JP2005134488A - Optic/electric mixed mounting substrate - Google Patents

Optic/electric mixed mounting substrate Download PDF

Info

Publication number
JP2005134488A
JP2005134488A JP2003367962A JP2003367962A JP2005134488A JP 2005134488 A JP2005134488 A JP 2005134488A JP 2003367962 A JP2003367962 A JP 2003367962A JP 2003367962 A JP2003367962 A JP 2003367962A JP 2005134488 A JP2005134488 A JP 2005134488A
Authority
JP
Japan
Prior art keywords
optical
substrate
wiring
thickness direction
opto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003367962A
Other languages
Japanese (ja)
Other versions
JP4155160B2 (en
Inventor
Ryoichi Terauchi
亮一 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003367962A priority Critical patent/JP4155160B2/en
Publication of JP2005134488A publication Critical patent/JP2005134488A/en
Application granted granted Critical
Publication of JP4155160B2 publication Critical patent/JP4155160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a thickness direction optical coupling section, in which guiding loss is reduced and reliability is made high, in an optic/electric mixed mounting substrate. <P>SOLUTION: An optic/electric mixed mounting substrate 1 is provided with an electric wiring 3 formed on the surface of a substrate 2, an in-surface direction optical wiring 4 formed within the substrate 2, a thickness direction optical wiring 5 which is optically coupled to the in-surface direction optical wiring 4 and guides optical signals along the thickness direction of the substrate 2 and an optical deflection section 6 which is formed in the optical coupling sections of the optical wiring 4 and 5. The thickness direction optical wiring 5 is formed by inserting a transparent body 10 into a hole 20 which goes through along the thickness direction of the substrate 2. The optical deflection section 6 is formed by processing the inserted transparent body 10 with laser light beams LB. The optical wiring 5 is formed along the thickness direction by inserting the transparent body 10 into the hole 20 without generating bubbles that are the problems of the conventional resin filling method. Since the optical deflection section 6 is formed after the insertion of the transparent body 10, it's shape/arrangement precision is secured and the optic/electric mixed mounting substrate, in which guiding loss is reduced and the thickness direction optical coupling section is provided, is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気配線と光配線が混在する光電気混載基板に関する。   The present invention relates to an opto-electric hybrid board in which electrical wiring and optical wiring are mixed.

従来、電気配線と光配線(光導波路コア)が混在する複合基板である光電気混載基板において、基板内部の面内方向光配線から基板表面の光電気変換素子まで光信号を導波する光路部分(厚み方向光結合部)に、光路を90度曲げる光偏向部及び厚み方向光配線が形成されて用いられている。光偏向部及び基板表面に対して垂直方向に光信号を伝搬させる厚み方向光配線の光路の形成方法として、例えば、図8に示すものが知られている。   Conventionally, in an opto-electric hybrid board, which is a composite substrate in which electrical wiring and optical wiring (optical waveguide core) are mixed, an optical path portion for guiding an optical signal from an in-plane optical wiring inside the substrate to a photoelectric conversion element on the substrate surface An optical deflecting portion and a thickness direction optical wiring that bend the optical path by 90 degrees are formed and used in the (thickness direction optical coupling portion). As a method for forming an optical path of a thickness direction optical wiring for propagating an optical signal in a direction perpendicular to the optical deflection section and the substrate surface, for example, the one shown in FIG. 8 is known.

これらの従来の光電気混載基板の厚み方向光結合部への形成方法を述べる。図8(a)に示すものは、コア(光配線)92、クラッド93からなる光導波路板に貫通孔94があけられ、コア用樹脂が充填・硬化されて厚み方向光配線95が形成される。続いて、光配線の交叉部近傍において切削加工やエッチング加工によりミラー96が形成される。以上により、基板平面内の方向から基板厚み方向に向かう光導波路が形成される(例えば、特許文献1参照)。また、図8(b)に示すものは、基板91の両面の光配線を結合する方法を示す。貫通孔にコア用樹脂が充填・硬化され、切削加工やエッチング加工によりミラー96が形成される点は、前記同様である(例えば、特許文献2参照)。   A method of forming these conventional opto-electric hybrid substrates on the optical coupling portion in the thickness direction will be described. In FIG. 8A, a through-hole 94 is formed in an optical waveguide plate composed of a core (optical wiring) 92 and a clad 93, and a thickness direction optical wiring 95 is formed by filling and curing the core resin. . Subsequently, a mirror 96 is formed by cutting or etching near the intersection of the optical wiring. Thus, an optical waveguide is formed from the direction in the substrate plane toward the substrate thickness direction (see, for example, Patent Document 1). FIG. 8B shows a method for connecting the optical wirings on both surfaces of the substrate 91. The point that the core resin is filled and cured in the through hole and the mirror 96 is formed by cutting or etching is the same as described above (see, for example, Patent Document 2).

図8(c)に示す方法は、貫通孔にコア用樹脂を充填・硬化するかわりに、貫通孔に成形した導波路を挿入している。すなわち、光電気混載基板のクラッド93に囲まれたコア(光配線)92の所定の場所を貫通するように、貫通孔94があけられ、片側端面をθ=45度にカットしてマイクロミラー96を形成した光ファイバ(光ピン)95aが挿入される(例えば、非特許文献1参照)。
特開2000−304953号公報 特開2000−298216号公報 三上修、内田禎二 「光表面実装技術の進展」、電子情報通信学会論文誌(C)、Vol.J84−C、No9,pp.715−726,2001年9月
In the method shown in FIG. 8C, a waveguide formed in the through hole is inserted instead of filling and curing the core resin in the through hole. That is, a through hole 94 is formed so as to pass through a predetermined location of a core (optical wiring) 92 surrounded by the clad 93 of the opto-electric hybrid board, and one end face is cut at θ = 45 degrees to form a micromirror 96. An optical fiber (optical pin) 95a is inserted (see, for example, Non-Patent Document 1).
JP 2000-304953 A JP 2000-298216 A Osamu Mikami, Junji Uchida “Advances in Optical Surface Mounting Technology”, IEICE Transactions (C), Vol. J84-C, No9, pp. 715-726, September 2001

