JP2005133683A - Blower impeller - Google Patents

Blower impeller Download PDF

Info

Publication number
JP2005133683A
JP2005133683A JP2003372492A JP2003372492A JP2005133683A JP 2005133683 A JP2005133683 A JP 2005133683A JP 2003372492 A JP2003372492 A JP 2003372492A JP 2003372492 A JP2003372492 A JP 2003372492A JP 2005133683 A JP2005133683 A JP 2005133683A
Authority
JP
Japan
Prior art keywords
blade
groove
pressure surface
width
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003372492A
Other languages
Japanese (ja)
Inventor
Yoshiki Izumi
善樹 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003372492A priority Critical patent/JP2005133683A/en
Publication of JP2005133683A publication Critical patent/JP2005133683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a blower impeller of two blades from the aspect of fan efficiency and to reduce rotation noise generated by the blades. <P>SOLUTION: The mixed flow blower impeller has two vanes on a substantially truncated cone-like hub. The aspect ratio as a ratio of the chord length L of the vanes at a typical root-mean-square radius position thereof to a typical real length (b) in the radius direction of the vane is set on the range b/L≤1, and the number of blades is two. A groove penetrating a pressure surface and a negative pressure surface of each vane is disposed on the back edge side more than the center of the chord length L in a range except an outer rim part of the vane, and the width of the pressure surface side of the groove is larger than the width of the negative pressure surface side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気調和機に用いられる送風機羽根車に関するもので、特に、同羽根車の回転騒音の低減に関する構成を述べたものである。   The present invention relates to a blower impeller used for an air conditioner, and particularly describes a configuration relating to reduction of rotational noise of the impeller.

厚肉の翼形プロペラファンに、翼面を貫通しない凹状のスリットを設けた技術は、図12に示すように、プロペラファン30の翼31の圧力面の少なくても一部の領域に、凹状のスリット33を回転軸に対し同心円状ないし翼面の流れに方向に設けたものである(例えば特許文献1参照)。
一般に厚肉の翼形プロペラファンは、薄肉のプロペラファンに比較して、ファン効率が高く、騒音が低く、静圧圧力係数が優れたいる。しかし、肉厚が厚いので、従来のプラスチック成形法では、ヒケの問題で、成型できる肉厚が限られる。もた、肉厚の為、樹脂材料の投入が多くコストが高いという課題を持っている。
As shown in FIG. 12, the technique in which a thick-walled airfoil propeller fan is provided with a concave slit that does not penetrate the blade surface has a concave shape in at least a part of the pressure surface of the blade 31 of the propeller fan 30. The slit 33 is provided concentrically with respect to the rotation axis or in the direction of the flow of the blade surface (see, for example, Patent Document 1).
In general, thick-walled airfoil propeller fans have higher fan efficiency, lower noise, and higher static pressure coefficient than thin-walled propeller fans. However, since the wall thickness is large, in the conventional plastic molding method, the wall thickness that can be molded is limited due to the problem of sink marks. However, due to the wall thickness, there is a problem that a large amount of resin material is introduced and the cost is high.

これに対して、翼面を貫通しない凹状のスリット33を設けることで、ファンの空力性能と騒音性能を維持して、スリット33を設けた分、成型材料が少なく、ファンを軽量化でき、一般のプラスチック成形法を適用できるというものである。この翼31を貫通しない凹状のスリット33は、ファンの空力性能と騒音性能を低下させず、ファンを軽量化できることが主眼であり、プロペラファンの回転騒音Nz音(ここでNは回転数、zは翼枚数)の低減に何の寄与もしないという種類のものである。近年、プロペラファンのNz音は、低周波で発生する為、実聴感上、注目されている種類の音である。
特開2000−265997号公報
On the other hand, by providing the concave slit 33 that does not penetrate the blade surface, the aerodynamic performance and noise performance of the fan are maintained, the amount of molding material is reduced by the amount of the slit 33, and the fan can be reduced in weight. The plastic molding method can be applied. The concave slit 33 that does not penetrate the blade 31 is mainly intended to reduce the fan weight without deteriorating the aerodynamic performance and noise performance of the fan, and the rotation noise Nz sound of the propeller fan (where N is the rotational speed, z Does not contribute to the reduction in the number of blades). In recent years, the Nz sound of a propeller fan is generated at a low frequency, and is a kind of sound that has been attracting attention in terms of actual hearing.
JP 2000-265997 A

しかしながら、上記の従来の構成では、この翼31を貫通しない凹状のスリット33は、特に厚肉のファンの空力性能と騒音性能を低下させず、ファンを軽量化できることが主眼であり、プロペラファンの回転騒音Nz音の低減に何の寄与もしないという課題を有する。   However, in the above-described conventional configuration, the concave slit 33 that does not penetrate the blade 31 is mainly capable of reducing the weight of the fan without reducing the aerodynamic performance and noise performance of the thick-walled fan. There is a problem that no contribution is made to the reduction of the rotational noise Nz sound.

上記課題を解決する為に本発明は、略円錐台状のハブに2枚の翼を設けてなる斜流状の送風機羽根車の翼で、翼の代表自乗平均半径位置での翼の弦長Lと翼の半径方向の代表実長さbの比であるアスペクト比b/L≦1の範囲に設定し、且つ、羽根枚数が2枚からなる羽根車において、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きい送風機羽根車を提供するものである。   In order to solve the above-mentioned problems, the present invention is a blade of a mixed flow fan impeller in which two blades are provided on a substantially frustoconical hub, and the chord length of the blade at the representative square mean radius position of the blade. In an impeller having an aspect ratio b / L ≦ 1, which is a ratio of L to the representative actual length b in the radial direction of the blade, and having two blades, the outer peripheral edge portion of the blade is excluded. Provided with a groove penetrating the pressure surface and suction surface of the blade on the trailing edge side from the center of the chord length L in the range of the portion, providing a blower impeller whose width on the pressure surface side of the groove is larger than the width on the suction surface side Is.

