JP2005133198A - HIGH-PURITY HIGH-DENSITY METAL Mo SINTERING TARGET FOR SPUTTERING WHICH ENABLES FORMATION OF HIGH-PURITY METAL Mo THIN FILM PRODUCING EXTREMELY FEW PARTICLE - Google Patents

HIGH-PURITY HIGH-DENSITY METAL Mo SINTERING TARGET FOR SPUTTERING WHICH ENABLES FORMATION OF HIGH-PURITY METAL Mo THIN FILM PRODUCING EXTREMELY FEW PARTICLE Download PDF

Info

Publication number
JP2005133198A
JP2005133198A JP2004121549A JP2004121549A JP2005133198A JP 2005133198 A JP2005133198 A JP 2005133198A JP 2004121549 A JP2004121549 A JP 2004121549A JP 2004121549 A JP2004121549 A JP 2004121549A JP 2005133198 A JP2005133198 A JP 2005133198A
Authority
JP
Japan
Prior art keywords
purity
metal
powder
thin film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004121549A
Other languages
Japanese (ja)
Other versions
JP4475398B2 (en
Inventor
Masayuki Ibaraki
正之 茨木
Kenji Iwamoto
賢治 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan New Metals Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Japan New Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Japan New Metals Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004121549A priority Critical patent/JP4475398B2/en
Publication of JP2005133198A publication Critical patent/JP2005133198A/en
Application granted granted Critical
Publication of JP4475398B2 publication Critical patent/JP4475398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-purity high-density metal Mo sintering target for sputtering which enables the formation of a high-purity metal Mo thin film producing extremely few particle. <P>SOLUTION: The high-purity high-density metal Mo sintering target for sputtering comprises a sintered compact of a high-purity metal Mo coarse-grained powder which has a reduced content of K (potassium), which is a coarsening additive, of ≤10 ppm, a high purity of ≥99.99 mass%, an average particle size of 5.5-7.5 μm as measured by Fischer's method and a specific surface area of 0.07-0.2 m<SP>2</SP>/g calculated as a BET value according to JIS R 1626, so that the metal Mo sintering target has a high purity of ≥99.99 mass% and a high theoretical density of ≥98%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば液晶ディスプレイに代表されるフラットパネルディスプレイの透明導電膜や電解トランジスターのゲート電極や配線回路などに適応される高純度金属Mo薄膜のスパッタリング法による形成に用いられる、高純度金属Mo焼結ターゲットに関するものである。   The present invention is a high-purity metal Mo used for forming a high-purity metal Mo thin film suitable for, for example, a transparent conductive film of a flat panel display represented by a liquid crystal display, a gate electrode of an electrolysis transistor, a wiring circuit, and the like. It relates to a sintering target.

従来、一般に上記のスパッタリング用高純度金属Mo焼結ターゲットが、原料粉末として、純度:99.99質量%以上の高純度を有し、かつフィッシャー法による粒度測定で2〜4μmの平均粒径(以下、平均粒径の表示はいずれもフィッシャー法により測定した結果を示す)、並びにJIS・R1626に基づくBET値で0.5〜1m/gの比表面積(以下、比表面積はいずれもJIS・R1626に基づくBET値で示す)を有する高純度金属Mo粉末を用い、これを焼結することにより製造されることは良く知られるところである。 Conventionally, the above-mentioned high-purity metal Mo sintered target for sputtering generally has a high purity of 99.99% by mass or more as a raw material powder, and an average particle diameter of 2 to 4 μm by a particle size measurement by the Fisher method ( In the following, the average particle size is indicated by the Fischer method, and the BET value based on JIS R1626 is 0.5-1 m 2 / g specific surface area (hereinafter, the specific surface area is JIS It is well known that it is produced by using a high-purity metal Mo powder having a BET value based on R1626 and sintering it.

また、上記の原料粉末としての高純度金属Mo粉末が、原料として99.9質量%以上の純度および2〜4μmの平均粒径を有する三酸化モリブデン粉末やモリブデン酸アンモニウム塩粉末など(以下、これらを総称してMoO粉末で示す)を用い、これに水素気流中、500〜700℃の温度に所定時間保持の条件で一次水素還元処理を施して二酸化モリブデン(以下、MoOで示す)粉末を形成し、ついで前記MoO粉末を同じく水素気流中、750〜1100℃の温度に所定時間保持の条件で二次水素還元処理を施して、99.99質量%以上の純度を有する高純度金属Mo粉末とすることにより製造されることも知られている。
特開平2−141507号公報
In addition, the high-purity metal Mo powder as the raw material powder is a molybdenum trioxide powder or ammonium molybdate powder having a purity of 99.9% by mass or more as a raw material and an average particle diameter of 2 to 4 μm (hereinafter referred to as these Are collectively referred to as MoO 3 powder), and subjected to primary hydrogen reduction treatment at a temperature of 500 to 700 ° C. for a predetermined time in a hydrogen stream, and then molybdenum dioxide (hereinafter referred to as MoO 2 ) powder. And then subjecting the MoO 2 powder to a secondary hydrogen reduction treatment at a temperature of 750 to 1100 ° C. for a predetermined time in a hydrogen stream, and having a purity of 99.99% by mass or more. It is also known to be manufactured by making Mo powder.
JP-A-2-141507

