic component are interposed so as to partially face each other between different dielectric layers. An electrostatic capacity is formed.

更にまた本発明のセラミックコンデンサは、前記内部電極の厚みが前記対向領域に比し非対向領域で厚くなっていることを特徴とするものである。   Furthermore, the ceramic capacitor of the present invention is characterized in that the thickness of the internal electrode is larger in the non-opposing region than in the opposing region.

本発明のセラミック電子部品によれば、ビア導体と内部電極との接続部近傍は、Cu粒子が拡散されていることによって、接続部近傍は体積抵抗率が低く形成されており、更にこれに加えて、他の部位に比し厚くなっているので、効率よく低い抵抗値が実現され、特に高周波ではインピーダンスが低くなることから優れた特性が得られるようになる。このとき、Cu粒子の拡散は、ほぼこの接続部近傍に集中していて内部電極の他の部位での拡散量は少ないので、Cu粒子が誘電体層の内部に拡散することは最小限に食い止められる。   According to the ceramic electronic component of the present invention, in the vicinity of the connection portion between the via conductor and the internal electrode, the Cu particles are diffused, so that the vicinity of the connection portion is formed with a low volume resistivity. Since it is thicker than other parts, a low resistance value can be realized efficiently, and an excellent characteristic can be obtained because the impedance is lowered particularly at high frequencies. At this time, the diffusion of the Cu particles is almost concentrated in the vicinity of the connecting portion and the amount of diffusion at the other part of the internal electrode is small, so that the diffusion of the Cu particles into the dielectric layer is minimized. It is done.

また本発明のセラミック電子部品によれば、接続部近傍における内部電極の厚みが、内部電極とビア導体との接続部より離れるに従って漸次薄くなっているので、ビア導体から内部電極へ、若しくは内部電極からビア導体へと電流が効率よく流れるようになり、これによってもより低い抵抗値が実現されるようになる。   Further, according to the ceramic electronic component of the present invention, the thickness of the internal electrode in the vicinity of the connection portion is gradually reduced as the distance from the connection portion between the internal electrode and the via conductor is reduced. The current flows efficiently from the via conductor to the via conductor, and this also realizes a lower resistance value.

更に本発明のセラミック電子部品によれば、内部電極中のNi粒子の平均粒径が、他の部位に比し接続部近傍で大きいので、粒子に比すると体積抵抗率の大きい粒界の量が減ることとなり、更により低い抵抗値が実現されるようになる。   Furthermore, according to the ceramic electronic component of the present invention, since the average particle diameter of the Ni particles in the internal electrode is larger in the vicinity of the connection portion than in other parts, the amount of grain boundaries having a large volume resistivity compared to the particles is large. As a result, a lower resistance value is realized.

また更に本発明のセラミックコンデンサによれば、前記内部電極が、異なる誘電体層間に一部対向するようにして介在される2種類の内部電極により構成されており、これら内部電極の対向領域に静電容量を形成するようにしたことから、内部電極及びビア導体に電流が効率よく流れることによって、急激な電力供給への対応が可能となる。   Furthermore, according to the ceramic capacitor of the present invention, the internal electrode is composed of two types of internal electrodes that are partially interposed between different dielectric layers. Since the electric capacity is formed, the current can efficiently flow through the internal electrode and the via conductor, thereby making it possible to cope with a rapid electric power supply.

更にまた本発明のセラミックコンデンサによれば、内部電極の厚みが対向領域に比し非対向領域で厚くなっていることから、積層方向では、この厚みの厚い接続部近傍が他の誘電体層間に存在する内部電極の未形成部と重なることとなる。このため内部電極とその未形成部とによって生じる段差の総量が、接続部近傍の厚みが厚いことによって緩和されることになり、積層体の変形を少なくすることができる。   Furthermore, according to the ceramic capacitor of the present invention, since the thickness of the internal electrode is thicker in the non-opposing region than in the opposing region, in the stacking direction, the vicinity of this thick connecting portion is between other dielectric layers. It overlaps with the non-formed part of the existing internal electrode. For this reason, the total amount of the step generated by the internal electrode and the unformed portion thereof is alleviated by increasing the thickness in the vicinity of the connection portion, and deformation of the stacked body can be reduced.