上記構成によって、翼枚数が2枚からなる羽根車は、3枚以上の羽根車に比較して、流体摩擦が少ないのでファン効率が良いが、同じ空力仕事をする際の翼1枚当たりの翼面上の圧力変動が大きく、周りに干渉物ある際に、回転騒音Nz音が著しく立ち上がり、乱流騒音を大きく超える傾向がある。このNz音を、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きくすることで、この溝を貫通する流れが、翼の後縁に発生する剥離流れの幅(規模)を抑制するので、翼の後流剥離が低減されて、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。   With the above configuration, an impeller having two blades has better fan efficiency because it has less fluid friction than three or more impellers, but the blades per blade when performing the same aerodynamic work When the pressure fluctuation on the surface is large and there are interferences around, the rotational noise Nz sound rises significantly and tends to greatly exceed the turbulent noise. This Nz sound is provided with a groove penetrating the pressure surface and suction surface of the blade on the trailing edge side from the center of the chord length L in a part of the range excluding the outer peripheral edge portion of the blade. By making it larger than the width on the suction surface side, the flow passing through this groove suppresses the width (scale) of the separation flow generated at the trailing edge of the blade, so that the downstream separation of the blade is reduced and later Since the rotating rear wing is not affected, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise.

本発明の送風機羽根車によれば、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。また低コスト化も図れる。   According to the blower impeller of the present invention, the pressure fluctuation per blade can be suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise. In addition, the cost can be reduced.

請求項1に記載の発明は、略円錐台状のハブに2枚の翼を設けてなる斜流状の送風機羽根車の翼で、翼の代表自乗平均半径位置での翼の弦長Lと翼の半径方向の代表実長さbの比であるアスペクト比b/L≦1の範囲に設定し、且つ、羽根枚数が2枚からなる羽根車において、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きい送風機羽根車を提供するものである。   The invention according to claim 1 is a blade of a mixed flow fan impeller in which two blades are provided on a substantially frustoconical hub, and the chord length L of the blade at the representative square mean radius position of the blade is In an impeller having an aspect ratio b / L ≦ 1, which is a ratio of the representative actual length b in the radial direction of the blade, and having two blades, a part of the blade except for the outer peripheral edge portion. In the range, a groove penetrating the pressure surface and suction surface of the blade is provided on the trailing edge side from the center of the chord length L, and the blower impeller is provided in which the width on the pressure surface side of the groove is larger than the width on the suction surface side. is there.

この構成によって、翼枚数が2枚からなる羽根車は、3枚以上の羽根車に比較して、流体摩擦が少ないのでファン効率が良いが、同じ空力仕事をする際の翼1枚当たりの翼面上の圧力変動が大きく、周りに干渉物ある際に、回転騒音Nz音が著しく立ち上がり、乱流騒音を大きく超える傾向がある。このNz音を、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きくすることで、この溝を圧力面側から貫通する流れが、翼の後縁に発生する剥離流れの幅(規模)を抑制するので、翼の後流剥離が低減されて、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。   With this configuration, an impeller having two blades has better fan efficiency because it has less fluid friction than three or more impellers, but the blades per blade when performing the same aerodynamic work When the pressure fluctuation on the surface is large and there are interferences around, the rotational noise Nz sound rises significantly and tends to greatly exceed the turbulent noise. This Nz sound is provided with a groove penetrating the pressure surface and suction surface of the blade on the trailing edge side from the center of the chord length L in a part of the range excluding the outer peripheral edge portion of the blade. By making it larger than the width on the suction surface side, the flow that penetrates this groove from the pressure surface side suppresses the width (scale) of the separation flow generated at the trailing edge of the blade, so that the wake separation on the blade is reduced. Thus, since the rear blades that rotate later are not affected, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise.

請求項2に記載の発明は、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きく、溝を圧力面側から見た時に、翼の影になる部分がないように溝形状を構成した送風機羽根車を提供するものである。   The invention according to claim 2 is provided with a groove penetrating the pressure surface and the suction surface of the blade, the width of the pressure surface side of the groove is larger than the width of the suction surface side, when the groove is viewed from the pressure surface side, It is an object of the present invention to provide a blower impeller having a groove shape so that there is no portion that becomes a shadow of a wing.

この構成によって、溝を圧力面側から見た時に、翼の影になる部分がないように溝形状を構成することによって、溝も含めて、羽根車全体を上下スライドの金型で樹脂一体成型による製作を可能にするものであり、低コスト化に貢献できる。   With this configuration, when the groove is viewed from the pressure surface side, the groove shape is configured so that there are no shadows on the wings. This makes it possible to contribute to lower costs.

請求項3に記載の発明は、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きく、溝の後縁側角の圧力面側と負圧面側にR取りを設け、溝の前縁側角の圧力面側にR取りを設けた送風機羽根車を提供するものである。   According to a third aspect of the present invention, there is provided a groove penetrating the pressure surface and the suction surface of the blade, and the width on the pressure surface side of the groove is larger than the width on the suction surface side, A blower impeller is provided in which an R is provided on the negative pressure surface side and an R is provided on the pressure surface side of the front edge side corner of the groove.