しかしながら、上述した図8(a)(b)に示すような厚み方向光結合部を有する光電気混載基板においては、貫通孔にコア用樹脂を隙間や気泡の発生なく充填・硬化することが難しく、光信号の導波損失を低減することが難しいという問題がある。また、図8(c)に示すような、マイクロミラーを形成した光ピンを挿入する方法によると、ミラーになった端面を傷つけることなく貫通孔に挿入することが困難である上に、ミラーの回転方向、及びミラーの高さ位置の決定が非常に困難であり、光ピン位置ずれによる光信号の導波損失を低減することが難しいという問題がある。   However, in the opto-electric hybrid board having the thickness direction optical coupling portion as shown in FIGS. 8A and 8B described above, it is difficult to fill and cure the core resin in the through hole without generation of gaps or bubbles. There is a problem that it is difficult to reduce the waveguide loss of the optical signal. Further, according to the method of inserting the optical pin formed with the micromirror as shown in FIG. 8C, it is difficult to insert the optical pin into the through hole without damaging the mirror end face. It is very difficult to determine the rotation direction and the height position of the mirror, and there is a problem that it is difficult to reduce the waveguide loss of the optical signal due to the optical pin position shift.

本発明は、上記課題を解消するものであって、簡単な構成により導波損失を低減した信頼性の高い厚み方向光結合部を有する光電気混載基板を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide an opto-electric hybrid board having a highly reliable thickness-direction optical coupling portion with reduced waveguide loss with a simple configuration.

上記課題を達成するために、請求項1の発明は、基板表面に配した電気信号を伝播させる電気配線と、基板内部に配した光信号を導波させる面内方向光配線と、前記面内方向光配線と光結合し、基板の厚み方向に光信号を導波させる厚み方向光配線とを備えた光電気混載基板において、前記厚み方向光配線は、基板の厚み方向に形成された孔に透明体を挿入することにより形成され、前記面内方向光配線と厚み方向光配線との光結合部に、前記挿入した透明体を加工して形成された光偏向部を備えていることを特徴とする光電気混載基板である。   In order to achieve the above object, an invention according to claim 1 is directed to an electrical wiring for propagating an electrical signal disposed on a substrate surface, an in-plane optical wiring for guiding an optical signal disposed in the substrate, and the in-plane In an opto-electric hybrid board having a thickness direction optical wiring that is optically coupled to the direction optical wiring and guides an optical signal in the thickness direction of the substrate, the thickness direction optical wiring is formed in a hole formed in the thickness direction of the substrate. It is formed by inserting a transparent body, and an optical deflecting portion formed by processing the inserted transparent body is provided at an optical coupling portion between the in-plane direction optical wiring and the thickness direction optical wiring. This is an opto-electric hybrid board.

請求項2の発明は、請求項1に記載の光電気混載基板において、前記光偏向部は、基板の電気配線を備えた面と異なる側の面から前記透明体にレーザ光を照射することにより形成された傾斜面を有しているものである。   According to a second aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the light deflector irradiates the transparent body with laser light from a surface different from the surface provided with the electric wiring of the substrate. It has the formed inclined surface.

請求項3の発明は、請求項1に記載の光電気混載基板において、前記光偏向部は、凹面形状を有していることを特徴とするものである。   According to a third aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the light deflection section has a concave shape.

請求項4の発明は、請求項1に記載の光電気混載基板において、前記厚み方向光配線の基板表面側の端面は、凸面形状を有しているものである。   According to a fourth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, an end surface on the substrate surface side of the thickness direction optical wiring has a convex shape.

請求項5の発明は、請求項1に記載の光電気混載基板において、前記透明体を前記基板に挿入するための孔を形成する位置は、前記基板表面に存在する電気配線の位置を基準にして決定されているものである。   According to a fifth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the position for forming the hole for inserting the transparent body into the board is based on the position of the electric wiring existing on the surface of the board. Is determined.

請求項6の発明は、請求項1に記載の光電気混載基板において、前記光偏向部は、回折格子で構成されているものである。   According to a sixth aspect of the present invention, in the opto-electric hybrid board according to the first aspect, the light deflection section is formed of a diffraction grating.

請求項7の発明は、請求項6に記載の光電気混載基板において、前記回折格子は、レーザ光を照射するにより前記透明体を内部改質して形成されているものである。   According to a seventh aspect of the invention, in the opto-electric hybrid board according to the sixth aspect, the diffraction grating is formed by internally modifying the transparent body by irradiating a laser beam.

請求項1の発明によれば、孔に透明体を挿入することにより、気泡を発生させることなく厚み方向の光配線を形成でき、また孔に挿入した透明体を加工して光偏向部を形成するので光偏向部の位置・形状・配置方向などの精度を確保でき、従って、導波損失を低減した信頼性の高い厚み方向光結合部を有する光電気混載基板が得られる。   According to the invention of claim 1, by inserting a transparent body into the hole, an optical wiring in the thickness direction can be formed without generating bubbles, and the transparent body inserted into the hole is processed to form a light deflection portion. Therefore, the accuracy of the position, shape, arrangement direction, etc. of the optical deflecting portion can be ensured, and accordingly, an opto-electric hybrid board having a highly reliable thickness direction optical coupling portion with reduced waveguide loss can be obtained.

請求項2の発明によれば、レーザ光を走査することにより微細形状加工を高精度に行えるので、高精度な傾斜面が形成され、従って光損失の少ない光偏向部を有する光電気混載基板が得られる。また、レーザ光にエネルギー分布を持たせることで、所望する形状を短時間に形成することができる。また、レーザ光をマスクを介して照射しながらマスクを移動して、加工の位置、範囲、形状を制御することができ、所望する形状を短時間に形成することができる。   According to the second aspect of the present invention, since the fine shape processing can be performed with high accuracy by scanning the laser beam, the opto-electric hybrid board having the optical deflecting portion with the high-precision inclined surface formed and thus with little optical loss is provided. can get. Further, by providing the laser beam with an energy distribution, a desired shape can be formed in a short time. Further, the position, range, and shape of the processing can be controlled by moving the mask while irradiating the laser beam through the mask, and a desired shape can be formed in a short time.