近年、例えば液晶ディスプレイの高性能化および大型化、さらに薄型化はめざましく、これに対応して、これらの構造部品である透明導電膜や電解トランジスターのゲート電極や配線回路などは著しく高集積化するようになり、このように前記構造部品の集積度が高くなればなるほど、これの形成に適用される高純度金属Mo薄膜の品質にも高い均質性が要求され、特に膜中にできるだけパーティクル(最大径で0.5μm以上の粗大粒)が存在しない薄膜が強く要求されることになるが、上記の従来高純度金属Mo粉末を原料粉末として用いて製造された高純度金属Mo焼結ターゲットを用いて、スパッタリング法により高純度金属Mo薄膜を形成した場合、前記薄膜中のパーティクルを前記構造部品の高集積化に十分満足に対応できる程度に少なくすることができないのが現状である。   In recent years, for example, the performance and size of liquid crystal displays have been increasing and their thickness has been dramatically reduced. Correspondingly, the transparent conductive films, gate electrodes of electrolytic transistors, wiring circuits, and the like, which are these structural parts, have been remarkably highly integrated. Thus, the higher the degree of integration of the structural components, the higher the homogeneity required for the quality of the high-purity metal Mo thin film applied to the formation of the structural parts. A thin film that does not include a coarse particle having a diameter of 0.5 μm or more is strongly required, but a high-purity metal Mo sintered target manufactured using the above-described conventional high-purity metal Mo powder as a raw material powder is used. Thus, when a high-purity metal Mo thin film is formed by sputtering, the particles in the thin film are sufficiently satisfactory for high integration of the structural parts. At present it can not be reduced to that.

そこで、本発明者等は、上述のような観点から、パーティクル発生のきわめて少ない高純度金属Mo薄膜の形成が可能なスパッタリング用高純度金属Mo焼結ターゲットを開発すべく、特にこれの製造に原料粉末として用いられている高純度金属Mo粉末に着目し、研究を行った結果、
(a)スパッタ時のパーティクル発生数と焼結ターゲットの理論密度比との間には密接な関係があり、焼結ターゲットの理論密度比を98%以上に高密度化するとパーティクルの発生を著しく減少させることができること。
In view of the above, the present inventors have developed a high-purity metal Mo sintered target for sputtering capable of forming a high-purity metal Mo thin film that generates very little particles, and in particular, a raw material for the production thereof. As a result of conducting research by focusing on the high-purity metal Mo powder used as a powder,
(A) There is a close relationship between the number of particles generated during sputtering and the theoretical density ratio of the sintered target. When the theoretical density ratio of the sintered target is increased to 98% or more, the generation of particles is remarkably reduced. What can be done.

(b)焼結ターゲットの理論密度比と前記焼結ターゲットの製造に原料粉末として用いられる高純度金属Mo粉末の粒度および比表面積との間にも密接な関係があり、前記高純度金属Mo粉末の平均粒径および比表面積が、上記の通り従来高純度金属Mo粉末のもつ2〜4μmの平均粒径および0.5〜1m/gの比表面積では98%以上の理論密度比をもった焼結ターゲットを製造することはできないが、これを5.5μm以上の平均粒径および0.2m/g以下の比表面積をもった粗粒にすると焼結ターゲットの理論密度比を98%以上に高密度化することができること。 (B) There is also a close relationship between the theoretical density ratio of the sintered target and the particle size and specific surface area of the high-purity metal Mo powder used as a raw material powder in the production of the sintered target, and the high-purity metal Mo powder As described above, the average particle size and specific surface area of the high purity metal Mo powder had a theoretical density ratio of 98% or more with an average particle size of 2 to 4 μm and a specific surface area of 0.5 to 1 m 2 / g. Although a sintered target cannot be manufactured, if this is made into coarse particles having an average particle size of 5.5 μm or more and a specific surface area of 0.2 m 2 / g or less, the theoretical density ratio of the sintered target is 98% or more. The density can be increased.