この構成によって、溝を圧力面側から負圧面側に貫通して流れる流速の速い流れが、溝を構成する翼面上に上記のようにR取りがなされているので、溝を貫通する流れを円滑に翼の負圧面側に誘導する事が出来、貫通流れによる翼後縁の剥離を、より効率良く低減する。それで、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。   With this configuration, the flow having a high flow velocity that flows through the groove from the pressure surface side to the suction surface side is made R on the blade surface that constitutes the groove as described above. The blade can be smoothly guided to the suction side of the blade, and the separation of the blade trailing edge due to the through flow can be reduced more efficiently. Therefore, since it does not affect the rear blade that rotates later, the pressure fluctuation per blade can be suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise.

請求項4に記載の発明は、略円錐台状のハブに2枚の翼を設けてなる羽根車の翼で、翼の子午面において、前縁が、翼の前縁の自乗平均半径付近より外周側は気流の風上側に凹状であり、翼の前縁の自乗平均半径付近よりハブ側は気流の風上側に凸状である翼で、翼の半径方向断面で翼の自乗平均半径付近より外周側は気流の風上側に凹状であり、翼の自乗平均半径付近よりハブ側は気流の風上側に凸状である翼において、翼の外周縁部分を除く一部の範囲で前記弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きい送風機羽根車を提供するものである。   The invention according to claim 4 is a blade of an impeller in which two blades are provided on a substantially frustoconical hub, and the leading edge of the blade on the meridian surface is closer to the mean square radius of the leading edge of the blade. The outer peripheral side is concave on the windward side of the airflow, and the hub side is a wing that is convex on the windward side of the airflow from the vicinity of the root mean square radius. The chord length L is a part of the wing whose outer peripheral side is concave on the windward side of the airflow and whose hub side is convex on the windward side of the airflow from the vicinity of the mean square radius of the wing in a part of the range excluding the outer peripheral edge of the wing A groove that penetrates the pressure surface and suction surface of the blade is provided on the trailing edge side from the center of the blade, and a blower impeller having a width on the pressure surface side of the groove that is larger than the width on the suction surface side is provided.

この構成によって、翼の半径方向断面で翼の自乗平均半径付近より外周側は気流の風上側に凹状であり、翼の自乗平均半径付近よりハブ側は気流の風上側に凸状である翼であるので、この外周側凹部は、形状的に羽根車の回転方向にたいして流線型となるので、羽根車の翼が滑らかに空気を切って回転するので、回転騒音Nz音は低い性質がある。更に、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きくする送風機羽根車を構成することによって、この溝を圧力面側から貫通する流れが、翼の後縁に発生する剥離流れの幅(規模)を抑制するので、翼の後縁剥離が低減されて、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を更に低下させて乱流騒音のレベルより、更に充分に小さくすることができる。   With this configuration, in the radial cross section of the blade, the outer peripheral side from the vicinity of the blade mean radius is concave on the windward side of the airflow, and the hub side is convex from the vicinity of the blade average radius to the windward side of the airflow. Therefore, since the outer circumferential side recess is streamlined in shape with respect to the rotation direction of the impeller, the blades of the impeller rotate smoothly by turning off the air, so that the rotational noise Nz sound is low. Furthermore, a groove that penetrates the pressure surface and suction surface of the blade is provided on the trailing edge side from the center of the chord length L in a part of the range excluding the outer peripheral edge portion of the blade, and the width on the pressure surface side of the groove is the suction surface side. By configuring the blower impeller to be larger than the width of the blade, the flow through this groove from the pressure surface side suppresses the width (scale) of the separation flow generated at the trailing edge of the blade. Is reduced, and it does not affect the rear blades that rotate later. Therefore, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound is further reduced to further reduce the level of turbulent noise. Can be made smaller.

請求項5に記載に発明は、円筒状のハブに2枚の翼を設けてなる軸流状の羽根車の翼で、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きい送風機羽根車を提供する。   The invention according to claim 5 is an impeller blade of an axial flow type in which two blades are provided on a cylindrical hub, and from the center of the chord length L in a part of range except for the outer peripheral edge portion of the blade. Provided on the trailing edge side is a groove penetrating the pressure surface and suction surface of the blade, and provides a blower impeller having a width on the pressure surface side of the groove larger than the width on the suction surface side.

この構成のよって、ハブが円筒状の軸流ファンは、静圧特性が、斜流ファンより低い低圧形のファンとして知られる。この軸流ファンにおいても、翼枚数が2枚からなる羽根車は、3枚以上の羽根車に比較して、流体摩擦が少ないのでファン効率が良いが、同じ空力仕事をする際の翼1枚当たりの翼面上の圧力変動が大きく、周りに干渉物ある際に、回転騒音Nz音が著しく立ち上がり、乱流騒音を大きく超える傾向がある。このNz音を、翼の外周縁部分を除く一部の範囲で弦長Lの中央より後縁側に、翼の圧力面と負圧面を貫通する溝を設けて、溝の圧力面側の幅が負圧面側の幅より大きくすることで、この溝を圧力面側から貫通する流れが、翼の後縁に発生する剥離流れの幅(規模)を抑制するので、翼の後縁剥離が低減されて、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。この溝は、軸流ファンにおいても、Nz音低減に効果がある。   With this configuration, the axial fan having a cylindrical hub is known as a low-pressure fan having a static pressure characteristic lower than that of the mixed flow fan. Also in this axial fan, the impeller consisting of two blades has better fluid efficiency because it has less fluid friction than the three or more impellers, but one blade for the same aerodynamic work When the pressure fluctuation on the wing surface is large and there are interferences around, the rotational noise Nz sound rises significantly and tends to greatly exceed the turbulent noise. This Nz sound is provided with a groove penetrating the pressure surface and suction surface of the blade on the trailing edge side from the center of the chord length L in a part of the range excluding the outer peripheral edge portion of the blade. By making it larger than the width on the suction surface side, the flow that penetrates this groove from the pressure surface side suppresses the width (scale) of the separation flow generated at the trailing edge of the blade, so the trailing edge separation of the blade is reduced. Thus, since the rear blades that rotate later are not affected, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise. This groove is effective in reducing the Nz noise even in an axial fan.