請求項3の発明によれば、凹面形状の光偏向部の集光機能により、発光素子(光電気変換素子)からの光を集光して光配線に伝送し、又は光配線からの光を集光して受光素子(光電気変換素子)に伝送することができ、光結合損失を低減することができる。   According to the invention of claim 3, the light from the light emitting element (photoelectric conversion element) is collected and transmitted to the optical wiring by the condensing function of the concave-shaped light deflecting unit, or the light from the optical wiring is transmitted. Light can be collected and transmitted to a light receiving element (photoelectric conversion element), and optical coupling loss can be reduced.

請求項4の発明によれば、厚み方向光配線の基板表面側端面の凸面形状による、レンズ効果により、上記同様の効果を奏する。   According to invention of Claim 4, there exists an effect similar to the above by the lens effect by the convex surface shape of the board | substrate surface side end surface of thickness direction optical wiring.

請求項5の発明によれば、電気配線を位置決めの基準にして透明体挿入の孔を形成するので、後工程で光電気変換素子の受発光部の位置と厚み方向光配線の基板表面端部とを位置精度良く実装できる。また、電気配線を基準にして決定した基板表面の位置の垂直下方に光偏向部の形成位置がきていない場合、孔形成の段階で個々の孔について判断して透明体を挿入する孔を斜めに形成する対応が可能であり、基板全体として光結合損失を低減した光電気混載基板が得られる。   According to the invention of claim 5, since the hole for transparent body insertion is formed with the electric wiring as a reference for positioning, the position of the light emitting / receiving portion of the photoelectric conversion element and the end of the substrate surface of the thickness direction optical wiring in the subsequent process Can be mounted with high positional accuracy. In addition, when the position where the light deflection portion is not formed is vertically below the position of the substrate surface determined with reference to the electrical wiring, the hole for inserting the transparent body is determined diagonally at the stage of hole formation. An opto-electric hybrid board that can be formed and has reduced optical coupling loss as a whole board can be obtained.

請求項6の発明によれば、回折格子からなる光偏向部によると、光信号を多方向へ偏向して分岐することができる。   According to the sixth aspect of the present invention, the optical deflector comprising the diffraction grating can deflect and split the optical signal in multiple directions.

請求項7の発明によれば、レーザ光の焦点位置に内部改質を発生させて回折格子を形成できるので、透明体を挿入する孔を貫通穴にすることなく回折格子を形成できる。   According to the seventh aspect of the invention, since the diffraction grating can be formed by generating an internal modification at the focal position of the laser beam, the diffraction grating can be formed without making the hole for inserting the transparent body a through hole.

以下、本発明の一実施形態に係る光電気混載基板について、図面を参照して説明する。図1は、光電気混載基板1とその製造工程を示す。光電気混載基板1は、図1(a)に示すように、基板2の表面に配した電気信号を伝播させる電気配線3と、基板2内部に配した光信号を導波させる面内方向光配線4と、面内方向光配線4に光結合して基板2の厚み方向に光信号を導波させる厚み方向光配線5と、面内方向光配線4と厚み方向光配線5との光結合部に形成した光偏向部6を備えている。   Hereinafter, an opto-electric hybrid board according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an opto-electric hybrid board 1 and its manufacturing process. As shown in FIG. 1A, the opto-electric hybrid board 1 includes an electric wiring 3 for propagating an electric signal arranged on the surface of the substrate 2, and in-plane direction light for guiding the optical signal arranged inside the board 2. Optical coupling between the wiring 4, the thickness-direction optical wiring 5 that optically couples to the in-plane direction optical wiring 4 and guides an optical signal in the thickness direction of the substrate 2, and the optical coupling between the in-plane direction optical wiring 4 and the thickness direction optical wiring 5 The optical deflection part 6 formed in the part is provided.

面内方向光配線4は、面内方向光配線4よりも低い屈折率を有するクラッド41により囲まれている。また、基板2はベース基板21の上に形成されている。厚み方向光配線5は、図1(b)(c)に示すように、基板2の厚み方向に基板2とベース基板21とを貫通して形成された孔20に透明体10を挿入することにより形成され、光偏向部6は、挿入した透明体10をレーザ光LBを用いて加工・形成される。   The in-plane direction optical wiring 4 is surrounded by a clad 41 having a lower refractive index than the in-plane direction optical wiring 4. The substrate 2 is formed on the base substrate 21. As shown in FIGS. 1B and 1C, the thickness direction optical wiring 5 has a transparent body 10 inserted into a hole 20 formed through the substrate 2 and the base substrate 21 in the thickness direction of the substrate 2. The light deflector 6 is processed and formed by using the laser beam LB.

ここで、面内方向光配線4から光偏向部6及び厚み方向光配線5を経由して基板2の外部へと至る光路について説明する。電気信号を伝搬させる電気配線3と光信号を伝搬させる面内方向光配線4とが混在する複合基板(光電気混載基板)では、面内方向光配線4を伝搬する光信号を垂直方向に取り出し、図1(a)に点線で示したように、基板表面に実装されたフォトダイオードなどの光電気変換素子Cまで伝搬させるか、又は、基板表面に実装された面発光レーザなどから出射された光信号を基板面に平行に設けられた面内方向光配線4まで伝搬させることが行われる。   Here, an optical path from the in-plane direction optical wiring 4 to the outside of the substrate 2 through the optical deflection unit 6 and the thickness direction optical wiring 5 will be described. In a composite substrate (an opto-electric hybrid board) in which the electrical wiring 3 for propagating the electrical signal and the in-plane optical wiring 4 for propagating the optical signal are mixed, the optical signal propagating through the in-plane optical wiring 4 is extracted in the vertical direction. As shown by a dotted line in FIG. 1 (a), it is propagated to a photoelectric conversion element C such as a photodiode mounted on the substrate surface or emitted from a surface emitting laser or the like mounted on the substrate surface. The optical signal is propagated to the in-plane optical wiring 4 provided in parallel with the substrate surface.