(c)上記の従来高純度金属Mo粉末の製造において、例えばモリブデン酸アンモニウム[(NHMoO]溶液に、例えば水酸化カリウム水溶液の所定量を加えて撹拌混合した後、濃縮ろ過してK(カリウム)含有のパラモリブデン酸アンモニウム[3(NHO・7MoO・4HO]とし、ついでこれをか焼して、K(カリウム)を30〜150ppmの割合で含有するMoO粉末とすると共に、二次水素還元処理温度を従来の処理温度である750〜1100℃に比して相対的に高温の1150〜1300℃とする以外は同一の条件で高純度金属Mo粉末を製造すると、この結果製造された高純度金属Mo粉末は、前記MoO粉末に含有するK成分の作用で水素還元処理中に、粉末が粒成長して粗粒化し、K成分の混合割合を上記の通り30〜150ppmとした場合に、5.5〜7.5μmの平均粒径およびJIS・R1626に基づくBET値で0.07〜0.2m/gの比表面積をもった粗粒となると共に、相対的に高温の還元温度である1150〜1300℃での前記二次水素還元処理で、不可避不純物と共に、粗粒化添加成分であるK成分が除去されて、10ppm以下に低減することと相俟って、99.99質量%以上の高純度をもつようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) In the production of the conventional high-purity metal Mo powder, for example, a predetermined amount of an aqueous potassium hydroxide solution is added to, for example, an ammonium molybdate [(NH 4 ) 2 MoO 4 ] solution and stirred and mixed, followed by concentration filtration. K (potassium) -containing ammonium paramolybdate [3 (NH 4 ) 2 O · 7MoO 3 · 4H 2 O], which is then calcined to contain K (potassium) in a proportion of 30 to 150 ppm. High purity metal Mo powder under the same conditions except that it is MoO 3 powder and the secondary hydrogen reduction treatment temperature is relatively high, 1150 to 1300 ° C. as compared to the conventional treatment temperature of 750 to 1100 ° C. When producing a high-purity metal Mo powder results produced, during reduction with hydrogen under the action of K component contained in the MoO 3 powder, powder is coarsened by grain growth When the mixing ratio of K component was 30~150ppm described above, the specific surface area of 0.07~0.2m 2 / g in BET value based on the average particle size and JIS · R1626 of 5.5~7.5μm In addition to the inevitable impurities, the K component, which is a coarsening additive component, is removed in the secondary hydrogen reduction treatment at 1150-1300 ° C., which is a relatively high reduction temperature. Combined with the reduction to 10 ppm or less, it should have a high purity of 99.99% by mass or more.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、粗粒化添加成分であるK(カリウム)の含有量が10ppm以下に低減され、かつ純度:99.99質量%以上の高純度を有すると共に、5.5〜7.5μmの平均粒径および0.07〜0.2m/gの比表面積を有する高純度金属Mo粗粒粉末の焼結体にして、純度:99.99質量%以上の高純度および理論密度比:98%以上の高密度を有する、パーティクル発生のきわめて少ない高純度金属Mo薄膜の形成を可能とするスパッタリング用高純度高密度金属Mo焼結ターゲットに特徴を有するものである。 The present invention has been made based on the above research results, and the content of K (potassium) as a coarsening additive component is reduced to 10 ppm or less, and the purity is as high as 99.99% by mass or more. A sintered body of high-purity metal Mo coarse powder having a purity and an average particle diameter of 5.5 to 7.5 μm and a specific surface area of 0.07 to 0.2 m 2 / g. High purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin films with high purity of 99% by mass or more and theoretical density ratio: 98% or more and extremely low particle generation It is what has.