以下、本発明のセラミック電子部品を図面に基づいて詳説する。   Hereinafter, the ceramic electronic component of the present invention will be described in detail with reference to the drawings.

図1は本発明のセラミック電子部品の断面図であり、同図に示すセラミック電子部品10は、複数の誘電体層1を積層して成る積層体5の内部に、内部電極2及びビア導体3が形成された構造となっている。   FIG. 1 is a cross-sectional view of a ceramic electronic component according to the present invention. A ceramic electronic component 10 shown in FIG. 1 includes an internal electrode 2 and a via conductor 3 in a laminated body 5 in which a plurality of dielectric layers 1 are laminated. The structure is formed.

誘電体層1は、例えば、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等を主成分とする誘電体材料によって1層あたり1μm〜3μmの厚みに形成されており、かかる誘電体層1を、例えば、70層〜600層だけ積層することによって積層体5が形成される。尚、図1においては本実施形態を簡略化して説明するために誘電体層1の積層数を5層とした例について示している。   The dielectric layer 1 is formed to a thickness of 1 μm to 3 μm per layer by a dielectric material mainly composed of, for example, barium titanate, calcium titanate, strontium titanate, and the like. For example, the laminated body 5 is formed by laminating only 70 to 600 layers. FIG. 1 shows an example in which the number of stacked dielectric layers 1 is five in order to simplify and describe the present embodiment.

上述した誘電体層1は、例えば、チタン酸バリウムを主成分とする誘電体材料から成る場合、チタン酸バリウムの粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状になすとともに、これを従来周知のドクターブレード法等によって所定形状、所定厚みのセラミックグリーンシートと成し、しかる後、得られたセラミックグリーンシートを従来周知のグリーンシート積層法等にて所定の枚数だけ積層・圧着させることによりセラミックグリーンシートの積層体を形成し、これを個々のコンデンサに対応する個片の積層体に切断分離して、最後に個片の積層体を、例えば、1100℃〜1400℃の温度で焼成することによって製作される。尚、この工程において使用されるセラミックグリーンシートの焼成に伴う収縮率は、例えば、10%〜20%程度に設定される。   For example, when the dielectric layer 1 is made of a dielectric material mainly composed of barium titanate, an appropriate organic solvent, glass frit, organic binder, or the like is added to and mixed with the barium titanate powder. Then, this is formed into a ceramic green sheet having a predetermined shape and thickness by a conventionally known doctor blade method or the like, and then a predetermined number of ceramic green sheets are obtained by a conventionally known green sheet laminating method or the like. The ceramic green sheet laminate is formed by laminating and crimping only, and this is cut and separated into individual laminates corresponding to individual capacitors, and finally the individual laminates, for example, from 1100 ° C. It is manufactured by firing at a temperature of 1400 ° C. In addition, the shrinkage rate accompanying the firing of the ceramic green sheet used in this step is set to about 10% to 20%, for example.

一方、誘電体層2間に介在されている内部電極2は、Niを主成分とする導体材料によって、例えば0.5μm〜2.0μmの厚みに形成され、両内部電極の対向面積は、例えば、各誘電体層2の面積が3.3mmである場合、2.7mm〜3.0mmに設定される。 On the other hand, the internal electrode 2 interposed between the dielectric layers 2 is formed to a thickness of, for example, 0.5 μm to 2.0 μm using a conductive material mainly composed of Ni. , when the area of the dielectric layers 2 is 3.3 mm 2, it is set to 2.7mm 2 ~3.0mm 2.