以下に、本発明の一実施の形態の送風機羽根車について、空調用を例として図面を参照して説明する。   Hereinafter, a blower impeller according to an embodiment of the present invention will be described with reference to the drawings by using an air conditioner as an example.

(実施の形態1)
本発明の第1の実施の形態を、図1、2、3、5、6をもちいて説明する。図1は本形態の送風機羽根車の子午面図。図2は本形態の送風機羽根車の平面図。図3は本形態の送風機羽根車のAA断面展開図。図5は本形態の送風機羽根車の動作状態模式図。図6は本形態の送風機羽根車の実験デ−タである。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a meridional view of the fan impeller of this embodiment. FIG. 2 is a plan view of the blower impeller of this embodiment. FIG. 3 is an AA sectional development view of the blower impeller of this embodiment. FIG. 5 is a schematic diagram of an operation state of the blower impeller of this embodiment. FIG. 6 shows experimental data of the fan impeller of this embodiment.

図1において、送風機羽根車1は、略円錐台状のハブ3に羽根枚数が2枚の翼2が設けられている。代表ハブ径r=(r+r)/2で規定する。代表半径R=(R+R)/2で規定する。代表自乗平均半径Ra=((R+r)/2)0.5 で規定する。図1で、送風機羽根車1の中心線CCを、中心線として代表自乗平均半径Raを通る円錐の頂点Pであり、その円錐の線AAで翼2を切って展開したのが、図3であり、その翼2の弦長がLである。この線AAは、図2では、曲線AAに見える。翼2の半径方向の代表実長さbは、図1では代表ハブ径rの位置と代表半径Rの位置を結ぶ翼2のスパン方向の実長さである。図5のように、送風機羽根車1にモ−タ9のシャフトを固定し、オリフィス8内部で回転させて、送風作用を生じる。この時、気流は、殆ど前縁4より流入し後縁5より流出して空力仕事を行う。 In FIG. 1, a blower impeller 1 is provided with a blade 3 having two blades on a substantially frustoconical hub 3. The typical hub diameter is defined by r = (r 1 + r 2 ) / 2. It is defined by a representative radius R = (R 1 + R 2 ) / 2. Representative root mean square radius Ra = ((R 2 + r 2 ) / 2) It is defined by 0.5 . In Figure 1, the center line CC of the blower impeller 1, a vertex P 1 of the cone passing through the representative square mean radius Ra as center line that was developed off the wing 2 at its conical line AA, FIG. 3 And the chord length of the wing 2 is L. This line AA appears as a curve AA in FIG. The representative actual length b in the radial direction of the blade 2 is the actual length in the span direction of the blade 2 connecting the position of the representative hub diameter r and the position of the representative radius R in FIG. As shown in FIG. 5, the shaft of the motor 9 is fixed to the blower impeller 1 and is rotated inside the orifice 8 to produce a blowing action. At this time, the airflow almost flows in from the leading edge 4 and flows out from the trailing edge 5 to perform aerodynamic work.

ここでは、図1において、送風機羽根車1の代表自乗平均半径位置での弦長Lと翼2の半径方向の代表実長さbとの比b/Lをアスペクト比と言う。羽根枚数が2枚の送風機羽根車1のアスペクト比b/Lと41dB時の風量の関係を示したのが図6である。この図6は、Φ415mmの送風機羽根車をセパレ−ト型空気調和機室外機で実験したデ−タである。図6より、アスペクト比b/L≦1の範囲では、41dB当たりの風量が飽和しているが、b/L>1の範囲では、風量は急激に減少している。   Here, in FIG. 1, the ratio b / L between the chord length L at the representative mean square radial position of the blower impeller 1 and the representative actual length b in the radial direction of the blade 2 is referred to as an aspect ratio. FIG. 6 shows the relationship between the aspect ratio b / L of the blower impeller 1 having two blades and the air volume at 41 dB. FIG. 6 shows data obtained by experimenting a Φ415 mm blower impeller with a separate type air conditioner outdoor unit. From FIG. 6, the air volume per 41 dB is saturated in the range of aspect ratio b / L ≦ 1, but the air volume rapidly decreases in the range of b / L> 1.

そこで、略円錐台状のハブ3に2枚の翼2を設けてなる斜流状の送風機羽根車1の翼2で、翼2の代表自乗平均半径位置での翼2の弦長Lと翼2の半径方向の代表実長さbの比であるアスペクト比b/L≦1の範囲に設定し、且つ、羽根枚数が2枚からなる羽根車1において、翼2の外周縁6部分を除く一部の範囲で弦長Lの中央より後縁5側に、翼の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きい送風機羽根車1を構成している。 Accordingly, the blade 2 of the mixed flow fan impeller 1 in which the two blades 2 are provided on the substantially frustoconical hub 3, and the chord length L and the blade of the blade 2 at the representative square mean radius position of the blade 2. 2 is set in a range of an aspect ratio b / L ≦ 1, which is a ratio of a representative actual length b in the radial direction, and the outer peripheral edge 6 portion of the blade 2 is excluded in the impeller 1 having two blades. the trailing edge 5 side from the center of the chord length L in some range, the groove 7 extending through the pressure surface and suction surface of the blade is provided, the width t 2 of the pressure surface side of the groove 7 on the suction surface side width t A blower impeller 1 larger than 1 is configured.