なお、この発明の高純度高密度金属Mo焼結ターゲットにおいては、上記の通りこれの理論密度比と、原料粉末である高純度金属Mo粗粒粉末の平均粒径および比表面積との間には密接な関係があり、前記高純度金属Mo粗粒粉末の平均粒径が5.5μm未満にして、比表面積が0.2m/gを越えると、前記高純度金属Mo焼結ターゲットの理論密度比は98%未満となってしまい、このような理論密度比が98%未満の高純度金属Mo焼結ターゲットを用いて高純度金属Mo薄膜を形成した場合、前記薄膜中におけるパーティクルの発生数が急激に多くなって、高集積化に満足に対応することができないものであり、一方前記高純度金属Mo粗粒粉末の平均粒径が7.5μmを越え、かつ比表面積が0.07m/g未満の粗粒になり過ぎると、これより製造された前記高純度金属Mo焼結ターゲットの強度が急激に低下し、スパッタ中にターゲット自体に割れが発生し易くなることことから、前記高純度金属Mo粗粒粉末の平均粒径を5.5〜7.5μmにして、比表面積を0.07〜0.2m/gと定めたものであり、したがって、この高純度金属Mo粗粒粉末を用いれば、98%以上の高い理論密度比をもった高密度のスパッタリング用高純度金属Mo焼結ターゲットの製造が可能となり、さらにこのスパッタリング用高純度金属Mo焼結ターゲットを用いることによりパーティクル発生のきわめて少ない高純度金属Mo薄膜の形成が可能となるのである。 In the high-purity high-density metal Mo sintered target of the present invention, as described above, there is a difference between the theoretical density ratio and the average particle diameter and specific surface area of the high-purity metal Mo coarse powder as the raw material powder. When the average particle size of the high-purity metal Mo coarse powder is less than 5.5 μm and the specific surface area exceeds 0.2 m 2 / g, the theoretical density of the high-purity metal Mo sintered target is closely related. The ratio is less than 98%, and when a high-purity metal Mo thin film is formed using such a high-purity metal Mo sintered target having a theoretical density ratio of less than 98%, the number of particles generated in the thin film is However, the high purity metal Mo coarse powder has an average particle size exceeding 7.5 μm and a specific surface area of 0.07 m 2 / Coarse grains less than g Since the strength of the high-purity metal Mo sintered target produced from this will drop sharply, and the target itself is likely to crack during sputtering, the average of the high-purity metal Mo coarse powder The particle size is 5.5 to 7.5 μm and the specific surface area is determined to be 0.07 to 0.2 m 2 / g. Therefore, if this high purity metal Mo coarse powder is used, 98% or more It is possible to manufacture a high-purity high-purity metal Mo sintered target for sputtering with a high theoretical density ratio. Further, by using this high-purity metal Mo sintered target for sputtering, high-purity metal Mo with very little particle generation can be obtained. A thin film can be formed.

また、この発明の高純度高密度金属Mo焼結ターゲットにおいては、その純度を99.99質量%以上の高純度として、これを用いて成膜される高純度金属Mo薄膜が99.99質量%以上の純度をもつようにしたものであり、この場合前記高純度金属Mo薄膜の純度が99.99質量%未満では、例えば液晶ディスプレイには適用することができないものである。   In the high-purity high-density metal Mo sintered target of the present invention, the purity is 99.99% by mass or more, and the high-purity metal Mo thin film formed using this is 99.99% by mass. In this case, if the purity of the high-purity metal Mo thin film is less than 99.99% by mass, it cannot be applied to, for example, a liquid crystal display.

この発明の高純度高密度金属Mo焼結ターゲットは、粗粒化添加成分であるK(カリウム)の含有量が10ppm以下に低減され、かつ99.99質量%以上の高純度を有すると共に、5.5〜7.5μmの平均粒径および0.07〜0.2m/gの比表面積を有する高純度金属Mo粗粒粉末を原料粉末として用いることにより、純度:99.99質量%以上の高純度および理論密度比:98%以上の高密度を有するようになるものであり、この結果パーティクルの発生がきわめて少なく、例えば高集積度が要求される液晶ディスプレイなどに適用することができる高純度金属Mo薄膜の形成を可能となるものである。 The high-purity high-density metal Mo sintered target of the present invention has a K (potassium) content, which is a coarsening additive component, reduced to 10 ppm or less and has a high purity of 99.99% by mass or more. By using a high-purity metal Mo coarse powder having an average particle diameter of 5-7.5 μm and a specific surface area of 0.07-0.2 m 2 / g as a raw material powder, the purity: 99.99 mass% or more High purity and theoretical density ratio: It has a high density of 98% or more. As a result, the generation of particles is extremely small, and the high purity can be applied to, for example, a liquid crystal display that requires a high degree of integration. A metal Mo thin film can be formed.

つぎに、この発明の高純度高密度金属Mo焼結ターゲットを実施例により具体的に説明する。   Next, the high-purity high-density metal Mo sintered target according to the present invention will be specifically described with reference to examples.