上述の光路を伝搬する光信号の損失(光電気結合損失)は、光が伝搬する媒質の吸収率や反射率、さらに光の広がり角、伝搬距離に依存する。この他、特に、垂直方向導波路5の光入出射端面の位置と、光電気変換素子Cの受発光部C1の位置との位置合わせ精度は、光電気結合損失の大小に大きく影響する。そこで、位置精度良くあけた孔20に、光伝播特性のすぐれた透明体10を挿入して、光特性と位置精度に優れた厚み方向光配線5を形成する。まず、透明体10の挿入と光偏向部6の形成について説明し、その後、加工位置精度について説明する。   The loss of the optical signal propagating through the optical path (photoelectric coupling loss) depends on the absorptance and reflectance of the medium through which the light propagates, the light spread angle, and the propagation distance. In addition, the alignment accuracy between the position of the light incident / exit end face of the vertical waveguide 5 and the position of the light receiving / emitting portion C1 of the photoelectric conversion element C greatly affects the magnitude of the photoelectric coupling loss. Therefore, the transparent body 10 having excellent light propagation characteristics is inserted into the hole 20 opened with high positional accuracy to form the thickness direction optical wiring 5 excellent in optical characteristics and positional accuracy. First, the insertion of the transparent body 10 and the formation of the light deflection unit 6 will be described, and then the processing position accuracy will be described.

透明体10は、光を効率よく伝播させる高屈折率材料からなる中心部のコア11と、コア11を囲み、コア11よりも低い屈折率を有する材料からなるクラッド12からなる光ファイバ状のものが好適に用いられる。また、透明体10を挿入する孔20は、面内方向光配線4との接触部において空気層などが介在しないように、透明体10が隙間なく納まる寸法とされる。孔20に透明体10を挿入する方法としては、例えば、エアー等の吸引による方法を用いることができる。   The transparent body 10 is in the form of an optical fiber composed of a core 11 made of a high refractive index material that efficiently propagates light, and a clad 12 made of a material that surrounds the core 11 and has a lower refractive index than the core 11. Are preferably used. Further, the hole 20 into which the transparent body 10 is inserted is dimensioned so that the transparent body 10 can be accommodated without a gap so that an air layer or the like is not interposed at the contact portion with the in-plane optical wiring 4. As a method for inserting the transparent body 10 into the hole 20, for example, a method using suction of air or the like can be used.

透明体10の材料は、ガラス、樹脂などがあげられる。樹脂材料であるほうが、挿入するときに容易であり、また安価である。樹脂材料としては、エポキシ系、アクリル系などがあげられる。特に、プラスチック材料からなる光ファイバ(POF)等は大量に生産されているため、非常に安価である。後者の材料を用いる場合、光偏向部6をレーザ光で形成する際、被加工面に微細構造が発生する場合があるが、後処理としてエネルギを弱めたレーザ光を照射することで、微細構造を除去して鏡面を得ることができる。このように、透明体10を挿入して形成した厚み方向光配線5は、従来の、孔に樹脂を充填・硬化して形成するものと異なり、気泡発生や樹脂硬化変形等の問題がなく、光伝播損失が低減される。   Examples of the material of the transparent body 10 include glass and resin. A resin material is easier and cheaper to insert. Examples of the resin material include epoxy type and acrylic type. In particular, since optical fibers (POF) made of plastic materials are produced in large quantities, they are very inexpensive. When the latter material is used, a fine structure may be generated on the surface to be processed when the light deflecting unit 6 is formed with laser light. However, the fine structure can be obtained by irradiating laser light with reduced energy as post-processing. Can be removed to obtain a mirror surface. Thus, the thickness direction optical wiring 5 formed by inserting the transparent body 10 is different from the conventional one formed by filling and curing the resin in the hole, and there are no problems such as bubble generation and resin curing deformation, Light propagation loss is reduced.

続いて、光偏向部6の形成について説明する。光偏向部6は、例えば、面内方向光配線4を伝搬する光信号を反射させるミラーによって構成される。光偏向部6は、図1(c)に示すように、挿入した透明体10を基板2の背面(図の下側、電気配線面の反対側)から、孔20の中の透明体10の下端面にレーザ光LBを照射することにより、端面を形状加工して形成される。光偏向部6として加工される端面形状は、例えば45度の傾斜面である。45度斜面の加工方法として、例えば、レーザ光LBの照射ショット数をXY面内で分布を持たせて制御する方法と、反射率や透過率に分布を持たせたマスクを透過させることによりレーザ光に強度分布を持たせる方法がある。レーザ光にエネルギー分布を持たせることで、所望する形状を非常に短時間に形成することができる。用いるレーザとしては、UV〜近赤外域の波長をもつレーザが適している。ミラー形成位置の決定方法として、基板表面側(図の上側、電気配線面側)から、ガイドとなる可視光を照射する方法を用いることができる。   Next, the formation of the light deflection unit 6 will be described. The optical deflection unit 6 is constituted by a mirror that reflects an optical signal propagating through the in-plane optical wiring 4, for example. As shown in FIG. 1 (c), the light deflecting unit 6 is configured to insert the transparent body 10 from the back surface of the substrate 2 (the lower side of the figure, the opposite side of the electric wiring surface) of the transparent body 10 in the hole 20. By irradiating the lower end surface with the laser beam LB, the end surface is formed and processed. The end surface shape processed as the light deflection unit 6 is, for example, an inclined surface of 45 degrees. As a 45-degree slope processing method, for example, a method of controlling the number of irradiation shots of the laser beam LB with a distribution in the XY plane and a laser by transmitting a mask with a distribution of reflectance and transmittance are transmitted. There is a method of giving light an intensity distribution. By providing the laser beam with an energy distribution, a desired shape can be formed in a very short time. As a laser to be used, a laser having a wavelength in the UV to near infrared region is suitable. As a method for determining the mirror formation position, a method of irradiating visible light serving as a guide from the substrate surface side (the upper side in the figure, the electric wiring surface side) can be used.