この構成によって、翼枚数が2枚からなる羽根車1は、3枚以上の羽根車に比較して、流体摩擦が少ないのでファン効率が良いが、同じ空力仕事をする際の翼1枚当たりの翼面上の圧力変動が大きく、周りに干渉物ある際に、回転騒音Nz音(Nは回転数、zは羽根枚数)が著しく立ち上がり、乱流騒音を大きく超える傾向がある。このNz音を、翼2の外周縁6部分を除く一部の範囲で弦長Lの中央より後縁側5に、翼2の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きくすることで、この溝2を圧力面側から貫通する流れDが、翼の後縁5に発生する剥離流れの幅(規模)を抑制するので、翼2の後流剥離が低減されて、後から回転してくる後方翼2に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。 With this configuration, the impeller 1 having two blades has better fan efficiency because it has less fluid friction than three or more impellers. However, the impeller 1 has the same aerodynamic work. When the pressure fluctuation on the blade surface is large and there are interferences around it, the rotational noise Nz sound (N is the number of rotations and z is the number of blades) rises significantly and tends to greatly exceed the turbulent noise. A groove 7 penetrating the pressure surface and suction surface of the blade 2 is provided on the trailing edge side 5 from the center of the chord length L in a part of the range excluding the outer peripheral edge 6 of the blade 2. By making the pressure surface side width t 2 larger than the suction surface side width t 1 , the width (scale) of the separation flow generated at the trailing edge 5 of the blade D flowing through the groove 2 from the pressure surface side. As a result, the wake separation of the blade 2 is reduced and the rear blade 2 that rotates later is not affected, so the pressure fluctuation per blade is suppressed and the rotational noise Nz sound is reduced. Can be made lower than the level of turbulent noise.

(実施の形態2)
本発明の第2の実施の形態を、図3を用いて説明する。図3は翼2の代表自乗平均半径位置RaでのAA断面展開図である。翼2の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きく、溝を圧力面側から見た時に、翼2の影になる部分がないように溝7形状を構成した送風機羽根車1を構成している。この構成によって、溝7を圧力面側から見た時に、翼2の影になる部分がないように溝形状を構成することによって、溝7も含めて、羽根車1全体を上下スライドの金型で樹脂一体成型による製作を可能にするものであり、低コスト化に貢献できるものである。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is an AA cross-sectional development view of the blade 2 at the representative square mean radius position Ra. When the groove 7 penetrating the pressure surface and the suction surface of the blade 2 is provided, the width t 2 on the pressure surface side of the groove 7 is larger than the width t 1 on the suction surface side, and the blade 2 is viewed from the pressure surface side. The blower impeller 1 having the groove 7 shape is configured so that there is no portion that becomes a shadow of the above. With this configuration, when the groove 7 is viewed from the pressure surface side, the groove shape is configured so that there is no shadowed portion of the blade 2, so that the entire impeller 1 including the groove 7 can be slid vertically. This enables production by resin integral molding and contributes to cost reduction.

(実施の形態3)
本発明の第3の実施の形態を、図4を用いて説明する。図4は翼2の代表自乗平均半径位置RaでのAA断面展開図である。翼2の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きく、溝7の後縁5側角の圧力面側と負圧面側にR取り(Rx)を設け、溝7の前縁4側角の圧力面側にR取り(Ry)を設けた送風機羽根車1を構成している。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is an AA cross-sectional development view of the blade 2 at the representative mean-square radius position Ra. The groove 7 extending through the pressure surface and suction surface of the blade 2 is provided greater than the width t 1 of the width t 2 of the pressure surface side suction side of the groove 7, the pressure surface side of the edge 5 side angle after the groove 7 The blower impeller 1 is provided with an R-take (Rx) on the suction surface side and an R-take (Ry) on the pressure surface side of the front edge 4 side of the groove 7.

この構成によって、溝7を圧力面側から負圧面側に貫通して流れる流速の速い流れDが、溝7を構成する翼面上に上記のようにR取り(Rx、Ry)がなされているので、溝7を貫通する流れDを円滑に翼2の負圧面側に誘導する事が出来、貫通流れDによる翼後縁5の剥離を、より効率良く低減する。それで、後から回転してくる後方翼2に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。   With this configuration, the flow D having a high flow velocity that flows through the groove 7 from the pressure surface side to the suction surface side is R-taken (Rx, Ry) on the blade surface constituting the groove 7 as described above. Therefore, the flow D penetrating the groove 7 can be smoothly guided to the suction surface side of the blade 2, and the separation of the blade trailing edge 5 due to the through flow D can be reduced more efficiently. Therefore, since the rear blade 2 that rotates later is not affected, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound can be reduced to be lower than the level of turbulent noise.

(実施の形態4)
本発明の第4の実施の形態を、図7、8、9を用いて説明する。図7は本形態の送風機羽根車の子午面図である。図8は自乗平均半径位置でのAA断面展開図である。図9は本形態の送風機羽根車の半径方向断面図である。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a meridional view of the blower impeller of this embodiment. FIG. 8 is an AA cross-sectional development view at the mean-square radius position. FIG. 9 is a radial cross-sectional view of the blower impeller of this embodiment.