モリブデン酸アンモニウム溶液に、所定量の30%水酸化カリウム(KOH)水溶液を加えて撹拌混合した後、濃縮ろ過してK(カリウム)含有のパラモリブデン酸アンモニウムとし、ついでこれを600℃でか焼して、それぞれ表1に示される割合でKを含有し、かつ同じく表1に示される平均粒径をもったK含有三酸化モリブデン(以下、MoOで示す)粉末を調製し、これに同じく表1に示される条件で一次および二次水素還元処理を施すことによりこの発明にかかる高純度金属Mo粗粒粉末(以下、本発明Mo粗粒粉末という)A〜Eをそれぞれ製造した。 A predetermined amount of 30% potassium hydroxide (KOH) aqueous solution is added to the ammonium molybdate solution, and the mixture is stirred and mixed. Then, the solution is concentrated and filtered to obtain K (potassium) -containing ammonium paramolybdate, which is then calcined at 600 ° C. Then, K-containing molybdenum trioxide (hereinafter referred to as MoO 3 ) powder containing K in the ratio shown in Table 1 and having the average particle diameter shown in Table 1 was prepared. High-purity metal Mo coarse particles (hereinafter referred to as “Mo coarse particles of the present invention”) A to E according to the present invention were produced by performing primary and secondary hydrogen reduction treatments under the conditions shown in Table 1.

また、比較の目的で、表1に示される通り原料である上記MoO粉末に対するK成分の配合を行わず、かつ二次水素還元処理温度を通常の温度である750〜1100℃とする以外は同一の条件で、上記従来の高純度金属Mo粉末(以下、従来Mo粉末という)a〜eをそれぞれ製造した。 Moreover, for the purpose of comparison, as shown in Table 1, the K component is not added to the MoO 3 powder as a raw material, and the secondary hydrogen reduction treatment temperature is set to a normal temperature of 750 to 1100 ° C. Under the same conditions, the conventional high-purity metal Mo powders (hereinafter referred to as conventional Mo powders) a to e were produced.

また、表1には、この結果得られた本発明Mo粗粒粉末A〜Eおよび従来Mo粉末a〜eのK成分の含有量、純度、平均粒径、および比表面積の測定結果を示した。   Table 1 shows the measurement results of the content, purity, average particle diameter, and specific surface area of the K component of the resulting Mo coarse particles A to E of the present invention and the conventional Mo powders a to e. .

ついで、この結果得られた本発明Mo粗粒粉末A〜Eおよび従来Mo粉末a〜eのそれぞれを、表2に示される通り原料粉末として用い、これら原料粉末に、雰囲気圧力:980Paの水素雰囲気中、700℃に2時間保持の条件で水素清浄化処理を施して、粉末表面酸化物を除去し、もって粉末表面酸素量(粉末表面吸着酸素量)で測定して、粉末全体に占める割合で100〜150ppmの範囲内の所定の酸素量に低減した状態で、それぞれ250MPaの圧力でプレス成形して直径:900mm×厚さ:12mmの寸法の円盤状圧粉体とし、この円盤状圧粉体に、圧力:100MPa、温度:1250℃、保持時間:2時間の条件でHIP処理を施して焼結し、さらに機械加工にて直径:890mm×厚さ:10mmの寸法に仕上げることにより本発明高純度高密度金属Mo焼結ターゲット(以下、本発明ターゲットという)1〜5および従来高純度金属Mo焼結ターゲット(以下、従来ターゲットという)1〜5をそれぞれ製造した。   Subsequently, the resulting Mo coarse particles A to E of the present invention and the conventional Mo powders a to e were used as raw powders as shown in Table 2, and hydrogen pressure at 980 Pa was applied to these raw powders. In this, hydrogen cleaning treatment was performed at 700 ° C. for 2 hours to remove the powder surface oxide, and measured by the amount of oxygen on the surface of the powder (the amount of oxygen adsorbed on the surface of the powder). In a state reduced to a predetermined oxygen amount in the range of 100 to 150 ppm, each is press-molded at a pressure of 250 MPa to form a disk-shaped green compact having a diameter of 900 mm × thickness: 12 mm. In addition, it is sintered after being subjected to HIP treatment under conditions of pressure: 100 MPa, temperature: 1250 ° C., holding time: 2 hours, and further machined to a size of diameter: 890 mm × thickness: 10 mm. Thus, high-purity high-density metal Mo sintered targets (hereinafter referred to as the present invention target) 1 to 5 and conventional high-purity metal Mo sintered targets (hereinafter referred to as conventional targets) 1 to 5 of the present invention were produced, respectively.