続いて、加工の位置精度について説明する。加工の位置精度確保は、まず、垂直方向導波路5の形成に、電気配線3を位置決めの基準とすることによる。垂直方向導波路5の形成の後、同様に、電気配線3を位置決めの基準として光電気変換素子Cと厚み方向光配線5との位置合わせを行い、光電気変換素子Cを実装することで、全体の位置合わせ精度が向上し、光電気結合損失の低減ができる。すなわち、まず、透明体10を挿入する位置を基板2の表面の電気配線3から算出して決定する。電気配線3は、厚み方向光配線5の光軸の位置を容易に算出できるパターンを持たせた設計としておく。また、電気配線3と面内方向光配線4の面方向位置ずれは、例えば、±20μm以下にしておき、基板2の表面から垂直に透明体10を挿入する孔20を形成する。孔20は、例えばレーザ光を用いて形成される。   Next, processing position accuracy will be described. In order to secure the processing position accuracy, first, the electrical wiring 3 is used as a positioning reference for forming the vertical waveguide 5. After the formation of the vertical waveguide 5, similarly, the photoelectric conversion element C and the thickness direction optical wiring 5 are aligned using the electric wiring 3 as a positioning reference, and the photoelectric conversion element C is mounted. The overall alignment accuracy is improved, and the photoelectric coupling loss can be reduced. That is, first, the position for inserting the transparent body 10 is determined by calculating from the electrical wiring 3 on the surface of the substrate 2. The electrical wiring 3 is designed to have a pattern that can easily calculate the position of the optical axis of the thickness direction optical wiring 5. Further, the positional deviation in the plane direction between the electrical wiring 3 and the in-plane optical wiring 4 is, for example, ± 20 μm or less, and the hole 20 for inserting the transparent body 10 perpendicularly from the surface of the substrate 2 is formed. The hole 20 is formed using, for example, laser light.

しかしながら、電気配線3と面内方向光配線4の位置ずれが大きくなった場合や、面内方向光配線3が細いため位置ずれを許容できない場合、透明体10を挿入する孔20を基板2の表面に対し垂直とはせずに、面内方向光配線4の中心であって光偏向部6を形成すべき位置と、受発光部C1の中心とを結ぶ直線に沿ってレーザ光により孔をあけ、そこに透明体10を挿入する。このような透明体10に形成する光偏向部6は、面内方向光配線4の光軸と透明体10の光軸の成す角度の2等分線を法線とする面からなる反射面等で形成する必要がある。   However, when the positional deviation between the electrical wiring 3 and the in-plane optical wiring 4 becomes large, or when the positional deviation cannot be allowed because the in-plane optical wiring 3 is thin, the hole 20 for inserting the transparent body 10 is formed in the substrate 2. Instead of being perpendicular to the surface, a hole is formed by a laser beam along a straight line connecting the center of the in-plane optical wiring 4 and the position where the light deflector 6 is to be formed with the center of the light emitting / receiving unit C1. Open the transparent body 10 there. The light deflecting unit 6 formed on the transparent body 10 has a reflecting surface composed of a surface whose normal line is a bisector of an angle formed by the optical axis of the in-plane direction optical wiring 4 and the optical axis of the transparent body 10. It is necessary to form with.

次に、本発明の他の一実施形態に係る光電気混載基板を、図2により説明する。この光電気混載基板1では、上述の45度反射面からなる光偏向部6傾斜面に、金属膜61を蒸着させて、反射率の向上が図られている。蒸着する金属膜61として、例えば、金(Au)が適している。金属膜61の厚さは、蒸着金属によるが、Auの場合、約1000nm〜3000nm程度が望ましい。金属膜61により、光の結合損失低減と垂直方向の導波路の伝搬損失が低減できる。なお、金属膜61による反射率向上は、45度反射面に限らず、次に説明する凹面形状ミラーにも同様に適用できる。   Next, an opto-electric hybrid board according to another embodiment of the present invention will be described with reference to FIG. In this opto-electric hybrid board 1, the metal film 61 is vapor-deposited on the inclined surface of the light deflection unit 6 composed of the above-mentioned 45-degree reflection surface to improve the reflectance. For example, gold (Au) is suitable as the metal film 61 to be deposited. The thickness of the metal film 61 depends on the deposited metal, but about 1000 nm to 3000 nm is desirable in the case of Au. The metal film 61 can reduce the coupling loss of light and the propagation loss of the waveguide in the vertical direction. Note that the reflectance improvement by the metal film 61 is not limited to the 45-degree reflecting surface, but can be similarly applied to a concave mirror described below.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図3により説明する。この光電気混載基板1は、光偏向部6として、凹面形状ミラーを備えている。厚み方向光配線5を形成する透明体の基板内側端面が、前述のようにレーザ光を用いて、凹面ミラー形状に加工される。凹面ミラーの凹面形状は、反射する光が集光するように加工され、光が面内方向光配線4から厚み方向光配線5へ、又はその逆方向に伝搬する際に、光学損失を低減させるように形成される。凹面形状の、好適な加工方法として、開口マスクと遮蔽マスクの2枚のマスクを重ね合わせ、遮蔽マスクを移動させて、開口マスクの開口部面積を徐々に広げて加工を行う開口マスク法と、前述の反射率や透過率に分布を持たせたグレーマスクを透過させることによりレーザ光に強度分布を持たせるグレーマスク法がある。開口マスク法は、所望する加工形状に応じて遮蔽マスクの移動速度を制御する必要があり、また、グレーマスク法は所望する加工形状に応じてマスク設計が必要となる。用いるレーザは、UV〜近赤外域の波長をもつレーザが適している。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. The opto-electric hybrid board 1 includes a concave mirror as the light deflection unit 6. The substrate inner end surface of the transparent body forming the thickness direction optical wiring 5 is processed into a concave mirror shape using laser light as described above. The concave shape of the concave mirror is processed so that the reflected light is collected and reduces optical loss when light propagates from the in-plane direction optical wiring 4 to the thickness direction optical wiring 5 or vice versa. Formed as follows. As a preferable processing method of the concave shape, an opening mask method in which two masks of an opening mask and a shielding mask are overlapped, the shielding mask is moved, and the opening area of the opening mask is gradually widened, and processing is performed. There is a gray mask method in which a laser beam has an intensity distribution by transmitting the above-described gray mask having a distribution in reflectance and transmittance. In the opening mask method, it is necessary to control the moving speed of the shielding mask in accordance with a desired processing shape, and in the gray mask method, a mask design is required in accordance with a desired processing shape. As the laser to be used, a laser having a wavelength in the UV to near infrared region is suitable.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図4、図5により説明する。図4に示す光電気混載基板1は、厚み方向光配線5を形成する透明体の基板表面側端面が、レーザ光を用いて、上側に凸になった凸レンズ形状に加工されている。基板2に実装された光電気変換素子との光の入出射において、厚み方向光配線5の上端に形成された凸レンズ形状によって、光信号の広がりを抑え、光学損失を低減させることができる。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIGS. In the opto-electric hybrid board 1 shown in FIG. 4, the substrate surface side end surface of the transparent body forming the thickness direction optical wiring 5 is processed into a convex lens shape convex upward using laser light. In the light incident / exit with the photoelectric conversion element mounted on the substrate 2, the convex lens shape formed at the upper end of the thickness direction optical wiring 5 can suppress the spread of the optical signal and reduce the optical loss.