図7に於いて、略円錐台状のハブ3に2枚の翼2を設けてなる羽根車1の翼2で、翼2の子午面において、前縁4が、翼2の前縁4の自乗平均半径付近より外周6側は気流の風上側に凹状であり、翼2の前縁4の自乗平均半径付近よりハブ3側は気流の風上側に凸状である。図9に置いて、翼2の半径方向断面で翼2の自乗平均半径付近より外周6側は気流の風上側に凹状であり、翼の自乗平均半径付近よりハブ3側は気流の風上側に凸状である。図8に於いて、翼2の外周縁6部分を除く一部の範囲で弦長Lの中央より後縁5側に、翼2の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きい送風機羽根車1を構成するものである。 In FIG. 7, a blade 2 of an impeller 1 in which two blades 2 are provided on a substantially frustoconical hub 3, and the leading edge 4 of the blade 2 is the leading edge 4 of the blade 2. From the vicinity of the mean square radius, the outer periphery 6 side is concave on the windward side of the airflow, and from the vicinity of the mean square radius of the leading edge 4 of the blade 2, the hub 3 side is convex on the windward side of the airflow. 9, in the radial cross section of the blade 2, the outer periphery 6 side from the vicinity of the mean square radius of the blade 2 is concave on the windward side of the airflow, and the hub 3 side is near the windward side of the airflow from near the mean square radius of the blade. Convex shape. In FIG. 8, a groove 7 penetrating the pressure surface and the suction surface of the blade 2 is provided on the trailing edge 5 side from the center of the chord length L in a part of the range excluding the outer peripheral edge 6 portion of the blade 2. width t 2 of the pressure surface side of the 7 constitute a width t 1 is greater than blower impeller 1 on the suction surface side.

この構成によって、翼2の半径方向断面で翼2の自乗平均半径付近より外周6側は気流の風上側に凹状であり、翼の自乗平均半径付近よりハブ3側は気流の風上側に凸状である翼であるので、この外周側凹部は、形状的に羽根車1の回転方向に対して流線型となるので、羽根車1の翼2が滑らかに空気を切って回転するので、回転騒音Nz音は低い性質がある。更に、翼2の外周縁6部分を除く一部の範囲で弦長Lの中央より後縁5側に、翼2の圧力面と負圧面を貫通する溝7を設けて、溝7の圧力面側の幅tが負圧面側の幅tより大きくする送風機羽根車1を構成することによって、この溝7を圧力面側から貫通する流れDが、翼2の後縁5に発生する剥離流れの幅(規模)を抑制するので、翼2の後縁剥離が低減されて、後から回転してくる後方翼2に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を更に低下させて乱流騒音のレベルより、更に充分に小さくすることができる。 With this configuration, in the radial cross section of the blade 2, the outer periphery 6 side from the vicinity of the mean square radius of the blade 2 is concave on the windward side of the airflow, and the hub 3 side is convex from the vicinity of the mean square radius of the blade to the windward side of the airflow. Therefore, since the outer peripheral recess is geometrically streamlined with respect to the rotational direction of the impeller 1, the blade 2 of the impeller 1 rotates smoothly with air cut off. The sound has a low nature. Further, a groove 7 penetrating the pressure surface and suction surface of the blade 2 is provided on the trailing edge 5 side from the center of the chord length L in a part of the range excluding the outer peripheral edge 6 portion of the blade 2, and the pressure surface of the groove 7 is provided. By forming the blower impeller 1 in which the width t 2 on the side is larger than the width t 1 on the suction surface side, the flow D penetrating the groove 7 from the pressure surface side is generated on the trailing edge 5 of the blade 2. Since the width (scale) of the flow is suppressed, the trailing edge separation of the blade 2 is reduced, and the rear blade 2 that rotates later is not affected. Therefore, the pressure fluctuation per blade is suppressed, The rotational noise Nz sound can be further reduced to be sufficiently smaller than the level of turbulent noise.

(実施の形態5)
本発明の第5の実施の形態を、図10、11で説明する。図10は本形態の送風機羽根車の子午面図である。図11は本形態の送風機羽根車の自乗平均半径位置Rbにおける断面展開図である。
(Embodiment 5)
A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a meridional view of the blower impeller of this embodiment. FIG. 11 is a developed cross-sectional view of the blower impeller of this embodiment at the root mean square radial position Rb.

図10において、円筒状のハブ12に2枚の翼11を設けてなる軸流状の羽根車10の翼11で、翼11の外周縁15部分を除く一部の範囲で弦長Lの中央より後縁14側に、翼11の圧力面と負圧面を貫通する溝16を設けて、溝16の圧力面側の幅tが負圧面側の幅tより大きい送風機羽根車10を構成している。自乗平均半径Rb=((R+r)/2)0.5である。bは翼11の半径方向の実長さである。前縁は13である。 In FIG. 10, the wing 11 of the axial flow impeller 10 in which two blades 11 are provided on a cylindrical hub 12, and the center of the chord length L in a part of the range except for the outer peripheral edge 15 portion of the wing 11. configuration more trailing edge 14 side, provided with a groove 16 extending through the pressure surface and suction surface of the blade 11, the width t 1 is greater than the fan impeller 10 of a width t 2 of the pressure surface side of the groove 16 is suction side doing. The mean square radius Rb = ((R 2 + r 2 ) / 2) 0.5 . b is the actual length of the blade 11 in the radial direction. The leading edge is 13.

ハブ12が円筒状の軸流ファンは、静圧特性が、斜流ファンより低い低圧形のファンとして知られる。この軸流ファンにおいても、翼枚数が2枚からなる羽根車10は、3枚以上の羽根車に比較して、流体摩擦が少ないのでファン効率が良いが、同じ空力仕事をする際の翼1枚当たりの翼面上の圧力変動が大きく、周りに干渉物ある際に、回転騒音Nz音(Nは回転数、zは羽根枚数)が著しく立ち上がり、乱流騒音を大きく超える傾向がある。   An axial fan with a cylindrical hub 12 is known as a low-pressure fan having a static pressure characteristic lower than that of a mixed flow fan. Also in this axial fan, the impeller 10 having two blades has good fan efficiency because it has less fluid friction than the three or more impellers. However, the blade 1 is used for the same aerodynamic work. When the pressure fluctuation on the blade surface per sheet is large and there are interferences around, the rotational noise Nz sound (N is the number of rotations and z is the number of blades) rises significantly and tends to greatly exceed the turbulent noise.