また、同じく表2に示される通り、原料粉末として上記本発明Mo粗粒粉末Dを用い、これに200MPaの圧力でCIP(冷間静水圧プレス)処理を施して直径:100mm×高さ:250mmの寸法をもった円柱状圧粉体とし、ついで前記円柱状圧粉体をクラッシャーにて解砕し、目開:2mmの篩にて篩分し、篩下粉末に、上記の条件と同じ条件で水素清浄化処理を施して、粉末表面酸化物を除去し、もって粉末表面酸素量(粉末表面吸着酸素量)で測定して、粉末全体に占める割合で120ppmの酸素量に低減した後、上記の本発明ターゲット1〜5の製造条件と同じ条件で、円盤状圧粉体とし、この円盤状圧粉体にHIP処理を施して焼結し、さらに機械加工を施すことにより本発明高純度高密度金属Mo焼結ターゲット6(以下、本発明ターゲット6という)を製造した。   Similarly, as shown in Table 2, the Mo coarse particle powder D of the present invention was used as a raw material powder, and subjected to a CIP (cold isostatic pressing) process at a pressure of 200 MPa to obtain a diameter of 100 mm × a height of 250 mm. And then crushing the cylindrical green compact with a crusher, sieving with a 2 mm sieve, and applying the same conditions as above to the underscreen powder. After removing the powder surface oxide by measuring with hydrogen, and measuring the amount of oxygen on the surface of the powder (the amount of oxygen adsorbed on the surface of the powder) and reducing the amount of oxygen to 120 ppm as a percentage of the whole powder, the above In the same conditions as the manufacturing conditions of the present invention targets 1 to 5, a disk-shaped green compact is obtained, and this disk-shaped green compact is subjected to HIP treatment and sintered, and further machined to produce the high purity and high purity of the present invention. Density metal Mo sintered target 6 , It was prepared as the present invention target 6).

表2に、この結果得られた本発明ターゲット1〜6および従来ターゲット1〜5の純度および理論密度比の測定結果を示した。   Table 2 shows the measurement results of the purity and theoretical density ratio of the present invention targets 1 to 6 and the conventional targets 1 to 5 obtained as a result.

ついで、上記の本発明ターゲット1〜6および従来ターゲット1〜5をそれぞれ純銅製バッキングプレートにろう付けした状態で、直流マグネトロンスパッタリング装置に取り付け、
スパッタガス:Ar、
Arガス雰囲気圧力:0.5Pa、
スパッタ電力:43.5KW、
の条件でスパッタを行い、直径:900mmのガラス板の表面に、全面に亘って厚さ:0.6μmの高純度金属Mo薄膜(以下、Mo薄膜という)を形成した。
Next, in the state where the present invention targets 1 to 6 and the conventional targets 1 to 5 are brazed to a pure copper backing plate, they are attached to a DC magnetron sputtering apparatus,
Sputtering gas: Ar,
Ar gas atmosphere pressure: 0.5 Pa,
Sputtering power: 43.5kW
Sputtering was performed under the above conditions to form a high-purity metal Mo thin film (hereinafter referred to as Mo thin film) having a thickness of 0.6 μm over the entire surface of a glass plate having a diameter of 900 mm.

この結果得られたMo薄膜について、任意箇所の直径:200mmの面積内に存在する最大径が0.5μm以上のパーティクル数をパーティクルカウンターにて測定した。この測定結果を表2に5ヶ所の平均値で示した。   With respect to the Mo thin film obtained as a result, the number of particles having a maximum diameter of 0.5 μm or more existing within an area of 200 mm in diameter at an arbitrary position was measured with a particle counter. The measurement results are shown in Table 2 as average values at five locations.

Figure 2005133198
Figure 2005133198

Figure 2005133198
Figure 2005133198

表1,2に示される結果から、粗粒化添加成分であるK(カリウム)の含有量が10ppm以下に低減され、かつ99.99質量%以上の高純度を有すると共に、5.5〜7.5μmの平均粒径、並びに0.07〜0.2m/gの比表面積を有する本発明Mo粗粒粉末A〜Eを用いれば、純度:99.99質量%以上の高純度で、かつ理論密度比:98%以上の高密度の本発明ターゲット1〜6を製造することができ、しかも前記本発明ターゲット1〜6を用いれば、パーティクルの発生がきわめて少ないMo薄膜の形成が可能となるのに対して、99.99質量%以上の高純度ではあるが、平均粒径が2〜4μmにして、比表面積が0.5〜1m/gの従来Mo粉末a〜eを用いて製造された従来ターゲット1〜5は、いずれも98%未満の理論密度比をもつものであり、したがって、前記従来ターゲット1〜5を用いて成膜されたMo薄膜ではパーティクルの発生がきわめて多いものとなっていることが明らかである。 From the results shown in Tables 1 and 2, the content of K (potassium), which is a coarsening additive component, is reduced to 10 ppm or less and has a high purity of 99.99% by mass or more and 5.5 to 7 If the present invention Mo coarse particles A to E having an average particle diameter of 0.5 μm and a specific surface area of 0.07 to 0.2 m 2 / g are used, the purity is as high as 99.99% by mass or more, and The present invention targets 1 to 6 having a theoretical density ratio of 98% or more can be produced, and if the present invention targets 1 to 6 are used, it is possible to form a Mo thin film with very few particles. On the other hand, although it has a high purity of 99.99% by mass or more, it is manufactured using conventional Mo powders a to e having an average particle size of 2 to 4 μm and a specific surface area of 0.5 to 1 m 2 / g. All of the conventional targets 1 to 5 are 98 Less than it is those having a theoretical density ratio, thus, the in Mo thin film formed by using the conventional target 1-5 it is apparent that has as generation of particles is very large.

上述のように、この発明の高純度高密度金属Mo焼結ターゲットは、原料粉末として粗粒化添加成分であるK(カリウム)の含有量が10ppm以下に低減され、かつ99.99質量%以上の高純度を有すると共に、5.5〜7.5μmの平均粒径および0.07〜0.2m/gの比表面積を有する高純度金属Mo粗粒粉末を用いることにより純度:99.99質量%以上の高純度、および理論密度比:98%以上の高密度を具備するようになり、かつ前記高純度および高密度によってパーティクル発生のきわめて少ない高純度金属Mo薄膜の形成が可能となるものであるから、例えば液晶ディスプレイの高性能化および大型化、さらに薄型化に十分満足に対応できるものである。 As described above, in the high-purity high-density metal Mo sintered target of the present invention, the content of K (potassium), which is a coarsening additive component, is reduced to 10 ppm or less as a raw material powder, and 99.99% by mass or more. By using high-purity metal Mo coarse powder having an average particle size of 5.5 to 7.5 μm and a specific surface area of 0.07 to 0.2 m 2 / g, the purity is 99.99. High purity of mass% or more and theoretical density ratio: High density of 98% or more, and the high purity and high density enable formation of a high purity metal Mo thin film with very few particles. Therefore, for example, the liquid crystal display can be satisfactorily coped with high performance, large size, and thinning.

Claims (1)

粗粒化添加成分であるK(カリウム)の含有量が10ppm以下に低減され、かつ99.99質量%以上の高純度を有すると共に、フィッシャー法による粒度測定で5.5〜7.5μmの平均粒径およびJIS・R1626に基づくBET値で0.07〜0.2m/gの比表面積を有する高純度金属Mo粗粒粉末の焼結体にして、純度:99.99質量%以上の高純度および理論密度比:98%以上の高密度を有することを特徴とする、パーティクル発生のきわめて少ない高純度金属Mo薄膜の形成を可能とするスパッタリング用高純度高密度金属Mo焼結ターゲット。 The content of K (potassium) which is a coarsening additive component is reduced to 10 ppm or less and has a high purity of 99.99% by mass or more, and an average of 5.5 to 7.5 μm as measured by the Fisher method. A high purity metal Mo coarse powder sintered body having a particle size and a specific surface area of 0.07 to 0.2 m 2 / g as a BET value based on JIS · R1626 is used. Purity and theoretical density ratio: A high-purity high-density metal Mo sintering target for sputtering that enables formation of a high-purity metal Mo thin film with very few particles, characterized by having a high density of 98% or more.
JP2004121549A 2003-09-16 2004-04-16 Method for producing high-purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin film with very few particles Expired - Lifetime JP4475398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121549A JP4475398B2 (en) 2003-09-16 2004-04-16 Method for producing high-purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin film with very few particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003322578 2003-09-16
JP2003349396 2003-10-08
JP2004121549A JP4475398B2 (en) 2003-09-16 2004-04-16 Method for producing high-purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin film with very few particles

Publications (2)

Publication Number Publication Date
JP2005133198A true JP2005133198A (en) 2005-05-26
JP4475398B2 JP4475398B2 (en) 2010-06-09

Family

ID=34657712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121549A Expired - Lifetime JP4475398B2 (en) 2003-09-16 2004-04-16 Method for producing high-purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin film with very few particles

Country Status (1)