この凸レンズ形状の加工方法として、例えば、前述の凹面ミラー形状の加工法と同様の方法と、図5に示すマスクドラッキング法がある。後者の方法は、例えば、図5(a)に示す開口70と開口形状71を有するマスク7を用いて行われる。図5(b)に示すように、マスク7をX方向に移動しつつ開口70を通してレーザ光LBを被加工物75に照射する。被加工物75のX方向に、開口形状71を反映した蒲鉾状の構造が形成される。この蒲鉾状の構造に対して、X方向と同様にY方向にレーザ光LBを照射することにより、蒲鉾状構造の交差部分Hに、図5(c)に示すようなドーム形状が形成される。   As a method for processing the convex lens shape, for example, there are a method similar to the processing method for the concave mirror shape described above and a mask drucking method shown in FIG. The latter method is performed using, for example, a mask 7 having an opening 70 and an opening shape 71 shown in FIG. As shown in FIG. 5B, the workpiece 75 is irradiated with the laser beam LB through the opening 70 while moving the mask 7 in the X direction. A bowl-shaped structure reflecting the opening shape 71 is formed in the X direction of the workpiece 75. By irradiating this saddle-like structure with laser light LB in the Y direction as in the X direction, a dome shape as shown in FIG. 5C is formed at the intersection H of the saddle-like structure. .

用いるレーザとしては、UV〜近赤外域の波長をもつレーザがあげられる。レンズ面を高精度にするために波長の短いUVレーザが望ましい。エキシマレーザを用いてマスクドラッキング法により加工を行った場合、エキシマレーザが連続光ではなく、パルスレーザであるため、加工面に開口マスクの縁辺の形状跡が残る可能性があるが、形成された凸レンズ面全体にレーザ光を照射して形状跡を除去することができる。   Examples of the laser to be used include a laser having a wavelength in the UV to near infrared region. In order to make the lens surface highly accurate, a short wavelength UV laser is desirable. When excimer laser processing is performed by the mask drucking method, the excimer laser is not continuous light but a pulsed laser, so the shape trace of the edge of the opening mask may remain on the processed surface. The trace of the shape can be removed by irradiating the entire convex lens surface with laser light.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図6により説明する。この光電気混載基板1は、厚み方向光配線5の上端(図の上側、基板2表面側の端面)を予め基板2の表面よりも所定の高さだけ突出させたものである。この突出部の高さは、基板2の表面から、実装した光電気変換素子Cの受発光部C1の表面までの高さに揃えられている。光電気変換素子Cと厚み方向光配線5の突出した部分の間で、空間中を伝播させることなく光信号を直接授受させるので、この間の光信号の広がりを抑え、光学損失を低減することができる。また、この突出した厚み方向光配線5の側面に金属膜を蒸着させることにより、さらに光学損失の低減が可能となる。また、光電気変換素子Cの受発光部C1に、例えば凸レンズが取り付けられている場合、凸レンズの形状に合わせて、厚み方向光配線5の突出部端面をレーザ加工を行い、光電気変換素子Cを実装した際に、受発光部C1の表面形状と一致するようにして、光の漏洩や広がりを防止することができる。この加工に用いるレーザとして、UVレーザなどが望ましい。また、形状加工法として、前述の開口マスク法やグレーマスク法を用いることができる。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. In this opto-electric hybrid board 1, the upper end of the thickness direction optical wiring 5 (the upper side in the figure, the end face on the surface side of the board 2) is protruded by a predetermined height from the surface of the board 2 in advance. The height of the protruding portion is aligned with the height from the surface of the substrate 2 to the surface of the light emitting / receiving portion C1 of the mounted photoelectric conversion element C. Since the optical signal is directly transferred between the photoelectric conversion element C and the protruding portion of the thickness direction optical wiring 5 without propagating in the space, the spread of the optical signal during this period can be suppressed and the optical loss can be reduced. it can. Further, it is possible to further reduce the optical loss by depositing a metal film on the side surface of the protruding thickness direction optical wiring 5. Further, when a convex lens, for example, is attached to the light emitting / receiving portion C1 of the photoelectric conversion element C, the end surface of the protruding portion of the thickness direction optical wiring 5 is subjected to laser processing in accordance with the shape of the convex lens, and the photoelectric conversion element C When the is mounted, the light can be prevented from leaking or spreading so as to coincide with the surface shape of the light emitting / receiving portion C1. As a laser used for this processing, a UV laser or the like is desirable. As the shape processing method, the above-described opening mask method or gray mask method can be used.

次に、本発明のさらに他の一実施形態に係る光電気混載基板を、図7により説明する。この光電気混載基板1は、図7(a)に示すように、光偏向部として透明体10の内部に回折格子8を備えている。回折格子8は、面内方向光配線4の光軸と挿入した透明体10の光軸との交点付近に形成されている。この回折格子8によると、分岐後の光の強度は低下するが、光信号を3分岐して、多方向に同期信号を伝搬させることが可能である。また、光信号の分岐が不必要な方向に反射膜、又は吸収膜を形成することができる。   Next, an opto-electric hybrid board according to still another embodiment of the present invention will be described with reference to FIG. As shown in FIG. 7A, the opto-electric hybrid board 1 includes a diffraction grating 8 inside a transparent body 10 as an optical deflection unit. The diffraction grating 8 is formed near the intersection of the optical axis of the in-plane direction optical wiring 4 and the optical axis of the inserted transparent body 10. According to this diffraction grating 8, although the intensity of the light after branching decreases, it is possible to split the optical signal into three to propagate the synchronization signal in multiple directions. In addition, a reflection film or an absorption film can be formed in a direction where branching of the optical signal is unnecessary.