このNz音を、翼11の外周縁15部分を除く一部の範囲で弦長Lの中央より後縁14側に、翼11の圧力面と負圧面を貫通する溝16を設けて、溝16の圧力面側の幅tが負圧面側の幅tより大きくすることで、この溝16を圧力面側から貫通する流れDが、翼11の後縁14に発生する剥離流れの幅(規模)を抑制するので、翼11の後縁剥離が低減されて、後から回転してくる後方翼に影響を与えないので、翼1枚当たりの圧力変動が抑制されて、回転騒音Nz音を低下させて乱流騒音のレベルより小さくすることができる。このように、軸流ファンにおいても、溝16は、Nz音低減に効果がある。 A groove 16 penetrating the pressure surface and the suction surface of the blade 11 is provided on the trailing edge 14 side from the center of the chord length L in a part of the range except for the outer peripheral edge 15 portion of the blade 11. By making the pressure surface side width t 2 larger than the suction surface side width t 1 , the flow D penetrating the groove 16 from the pressure surface side causes the width of the separation flow generated at the trailing edge 14 of the blade 11 ( Therefore, the trailing edge separation of the blade 11 is reduced and the rear blade rotating later is not affected. Therefore, the pressure fluctuation per blade is suppressed, and the rotational noise Nz sound is generated. It can be reduced to less than the level of turbulent noise. Thus, also in the axial fan, the groove 16 is effective in reducing Nz noise.

本発明の第1の実施の形態の送風機羽根車の子午面図The meridian view of the fan impeller of the first embodiment of the present invention 同送風機羽根車の平面図Top view of the blower impeller 本発明の第1および第2の実施の形態の送風機羽根車のAA断面展開図AA cross-sectional development view of the fan impeller of the first and second embodiments of the present invention 本発明の第3の実施の形態の送風機羽根車のAA断面展開図AA sectional development view of a fan impeller of a 3rd embodiment of the present invention. 本発明の送風機羽根車の動作状態を示す模式図The schematic diagram which shows the operation state of the fan impeller of this invention 本発明の送風機羽根車(Φ415)の実験デ−タを示す図The figure which shows the experimental data of the fan impeller (Φ415) of the present invention 本発明の第4の実施の形態の送風機羽根車の子午面図The meridional view of the fan impeller of the fourth embodiment of the present invention 同送風機羽根車のAA断面展開図AA sectional development view of the blower impeller 同送風機羽根車の半径方向断面図Radial cross section of the blower impeller 本発明の第5の実施の形態の送風機羽根車の子午面図The meridional view of the fan impeller of the fifth embodiment of the present invention 本発明の第5の実施の形態の送風機羽根車のAA断面展開図The AA cross-section expanded view of the fan impeller of the 5th Embodiment of this invention 従来の送風機羽根車の簡略図Simplified diagram of a conventional blower impeller

符号の説明Explanation of symbols

1、10 送風機羽根車
2、11 翼
3、12 ハブ
4、13 前縁
5、14 後縁
6、15 外周
7、16 溝
1, 10 Blower impeller 2, 11 Blade 3, 12 Hub 4, 13 Front edge 5, 14 Rear edge 6, 15 Outer periphery 7, 16 Groove

Claims (5)