積層体5の内部に埋設されている複数個の内部電極2は、積層体5の内部に埋設されている複数個のビア導体3を介して積層体下面の外部端子4に共通接続されており、これら外部端子4−4間に所定の電界が印加されると、内部電極2−2間に位置する誘電体層1の誘電率、厚み、対向面積及び層数に対応した所定の静電容量が形成されるようになる。   The plurality of internal electrodes 2 embedded in the multilayer body 5 are commonly connected to the external terminals 4 on the bottom surface of the multilayer body via the plurality of via conductors 3 embedded in the multilayer body 5. When a predetermined electric field is applied between these external terminals 4-4, a predetermined capacitance corresponding to the dielectric constant, thickness, opposing area and number of layers of the dielectric layer 1 located between the internal electrodes 2-2 Will be formed.

上述した内部電極2は、Niの粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して得た内部電極形成用導体ペーストを、上述したセラミックグリーンシートの積層前に各セラミックグリーンシートの一主面に従来周知のスクリーン印刷法等によって所定パターンに印刷・塗布しておくことにより各セラミックグリーンシート間に介在され、セラミックグリーンシートの積層体を焼成する際に同時焼成されて内部電極2となる。   The internal electrode 2 described above is obtained by adding a conductive paste for forming an internal electrode obtained by adding and mixing a suitable organic solvent, glass frit, organic binder, etc. to Ni powder before each ceramic green sheet is laminated. By printing and applying a predetermined pattern on one main surface of the sheet in a predetermined pattern by a conventionally known screen printing method or the like, it is interposed between each ceramic green sheet, and is fired at the same time when the ceramic green sheet laminate is fired. Electrode 2 is formed.

尚、前述した導体ペースト中には、セラミックグリーンシート中に含有されている誘電体材料を別途、添加・混合させておくようにしても構わない。   It should be noted that a dielectric material contained in the ceramic green sheet may be added and mixed separately in the above-described conductor paste.

一方、上述したビア導体3は、その下端が積層体5の下面まで延在されるようにして誘電体層1の積層方向と平行に配されており、Ni及びCuを主成分とする導体材料によって、例えば、直径80μm〜150μmの円柱状をなすように形成される。   On the other hand, the via conductor 3 described above is arranged in parallel with the stacking direction of the dielectric layer 1 so that the lower end thereof extends to the lower surface of the stacked body 5, and is a conductor material mainly composed of Ni and Cu. For example, it is formed so as to form a columnar shape having a diameter of 80 μm to 150 μm.

尚、上述したビア導体3は、複数個のセラミックグリーンシートを積層してなる積層体に対して、焼成前の段階で、レーザ照射やマイクロドリル,パンチング等によって所定の貫通孔を穿設するとともに、これら貫通孔内に従来周知のスクリーン印刷等によって、例えばNi粉末に対してCu粉末を15〜40重量部とした金属粉末に、適当なセラミックフィラー、ガラスフリット、有機バインダ、有機溶剤等を添加・混合して得たビア導体形成用導体ペーストを印刷・充填し、この充填したビア導体形成用導体ペーストをセラミックグリーンシートの焼成時に内部電極2と共に同時焼成することによって形成される。   The above-described via conductor 3 has a predetermined through hole formed by laser irradiation, micro-drilling, punching, or the like in a stage before firing with respect to a laminate formed by laminating a plurality of ceramic green sheets. Add appropriate ceramic filler, glass frit, organic binder, organic solvent, etc. to metal powder with 15-40 parts by weight of Cu powder with respect to Ni powder, for example, by conventional well-known screen printing in these through holes A via conductor forming conductor paste obtained by mixing is printed and filled, and the filled via conductor forming conductor paste is simultaneously fired together with the internal electrode 2 when the ceramic green sheet is fired.

このようなセラミック電子部品10においては、Ni粒子を主成分とする導体材料からなる内部電極形成用導体ペーストと、Ni粒子及びCu粒子を主成分とする導体材料からなるビア導体形成用導体ペーストとを同時焼成しているので、内部電極2は、ビア導体3との接続部近傍2aにCu粒子が拡散されており、更に、この接続部近傍2aは、Cu粒子が拡散されたことによって他の部位に比し厚い構成となる。   In such a ceramic electronic component 10, an internal electrode forming conductor paste made of a conductor material mainly composed of Ni particles, and a via conductor forming conductor paste made of a conductor material mainly composed of Ni particles and Cu particles, In the internal electrode 2, Cu particles are diffused in the vicinity of the connection portion 2 a with the via conductor 3, and the connection portion vicinity 2 a is further diffused by the diffusion of the Cu particles. It is thicker than the part.

尚、Ni粒子も内部導体2側からビア導体3へと拡散してはいるが、この場合については、Ni粒子に対してCu粒子の拡散が速いことによって、相対的にはCu粒子が拡散することとなる。   The Ni particles are also diffused from the inner conductor 2 side to the via conductor 3, but in this case, the Cu particles are relatively diffused by the quick diffusion of the Cu particles with respect to the Ni particles. It will be.

そして、本実施形態のセラミック電子部品10は、ビア導体3と内部電極2との接続部近傍2aは、Cu粒子が拡散されていることによって、接続部近傍2aは体積抵抗率が低く形成されており、更にこれに加えて、他の部位2bに比し厚くなっているので、効率よく低い抵抗値が実現され、特に高周波ではインピーダンスが低くなることから優れた特性が得られるようになる。このとき、Cu粒子の拡散は、ほぼこの接続部近傍2aに集中していて内部電極2の他の部位での拡散量は少ないので、Cu粒子が誘電体層1の内部に拡散することは最小限に食い止められる。   In the ceramic electronic component 10 according to the present embodiment, the connection portion vicinity 2a between the via conductor 3 and the internal electrode 2 has a low volume resistivity because the Cu particles are diffused. In addition to this, since it is thicker than the other part 2b, a low resistance value can be realized efficiently, and an excellent characteristic can be obtained since the impedance becomes low particularly at high frequencies. At this time, the diffusion of the Cu particles is almost concentrated in the vicinity of the connecting portion 2a and the amount of diffusion at the other part of the internal electrode 2 is small. Therefore, the diffusion of the Cu particles into the dielectric layer 1 is minimal. It can be stopped to the limit.

また、接続部近傍2aにおける内部電極2の厚みが、内部電極2とビア導体3との接続部より離れるに従って漸次薄くなっているので、ビア導体3から内部電極2へ、若しくは内部電極2からビア導体3へと電流が効率よく流れるようになり、これによってもより低い抵抗値が実現されるようになる。   In addition, since the thickness of the internal electrode 2 in the vicinity of the connection portion 2a gradually decreases as the distance from the connection portion between the internal electrode 2 and the via conductor 3 decreases, the via conductor 3 moves to the internal electrode 2 or from the internal electrode 2 to the via. An electric current flows efficiently to the conductor 3, and a lower resistance value is realized by this.

一方、接続部近傍2aでは、内部電極2中のNi粒子が、拡散したCu粒子と一体化することがある。このようなNi粒子は比較的粒成長しやすいので、内部電極2中のNi粒子の平均粒径が、他の部位に比し接続部近傍2aで大きくなっており、粒子に比すると体積抵抗率の大きい粒界の量が減ることになるので、更により低い抵抗値が実現されるようになる。   On the other hand, in the connection portion vicinity 2a, the Ni particles in the internal electrode 2 may be integrated with the diffused Cu particles. Since such Ni particles are relatively easy to grow, the average particle size of the Ni particles in the internal electrode 2 is larger in the vicinity of the connecting portion 2a than in other parts. Since the amount of large grain boundaries is reduced, even lower resistance values are realized.

そして本実施形態のセラミック電子部品10は、積層体5が矩形状を成しており、その内部で、異なる誘電体層間に一部対向するようにして介在される2種類の内部電極2−2の対向領域で静電容量を形成することにより、セラミックコンデンサとしての機能を備える。   In the ceramic electronic component 10 according to the present embodiment, the multilayer body 5 has a rectangular shape, and two types of internal electrodes 2-2 interposed therein so as to partially face each other between different dielectric layers. By forming a capacitance in the opposite area, a function as a ceramic capacitor is provided.

このようなセラミックコンデンサは、内部電極2及びビア導体3に電流が効率よく流れることによって、急激な電力供給への対応を可能とすることができる。   Such a ceramic capacitor can cope with a rapid electric power supply by allowing current to flow efficiently through the internal electrode 2 and the via conductor 3.

また本実施形態のようなセラミックコンデンサであれば、内部電極2の厚みが対向領域に比し非対向領域で厚くなっていることから、積層方向では、この厚みの厚い接続部近傍2aが他の誘電体層間に存在する内部電極2の未形成部と重なることとなる。このため内部電極2とその未形成部とによって生じる段差の総量が、接続部近傍2aの厚みが厚いことによって緩和されることになり、積層体5の変形を少なくすることができる。   Further, in the case of the ceramic capacitor as in the present embodiment, since the thickness of the internal electrode 2 is thicker in the non-opposing region than in the opposing region, the thick connection portion vicinity 2a is in the other direction in the stacking direction. This overlaps with the unformed portion of the internal electrode 2 existing between the dielectric layers. For this reason, the total amount of the step generated by the internal electrode 2 and its non-formed portion is alleviated by the thick thickness of the connection portion vicinity 2a, and the deformation of the stacked body 5 can be reduced.

尚、上述した積層体5の下面に設けられている外部端子4は、セラミックコンデンサをマザーボード等の配線基板上に搭載する際、配線基板の接続パッドに半田等の導電性接着剤を介して電気的に接続される外部接続用の端子として機能するものである。この外部端子4は、積層体5の下面に導出されたビア導体3の各一端に、例えば、NiやAu等の半田濡れ性が良好な金属を従来周知の電解めっき法等によって所定厚みに被着させることによって形成される。   The external terminals 4 provided on the lower surface of the laminate 5 described above are electrically connected to connection pads of the wiring board via a conductive adhesive such as solder when the ceramic capacitor is mounted on the wiring board such as a mother board. It functions as an external connection terminal to be connected. This external terminal 4 is coated with a metal having a good solder wettability such as Ni or Au in a predetermined thickness on each end of the via conductor 3 led to the lower surface of the multilayer body 5 by a conventionally known electrolytic plating method or the like. It is formed by wearing.

このようなセラミックコンデンサに構成することにより、バンプ接続で基板に搭載することができるようになり、半田のフィレットを形成する必要が無くなるので、セラミックコンデンサの実装面積を小さくすることが可能となる。   By constructing such a ceramic capacitor, it becomes possible to mount it on the substrate by bump connection, and it becomes unnecessary to form a solder fillet, so the mounting area of the ceramic capacitor can be reduced.

かくして、上述したセラミック電子部品10は、ビア導体と内部電極との接続部の抵抗値を低くすることによって、高周波での特性を向上させたセラミックコンデンサとして種々の電気・電子回路に幅広く用いられることとなる。   Thus, the ceramic electronic component 10 described above can be widely used in various electric and electronic circuits as a ceramic capacitor having improved characteristics at high frequencies by lowering the resistance value of the connection portion between the via conductor and the internal electrode. It becomes.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.

例えば、上述した実施形態は、セラミック電子部品はセラミックコンデンサとしているが、これに限定されるものではなく、多層回路基板に用いても構わない。この場合、多層回路基板の内部に設ける配線は、本実施形態の内部電極に相当することになる。また、多層回路基板の内部に静電容量を形成したコンデンサ内蔵基板でも構わない。   For example, in the above-described embodiment, the ceramic electronic component is a ceramic capacitor. However, the present invention is not limited to this and may be used for a multilayer circuit board. In this case, the wiring provided inside the multilayer circuit board corresponds to the internal electrode of this embodiment. Further, a capacitor built-in substrate in which a capacitance is formed inside the multilayer circuit substrate may be used.

また、上述した実施形態においては、積層体は直方体を成しているが、円柱等の異形を成してあっても構わない。   Further, in the above-described embodiment, the stacked body has a rectangular parallelepiped shape, but may have an irregular shape such as a cylinder.

更に、上述した実施形態において、ビア導体の配置は、格子状に形成されているがこれに限定するものではない。例えば、千鳥状に配置しても良く、また、積層体の外周に沿って環状に配置しても構わない。   Further, in the above-described embodiment, the via conductors are arranged in a grid pattern, but the present invention is not limited to this. For example, you may arrange | position in zigzag form and may arrange | position circularly along the outer periphery of a laminated body.

また更に、上述した実施形態においては、1個のセラミック電子部品を単独で製造する場合を例にとって説明したが、これに代えて、いわゆる‘複数個取り’の手法を採用して、大型の積層体より切り出した複数個の個片を焼成することにより複数個のセラミック電子部品が同時に得られるようにしても良い。   Furthermore, in the above-described embodiment, the case where a single ceramic electronic component is manufactured alone has been described as an example. A plurality of ceramic electronic components may be obtained simultaneously by firing a plurality of pieces cut out from the body.

本発明の一実施形態に係るセラミック電子部品の外観斜視図である。1 is an external perspective view of a ceramic electronic component according to an embodiment of the present invention. 図1のセラミック電子部品の断面図である。It is sectional drawing of the ceramic electronic component of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2.

符号の説明Explanation of symbols

1・・・誘電体層
2・・・内部電極
2a・・・接続部近傍
3・・・ビア導体
4・・・外部端子
5・・・積層体
10・・・セラミックコンデンサ
DESCRIPTION OF SYMBOLS 1 ... Dielectric layer 2 ... Internal electrode 2a ... Near connection part 3 ... Via conductor 4 ... External terminal 5 ... Laminated body 10 ... Ceramic capacitor

Claims (5)

複数個の誘電体層を積層してなる積層体の内部に、Ni粒子を含む導体材料を焼結して成り、隣接する誘電体層間に介在される内部電極と、Cu粒子及びNi粒子を含む導体材料を焼結して成り、前記内部電極に接続されるビア導体とを埋設してなるセラミック電子部品であって、
前記内部電極は、前記ビア導体との接続部近傍にCu粒子が拡散されて他の部位に比し厚くなっていることを特徴とするセラミック電子部品。
A laminated body formed by laminating a plurality of dielectric layers is formed by sintering a conductive material containing Ni particles, and includes an internal electrode interposed between adjacent dielectric layers, Cu particles, and Ni particles. A ceramic electronic component formed by sintering a conductive material and having a via conductor connected to the internal electrode embedded therein,
A ceramic electronic component, wherein the internal electrode is thicker than other parts due to diffusion of Cu particles in the vicinity of a connection portion with the via conductor.
前記接続部近傍における前記内部電極の厚みが、該内部電極とビア導体との接続部より離れるに従って漸次薄くなっていることを特徴とする請求項1に記載のセラミック電子部品。 2. The ceramic electronic component according to claim 1, wherein the thickness of the internal electrode in the vicinity of the connection portion gradually decreases as the distance from the connection portion between the internal electrode and the via conductor increases. 前記内部電極中のNi粒子の平均粒径が、前記他の部位に比し前記接続部近傍で大きいことを特徴とする請求項1または請求項2に記載のセラミック電子部品。 3. The ceramic electronic component according to claim 1, wherein an average particle diameter of Ni particles in the internal electrode is larger in the vicinity of the connection portion than in the other portion. 請求項1乃至請求項3のいずれかに記載のセラミック電子部品の内部電極が、異なる誘電体層間に一部対向するようにして介在される2種類の内部電極により構成されており、これら内部電極の対向領域に静電容量を形成するようにしたセラミックコンデンサ。 The internal electrode of the ceramic electronic component according to any one of claims 1 to 3 is composed of two types of internal electrodes interposed so as to partially face each other between different dielectric layers. Capacitor in the opposite area of the ceramic capacitor. 前記内部電極の厚みが前記対向領域に比し非対向領域で厚くなっていることを特徴とする請求項4に記載のセラミックコンデンサ。 The ceramic capacitor according to claim 4, wherein a thickness of the internal electrode is larger in a non-opposing region than in the opposing region.
JP2003371295A 2003-10-30 2003-10-30 Ceramic electronic component and ceramic capacitor Pending JP2005136231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371295A JP2005136231A (en) 2003-10-30 2003-10-30 Ceramic electronic component and ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371295A JP2005136231A (en) 2003-10-30 2003-10-30 Ceramic electronic component and ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2005136231A true JP2005136231A (en) 2005-05-26

Family

ID=34648000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371295A Pending JP2005136231A (en) 2003-10-30 2003-10-30 Ceramic electronic component and ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2005136231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038120A1 (en) * 2008-08-13 2010-02-18 Tdk Corporation Layered ceramic electronic component and manufacturing method therefor
JP2010045209A (en) * 2008-08-13 2010-02-25 Tdk Corp Method of manufacturing laminated ceramic electronic component
CN103268820A (en) * 2013-04-30 2013-08-28 成都迪博电子科技有限公司 Method for increasing capacitance of multilayer ceramic tubular capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038120A1 (en) * 2008-08-13 2010-02-18 Tdk Corporation Layered ceramic electronic component and manufacturing method therefor
JP2010045209A (en) * 2008-08-13 2010-02-25 Tdk Corp Method of manufacturing laminated ceramic electronic component
CN103268820A (en) * 2013-04-30 2013-08-28 成都迪博电子科技有限公司 Method for increasing capacitance of multilayer ceramic tubular capacitor

Similar Documents

Publication Publication Date Title
JP4953988B2 (en) Multilayer capacitor and capacitor mounting board
KR102171678B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP2020057754A (en) Multilayer ceramic electronic component
JP2015065394A (en) Multilayer ceramic electronic component to be embedded in board, manufacturing method thereof, and printed circuit board having multilayer ceramic electronic component embedded therein
JP4637674B2 (en) Multilayer capacitor
KR101499715B1 (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
KR20180012629A (en) Multi-layered capacitor and board having the same mounted thereon
KR20180114759A (en) Multilayered capacitor and board having the same mounted thereon
JP2009021512A (en) Multilayer capacitor
CN104810153B (en) Multilayer ceramic electronic component and the plate for being provided with multilayer ceramic electronic component thereon
JP2012253332A (en) Chip type coil component
JPH11103229A (en) High frequency component and its production
KR20180050004A (en) Multilayer ceramic capacitor
US10297386B2 (en) Multilayer ceramic capacitor and board having the same
US8395881B2 (en) Multilayer feedthrough capacitor and mounted structure of multilayer feedthrough capacitor
KR20140041048A (en) Multi-layered ceramic electronic component
JP2015037186A (en) Multilayer ceramic electronic component for incorporating board and printed circuit board incorporating multilayer ceramic electronic component
JP4953989B2 (en) Multilayer capacitor and capacitor mounting board
KR20160000329A (en) Multi-layered inductor and board having the same mounted thereon
JP2001155953A (en) Multi-terminal laminated ceramic capacitor for three- dimensional mounting
KR101477426B1 (en) Embedded multilayer ceramic electronic part and print circuit board having embedded multilayer ceramic electronic part
US11657968B2 (en) Multilayer capacitor and board having the same
JP2005136231A (en) Ceramic electronic component and ceramic capacitor
KR20150121568A (en) Multi layer ceramic capacitor and circuit board for mounting the same
KR102037264B1 (en) Device for embedded substrate, method of manufacturing the same and printed circuit board with embedded device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02