回折格子8の形成は、図7(b)に示すように、回折格子8の形成位置にレーザ光LBを集光させて、Y方向に連続走査加工し、X方向には回折格子8の格子間隔分だけ移動さえて、Y方向に加工を続ける。X方向は、図7(a)に示す面内方向光配線4の光軸方向であり、Y方向は、面内方向光配線4と厚み方向光配線5の両方に直交する方向である。レーザ光LBの集光サイズは1μm以下にし、パルス幅は1ns以下にすることが望ましい。また、レーザ光LBの照射は、基板2の背面方向(Z方向)からだけでなく、基板2の表面方向(−Z方向)からの照射も可能である。従って、透明体10を挿入する孔は、光電気混載基板1を貫通する孔である必要がなく、面内光配線4より深い位置にまで挿入できればよい。用いるレーザとして、極短時間で高エネルギーを与えて加工部の周囲への熱影響を少なくできるフェムト秒レーザなどが望ましい。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   As shown in FIG. 7B, the diffraction grating 8 is formed by condensing the laser beam LB at the position where the diffraction grating 8 is formed, continuously scanning in the Y direction, and in the X direction. The machine continues to process in the Y direction after moving by the interval. The X direction is the optical axis direction of the in-plane direction optical wiring 4 shown in FIG. 7A, and the Y direction is a direction orthogonal to both the in-plane direction optical wiring 4 and the thickness direction optical wiring 5. The condensing size of the laser beam LB is desirably 1 μm or less, and the pulse width is desirably 1 ns or less. Further, the irradiation with the laser beam LB can be performed not only from the back surface direction (Z direction) of the substrate 2 but also from the surface direction (−Z direction) of the substrate 2. Therefore, the hole for inserting the transparent body 10 does not need to be a hole penetrating the opto-electric hybrid board 1, and may be inserted to a position deeper than the in-plane optical wiring 4. As the laser to be used, a femtosecond laser or the like that can apply high energy in an extremely short time and reduce the thermal influence on the periphery of the processed part is desirable. The present invention is not limited to the above-described configuration, and various modifications can be made.

(a)は本発明の一実施形態に係る光電気混載基板の断面図、(b)(c)は同光電気混載基板の製造工程を示す断面図。(A) is sectional drawing of the opto-electric hybrid board which concerns on one Embodiment of this invention, (b) (c) is sectional drawing which shows the manufacturing process of the opto-electric hybrid board. 本発明の他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on other one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. (a)は同上光電気混載基板の製造に適用されるマスクの平面図、(b)(c)は同マスクを用いた加工方法を説明する斜視図。(A) is a top view of the mask applied to manufacture of a photoelectric hybrid board same as the above, (b) (c) is a perspective view explaining the processing method using the mask. 本発明のさらに他の一実施形態に係る光電気混載基板の断面図。Sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention. (a)は本発明のさらに他の一実施形態に係る光電気混載基板の断面図、(b)は同光電気混載基板の製造方法を説明する斜視図。(A) is sectional drawing of the opto-electric hybrid board | substrate which concerns on another one Embodiment of this invention, (b) is a perspective view explaining the manufacturing method of the opto-electric hybrid board | substrate. (a)(b)は従来の光結合部の製造方法を説明する断面図、(c)は光結合部の他の従来の製造方法を説明する斜視図。(A) (b) is sectional drawing explaining the manufacturing method of the conventional optical coupling part, (c) is a perspective view explaining the other conventional manufacturing method of an optical coupling part.

符号の説明Explanation of symbols

1 光電気混載基板
2 基板
3 電気配線
4 面内方向光配線
5 厚み方向光配線
6 光偏向部
8 回折格子
10 透明体
20 孔
LB レーザ光
DESCRIPTION OF SYMBOLS 1 Opto-electric hybrid board 2 Substrate 3 Electric wiring 4 In-plane direction optical wiring 5 Thickness direction optical wiring 6 Optical deflection part 8 Diffraction grating 10 Transparent body 20 Hole LB Laser light

Claims (7)

基板表面に配した電気信号を伝播させる電気配線と、基板内部に配した光信号を導波させる面内方向光配線と、前記面内方向光配線と光結合し、基板の厚み方向に光信号を導波させる厚み方向光配線とを備えた光電気混載基板において、
前記厚み方向光配線は、基板の厚み方向に形成された孔に透明体を挿入することにより形成され、
前記面内方向光配線と厚み方向光配線との光結合部近傍に、前記挿入した透明体を加工して形成された光偏向部を備えていることを特徴とする光電気混載基板。
An electrical wiring that propagates an electrical signal disposed on the surface of the substrate, an in-plane optical wiring that guides an optical signal disposed inside the substrate, and an optical signal that is optically coupled to the in-plane optical wiring and that extends in the thickness direction of the substrate In an opto-electric hybrid board provided with a thickness direction optical wiring that guides light,
The thickness direction optical wiring is formed by inserting a transparent body into a hole formed in the thickness direction of the substrate,
An opto-electric hybrid board, comprising: an optical deflection part formed by processing the inserted transparent body in the vicinity of an optical coupling part between the in-plane direction optical wiring and the thickness direction optical wiring.
前記光偏向部は、基板の電気配線を備えた面と異なる側の面から前記透明体にレーザ光を照射することにより形成された傾斜面を有していることを特徴とする請求項1に記載の光電気混載基板。   The said light deflection | deviation part has the inclined surface formed by irradiating a laser beam to the said transparent body from the surface different from the surface provided with the electrical wiring of a board | substrate. The opto-electric hybrid board described. 前記光偏向部は、凹面形状を有していることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the light deflection unit has a concave shape. 前記厚み方向光配線の基板表面側の端面は、凸面形状を有していることを特徴とする請求項1に記載の光電気混載基板。   2. The opto-electric hybrid board according to claim 1, wherein an end surface on the substrate surface side of the thickness direction optical wiring has a convex shape. 前記透明体を前記基板に挿入するための孔を形成する位置は、前記基板表面に存在する電気配線の位置を基準にして決定されていることを特徴とする請求項1に記載の光電気混載基板。   2. The opto-electric hybrid loading according to claim 1, wherein a position for forming a hole for inserting the transparent body into the substrate is determined based on a position of an electric wiring existing on the surface of the substrate. substrate. 前記光偏向部は、回折格子で構成されていることを特徴とする請求項1に記載の光電気混載基板。   The opto-electric hybrid board according to claim 1, wherein the light deflection unit is formed of a diffraction grating. 前記回折格子は、レーザ光を照射するにより前記透明体を内部改質して形成されていることを特徴とする請求項6に記載の光電気混載基板。   The opto-electric hybrid board according to claim 6, wherein the diffraction grating is formed by internally modifying the transparent body by irradiating a laser beam.
JP2003367962A 2003-10-28 2003-10-28 Manufacturing method of opto-electric hybrid board Expired - Fee Related JP4155160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367962A JP4155160B2 (en) 2003-10-28 2003-10-28 Manufacturing method of opto-electric hybrid board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367962A JP4155160B2 (en) 2003-10-28 2003-10-28 Manufacturing method of opto-electric hybrid board