Country Link
JP (1) JP4475398B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100980039B1 (en) 2008-02-01 2010-09-06 포항공과대학교 산학협력단 Manufacturing method of thin film for diffusion barrier and thin film for diffusion barrier produced thereby
JP2012252768A (en) * 2011-05-09 2012-12-20 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation and manufacturing method thereof
JP2013033581A (en) * 2011-07-05 2013-02-14 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation and method of manufacturing the same
JP2013536316A (en) * 2010-07-09 2013-09-19 クライマックス・エンジニアード・マテリアルズ・エルエルシー Potassium / molybdenum composite metal powder, powder blend, product thereof, and method for producing photovoltaic cell
JP2014041682A (en) * 2012-08-24 2014-03-06 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation, and manufacturing method thereof
US8900340B2 (en) 2005-10-14 2014-12-02 Plansee Se Tubular target and production method
KR20200129143A (en) * 2018-03-13 2020-11-17 제이엑스금속주식회사 Sputtering target and manufacturing method of sputtering target

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900340B2 (en) 2005-10-14 2014-12-02 Plansee Se Tubular target and production method
US9890451B2 (en) 2005-10-14 2018-02-13 Plansee Se Tubular target and production method
KR100980039B1 (en) 2008-02-01 2010-09-06 포항공과대학교 산학협력단 Manufacturing method of thin film for diffusion barrier and thin film for diffusion barrier produced thereby
JP2013536316A (en) * 2010-07-09 2013-09-19 クライマックス・エンジニアード・マテリアルズ・エルエルシー Potassium / molybdenum composite metal powder, powder blend, product thereof, and method for producing photovoltaic cell
TWI449581B (en) * 2010-07-09 2014-08-21 Climax Engineered Mat Llc Potassium/molybdenum composite metal powders, powder blends, products thereof, and methods for producing photovoltaic cells
JP2012252768A (en) * 2011-05-09 2012-12-20 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation and manufacturing method thereof
JP2013033581A (en) * 2011-07-05 2013-02-14 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation and method of manufacturing the same
JP2014041682A (en) * 2012-08-24 2014-03-06 Mitsubishi Materials Corp Sputtering target for magnetic recording medium film formation, and manufacturing method thereof
KR20200129143A (en) * 2018-03-13 2020-11-17 제이엑스금속주식회사 Sputtering target and manufacturing method of sputtering target
KR102612744B1 (en) * 2018-03-13 2023-12-13 제이엑스금속주식회사 Sputtering target and method of manufacturing the sputtering target

Also Published As

Publication number Publication date
JP4475398B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
EP1724364B1 (en) Method of forming an HP Ruthenium powder and a sputtering target therefrom
US20180261438A1 (en) Tungsten Sintered Compact Sputtering Target and Tungsten Film Formed Using Said Target
US7534282B2 (en) High purity metal Mo coarse powder and sintered sputtering target produced by thereof
CN105683407A (en) Sputtering target and production method
KR20190095414A (en) Tungsten Silicide Target and Manufacturing Method Thereof
JP6881643B2 (en) Sputtering target for magnetic recording medium and magnetic thin film
JP5428995B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
WO2016129449A1 (en) Cr-Ti ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING SAME
JP4800317B2 (en) High purity Ru alloy target, method for producing the same, and sputtered film
WO2014024519A1 (en) Sintered body and sputtering target
JP4345105B2 (en) Method for producing high-purity metal Mo coarse powder suitable for use as a raw material powder in the production of sputtering high-purity metal Mo sintered target
JP4475398B2 (en) Method for producing high-purity high-density metal Mo sintered target for sputtering that enables formation of high-purity metal Mo thin film with very few particles
JP2015196885A (en) Manufacturing method of ultra-low oxygen/ultra-high pure chromium target and ultra-low oxygen/ultra-high pure chromium target
JP4345560B2 (en) Method for producing high-purity metal Mo coarse powder suitable for use as a raw material powder in the production of sputtering high-purity metal Mo sintered target
EP3124647B1 (en) Sputtering target comprising al-te-cu-zr alloy, and method for producing same
JP4228223B2 (en) High purity metal Mo coarse powder suitable for use as raw material powder for the production of sputtering high purity metal Mo sintered target
CN109844167B (en) Magnetic material sputtering target and method for producing same
TWI616545B (en) Strong magnetic material sputtering target
JP3086447B1 (en) Tungsten target for sputtering and method for producing the same
TW201335396A (en) Ferromagnetic material sputtering target containing chrome oxide
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
JP2002275625A (en) Ru TARGET MATERIAL AND PRODUCTION METHOD THEREFOR
JP2009228061A (en) Te-based sputtering target for forming film of optical recording medium with reduced particle production
JP2001262326A (en) Indium oxide-metallic thin powder mixture, ito sputtering target using the same powdery mixture as raw material and method for producing the same target
JP2005307235A (en) P conaining w powder, and sintered target for sputtering manufactured by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

R150 Certificate of patent or registration of utility model

Ref document number: 4475398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250