略円錐台状のハブに2枚の翼を設けてなる斜流状の送風機羽根車の翼で、翼の代表自乗平均半径位置での翼の弦長Lと翼の半径方向の代表実長さbの比であるアスペクト比b/L≦1の範囲に設定し、且つ、羽根枚数が2枚からなる羽根車において、前記翼の外周縁部分を除く一部の範囲で前記弦長Lの中央より後縁側に、前記翼の圧力面と負圧面を貫通する溝を設けて、前記溝の圧力面側の幅が負圧面側の幅より大きい送風機羽根車。 A blade of a mixed flow fan impeller having two blades on a substantially frustoconical hub. The blade chord length L at the representative square mean radius position of the blade and the representative actual length in the radial direction of the blade. In the impeller having an aspect ratio b / L ≦ 1, which is the ratio of b, and having two blades, the center of the chord length L in a part of the range excluding the outer peripheral edge portion of the blades A blower impeller having a groove penetrating the pressure surface and suction surface of the blade on the rear edge side, and having a width on the pressure surface side of the groove larger than a width on the suction surface side. 翼の圧力面と負圧面を貫通する溝を設けて、前記溝の圧力面側の幅が負圧面側の幅より大きく、前記溝を圧力面側から見た時に、前記翼の影になる部分がないように溝形状を構成した請求項1記載の送風機羽根車。 A portion that is provided with a groove penetrating the pressure surface and the suction surface of the blade, the width of the groove on the pressure surface side is larger than the width of the suction surface side, and a portion that becomes a shadow of the blade when the groove is viewed from the pressure surface side The blower impeller according to claim 1, wherein the groove shape is configured so that there is no gap. 翼の圧力面と負圧面を貫通する溝を設けて、前記溝の圧力面側の幅が負圧面側の幅より大きく、前記溝の後縁側角の圧力面側と負圧面側にR取りを設け、前記溝の前縁側角の圧力面側にR取りを設けた請求項1記載の送風機羽根車。 A groove penetrating the pressure surface and the suction surface of the blade is provided, and the width of the pressure surface side of the groove is larger than the width of the suction surface side, and R is removed on the pressure surface side and the suction surface side of the rear edge side of the groove. The blower impeller according to claim 1, wherein the blower impeller is provided with an R portion on a pressure surface side of a front edge side corner of the groove. 略円錐台状のハブに2枚の翼を設けてなる羽根車の翼で、前記翼の子午面において、前縁が、前記翼の前縁の自乗平均半径付近より外周側は気流の風上側に凹状であり、前記翼の前縁の自乗平均半径付近よりハブ側は気流の風上側に凸状である翼で、前記翼の半径方向断面で前記翼の自乗平均半径付近より外周側は気流の風上側に凹状であり、前記翼の自乗平均半径付近よりハブ側は気流の風上側に凸状である翼において、前記翼の外周縁部分を除く一部の範囲で前記弦長Lの中央より後縁側に、前記翼の圧力面と負圧面を貫通する溝を設けて、前記溝の圧力面側の幅が負圧面側の幅より大きい請求項1記載の送風機羽根車。 A blade of an impeller having two blades provided on a substantially truncated cone-shaped hub, wherein the leading edge of the wing meridian surface is near the mean square radius of the leading edge of the blade, and the outer peripheral side is the windward side of the airflow The wing is convex toward the windward side of the airflow from the vicinity of the root mean square radius of the leading edge of the blade, and the outer peripheral side from the vicinity of the root mean square radius of the blade in the radial cross section of the blade. A wing that is concave on the windward side of the blade, and the hub side is convex on the windward side of the airflow from the vicinity of the mean square radius of the wing. 2. The blower impeller according to claim 1, wherein a groove penetrating the pressure surface and the suction surface of the blade is provided on the rear edge side, and the width of the groove on the pressure surface side is larger than the width of the suction surface side. 円筒状のハブに2枚の翼を設けてなる軸流状の羽根車の翼で、前記翼の外周縁部分を除く一部の範囲で前記弦長Lの中央より後縁側に、前記翼の圧力面と負圧面を貫通する溝を設けて、前記溝の圧力面側の幅が負圧面側の幅より大きい請求項1記載の送風機羽根車。 A blade of an axial-flow impeller having two blades provided on a cylindrical hub, and a portion of the blade except for the outer peripheral edge of the blade, the center of the chord length L to the trailing edge side of the blade. The blower impeller according to claim 1, wherein a groove penetrating the pressure surface and the suction surface is provided, and the width of the groove on the pressure surface side is larger than the width of the suction surface side.
JP2003372492A 2003-10-31 2003-10-31 Blower impeller Pending JP2005133683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372492A JP2005133683A (en) 2003-10-31 2003-10-31 Blower impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372492A JP2005133683A (en) 2003-10-31 2003-10-31 Blower impeller

Publications (1)

Publication Number Publication Date
JP2005133683A true JP2005133683A (en) 2005-05-26

Family

ID=34648861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372492A Pending JP2005133683A (en) 2003-10-31 2003-10-31 Blower impeller

Country Status (1)

Country Link
JP (1) JP2005133683A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162542A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner
JP2007291902A (en) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd Diagonal flow blower impeller and air conditioner
CN102146934A (en) * 2010-02-10 2011-08-10 建准电机工业股份有限公司 Fan wheel
CN102777418A (en) * 2012-07-09 2012-11-14 广东美的电器股份有限公司 Axial flow wind wheel and air-conditioning outdoor unit
CN111043078A (en) * 2019-12-31 2020-04-21 宁波奥克斯电气股份有限公司 Axial flow fan blade and air conditioner
US20230236049A1 (en) * 2019-05-07 2023-07-27 Fortune Brands Water Innovations LLC Turbine design for flow meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162542A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner
JP2007291902A (en) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd Diagonal flow blower impeller and air conditioner
CN102146934A (en) * 2010-02-10 2011-08-10 建准电机工业股份有限公司 Fan wheel
CN102777418A (en) * 2012-07-09 2012-11-14 广东美的电器股份有限公司 Axial flow wind wheel and air-conditioning outdoor unit
US20230236049A1 (en) * 2019-05-07 2023-07-27 Fortune Brands Water Innovations LLC Turbine design for flow meter
CN111043078A (en) * 2019-12-31 2020-04-21 宁波奥克斯电气股份有限公司 Axial flow fan blade and air conditioner

Similar Documents

Publication Publication Date Title
JP3743222B2 (en) Blower impeller and air conditioner
JP3204208B2 (en) Mixed-flow blower impeller
JP4798640B2 (en) Propeller fan, molding die and fluid feeder
CN100374732C (en) Blower impeller
JP5425192B2 (en) Propeller fan
JP2003148395A (en) Impeller of air-conditioning fan
JP3677214B2 (en) Axial fan
JP4712714B2 (en) Centrifugal multi-blade fan
CN110914553B (en) Impeller, blower and air conditioner
JP2005133683A (en) Blower impeller
JP2012107538A (en) Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
JP2007247494A (en) Diagonal flow blower impeller
JP4492060B2 (en) Blower impeller
JP2007162521A (en) Mixed flow blower impeller and air conditioner
JP2006200457A (en) Blower
JP2007205230A (en) Blower impeller
JP4233359B2 (en) Blower impeller for air conditioner
JPH0121198Y2 (en)
JPH10311296A (en) Blower
JP4572633B2 (en) Blower impeller for air conditioning
JP4572617B2 (en) Blower impeller for air conditioning
JPH06249195A (en) Impeller of axial blower
JPH02173395A (en) Axial flow fan
JP3366151B2 (en) Axial fan
JPH08170599A (en) Blower impeller