Publications (2)

Publication Number Publication Date
JP2005134488A true JP2005134488A (en) 2005-05-26
JP4155160B2 JP4155160B2 (en) 2008-09-24

Family

ID=34645811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367962A Expired - Fee Related JP4155160B2 (en) 2003-10-28 2003-10-28 Manufacturing method of opto-electric hybrid board

Country Status (1)

Country Link
JP (1) JP4155160B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
JP2008241956A (en) * 2007-03-27 2008-10-09 Ngk Spark Plug Co Ltd Photoelectric mix-loaded package, method of manufacturing the same, photoelectric mix-loaded package with optical element and photoelectric mix-loaded module
CN100460905C (en) * 2005-11-08 2009-02-11 株式会社东芝 Laser-induced optical wiring apparatus
JP2012137765A (en) * 2012-01-23 2012-07-19 Ngk Spark Plug Co Ltd Photoelectric mix-loaded package, method of manufacturing the same, photoelectric mix-loaded package with optical element and photoelectric mix-loaded module
JP2012137688A (en) * 2010-12-27 2012-07-19 Sumitomo Bakelite Co Ltd Method for manufacturing optical waveguide, optical waveguide and electronic apparatus
JP2012163839A (en) * 2011-02-08 2012-08-30 Sumitomo Bakelite Co Ltd Manufacturing method of optical waveguide, optical waveguide, and electronic apparatus
JP2013190814A (en) * 2008-03-27 2013-09-26 Kyocera Corp Composite optical transmission substrate and optical module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
CN100460905C (en) * 2005-11-08 2009-02-11 株式会社东芝 Laser-induced optical wiring apparatus
JP2008241956A (en) * 2007-03-27 2008-10-09 Ngk Spark Plug Co Ltd Photoelectric mix-loaded package, method of manufacturing the same, photoelectric mix-loaded package with optical element and photoelectric mix-loaded module
JP2013190814A (en) * 2008-03-27 2013-09-26 Kyocera Corp Composite optical transmission substrate and optical module
JP2012137688A (en) * 2010-12-27 2012-07-19 Sumitomo Bakelite Co Ltd Method for manufacturing optical waveguide, optical waveguide and electronic apparatus
JP2012163839A (en) * 2011-02-08 2012-08-30 Sumitomo Bakelite Co Ltd Manufacturing method of optical waveguide, optical waveguide, and electronic apparatus
JP2012137765A (en) * 2012-01-23 2012-07-19 Ngk Spark Plug Co Ltd Photoelectric mix-loaded package, method of manufacturing the same, photoelectric mix-loaded package with optical element and photoelectric mix-loaded module

Also Published As

Publication number Publication date
JP4155160B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
EP1522882B1 (en) Optical waveguide having mirror surface formed by laser beam machining
TWI627457B (en) A fiber to chip optical coupler
US5790729A (en) Photoplethysmographic instrument having an integrated multimode optical coupler device
JP3887371B2 (en) Optical transmission board, optical transmission board manufacturing method, and opto-electric integrated circuit
US8422836B2 (en) Printed circuit board element and method for producing the same
JP4910788B2 (en) Optical module and optical waveguide manufacturing method
KR101508619B1 (en) System and methods for routing optical signals
JP2005115346A (en) Optical waveguide structure and optical module
KR20100112190A (en) Optical taps for circuit board-mounted optical waveguides
US9958607B2 (en) Light waveguide, method of manufacturing light waveguide, and light waveguide device
JP2009198804A (en) Optical module and optical waveguide
JP4475805B2 (en) Method for manufacturing a mirror in a polymer waveguide
US20060251357A1 (en) Optical coupler
JP2002169042A (en) Optical waveguide coupling structure, optical waveguide and its manufacturing method, and optical device part having optical waveguide and its manufacturing method
US5894538A (en) Method of forming integrated optical circuit planar waveguide turning mirrors
US7218804B2 (en) Method and device for establishing an optical connection between an optoelectronic component and an optical waveguide
JP4308684B2 (en) Optical waveguide device and manufacturing method thereof
US7760979B2 (en) System and method for low loss waveguide bends
JP4155160B2 (en) Manufacturing method of opto-electric hybrid board
WO2018128100A1 (en) Mode field conversion device, mode field conversion component, and method for producing mode field conversion device
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
JP2017142352A (en) Optical branching member and optical device using the same
JP2004205661A (en) Method for manufacturing photoelectric hybrid wiring board and photoelectric hybrid wiring board
JP2005134451A (en) Optic/electric mixed mounting substrate
JP2006039255A (en) Optical coupling device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees